1
|
Grifé-Ruiz M, Hierrezuelo-León J, de Vicente A, Pérez-García A, Romero D. Diversification of Lipopeptide Analogues Drives Versatility in Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1403-1416. [PMID: 39760433 PMCID: PMC11741111 DOI: 10.1021/acs.jafc.4c11372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Cyclic lipopeptides (CLPs) are potent secondary metabolites with diverse biological functions. Bacillus strains primarily produce CLPs of three key families, namely, iturins, fengycins, and surfactins, each comprising structural variants characterized by a cyclic peptide linked to a fatty acid chain. Despite extensive research on CLPs, the individual roles of these analogues and their proportion in driving biological activity have remained largely overlooked. In this study, we purified and chemically characterized CLP variants from Bacillus velezensis UMAF6639 and tested them individually for their antifungal and plant growth-promoting effects. We isolated 5 fractions containing iturin A analogues (from C13 to C17), 5 fengycin fractions (containing C16, C17, and C18 fengycin A and C14, C15, C16, and C17 fengycin B), and 5 surfactin fractions (from C12 to C16). We show how antifungal activity and seed radicle growth promotion relied on the lipopeptide structural variant and concentration based on the physiological ratio calculated for each lipopeptide variant. Notably, we found that the most toxic variants were the least abundant, which likely minimized autotoxicity while preserving bioactivity. This balance is achieved through synergistic interactions with more abundant, less aggressive analogues. Furthermore, certain fengycin and surfactin variants were shown to increase bacterial population density and exopolysaccharide production, crucial strategies for microbial competition with significant ecological impacts. In addition to advancing basic knowledge, our findings will support the development of precision biotechnological innovations, offering targeted solutions to drive sustainable food production and preservation strategies.
Collapse
Affiliation(s)
- Montserrat Grifé-Ruiz
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Jesús Hierrezuelo-León
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
2
|
Schmid PJ, Forstner P, Kittinger C. Sliding motility of Bacillus cereus mediates vancomycin pseudo-resistance during antimicrobial susceptibility testing. J Antimicrob Chemother 2024; 79:1628-1636. [PMID: 38785365 PMCID: PMC11215547 DOI: 10.1093/jac/dkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The glycopeptide vancomycin is the antimicrobial agent-of-choice for the treatment of severe non-gastrointestinal infections with members of Bacillus cereus sensu lato (s.l.). Recently, sporadic detection of vancomycin-resistant phenotypes emerged, mostly for agar diffusion testing such as the disc diffusion method or gradient test (e.g. Etest®) method. RESULTS In this work, we were able to disprove a preliminarily assumed high resistance to vancomycin in an isolate of B. cereus s.l. using broth microdilution and agar dilution. Microscopic imaging during vancomycin susceptibility testing showed spreading towards the inhibition zone, which strongly suggested sliding motility. Furthermore, transcriptomic analysis using RNA-Seq on the nanopore platform revealed several key genes of biofilm formation (e.g. calY, tasA, krsEABC) to be up-regulated in pseudo-resistant cells, substantiating that bacterial sliding is responsible for the observed mobility. Down-regulation of virulence (e.g. hblABCD, nheABC, plcR) and flagellar genes compared with swarming cells also confirmed the non-swarming phenotype of the pseudo-resistant isolate. CONCLUSIONS The results highlight an insufficiency of agar diffusion testing for vancomycin susceptibility in the B. cereus group, and reference methods like broth microdilution are strongly recommended. As currently no guideline mentions interfering phenotypes in antimicrobial susceptibility testing of B. cereus s.l., this knowledge is essential to obtain reliable results on vancomycin susceptibility. In addition, this is the first report of sliding motility undermining accurate antimicrobial susceptibility testing in B. cereus s.l. and may serve as a basis for future studies on bacterial motility in susceptibility testing and its potential impact on treatment efficacy.
Collapse
Affiliation(s)
- Paul J Schmid
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Patrick Forstner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Liu W, Wang Y, Sun Y, Xia W, Qian X, Bo R, Huang Y, Ruan X. Baicalein inhibits biofilm formation of avian pathogenic Escherichia coli in vitro mainly by affecting adhesion. Res Vet Sci 2024; 174:105291. [PMID: 38729095 DOI: 10.1016/j.rvsc.2024.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) is a widespread bacterium that causes significant economic losses to the poultry industry. APEC biofilm formation may result in chronic, persistent, and recurrent infections in clinics, making treatment challenging. Baicalein is a natural product that exhibits antimicrobial and antibiofilm activities. This study investigates the inhibitory effect of baicalein on APEC biofilm formation at different stages. The minimum inhibitory concentration (MIC) of baicalein on APEC was determined, and the growth curve of APEC biofilm formation was determined. The effects of baicalein on APEC biofilm adhesion, accumulation, and maturation were observed using optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. The biofilm inhibition rate of baicalein was calculated at different stages. The MIC of baicalein against APEC was 256 μg/mL. The process of APEC biofilm maturation takes approximately 48 h after incubation, with initial adhesion completed at 12 h, and cell accumulation finished at 24 h. Baicalein had a significant inhibitory effect on APEC biofilm formation at concentrations above 1 μg/mL (p < 0.01). Notably, baicalein had the highest rate of biofilm formation inhibition when added at the adhesion stage. Therefore, it can be concluded that baicalein is a potent inhibitor of APEC biofilm formation in vitro and acts, primarily by inhibiting cell adhesion. These findings suggests that baicalein has a potential application for inhibiting APEC biofilm formation and provides a novel approach for the prevention and control APEC-related diseases.
Collapse
Affiliation(s)
- Wanru Liu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yufang Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ying Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Wenjie Xia
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Xiaoyue Qian
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ruihong Bo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuanyuan Huang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Xiangchun Ruan
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, Anhui Province 230036, China.
| |
Collapse
|
4
|
Sornchuer P, Saninjuk K, Amonyingcharoen S, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sangpairoj K. Whole Genome Sequencing Reveals Antimicrobial Resistance and Virulence Genes of Both Pathogenic and Non-Pathogenic B. cereus Group Isolates from Foodstuffs in Thailand. Antibiotics (Basel) 2024; 13:245. [PMID: 38534680 DOI: 10.3390/antibiotics13030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Members of the Bacillus cereus group are spore-forming Gram-positive bacilli that are commonly associated with diarrheal or emetic food poisoning. They are widespread in nature and frequently present in both raw and processed food products. Here, we genetically characterized 24 B. cereus group isolates from foodstuffs. Whole-genome sequencing (WGS) revealed that most of the isolates were closely related to B. cereus sensu stricto (12 isolates), followed by B. pacificus (5 isolates), B. paranthracis (5 isolates), B. tropicus (1 isolate), and "B. bingmayongensis" (1 isolate). The most detected virulence genes were BAS_RS06430, followed by bacillibactin biosynthesis genes (dhbA, dhbB, dhbC, dhbE, and dhbF), genes encoding the three-component non-hemolytic enterotoxin (nheA, nheB, and nheC), a gene encoding an iron-regulated leucine-rich surface protein (ilsA), and a gene encoding a metalloprotease (inhA). Various biofilm-associated genes were found, with high prevalences of tasA and sipW genes (matrix protein-encoding genes); purA, purC, and purL genes (eDNA synthesis genes); lytR and ugd genes (matrix polysaccharide synthesis genes); and abrB, codY, nprR, plcR, sinR, and spo0A genes (biofilm transcription regulator genes). Genes related to fosfomycin and beta-lactam resistance were identified in most of the isolates. We therefore demonstrated that WGS analysis represents a useful tool for rapidly identifying and characterizing B. cereus group strains. Determining the genetic epidemiology, the presence of virulence and antimicrobial resistance genes, and the pathogenic potential of each strain is crucial for improving the risk assessment of foodborne B. cereus group strains.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | | | - Sumet Amonyingcharoen
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Sun Y, Shuai W, Nie L, Li X, Jiang L. Investigating the Role of OrbF in Biofilm Biosynthesis and Regulation of Biofilm-Associated Genes in Bacillus cereus BC1. Foods 2024; 13:638. [PMID: 38472751 DOI: 10.3390/foods13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Bacillus cereus (B. cereus), a prevalent foodborne pathogen, constitutes a substantial risk to food safety due to its pronounced resilience under adverse environmental conditions such as elevated temperatures and ultraviolet radiation. This resilience can be attributed to its capacity for biofilm synthesis and sustained high viability. Our research aimed to elucidate the mechanisms governing biofilm biosynthesis in B. cereus. To this end, we constructed a 5088-mutant library of the B. cereus strain BC1 utilizing the transposon TnYLB-1. Systematic screening of this library yielded mutants exhibiting diminished biofilm formation capabilities. Twenty-four genes associated with the biofilm synthesis were identified by reverse PCR in these mutants, notably revealing a significant reduction in biofilm synthesis upon disruption of the orbF gene in B. cereus BC1. Comparative analysis between the wild type and orbF-deficient BC1 strains (BC1ΔorbF) indicated a marked downregulation (decreased by 11.7% to 96.7%) in the expression of genes implicated in biofilm formation, flagellar assembly, and bacterial chemotaxis in the BC1ΔorbF. Electrophoretic mobility shift assay (EMSA) further corroborated the role of OrbF, demonstrating its binding to the promoter region of the biofilm gene cluster, subsequently leading to the suppression of transcriptional activity of biofilm-associated genes in B. cereus BC1. Our findings underscore the pivotal role of orbF in biofilm biosynthesis in B. cereus, highlighting its potential as a target for strategies aimed at mitigating biofilm formation in this pathogen.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjing Shuai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lanmengya Nie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Yuan L, Dai H, He G, Yang Z, Jiao X. Invited review: Current perspectives for analyzing the dairy biofilms by integrated multiomics. J Dairy Sci 2023; 106:8181-8192. [PMID: 37641326 DOI: 10.3168/jds.2023-23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Biofilms formed by pathogenic or spoilage microorganisms have become serious issues in the dairy industry, as this mode of life renders such microorganisms highly resistant to cleaning-in-place (CIP) procedures, disinfectants, desiccation, and other control strategies. The advent of omics techniques, especially the integration of different omics tools, has greatly improved our understanding of the features of microbial biofilms, and provided in-depth knowledge on developing effective methods that are directly against deleterious biofilms. This review provides novel insights into the single use of each omics tool and the application of multiomics tools to unravel the mechanisms of biofilm formation, specific molecular phenotypes exhibited by biofilms, and biofilm control strategies. Challenges and future perspective on the integration of omics tools for biofilm studies are also addressed.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| |
Collapse
|
7
|
Yuan L, Fan L, Dai H, He G, Zheng X, Rao S, Yang Z, Jiao XA. Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165695. [PMID: 37487904 DOI: 10.1016/j.scitotenv.2023.165695] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Exposure to sub-inhibitory concentrations (sub-MICs) of antibiotics could induce the biofilm formation of microorganisms, but its underlying mechanisms still remain elusive. In the present work, biofilm formation by Salmonella Typhimurium M3 was increased when in the presence of tetracycline at sub-MIC, and the highest induction was observed with tetracycline at 1/8 MIC. The integration of RNA-sequencing and untargeted metabolomics was applied in order to further decipher the potential mechanisms for this observation. In total, 439 genes and 144 metabolites of S. Typhimurium M3 were significantly expressed after its exposure to 1/8 MIC of tetracycline. In addition, the co-expression analysis revealed that 6 genes and 8 metabolites play a key role in response to 1/8 MIC of tetracycline. The differential genes and metabolites were represented in 12 KEGG pathways, including five pathways of amino acid metabolism (beta-alanine metabolism, tryptophan metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glutathione metabolism), three lipid metabolism pathways (biosynthesis of unsaturated fatty acids, fatty acid degradation, and fatty acid biosynthesis), two nucleotide metabolism pathways (purine metabolism, and pyrimidine metabolism), pantothenate and CoA biosynthesis, and ABC transporters. Metabolites (anthranilate, indole, and putrescine) from amino acid metabolism may act as signaling molecules to promote the biofilm formation of S. Typhimurium M3. The results of this work highlight the importance of low antimicrobial concentrations on foodborne pathogens of environmental origin.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Luyao Fan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Shengqi Rao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
8
|
Enriquez KT, Plummer WD, Neufer PD, Chazin WJ, Dupont WD, Skaar EP. Temporal modelling of the biofilm lifecycle (TMBL) establishes kinetic analysis of plate-based bacterial biofilm dynamics. J Microbiol Methods 2023; 212:106808. [PMID: 37595876 PMCID: PMC10528067 DOI: 10.1016/j.mimet.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Bacterial biofilms are critical to pathogenesis and infection. They are associated with rising rates of antimicrobial resistance. Biofilms are correlated with worse clinical outcomes, making them important to infectious diseases research. There is a gap in knowledge surrounding biofilm kinetics and dynamics which makes biofilm research difficult to translate from bench to bedside. To address this gap, this work employs a well-characterized crystal violet biomass accrual and planktonic cell density assay across a clinically relevant time course and expands statistical analysis to include kinetic information in a protocol termed the TMBL (Temporal Mapping of the Biofilm Lifecycle) assay. TMBL's statistical framework quantitatively compares biofilm communities across time, species, and media conditions in a 96-well format. Measurements from TMBL can reliably be condensed into response features that inform the time-dependent behavior of adherent biomass and planktonic cell populations. Staphylococcus aureus and Pseudomonas aeruginosa biofilms were grown in conditions of metal starvation in nutrient-variable media to demonstrate the rigor and translational potential of this strategy. Significant differences in single-species biofilm formation are seen in metal-deplete conditions as compared to their controls which is consistent with the consensus literature on nutritional immunity that metal availability drives transcriptomic and metabolomic changes in numerous pathogens. Taken together, these results suggest that kinetic analysis of biofilm by TMBL represents a statistically and biologically rigorous approach to studying the biofilm lifecycle as a time-dependent process. In addition to current methods to study the impact of microbe and environmental factors on the biofilm lifecycle, this kinetic assay can inform biological discovery in biofilm formation and maintenance.
Collapse
Affiliation(s)
- Kyle T Enriquez
- Vanderbilt University Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - W Dale Plummer
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States of America
| | - Preston D Neufer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Walter J Chazin
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America; Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States of America
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
9
|
Sornchuer P, Saninjuk K, Tingpej P. Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food. Genomics Inform 2023; 21:e35. [PMID: 37813631 PMCID: PMC10584648 DOI: 10.5808/gi.23030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/10/2023] [Accepted: 07/11/2023] [Indexed: 10/11/2023] Open
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Klongluang, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Klongluang, Pathum Thani 12120, Thailand
| | - Kritsakorn Saninjuk
- Porcinotec Co., Ltd., Talat Khwan, Mueang Nonthaburi, Nonthaburi 11000, Thailand
| | - Pholawat Tingpej
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Klongluang, Pathum Thani 12120, Thailand
| |
Collapse
|
10
|
Cruz-Facundo IM, Adame-Gómez R, Castro-Alarcón N, Toribio-Jiménez J, Castro-Coronel Y, Santiago-Dionisio MC, Leyva-Vázquez MA, Tafolla-Venegas D, Ramírez-Peralta A. Enterotoxigenic profiles and submerged and interface biofilms in Bacillus cereus group isolates from foods. Rev Argent Microbiol 2023; 55:262-271. [PMID: 37019800 DOI: 10.1016/j.ram.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Biofilm formation by Bacillus cereus strains is now recognized as a systematic contamination mechanism in foods; the aim of this study was to evaluate the production of submerged and interface biofilms in strains of B. cereus group in different materials, the effect of dextrose, motility, the presence of genes related to biofilms and the enterotoxigenic profile of the strains. We determine biofilm production by safranin assay, motility on semi-solid medium, toxin gene profiling and genes related to biofilm production by PCR in B. cereus group isolated from food. In this study, we observe strains used a higher production of biofilms in PVC; in the BHI broth, no submerged biofilms were found compared to phenol red broth and phenol red broth supplemented with dextrose; no strains with the ces gene were found, the enterotoxin profile was the most common the profile that includes genes for the three enterotoxins. We observed a different distribution of tasA and sipW with the origin of isolation of the strain, being more frequent in the strains isolated from eggshell. The production and type of biofilms are differential according to the type of material and culture medium used.
Collapse
Affiliation(s)
- Itzel-Maralhi Cruz-Facundo
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico
| | - Roberto Adame-Gómez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico
| | - Natividad Castro-Alarcón
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Jeiry Toribio-Jiménez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Microbiología Molecular y Biotecnología Ambiental, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Yaneth Castro-Coronel
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Citopatología e Histoquímica, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - María-Cristina Santiago-Dionisio
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Análisis Microbiológicos, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Marco-Antonio Leyva-Vázquez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - David Tafolla-Venegas
- Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Biología, Laboratorio de Parasitología, Morelia, Michoacan 58004, Mexico
| | - Arturo Ramírez-Peralta
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico.
| |
Collapse
|
11
|
Huijboom L, Tempelaars M, Fan M, Zhu Y, Boeren S, van der Linden E, Abee T. l-tyrosine modulates biofilm formation of Bacillus cereus ATCC 14579. Res Microbiol 2023; 174:104072. [PMID: 37080258 DOI: 10.1016/j.resmic.2023.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Bacillus cereus is a food-borne pathogen capable of producing biofilms. Following analysis of biofilm formation by B. cereus ATCC 14579 transposon mutants in defined medium (DM), a deletion mutant of bc2939 (Δbc2939) was constructed that showed decreased crystal violet biofilm staining and biofilm cell counts. In addition, Δbc2939 also produced smaller colony biofilms with lower cell counts and loss of wrinkly morphology. The bc2939 gene encodes for Prephenate dehydrogenase, which converts Prephenate to 4-Hydroxy-phenylpyruvate (4-HPPA) in the l-tyrosine branch of the Shikimate pathway. While growth of the mutant and WT in DM was similar, addition of l-tyrosine was required to restore WT-like (colony) biofilm formation. Comparative proteomics showed reduced expression of Tyrosine-protein kinase/phosphatase regulators and extracellular polysaccharide cluster 1 (EPS1) proteins, aerobic electron transfer chain cytochrome aa3/d quinol oxidases, and iso-chorismate synthase involved in menaquinone synthesis in DM grown mutant biofilm cells, while multiple oxidative stress-related catalases and superoxide dismutases were upregulated. Performance in shaking cultures showed a 100-fold lower concentration of menaquinone-7 and reduction in cell counts of DM grown Δbc2939 indicating increased oxygen sensitivity. Combining all results, points to an important role of Tyrosine-modulated EPS1 production and menaquinone-dependent aerobic respiration in B. cereus ATCC 14579 (colony) biofilm formation.
Collapse
Affiliation(s)
- Linda Huijboom
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Marcel Tempelaars
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Mingzhen Fan
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Yourong Zhu
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, the Netherlands.
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
12
|
Yang P, Geng C, Zhu S, Zhou Z, Bilal M, Gu C, Xu H, Ji L, Xiao B, Wang J, Qian Z, Zhao L, Zhao Y, Lu H. Identification and functional analysis of non-coding regulatory small RNA FenSr3 in Bacillus amyloliquefaciens LPB-18. PeerJ 2023; 11:e15236. [PMID: 37214100 PMCID: PMC10194069 DOI: 10.7717/peerj.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Bacillus amyloliquefaciens is an interesting microbe in the food processing and manufacturing industries. Non-coding small RNAs (sRNAs) have been shown to play a crucial role in the physiology and metabolism of bacteria by post-transcriptionally regulating gene expression. This study investigated the function of novel sRNA FenSr3 by constructing fenSr3 deficient strain and complementary strains in B. amyloliquefaciens LPB-18 , which were named LPN-18N and LPB-18P, respectively. The result showed significant differences in fengycin yield between strain LPB -18N and LPB-18P. The production of fengycin was significantly enhanced in B. amyloliquefaciens LPB-18N, compared with that of the strain LPB-18 from 190.908 mg/L to 327.598 mg/L. Moreover, the production of fengycin decreased from 190.464 mg/L to 38.6 mg/L in B . amyloliquefaciens LPB-18P. A comparative transcriptome sequencing was carried out to better understand the complex regulatory mechanism. Transcription analysis revealed that 1037 genes were differentially expressed between B. amyloliquefaciens LPB-18 and B. amyloliquefaciens LPB-18N, including the key regulatory genes in fatty acid, amino acid biosynthesis, and central carbon metabolism, which could provide sufficient quantities of building precursors for fengycin biosynthesis. The biofilm formation and sporulation was also enhanced in the strain LPB-18N, which indicates that FenSr3 could play a vital role in stress resistance and promotes survival in B. amyloliquefaciens. Some sRNAs involved in stress response have been identified in the literature, but their regulatory roles in fengycin production remain unclear. The study will contribute a novel perspective to the regulation mechanism of biosynthesis and the optimization of key metabolites of B. amyloliquefaciens.
Collapse
Affiliation(s)
- Panping Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chengxin Geng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Weigang, China
| | - Shaohui Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Zhen Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chengyuan Gu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Hai Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Linchun Ji
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Benchang Xiao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Jingye Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Zhoujie Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Li Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan College, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Toukabri H, Lereclus D, Slamti L. A Sporulation-Independent Way of Life for Bacillus thuringiensis in the Late Stages of an Infection. mBio 2023:e0037123. [PMID: 37129506 DOI: 10.1128/mbio.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The formation of endospores has been considered the unique survival and transmission mode of sporulating Firmicutes due to the exceptional resistance and persistence of this bacterial form. However, nonsporulated bacteria (Spo-) were reported at the early stages following the death of a host infected with Bacillus thuringiensis, an entomopathogenic sporulating bacterium. Here, we investigated the characteristics of the bacterial population in the late stages of an infection in the B. thuringiensis/Galleria mellonella infection model. Using fluorescent reporters and molecular markers coupled to flow cytometry, we demonstrated that the Spo- cells persist and constitute about half of the population 2 weeks post-infection (p.i.). Protein synthesis and growth recovery assays indicated that they are in a metabolically slowed-down state. These bacteria were extremely resistant to the insect cadaver environment, which did not support growth of in vitro-grown vegetative cells and spores. A transcriptomic analysis of this subpopulation at 7 days p.i. revealed a signature profile of this state, and the expression analysis of individual genes at the cell level showed that more bacteria mount an oxidative stress response as their survival time increases, in agreement with the increase of the free radical level in the host cadaver and in the number of reactive oxygen species (ROS)-producing bacteria. Altogether, these data show for the first time that nonsporulated bacteria are able to survive for a prolonged period of time in the context of an infection and indicate that they engage in a profound adaptation process that leads to their persistence in the host cadaver. IMPORTANCE Bacillus thuringiensis is an entomopathogenic bacterium widely used as a biopesticide. It belongs to the Bacillus cereus group, comprising the foodborne pathogen B. cereus sensu stricto and the anthrax agent Bacillus anthracis. Like other Firmicutes when they encounter harsh conditions, these Gram-positive bacteria can form dormant cells called spores. Due to its highly resistant nature, the spore was considered the unique mode of long-term survival, eclipsing any other form of persistence. Breaking this paradigm, we observed that B. thuringiensis was able to persist in its host cadaver in a nonsporulated form for at least 14 days. Our results show that these bacteria survived in the cadaver environment, which proved hostile for actively growing bacteria by engaging in a profound adaptation process. Studying this facet of the life cycle of a sporulating bacterium provides new fundamental knowledge and might lead to the development of strategies to combat sporulating pathogenic species.
Collapse
Affiliation(s)
- Hasna Toukabri
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
14
|
Lin Y, Briandet R, Kovács ÁT. Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm 2022; 4:100070. [PMID: 35243332 PMCID: PMC8861577 DOI: 10.1016/j.bioflm.2022.100070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Biofilm formation is a ubiquitous process of bacterial communities that enables them to survive and persist in various environmental niches. The Bacillus cereus group includes phenotypically diversified species that are widely distributed in the environment. Often, B. cereus is considered a soil inhabitant, but it is also commonly isolated from plant roots, nematodes, and food products. Biofilms differ in their architecture and developmental processes, reflecting adaptations to specific niches. Importantly, some B. cereus strains are foodborne pathogens responsible for two types of gastrointestinal diseases, diarrhea and emesis, caused by distinct toxins. Thus, the persistency of biofilms is of particular concern for the food industry, and understanding the underlying mechanisms of biofilm formation contributes to cleaning procedures. This review focuses on the genetic background underpinning the regulation of biofilm development, as well as the matrix components associated with biofilms. We also reflect on the correlation between biofilm formation and the development of highly resistant spores. Finally, advances in our understanding of the ecological importance and evolution of biofilm formation in the B. cereus group are discussed.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
15
|
Fathiah Mohamed Zuki, Pourzolfaghar H, Edyvean RGJ, Hernandez JE. Interpretation of Initial Adhesion of Pseudomonas putida on Hematite and Quartz Using Surface Thermodynamics, DLVO, and XDLVO Theories. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
17
|
Li W, Siddique MS, Graham N, Yu W. Influence of Temperature on Biofilm Formation Mechanisms Using a Gravity-Driven Membrane (GDM) System: Insights from Microbial Community Structures and Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8908-8919. [PMID: 35623093 DOI: 10.1021/acs.est.2c01243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A biofilm has a significant effect on water treatment processes. Currently, there is a lack of knowledge about the effect of temperature on the biofilm structure in water treatment processes. In this study, a gravity-driven membrane ultrafiltration system was operated with river feedwater at two temperatures ("low", 4 °C; "high", 25 °C) to explore the biofilm structure and transformation mechanism. The results showed that the difference in dissolved oxygen concentration might be one of the main factors regulating the structural components of the biofilm. A denser biofilm formation and reduced flux were observed at the lower temperature. The linoleic acid metabolism was significantly inhibited at low temperature, resulting in enhanced pyrimidine metabolism by Na+ accumulation. In addition, the biofilm at low temperature had a higher proportion of the metabolites of lipids and lipid-like molecules (11.25%), organic acids and derivatives (10.83%), nucleosides, nucleotides, and analogues (7.083%), and organoheterocyclic compounds (6.66%). These small molecules secrete more polysaccharides having C═O and O═C-O functional groups, which intensified the resistance of the biofilm. Furthermore, the upregulation pathway of pyrimidine metabolism also increased the risk of urea accumulation at low temperature. Limnohabitans, Deinococcus, Diaphorobacter, Flavobacterium, and Pseudomonas were identified as the principal microorganisms involved in this metabolic transformation.
Collapse
Affiliation(s)
- Weihua Li
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
18
|
Wang C, Hao L, Sun X, Yang Y, Yin Q, Li M. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128363. [PMID: 35183050 DOI: 10.1016/j.jhazmat.2022.128363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The toxic effect of Nickel (Ni (II)) on humans and animals has been previously addressed. Owing to the important application of psychrotolerant bacteria in Ni (II) damage remediation in contamination sites at low temperatures, the response mechanism of psychrotolerant bacteria to Ni (II) toxicity must be elucidated. Therefore, the effect of Ni (II) toxicity on a psychrotolerant Bacillus cereus D2 was studied, showing a way to alleviate the Ni (II) toxicity in strain D2. The results showed that strain D2 growth was completely inhibited at a concentration of 100 mg/L of Ni (II). The main effects of Ni (II) toxicity on strain D2 were membrane damage and reactive oxygen species-dependent oxidative stress. Additionally, Ni (II) toxicity resulted in dysregulation of the cell cycle in strain D2. Furthermore, metabolomic analysis showed that the biosynthesis of amino acids and ABC transporters were significantly affected, and the relative abundance of seven important amino acids changed in a concentration-dependent manner. Addition of 20 mM or 5 mM amino acids to 100 mg/L Ni (II)-treated strain D2 restored its growth. This study provides insights into the way to alleviate the Ni (II) toxicity in strain D2, thus contributing to the development of bioremediation strategies.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yi Yang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Qiuxia Yin
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
19
|
Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT. Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms Microbiomes 2022; 8:27. [PMID: 35418164 PMCID: PMC9007996 DOI: 10.1038/s41522-022-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that produce biofilms on abiotic and biotic surfaces. While genetic and morphological diversification enables the adaptation of multicellular communities, this area remains largely unknown in the Bacillus cereus group. In this work, we dissected the experimental evolution of Bacillus thuringiensis 407 Cry- during continuous recolonization of plastic beads. We observed the evolution of a distinct colony morphotype that we named fuzzy spreader (FS) variant. Most multicellular traits of the FS variant displayed higher competitive ability versus the ancestral strain, suggesting an important role for diversification in the adaptation of B. thuringiensis to the biofilm lifestyle. Further genetic characterization of FS variant revealed the disruption of a guanylyltransferase gene by an insertion sequence (IS) element, which could be similarly observed in the genome of a natural isolate. The evolved FS and the deletion mutant in the guanylyltransferase gene (Bt407ΔrfbM) displayed similarly altered aggregation and hydrophobicity compared to the ancestor strain, suggesting that the adaptation process highly depends on the physical adhesive forces.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
20
|
Alonso VPP, Ferreira RCDC, Cotta MA, Kabuki DY. Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Vasilchenko NG, Prazdnova EV, Lewitin E. Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Heme A Synthase Deficiency Affects the Ability of Bacillus cereus to Adapt to a Nutrient-Limited Environment. Int J Mol Sci 2022; 23:ijms23031033. [PMID: 35162964 PMCID: PMC8835132 DOI: 10.3390/ijms23031033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response—to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.
Collapse
|
23
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
24
|
Managing gene expression in Pseudomonas simiae EGD-AQ6 for chloroaromatic compound degradation. Arch Microbiol 2022; 204:132. [PMID: 34999969 DOI: 10.1007/s00203-021-02737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Pseudomonas simiae EGD-AQ6 is capable of utilizing chloroaromatic compound i.e., 2-4-D efficiently in its biofilm phenotype. The differential accumulation of intermediate 4-chlorocatechol rates were significant in planktonic and biofilm phenotypes, as well as in the increased biofilm adapted cell numbers. Interestingly, response surface analysis demonstrated the combined positive effects of 2-4-D degradation and 4-CCA accumulation rates and the gene expression profiles, with significant up-regulation of degradative and biofilm genes, and greater participation of pellicle genes in the biofilm phenotypes than their planktonic counterparts, thereby revealing a phenotype variation. It positively validated the physiological data. Furthermore, the sequence similarity of the 2-4-D catabolic and biofilm-forming proteins (pel ABCDEFG and pga ABCD), which are responsible for building carbohydrate rich extracellular matrix, were significant with the respective organisms. This is the first study, which endorses this strain to be unique in efficient chloro-aromatic degradation through phenotype variation, thereby proving a potential candidate in the improvement of bioremediation technologies.
Collapse
|
25
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
26
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
27
|
Zhao L, Jia L, Ma B, Zhong W, Huang Y, Duan F. Heat-resistant bacteria contamination investigation in Chinese soybean curd industrial processing using high-throughput gene sequencing and MALDI-TOF-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
29
|
Bai X, Liu D, Xu L, Tenguria S, Drolia R, Gallina NLF, Cox AD, Koo OK, Bhunia AK. Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12-24 h) stage of infection in a mouse model. NPJ Biofilms Microbiomes 2021; 7:18. [PMID: 33558519 PMCID: PMC7870835 DOI: 10.1038/s41522-021-00189-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models. Lm sessile cells express reduced levels of the lap, inlA, hly, prfA, and sigB and show reduced adhesion, invasion, translocation, and cytotoxicity in the cell culture model than the planktonic cells. Oral challenge of C57BL/6 mice with food, clinical, or murinized-InlA (InlAm) strains reveals that at 12 and 24 h post-infection (hpi), Lm burdens are lower in tissues of mice infected with sessile cells than those infected with planktonic cells. However, these differences are negligible at 48 hpi. Besides, the expressions of inlA and lap mRNA in sessile Lm from intestinal content are about 6.0- and 280-fold higher than the sessle inoculum, respectively, suggesting sessile Lm can still upregulate virulence genes shortly after ingestion (12 h). Similarly, exposure to simulated gastric fluid (SGF, pH 3) and intestinal fluid (SIF, pH 7) for 13 h shows equal reduction in sessile and planktonic cell counts, but induces LAP and InlA expression and pathogenic phenotypes. Our data show that the virulence of biofilm-isolated Lm is temporarily attenuated and can be upregulated in mice during the early stage (12-24 hpi) but fully restored at a later stage (48 hpi) of infection. Our study further demonstrates that in vitro cell culture assay is unreliable; therefore, an animal model is essential for studying the pathogenesis of biofilm-isolated bacteria.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Ok-Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
30
|
Liu S, Brul S, Zaat SAJ. Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). Int J Mol Sci 2020; 21:E8967. [PMID: 33260797 PMCID: PMC7731242 DOI: 10.3390/ijms21238967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence of bacterial pathogens in the food chain has caused a severe impact on public health and welfare in both developing and developed countries. Moreover, the existence of antimicrobial-tolerant persisting morphotypes of these pathogens including both persister-cells as well as bacterial spores contributes to difficulty in elimination and in recurrent infection. Therefore, comprehensive understanding of the behavior of these persisting bacterial forms in their environmental niche and upon infection of humans is necessary. Since traditional antimicrobials fail to kill persisters and spores due to their (extremely) low metabolic activities, antimicrobial peptides (AMPs) have been intensively investigated as one of the most promising strategies against these persisting bacterial forms, showing high efficacy of inactivation. In addition, AMP-based foodborne pathogen detection and prevention of infection has made significant progress. This review focuses on recent research on common bacterial pathogens in the food chain, their persisting morphotypes, and on AMP-based solutions. Challenges in research and application of AMPs are described.
Collapse
Affiliation(s)
- Shiqi Liu
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
31
|
Roberto AG, Itzel-Maralhi CF, Lilia-Lizette GD, Yesenia RS, Abigail PV, Carlos OP, Maria-Cristina SD, Arturo RP. Biofilm Production by Enterotoxigenic Strains of Bacillus cereus in Different Materials and under Different Environmental Conditions. Microorganisms 2020; 8:microorganisms8071071. [PMID: 32709126 PMCID: PMC7409032 DOI: 10.3390/microorganisms8071071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Foodborne illnesses, such as infections or food poisoning, can be caused by bacterial biofilms present in food matrices or machinery. The production of biofilms by several strains of Bacillus cereus on different materials under different culture conditions was determined, as well as the relationship of biofilms with motility, in addition to the enterotoxigenic profile and candidate genes that participate in the production of biofilms. Biofilm production of B. cereus strains was determined on five materials: glass, polystyrene, polyethylene, polyvinylchloride (PVC), PVC/glass; in three culture media: Phenol red broth, tryptic soy broth, and brain heart infusion broth; in two different temperatures (37 °C and 25 °C), and in two different oxygen conditions (oxygen and CO2 tension). Furthermore, the strains were molecularly characterized by end-point polymerase chain reaction. Motility was determined on semi-solid agar. The B. cereus strains in this study were mainly characterized as enterotoxigenic strains; statistically significant differences were found in the PVC material and biofilm production. Motility was positively associated with the production of biofilm in glass/PVC. The sipW and tasA genes were found in two strains. The results of this study are important in the food industry because the strains carry at least one enterotoxin gene and produce biofilms on different materials.
Collapse
Affiliation(s)
- Adame-Gómez Roberto
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico; (A.-G.R.); (C.-F.I.-M.); (G.-D.L.-L.); (R.-S.Y.)
| | - Cruz-Facundo Itzel-Maralhi
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico; (A.-G.R.); (C.-F.I.-M.); (G.-D.L.-L.); (R.-S.Y.)
| | - García-Díaz Lilia-Lizette
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico; (A.-G.R.); (C.-F.I.-M.); (G.-D.L.-L.); (R.-S.Y.)
| | - Ramírez-Sandoval Yesenia
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico; (A.-G.R.); (C.-F.I.-M.); (G.-D.L.-L.); (R.-S.Y.)
| | - Pérez-Valdespino Abigail
- Laboratorio de Ingeniería Genética, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico;
| | - Ortuño-Pineda Carlos
- Laboratorio de Ácidos Nucleicos y Proteínas, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico;
| | | | - Ramírez-Peralta Arturo
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico; (A.-G.R.); (C.-F.I.-M.); (G.-D.L.-L.); (R.-S.Y.)
- Correspondence:
| |
Collapse
|