1
|
Zheng M, Wen L, He C, Chen X, Si L, Li H, Liang Y, Zheng W, Guo F. Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria. Nat Commun 2024; 15:9051. [PMID: 39426960 PMCID: PMC11490580 DOI: 10.1038/s41467-024-53446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
The low cultivability of environmental bacteria has been widely acknowledged, but most previous estimates focused on the proportion of cultivable cells rather than cultivable taxa. Here, we estimate the proportions of cultivable cells and cultivable taxa for two sample types (soil and activated sludge) using cell counting, 16S rRNA gene amplicon sequencing, metagenomics, and cultivation on agar plates under various conditions. We find that the proportion of cultivable taxa exceeds that of cultivable cells at the sample level. A large proportion of cultivable taxa are taxonomically novel but tend to be present at very low abundance on agar plates, forming microcolonies, and some of them cease to grow during subculture. Compared with uncultivable taxa (under the conditions used in our study), cultivatable taxa tend to display higher metabolic activity as inferred by measuring rRNA copies per cell. Finally, we use the generated taxonomic and genomic information as a guide to isolate a strain representing a yet-uncultured class within the Bacteroidota and to enhance the cultivable diversity of Burkholderiales from activated sludge.
Collapse
Affiliation(s)
- Minjia Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linran Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cailing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinlan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Laiting Si
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiting Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- The University Key Laboratory of Resource Microbiology in Fujian Province, Xiamen University, Xiamen, China.
- The Key Laboratory of Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China.
| |
Collapse
|
2
|
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol 2024; 15:1469414. [PMID: 39391608 PMCID: PMC11464445 DOI: 10.3389/fmicb.2024.1469414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammatory periodontal diseases associated with the accumulation of dental biofilm, such as gingivitis and periodontitis, are very common and pose clinical problems for clinicians and patients. Gingivitis is a mild form of gum disease and when treated quickly and properly is completely reversible. Periodontitis is an advanced and irreversible disease of the periodontium with periods of exacerbations, progressions and remission. Periodontitis is a chronic inflammatory condition that damages the tissues supporting the tooth in its socket, i.e., the gums, periodontal ligaments, root cementum and bone. Periodontal inflammation is most commonly triggered by bacteria present in excessive accumulations of dental plaque (biofilm) on tooth surfaces. This disease is driven by disproportionate host inflammatory immune responses induced by imbalance in the composition of oral bacteria and changes in their metabolic activities. This microbial dysbiosis favors the establishment of inflammatory conditions and ultimately results in the destruction of tooth-supporting tissues. Apart microbial shift and host inflammatory response, environmental factors and genetics are also important in etiology In addition to oral tissues destruction, periodontal diseases can also result in significant systemic complications. Conventional methods of periodontal disease treatment (improving oral hygiene, dental biofilm control, mechanical plaque removal, using local or systemic antimicrobial agents) are not fully effective. All this prompts the search for new methods of therapy. Advanced periodontitis with multiple abscesses is often treated with antibiotics, such as amoxicillin, tetracycline, doxycycline, minocycline, clindamycin, or combined therapy of amoxicillin with metronidazole. However, due to the growing problem of antibiotic resistance, treatment does not always achieve the desired therapeutic effect. This review summarizes pathogenesis, current approaches in treatment, limitations of therapy and the current state of research on the possibility of application of bacteriophages and predatory bacteria to combat bacteria responsible for periodontitis. We present the current landscape of potential applications for alternative therapies for periodontitis based on phages and bacteria, and highlight the gaps in existing knowledge that need to be addressed before clinical trials utilizing these therapeutic strategies can be seriously considered.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Gędaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Ye C, Zhao C, Kuraji R, Gao L, Rangé H, Kamarajan P, Radaic A, Kapila YL. Nisin, a Probiotic Bacteriocin, Modulates the Inflammatory and Microbiome Changes in Female Reproductive Organs Mediated by Polymicrobial Periodontal Infection. Microorganisms 2024; 12:1647. [PMID: 39203489 PMCID: PMC11357294 DOI: 10.3390/microorganisms12081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Periodontitis-related oral microbial dysbiosis is thought to contribute to adverse pregnancy outcomes (APOs), infertility, and female reproductive inflammation. Since probiotics can modulate periodontitis and oral microbiome dysbiosis, this study examined the effects of a probiotic bacteriocin, nisin, in modulating the reproductive microbiome and inflammation triggered by periodontitis. A total of 24 eight-week-old BALB/cByJ female mice were randomly divided into four treatment groups (control, infection, nisin, and infection+nisin group), with 6 mice per group. A polymicrobial (Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Fusobacterium nucleatum) mouse model of periodontal disease was used to evaluate the effects of this disease on the female reproductive system, with a focus on the microbiome, local inflammation, and nisin's therapeutic potential in this context. Moreover, 16s RNA sequencing was used to evaluate the changes in the microbiome and RT-PCR was used to evaluate the changes in inflammatory cytokines. Periodontal pathogen DNA was detected in the reproductive organs, and in the heart and aorta at the end of the experimental period, and the DNA was especially elevated in the oral cavity in the infection group. Compared to the control groups, only P. gingivalis was significantly higher in the oral cavity and uterus of the infection groups, and T. forsythia and F. nucleatum were significantly higher in the oral cavity of the infection groups. The infection and nisin treatment group had significantly lower levels of P. gingivalis, T. forsythia, and F. nucleatum in the oral cavity compared with the infection group. Since periodontal pathogen DNA was also detected in the heart and aorta, this suggests potential circulatory system transmission. The polymicrobial infection generally decreased the microbiome diversity in the uterus, which was abrogated by nisin treatment. The polymicrobial infection groups, compared to the control groups, generally had lower Firmicutes and higher Bacteroidota in all the reproductive organs, with similar trends revealed in the heart. However, the nisin treatment group and the infection and nisin group, compared to the control or infection groups, generally had higher Proteobacteria and lower Firmicutes and Bacteroidota in the reproductive organs and the heart. Nisin treatment also altered the microbiome community structure in the reproductive tract to a new state that did not mirror the controls. Periodontal disease, compared to the controls, triggered an increase in inflammatory cytokines (IL-6, TNF-α) in the uterus and oral cavity, which was abrogated by nisin treatment. Polymicrobial periodontal disease alters the reproductive tract's microbial profile, microbiome, and inflammatory status. Nisin modulates the microbial profile and microbiome of the reproductive tract and mitigates the elevated uterine inflammatory cytokines triggered by periodontal disease.
Collapse
Affiliation(s)
- Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hélène Rangé
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, UFR of Odontology, University of Rennes, 35000 Rennes, France
- Service d’Odontologie, CHU de Rennes, 35000 Rennes, France
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Yvonne L. Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Kuraji R, Ye C, Zhao C, Gao L, Martinez A, Miyashita Y, Radaic A, Kamarajan P, Le C, Zhan L, Range H, Sunohara M, Numabe Y, Kapila YL. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes 2024; 10:3. [PMID: 38233485 PMCID: PMC10794237 DOI: 10.1038/s41522-024-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Oral microbiome dysbiosis mediates chronic periodontal disease, gut microbial dysbiosis, and mucosal barrier disfunction that leads to steatohepatitis via the enterohepatic circulation. Improving this dysbiosis towards health may improve liver disease. Treatment with antibiotics and probiotics have been used to modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. The aim of the present investigation was to evaluate the potential for nisin, an antimicrobial peptide produced by Lactococcus lactis, to counteract the periodontitis-associated gut dysbiosis and to modulate the glycolipid-metabolism and inflammation in the liver. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum, were administrated topically onto the oral cavity to establish polymicrobial periodontal disease in mice. In the context of disease, nisin treatment significantly shifted the microbiome towards a new composition, commensurate with health while preventing the harmful inflammation in the small intestine concomitant with decreased villi structural integrity, and heightened hepatic exposure to bacteria and lipid and malondialdehyde accumulation in the liver. Validation with RNA Seq analyses, confirmed the significant infection-related alteration of several genes involved in mitochondrial dysregulation, oxidative phosphorylation, and metal/iron binding and their restitution following nisin treatment. In support of these in vivo findings indicating that periodontopathogens induce gastrointestinal and liver distant organ lesions, human autopsy specimens demonstrated a correlation between tooth loss and severity of liver disease. Nisin's ability to shift the gut and liver microbiome towards a new state commensurate with health while mitigating enteritis, represents a novel approach to treating NAFLD-steatohepatitis-associated periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Helene Range
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, University of Rennes, UFR of Odontology; Service d'Odontologie, CHU de Rennes, Rennes, France
- INSERM CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer); CIC 1414, Rennes, France
| | - Masataka Sunohara
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA.
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Sarasati A, Jonarta AL. Potential targets of phytochemical immunomodulatory therapy in periodontitis immunopathogenesis: A narrative review. Saudi Dent J 2023; 35:920-928. [PMID: 38107043 PMCID: PMC10724349 DOI: 10.1016/j.sdentj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Periodontitis is one of the most prevalent diseases occurring worldwide, and is caused by an imbalance of host immunological defenses and microbiome profile which occurs in the oral cavity. This imbalance leads to irregularity and uncontrolled activities of immune cells, resulting in over-reactivity of periodontopathogens and tissue destruction. To alleviate periodontitis, exact targeting of specific events involving particular cells could be a potential application of immunomodulatory agents. Phytochemical drug development targeting specific immunopathogenesis events could be a promising complementary, alternative approach to periodontal therapy. Objectives This review aimed to explore various events involving a variety of cells in the immunopathogenesis of periodontitis in order to determine potential specific immunomodulation targets for future development of effective phytochemical drugs. Results Immunopathogenesis of periodontitis contributes significantly to the disease onset and resolution. Various events occur during the disease development, which involve a variety of immune cells and mediators. Among these, neutrophils, cytokines and lymphocytes, especially Th17 cells, were reported to be the most relevant components in the disease pathogenesis. These components affect the initial responses to periodontopathogens, inhibit oxidative stress formation, control intercellular communication to enhance inflammation, and promote effector cells' migration to induce alveolar bone resorption. Several phytochemical drugs were developed to cure periodontitis, however, the development of phytochemical immunomodulatory drugs to target specific events has not been realized. Conclusion This review concluded that development of phytochemical immunomodulatory drugs to target particular events generated by neutrophils, pro-inflammatory cytokines and lymphocytes has tremendous potential to regulate and modulate the immunopathogenesis of periodontitis.
Collapse
Affiliation(s)
- Andari Sarasati
- Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Alma Linggar Jonarta
- Oral Biology Department, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Zhao C, Kuraji R, Ye C, Gao L, Radaic A, Kamarajan P, Taketani Y, Kapila YL. Nisin a probiotic bacteriocin mitigates brain microbiome dysbiosis and Alzheimer's disease-like neuroinflammation triggered by periodontal disease. J Neuroinflammation 2023; 20:228. [PMID: 37803465 PMCID: PMC10557354 DOI: 10.1186/s12974-023-02915-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Periodontitis-related oral microbial dysbiosis is thought to contribute to Alzheimer's disease (AD) neuroinflammation and brain amyloid production. Since probiotics can modulate periodontitis/oral dysbiosis, this study examined the effects of a probiotic/lantibiotic, nisin, in modulating brain pathology triggered by periodontitis. METHODS A polymicrobial mouse model of periodontal disease was used to evaluate the effects of this disease on brain microbiome dysbiosis, neuroinflammation, Alzheimer's-related changes, and nisin's therapeutic potential in this context. RESULTS 16S sequencing and real-time PCR data revealed that Nisin treatment mitigated the changes in the brain microbiome composition, diversity, and community structure, and reduced the levels of periodontal pathogen DNA in the brain induced by periodontal disease. Nisin treatment significantly decreased the mRNA expression of pro-inflammatory cytokines (Interleukin-1β/IL-1 β, Interleukin 6/IL-6, and Tumor Necrosis Factor α/TNF-α) in the brain that were elevated by periodontal infection. In addition, the concentrations of amyloid-β 42 (Aβ42), total Tau, and Tau (pS199) (445.69 ± 120.03, 1420.85 ± 331.40, 137.20 ± 36.01) were significantly higher in the infection group compared to the control group (193.01 ± 31.82, 384.27 ± 363.93, 6.09 ± 10.85), respectively. Nisin treatment markedly reduced the Aβ42 (261.80 ± 52.50), total Tau (865.37 ± 304.93), and phosphorylated Tau (82.53 ± 15.77) deposition in the brain of the infection group. DISCUSSION Nisin abrogation of brain microbiome dysbiosis induces beneficial effects on AD-like pathogenic changes and neuroinflammation, and thereby may serve as a potential therapeutic for periodontal-dysbiosis-related AD.
Collapse
Affiliation(s)
- Chuanjiang Zhao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, West China School of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610093, China
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Yoshimasa Taketani
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
- Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, 350-0283, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA.
- Section of Biosystems and Function, Section of Periodontology, UCLA School of Dentistry, 10833 Le Conte Ave, Box 951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
7
|
Radaic A, Shamir ER, Jones K, Villa A, Garud NR, Tward AD, Kamarajan P, Kapila YL. Specific Oral Microbial Differences in Proteobacteria and Bacteroidetes Are Associated with Distinct Sites When Moving from Healthy Mucosa to Oral Dysplasia-A Microbiome and Gene Profiling Study and Focused Review. Microorganisms 2023; 11:2250. [PMID: 37764094 PMCID: PMC10534919 DOI: 10.3390/microorganisms11092250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are a group of conditions that carry a risk of oral squamous cell carcinoma (OSCC) development. Recent studies indicate that periodontal disease-associated pathogenic bacteria may play a role in the transition from healthy mucosa to dysplasia and to OSCC. Yet, the microbial signatures associated with the transition from healthy mucosa to dysplasia have not been established. To characterize oral microbial signatures at these different sites, we performed a 16S sequencing analysis of both oral swab and formalin-fixed, paraffin-embedded tissue (FFPE) samples. We collected oral swabs from healthy mucosa (from healthy patients), histologically normal mucosa adjacent to dysplasia, and low-grade oral dysplasia. Additionally, FFPE samples from histologically normal mucosa adjacent to OSCC, plus low grade and high-grade oral dysplasia samples were also collected. The collected data demonstrate significant differences in the alpha and beta microbial diversities of different sites in oral mucosa, dysplasia, and OSCC, as well as increased dissimilarities within these sites. We found that the Proteobacteria phyla abundance increased, concurrent with a progressive decrease in the Firmicutes phyla abundance, as well as altered levels of Enterococcus cecorum, Fusobacterium periodonticum, Prevotella melaninogenica, and Fusobacterium canifelinum when moving from healthy to diseased sites. Moreover, the swab sample analysis indicates that the oral microbiome may be altered in areas that are histologically normal, including in mucosa adjacent to dysplasia. Furthermore, trends in specific microbiome changes in oral swab samples preceded those in the tissues, signifying early detection opportunities for clinical diagnosis. In addition, we evaluated the gene expression profile of OSCC cells (HSC-3) infected with either P. gingivalis, T. denticola, F. nucelatum, or S. sanguinis and found that the three periodontopathogens enrich genetic processes related to cancer progression, including skin keratinization/cornification, while the commensal enriched processes related to RNA processing and adhesion. Finally, we reviewed the dysplasia microbiome literature and found a significant decrease in commensal bacteria, such as the Streptococci genus, and a simultaneous increase in pathogenic bacteria, mainly Bacteroidetes phyla and Fusobacterium genus. These findings suggest that features of the oral microbiome can serve as novel biomarkers for dysplasia and OSCC disease progression.
Collapse
Affiliation(s)
- Allan Radaic
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; (A.R.); (P.K.)
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
| | - Eliah R. Shamir
- School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (E.R.S.); (A.D.T.)
- Genentech, Inc., South San Francisco, CA 94080, USA
| | - Kyle Jones
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
- Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alessandro Villa
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Nandita R. Garud
- College of Life Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aaron D. Tward
- School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (E.R.S.); (A.D.T.)
| | - Pachiyappan Kamarajan
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; (A.R.); (P.K.)
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
| | - Yvonne L. Kapila
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; (A.R.); (P.K.)
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
| |
Collapse
|
8
|
Falcão MML, Passos-Soares JS, Machado PRL, Gomes-Filho IS, de Carvalho LP, de Campos EJ, Calheira MC, de Miranda PM, Santos RPB, Rocha Filho JTR, de Farias APF, Peixoto T, Nascimento RM, Seymour GJ, Trindade SC. The leprosy reaction is associated with salivary anti-Porphyromonas gingivalis IgA antibodies. AMB Express 2023; 13:70. [PMID: 37418096 DOI: 10.1186/s13568-023-01576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
The aim of the study was to evaluate the association between salivary anti-Porphyromonas gingivalis IgA antibodies and the leprosy reaction. The levels of salivary anti - P. gingivalis IgA antibodies, together with salivary flow and pH were measured in individuals diagnosed with leprosy and associated with the development of the leprosy reaction. Saliva was collected from 202 individuals diagnosed with leprosy at a reference leprosy treatment center, 106 cases with the leprosy reaction and 96 controls without the leprosy reaction. Anti - P. gingivalis IgA was evaluated by indirect immunoenzyme assay. Non-conditional logistic regression analysis was employed to estimate the association between antibody levels and the leprosy reaction. There was a positive statistically significant association between the levels of anti - P. gingivalis IgA and the presence of the leprosy reaction, controlling for confounders: age, sex, level of education and alcoholic beverage consumption: ORajusted: 2.55; IC 95%: 1.34-4.87. Individuals with leprosy who had high levels of salivary anti - P. gingivalis IgA had approximately twice as many chances of developing the leprosy reaction. The findings suggest a possible relationship between salivary anti - P. gingivalis IgA antibodies and the leprosy reaction.
Collapse
Affiliation(s)
- Michelle Miranda Lopes Falcão
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil.
- Postgraduate Program in Immunology, Federal University of Bahia, Salvador, Brazil.
| | - Johelle Santana Passos-Soares
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
- Preventive Dentistry Department, Federal University of Bahia, Salvador, Brazil
| | - Paulo Roberto Lima Machado
- Immunology Service, University Hospital Prof. Edgar Santos Federal University of Bahia, Salvador, Brazil
| | | | | | | | | | | | | | | | - Antonio Pedro Froes de Farias
- Postgraduate Program in Immunology, Federal University of Bahia, Salvador, Brazil
- Immunology and Molecular Biology Laboratory, Federal University of Bahia, Salvador, Brazil
| | - Taiana Peixoto
- School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | | | | | - Soraya Castro Trindade
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
- Postgraduate Program in Immunology, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
9
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
10
|
[Multivariable analysis of tooth loss in subjects with severe periodontitis over 4-year natural progression]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:70-77. [PMID: 36718691 PMCID: PMC9894788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To evaluate the characteristics of severe periodontitis with various number of tooth loss during 4-year natural progression, and to analyze the factors related to higher rate of tooth loss. METHODS A total of 217 patients aged 15 to 44 years with severe periodontitis were included, who participated in a 4-year natural progression research. Data obtained from questionnaire survey, clinical examination and radiographic measurement. Tooth loss during 4-year natural progression was evaluated. The baseline periodontal disease related and caries related factors were calculated, including number of teeth with bone loss > 50%, number of missing molars, number of teeth with widened periodontal ligament space (WPDL), number of teeth with periapical lesions and etc. Characteristics of populations with various number of tooth loss and the related factors that affected higher rate of tooth loss were analyzed. RESULTS In 4 years of natural progression, 103 teeth were lost, and annual tooth loss per person was 0.12±0.38. Nine patients lost 3 or more teeth. Thirty-four patients lost 1 or 2 teeth, and 174 patients were absent of tooth loss. Molars were mostly frequent to lose, and canines presented a minimum loss. The number of teeth with WPDL, with periapical lesions, with intrabony defects, with probing depth (PD)≥7 mm, with PD≥5 mm, with clinical attachment loss≥5 mm, with bone loss > 50% and with bone loss > 65% were positively correlated to number of tooth loss. Results from orderly multivariate Logistic regression showd that the number of teeth with bone loss > 50% OR=1.550), baseline number of molars lost (OR=1.774), number of teeth with WPDL (1 to 2: OR=1.415; ≥3: OR=13.105), number of teeth with periapical lesions (1 to 2: OR=4.393; ≥3: OR=9.526) and number of teeth with caries/residual roots (OR=3.028) were significant risk factors related to higher likelihood of tooth loss and multiple tooth loss. CONCLUSION In 4 years of natural progression, the number of teeth with bone loss > 50%, baseline number of missing molars, number of teeth with WPDL, baseline number of teeth with periapical lesions and number of teeth with caries/residual roots were significantly related to higher risk of tooth loss and multiple tooth loss among Chinese young and middle-aged patients with severe periodontitis in rural areas.
Collapse
|
11
|
Kuraji R, Shiba T, Dong TS, Numabe Y, Kapila YL. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol 2023; 29:967-996. [PMID: 36844143 PMCID: PMC9950865 DOI: 10.3748/wjg.v29.i6.967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-0071, Japan
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Department of Medicine, University of California David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
- Sections of Biosystems and Function and Periodontics, Professor and Associate Dean of Research, Felix and Mildred Yip Endowed Chair in Dentistry, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
12
|
Ganther S, Fenno CJ, Kapila YL. Stimulation of Human Periodontal Ligament Fibroblasts Using Purified Dentilisin Extracted from Treponema denticola. Bio Protoc 2022; 12:e4571. [PMID: 36618097 PMCID: PMC9797361 DOI: 10.21769/bioprotoc.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease is a chronic multifactorial disease triggered by a complex of bacterial species. These interact with host tissues to cause the release of a broad array of pro-inflammatory cytokines, chemokines, and tissue remodelers, such as matrix metalloproteinases (MMPs), which lead to the destruction of periodontal tissues. Patients with severe forms of periodontitis are left with a persistent pro-inflammatory transcriptional profile throughout the periodontium, even after clinical intervention, leading to the destruction of teeth-supporting tissues. The oral spirochete, Treponema denticola , is consistently found at significantly elevated levels at sites with advanced periodontal disease. Of all T. denticola virulence factors that have been described, its chymotrypsin-like protease complex, also called dentilisin, has demonstrated a multitude of cytopathic effects consistent with periodontal disease pathogenesis, including alterations in cellular adhesion activity, degradation of various endogenous extracellular matrix-substrates, degradation of host chemokines and cytokines, and ectopic activation of host MMPs. Thus, the following model of T. denticola -human periodontal ligament cell interactions may provide new knowledge about the mechanisms that drive the chronicity of periodontal disease at the protein, transcriptional, and epigenetic levels, which could afford new putative therapeutic targets. This protocol was validated in: PLOS Pathog (2021), DOI: 10.1371/journal.ppat.1009311.
Collapse
Affiliation(s)
- Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Christopher J. Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
- Department of Biosystems and Function, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Newman KL, Kamada N. Pathogenic associations between oral and gastrointestinal diseases. Trends Mol Med 2022; 28:1030-1039. [PMID: 35691866 PMCID: PMC9691515 DOI: 10.1016/j.molmed.2022.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Both periodontitis and inflammatory bowel disease (IBD) are complex chronic conditions characterized by aberrant host immune response and dysregulated microbiota. Emerging data show an association between periodontitis and IBD, including direct and indirect mechanistic links between oral and intestinal inflammation. Direct pathways include translocation of proinflammatory microbes from the oral cavity to the gut and immune priming. Indirect pathways involve systemic immune activation with possible nonspecific effects on the gut. There are limited data on the effects of periodontal disease treatment on IBD course and vice versa, but early reports suggest that treatment of periodontitis decreases systemic immune activation and that treatment of IBD is associated with periodontitis healing, underscoring the importance of recognizing and treating both conditions.
Collapse
Affiliation(s)
- Kira L Newman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11121731. [PMID: 36551388 PMCID: PMC9774821 DOI: 10.3390/antibiotics11121731] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
- Correspondence:
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala 671316, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Mahima S. Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pattnaik Subhaswaraj
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Sambalpur 768019, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
15
|
Girija AS, Ganesh PS. Functional biomes beyond the bacteriome in the oral ecosystem. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:217-226. [PMID: 35814739 PMCID: PMC9260289 DOI: 10.1016/j.jdsr.2022.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selective constraint and pressures upon the host tissues often signifies a beneficial microbiome in any species. In the context of oral microbiome this displays a healthy microbial cosmos resisting the colonization and helps in rendering protection. This review highlights the endeavors of the oral microbiome beyond the bacteriome encompassing virome, mycobiome, protozoa and archaeomes in maintaining the oral homeostasis in health and disease. Scientific data based on the peer-reviewed publications on the microbial communities of the oral microbiome were selected and collated from the scientific database collection sites of web of science (WOS), pubmed central, Inspec etc., from 2010 to 2021 using the search key words like oral microbiome, oral microbiota, oral virome, oral bacteriome, oral mycobiome and oral archaeome. Data excluded were from conference proceedings, abstracts and book chapters. The oral homeostasis in both the health and disease conditions, mostly is balanced by the unrevealed virome, mycobiome, oral protozoa and archaeome. The review documents the need to comprehend the diversity that prevails among the kingdoms in order to determine the specific role played by each domain. Oral microbiome is also a novel research arena to develop drug and targeted therapies to treat various oro-dental infections.
Collapse
|
16
|
Radaic A, Brody H, Contreras F, Hajfathalian M, Lucido L, Kamarajan P, Kapila YL. Nisin and Nisin Probiotic Disrupt Oral Pathogenic Biofilms and Restore Their Microbiome Composition towards Healthy Control Levels in a Peri-Implantitis Setting. Microorganisms 2022; 10:1336. [PMID: 35889055 PMCID: PMC9324437 DOI: 10.3390/microorganisms10071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Peri-implantitis is characterized by chronic inflammation of the peri-implant supporting tissues that progressively and irreversibly leads to bone loss and, consequently, implant loss. Similar to periodontal disease, oral dysbiosis is thought to be a driver of peri-implantitis. However, managing peri-implantitis with traditional treatment methods, such as nonsurgical debridement or surgery, is not always successful. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents since they are considered safe for humans and the environment. Specifically, the probiotic Lactococcus lactis produces nisin, which has been used worldwide for food preservation. The objective of this study was to determine whether nisin and the wild-type (WT) nisin-producing L. lactis probiotic can disrupt oral pathogenic biofilms and promote a healthier oral microbiome within these oral biofilms on titanium discs. Using confocal imaging and 16S rRNA sequencing, this study revealed that nisin and WT L. lactis probiotic disrupt oral pathogenic biofilms in a peri-implantitis setting in vitro. More specifically, nisin decreased the viability of the pathogen-spiked biofilms dose-dependently from 62.53 ± 3.69% to 54.26 ± 3.35% and 44.88 ± 2.98%, respectively. Similarly, 105 CFU/mL of WT L. lactis significantly decreased biofilm viability to 52.45 ± 3.41%. Further, both treatments shift the composition, relative abundance, and diversity levels of these biofilms towards healthy control levels. A total of 1 µg/mL of nisin and 103 CFU/mL of WT L. lactis were able to revert the pathogen-mediated changes in the Proteobacteria (from 80.5 ± 2.9% to 75.6 ± 2.0%, 78.0 ± 2.8%, and 75.1 ± 5.3%, respectively) and Firmicutes (from 11.6 ± 1.6% to 15.4 ± 1.3%, 13.8 ± 1.8%, and 13.7 ± 2.6%, respectively) phyla back towards control levels. Thus, nisin and its nisin-producing L. lactis probiotic may be useful in treating peri-implantitis by promoting healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Hanna Brody
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Fernando Contreras
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Maryam Hajfathalian
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luke Lucido
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Division of Oral and Systemic Health Sciences, Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Gao L, Kuraji R, Zhang MJ, Martinez A, Radaic A, Kamarajan P, Le C, Zhan L, Ye C, Rangé H, Sailani MR, Kapila YL. Nisin probiotic prevents inflammatory bone loss while promoting reparative proliferation and a healthy microbiome. NPJ Biofilms Microbiomes 2022; 8:45. [PMID: 35672331 PMCID: PMC9174264 DOI: 10.1038/s41522-022-00307-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Dysbiosis of the oral microbiome mediates chronic periodontal disease. Realignment of microbial dysbiosis towards health may prevent disease. Treatment with antibiotics and probiotics can modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. Antibacterial peptides or bacteriocins, such as nisin, and a nisin-producing probiotic, Lactococcus lactis, have not been examined in this context, yet warrant examination because of their biomedical benefits in eradicating biofilms and pathogenic bacteria, modulating immune mechanisms, and their safety profile in humans. This study's goal was to examine the potential for nisin and a nisin-producing probiotic to abrogate periodontal bone loss, the host inflammatory response, and changes in oral microbiome composition in a polymicrobial mouse model of periodontal disease. Nisin and a nisin-producing Lactococcus lactis probiotic significantly decreased the levels of several periodontal pathogens, alveolar bone loss, and the oral and systemic inflammatory host response. Surprisingly, nisin and/or the nisin-producing L. lactis probiotic enhanced the population of fibroblasts and osteoblasts despite the polymicrobial infection. Nisin mediated human periodontal ligament cell proliferation dose-dependently by increasing the proliferation marker, Ki-67. Nisin and probiotic treatment significantly shifted the oral microbiome towards the healthy control state; health was associated with Proteobacteria, whereas 3 retroviruses were associated with disease. Disease-associated microbial species were correlated with IL-6 levels. Nisin or nisin-producing probiotic's ability to shift the oral microbiome towards health, mitigate periodontal destruction and the host immune response, and promote a novel proliferative phenotype in reparative connective tissue cells, addresses key aspects of the pathogenesis of periodontal disease and reveals a new biomedical application for nisin in treatment of periodontitis and reparative medicine.
Collapse
Affiliation(s)
- Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Martin Jinye Zhang
- Oralome, Inc, 1700 4th Street, Byers Hall Suite 214, San Francisco, CA, USA
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Hélène Rangé
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Université Paris Cité, Faculty of Health, Department of Periodontology, URP2496 Orofacial Pathologies, Imaging and Biotherapies Laboratory, Montrouge and Paris Center for Microbiome Medicine, PaCeMM, FHU, Hôpital Rothschild, APHP, Paris, France
| | - M Reza Sailani
- Oralome, Inc, 1700 4th Street, Byers Hall Suite 214, San Francisco, CA, USA
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
18
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|
19
|
Lin D, Hu Q, Yang L, Zeng X, Xiao Y, Wang D, Dai W, Lu H, Fang J, Tang Z, Wang Z. The niche-specialist and age-related oral microbial ecosystem: crosstalk with host immune cells in homeostasis. Microb Genom 2022; 8. [PMID: 35731208 PMCID: PMC9455711 DOI: 10.1099/mgen.0.000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although characterization of the baseline oral microbiota has been discussed, the current literature seems insufficient to draw a definitive conclusion on the interactions between the microbes themselves or with the host. This study focuses on the spatial and temporal characteristics of the oral microbial ecosystem in a mouse model and its crosstalk with host immune cells in homeostasis. The V3V4 regions of the 16S rRNA gene of 20 samples from four niches (tongue, buccal mucosa, keratinized gingiva and hard palate) and 10 samples from two life stages (adult and old) were analysed. Flow cytometry (FCM) was used to investigate the resident immune cells. The niche-specialist and age-related communities, characterized based on the microbiota structure, interspecies communications, microbial functions and interactions with immune cells, were addressed. The phylum Firmicutes was the major component in the oral community. The microbial community profiles at the genus level showed that the relative abundances of the genera Bacteroides, Lactobacillus and Porphyromonas were enriched in the gingiva. The abundance of the genera Streptococcus, Faecalibaculum and Veillonella was increased in palatal samples, while the abundance of Neisseria and Bradyrhizobium was enriched in buccal samples. The genera Corynebacterium, Stenotrophomonas, Streptococcus and Fusobacterium were proportionally enriched in old samples, while Prevotella and Lacobacillus were enriched in adult samples. Network analysis showed that the genus Lactobacillus performed as a central node in the buccal module, while in the gingiva module, the central nodes were Nesterenkonia and Hydrogenophilus. FCM showed that the proportion of Th1 cells in the tongue samples (38.18 % [27.03–49.34 %]) (mean [range]) was the highest. The proportion of γδT cells in the buccal mucosa (25.82 % [22.1–29.54 %]) and gingiva (20.42 % [18.31–22.53 %]) samples was higher (P<0.01) than those in the palate (14.18 % [11.69–16.67 %]) and tongue (9.38 % [5.38–13.37 %] samples. The proportion of Th2 (31.3 % [16.16–46.44 %]), Th17 (27.06 % [15.76–38.36 %]) and Treg (29.74 % [15.71–43.77 %]) cells in the old samples was higher than that in the adult samples (P<0.01). Further analysis of the interplays between the microbiomes and immune cells indicated that Th1 cells in the adult group, nd Th2, Th17 and Treg cells in the old group were the main immune factors strongly associated with the oral microbiota. For example, Th2, Th17 and Treg cells showed a significantly positive correlation with age-related microorganisms such as Sphingomonas, Streptococcus and Acinetobacter, while Th1 cells showed a negative correlation. Another positive correlation occurred between Th1 cells and several commensal microbiomes such as Lactobacillus, Jeotgalicoccus and Sporosarcina. Th2, Th17 and Treg cells showed the opposite trend. Together, our findings identify the niche-specialist and age-related characteristics of the oral microbial ecosystem and the potential associations between the microbiomes and the mucosal immune cells, providing critical insights into mucosal microbiology.
Collapse
Affiliation(s)
- Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Xian Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Yiwei Xiao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Wenxiao Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
20
|
Kowalski J, Górska R, Cieślik M, Górski A, Jończyk-Matysiak E. What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy? Antibiotics (Basel) 2022; 11:antibiotics11040446. [PMID: 35453197 PMCID: PMC9027636 DOI: 10.3390/antibiotics11040446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Correspondence:
| |
Collapse
|
21
|
Mirmohammadsadegh N, Mashreghi N, Amin M. Potential Treponema denticola-based periodontal vaccine to resolve a global public health challenge: a narrative literature review. Expert Rev Vaccines 2022; 21:621-632. [PMID: 35195497 DOI: 10.1080/14760584.2022.2044798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Periodontitis is a diseased condition of the gum which imposes considerable costs on healthcare systems. It progresses further beyond the inflammation of supportive tissues of the teeth, and the collateral damages are closely associated with Alzheimer's disease, cardiovascular disease, and diabetes mellitus. AREAS COVERED A comprehensive literature review was performed to summarize published studies in English during the period of 1990-2021 to discuss the rationales for developing periodontal vaccine, cost-effectiveness analyses on the prevention of periodontitis, Treponema denticola-based vaccine candidates, as well as immunological mechanisms in animal models. EXPERT OPINION Preventive strategies against periodontitis may halt the onset of gum inflammation itself and the consequent chronic diseases. Considering the multi-microbial condition of periodontitis, an ideal periodontal vaccine should target multiple pathological pathways. Preventive approaches compared to surgical treatments evidently have significant impact on the healthcare budget and long-term health of the individuals in different communities. Despite many advances in periodontal vaccine research, there are still significant hurdles to overcome in developing a vaccine. Investment in research and development activities on key periodontal pathogens including Treponema denticola and Porphyromonas gingivalis in the foreseeable future is a worthy and cost-effective approach for the policymakers to prevent deleterious impacts of periodontitis.
Collapse
Affiliation(s)
- Navid Mirmohammadsadegh
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Microbiology Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Neshaut Mashreghi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Microbiology Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Microbiology Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
GDF15 Supports the Inflammatory Response of PdL Fibroblasts Stimulated by P. gingivalis LPS and Concurrent Compression. Int J Mol Sci 2021; 22:ijms222413608. [PMID: 34948405 PMCID: PMC8708878 DOI: 10.3390/ijms222413608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.
Collapse
|
23
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021; 11:766944. [PMID: 34950607 PMCID: PMC8688827 DOI: 10.3389/fcimb.2021.766944] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.
Collapse
Affiliation(s)
- Lea M. Sedghi
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Margot Bacino
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Yvonne Lorraine Kapila
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Periodontology, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:201-208. [PMID: 34703508 PMCID: PMC8524191 DOI: 10.1016/j.jdsr.2021.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by periodontopathogenic bacteria, which eventually leads to bone tissue (alveolar bone) destruction as inflammation persists. Periodontal tissues have an immune system against the invasion of these bacteria, however, due to the persistent infection by periodontopathogenic bacteria, the host innate and acquired immunity is impaired, and tissue destruction, including bone tissue destruction, occurs. Osteoclasts are essential for bone destruction. Osteoclast progenitor cells derived from hematopoietic stem cells differentiate into osteoclasts. In addition, bone loss occurs when bone resorption by osteoclasts exceeds bone formation by osteoblasts. In inflammatory bone disease, inflammatory cytokines act on osteoblasts and receptor activator of nuclear factor-κB ligand (RANKL)-producing cells, resulting in osteoclast differentiation and activation. In addition to this mechanism, pathogenic factors of periodontal bacteria and mechanical stress activate osteoclasts and destruct alveolar bone in periodontitis. In this review, we focused on the mechanism of osteoclast activation in periodontitis and provide an overview based on the latest findings.
Collapse
Affiliation(s)
- Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Moro-hongou, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
26
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
27
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
28
|
Cagna DR, Donovan TE, McKee JR, Eichmiller F, Metz JE, Albouy JP, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2021; 126:276-359. [PMID: 34489050 DOI: 10.1016/j.prosdent.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2020 professional literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to this work to cover this broad topic. Specific subject areas addressed include prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders (TMDs); sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence day-to-day dental treatment decisions with a keen eye on future trends in the profession. With the tremendous volume of dentistry and related literature being published today, this review cannot possibly be comprehensive. The purpose is to update interested readers and provide important resource material for those interested in pursuing greater detail. It remains our intent to assist colleagues in navigating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the dental patients they encounter.
Collapse
Affiliation(s)
- David R Cagna
- Professor, Associate Dean, Chair and Residency Director, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Frederick Eichmiller
- Vice President and Science Officer, Delta Dental of Wisconsin, Stevens Point, Wis
| | | | - Jean-Pierre Albouy
- Assistant Professor of Prosthodontics, Department of Restorative Sciences, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, Md; Private practice, Baltimore, Md
| | - Matthias Troeltzsch
- Associate Professor, Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University of Munich, Munich, Germany; Private practice, Ansbach, Germany
| |
Collapse
|
29
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Kuraji R, Sekino S, Kapila Y, Numabe Y. Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: An emerging concept of oral-liver axis. Periodontol 2000 2021; 87:204-240. [PMID: 34463983 PMCID: PMC8456799 DOI: 10.1111/prd.12387] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal disease, a chronic inflammatory disease of the periodontal tissues, is not only a major cause of tooth loss, but it is also known to exacerbate/be associated with various metabolic disorders, such as obesity, diabetes, dyslipidemia, and cardiovascular disease. Recently, growing evidence has suggested that periodontal disease has adverse effects on the pathophysiology of liver disease. In particular, nonalcoholic fatty liver disease, a hepatic manifestation of metabolic syndrome, has been associated with periodontal disease. Nonalcoholic fatty liver disease is characterized by hepatic fat deposition in the absence of a habitual drinking history, viral infections, or autoimmune diseases. A subset of nonalcoholic fatty liver diseases can develop into more severe and progressive forms, namely nonalcoholic steatohepatitis. The latter can lead to cirrhosis and hepatocellular carcinoma, which are end‐stage liver diseases. Extensive research has provided plausible mechanisms to explain how periodontal disease can negatively affect nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, namely via hematogenous or enteral routes. During periodontitis, the liver is under constant exposure to various pathogenic factors that diffuse systemically from the oral cavity, such as bacteria and their by‐products, inflammatory cytokines, and reactive oxygen species, and these can be involved in disease promotion of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Also, gut microbiome dysbiosis induced by enteral translocation of periodontopathic bacteria may impair gut wall barrier function and promote the transfer of hepatotoxins and enterobacteria to the liver through the enterohepatic circulation. Moreover, in a population with metabolic syndrome, the interaction between periodontitis and systemic conditions related to insulin resistance further strengthens the association with nonalcoholic fatty liver disease. However, most of the pathologic links between periodontitis and nonalcoholic fatty liver disease in humans are provided by epidemiologic observational studies, with the causal relationship not yet being established. Several systematic and meta‐analysis studies also show conflicting results. In addition, the effect of periodontal treatment on nonalcoholic fatty liver disease has hardly been studied. Despite these limitations, the global burden of periodontal disease combined with the recent nonalcoholic fatty liver disease epidemic has important clinical and public health implications. Emerging evidence suggests an association between periodontal disease and liver diseases, and thus we propose the term periodontal disease–related nonalcoholic fatty liver disease or periodontal disease–related nonalcoholic steatohepatitis. Continued efforts in this area will pave the way for new diagnostic and therapeutic approaches based on a periodontologic viewpoint to address this life‐threatening liver disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Satoshi Sekino
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Ganther S, Radaic A, Malone E, Kamarajan P, Chang NYN, Tafolla C, Zhan L, Fenno JC, Kapila YL. Treponema denticola dentilisin triggered TLR2/MyD88 activation upregulates a tissue destructive program involving MMPs via Sp1 in human oral cells. PLoS Pathog 2021; 17:e1009311. [PMID: 34255809 PMCID: PMC8301614 DOI: 10.1371/journal.ppat.1009311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/23/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola, is consistently found at significantly elevated levels in periodontal lesions. Host-expressed Toll-Like Receptor 2 (TLR2) senses a variety of bacterial ligands, including acylated lipopolysaccharides and lipoproteins. T. denticola dentilisin, a surface-expressed protease complex comprised of three lipoproteins has been implicated as a virulence factor in periodontal disease, primarily due to its proteolytic activity. While the role of acylated bacterial components in induction of inflammation is well-studied, little attention has been given to the potential role of the acylated nature of dentilisin. The purpose of this study was to test the hypothesis that T. denticola dentilisin activates a TLR2-dependent mechanism, leading to upregulation of tissue-destructive genes in periodontal tissue. RNA-sequencing of periodontal ligament cells challenged with T. denticola bacteria revealed significant upregulation of genes associated with extracellular matrix organization and degradation including potentially tissue-specific inducible MMPs that may play novel roles in modulating host immune responses that have yet to be characterized within the context of oral disease. The Gram-negative oral commensal, Veillonella parvula, failed to upregulate these same MMPs. Dentilisin-induced upregulation of MMPs was mediated via TLR2 and MyD88 activation, since knockdown of expression of either abrogated these effects. Challenge with purified dentilisin upregulated the same MMPs while a dentilisin-deficient T. denticola mutant had no effect. Finally, T. denticola-mediated activation of TLR2/MyD88 lead to the nuclear translocation of the transcription factor Sp1, which was shown to be a critical regulator of all T. denticola-dependent MMP expression. Taken together, these data suggest that T. denticola dentilisin stimulates tissue-destructive cellular processes in a TLR2/MyD88/Sp1-dependent fashion.
Collapse
Affiliation(s)
- Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Nai-Yuan Nicholas Chang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christian Tafolla
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - J. Christopher Fenno
- Department of Biological and Material Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
32
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
33
|
Relationship of Porphyromonas gingivalis and Alzheimer's disease: a systematic review of pre-clinical studies. Clin Oral Investig 2021; 25:797-806. [PMID: 33469718 DOI: 10.1007/s00784-020-03764-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to analyze the following PICO question: Are animals infected with Porphyromonas gingivalis (P. gingivalis) or bacterial lipopolysaccharide (Pg-LPS) more affected by neurodegeneration, similar to the pathogenesis generated by Alzheimer's disease (AD), compared with non-infected animals? METHODS Databases PubMed, Lilacs, SciELO, Science Direct, Scopus, Web of Science, and Cochrane were searched for pre-clinical in vivo studies in which mice were infected with P. gingivalis or received Pg-LPS, in order to assess the brain tissue and cognitive impairment. No limit for date or publication language was imposed and this study was registered at the International Prospective Register of Systematic Reviews (PROSPERO), with nine articles included. Syrcle's protocol was used to evaluate bias in the selected studies. RESULTS Nine articles were included. Infection by P. gingivalis or the administration of Pg-LPS increased the production of the inflammatory mediators, TNF-α (tumor necrosis factor-alpha), IL-6 (interleukin-6), and IL-1β (interleukin-1beta), augmented Aβ (amyloid beta) production, and activated the complement system, causing inflammation, brain tissue degeneration, and cognitive impairment, consistent with the damage in AD. CONCLUSIONS Infection by P. gingivalis and Pg-LPS administration appears to be in relation with the pathogenesis of AD by activating the complement cascade, increasing Aβ production and augmenting pro-inflammatory cytokine expression, causing age-dependent brain inflammation, neuroinflammation, and neurodegeneration. CLINICAL RELEVANCE Taking into account the importance of holistic treatment in the dental office, this study focuses on identifying highly prevalent oral diseases, such as periodontal disease, as risk factors for the aggravation of degenerative diseases in the elderly population.
Collapse
|
34
|
Carvalho JDS, Ramadan D, de Paiva Gonçalves V, Maquera-Huacho PM, Assis RP, Lima TFO, Brunetti IL, Spolidorio DMP, Cesar T, Manthey JA, Spolidorio LC. Impact of citrus flavonoid supplementation on inflammation in lipopolysaccharide-induced periodontal disease in mice. Food Funct 2021; 12:5007-5017. [PMID: 33950049 DOI: 10.1039/d0fo03338c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In general, the consumption of flavonoid-rich foods may influence the control/dysregulation of the magnitude and duration of inflammation and oxidative stress, which are known to contribute to multiple pathologies. Information regarding the impact of citrus flavonoid dietary supplementation on periodontal disease is still scarce. Herein, we investigated whether a diet supplemented with eriocitrin and eriodictyol could alter the course of the inflammatory response associated with LPS-induced periodontal disease in mice. Sixty BALB/c mice received a standard diet or a diet supplemented with different concentrations of eriocitrin or eriodictyol. After 30 days of food supplementation, a solution containing LPS from Escherichia coli was injected into the gingival tissues three times per week for four weeks. Neutrophils, mononuclear cells and eosinophils were assessed using a severity analysis system in H&E-stained sections and modified picrosirius red. The activities of myeloperoxidase (MPO), a marker of granulocyte infiltration, and eosinophil peroxidase (EPO) were determined spectrophotometrically. The oxidative damage was determined by measuring the malondialdehyde (MDA) content and anti-oxidative activity through the assessment of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Interleukin (IL)-1β, TNF-α, and IL-10 were quantified by multiplex immunoassay. Periodontal inflammation was significantly inhibited by citrus flavonoid supplementation, including reduced flatness of the gingival epithelium and chronic and acute inflammatory cell infiltration, as well as loss of connective tissue in the gingival papillae. Both eriocitrin and eriodictyol inhibited gingival IL-1β and TNF-α and increased IL-10 secondary to periodontitis. Significant protection and decreased MPO and EPO activity were detected in the periodontal tissue of citrus flavonoid-treated animals. In comparison with the LPS group, SOD, CAT and GPx activities were increased, while the MDA content was reduced, indicating decreased oxidative damage. These results suggest that a diet supplemented with the citrus flavonoids eriocitrin or eriodictyol may aid in the prevention of periodontitis, representing a potential method to enhance local immunity and host defense.
Collapse
Affiliation(s)
- Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Dania Ramadan
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vinícius de Paiva Gonçalves
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | | | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | | | - Thais Cesar
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - John A Manthey
- U.S. Horticultural Research Laboratory, Agricultural Research Service, USDA, 2001 South Rock Road/Port Fierce, FL 34945, USA
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
35
|
Kuraji R, Wu YH, Hashimoto S, Miyashita Y, Mishiro S, Ito H, Kamarajan P, Kapila Y, Numabe Y. Periodontal inflammation triggers a site-specific and wide radius of calcium metabolic effects on alveolar bone. J Periodontal Res 2020; 56:314-329. [PMID: 33314132 DOI: 10.1111/jre.12824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE There is a close relationship between inflammation and bone remodeling in the periodontium. However, previous studies have not delineated the alterations in calcium (Ca) metabolism during periodontitis progression. The aim of this current investigation was to examine Ca dynamics in alveolar bone of rats during progression of ligature-induced periodontal inflammation by using 45 Ca, which is an index of hard tissue neogenesis. MATERIAL AND METHODS To induce periodontitis, the maxillary right first molar (M1) of 8-week-old male rats was ligated with a silk suture for 1, 3, 7, and 28 days. The left M1 was not ligated as a control. To evaluate resultant changes in bone neogenesis, 45 CaCl2 was injected intraperitoneally 24 hours before euthanasia. The left-and-right palatal mucosa, molar teeth (M1 and M2), and alveolar bone were harvested for evaluation of 45 Ca radioactivity using a liquid scintillation counter. The distribution of 45 Ca in maxillary tissues was evaluated using autoradiography (ARG). In addition, we analyzed the bone volume fraction (BV/TV) and bone mineral density (BMD) of the alveolar bone by micro-computed tomography. To investigate the number of osteoclasts and osteoblasts, tartrate-resistant acid phosphatase (TRAP) and bone-specific alkaline phosphatase (BAP) were measured by an enzymatic assay and immunohistochemistry, respectively. RESULTS 45 Ca radioactivity in the alveolar bone of the ligature side decreased by 8% compared to the unligated control-side on day 1, whereas on day 7, it markedly increased by 33%. The 45 Ca levels in the gingival tissue and molar teeth were slightly but significantly lower than the control-side on day 1 and higher from day 3 to 28. The variation in 45 Ca levels for the alveolar bone was greater and specific compared with other tissues. Furthermore, on day 7, ARG data revealed that 45 Ca on the control side was primarily localized to the periodontal ligament (PDL) space and alveolar bone crest and barely detected in the gingival tissues and deeper parts of the alveolar bone. On the ligature side, 45 Ca disappeared from the PDL and alveolar crest, but instead was broadly and significantly increased within the deeper zones of the alveolar bone and furcation areas and distant from the site of ligature placement and periodontal inflammation. In the shallow zone of the alveolar bone, these changes in 45 Ca levels on day 7 were consistent with decreases in the bone structural parameters (BV/TV and BMD), enhanced osteoclast presence, and suppressed levels of BAP expression in osteoblasts. In contrast, the deep zone and furcation area showed that TRAP-positive cells increased, but BAP expression was maintained in the resorption lacunae of the alveolar bone. CONCLUSION During periodontitis progression in rats, 45 Ca levels in the alveolar bone exhibited biphasic alterations, namely decreases and increases. These data indicate that periodontitis induces a wide range of site-specific Ca metabolism alterations within the alveolar bone.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Ya-Hsin Wu
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Periodontology, China Medical University Hospital, Taichung City, Taiwan
| | | | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Saki Mishiro
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Hiroshi Ito
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|