1
|
Zhao F, Tie N, Kwok LY, Ma T, Wang J, Man D, Yuan X, Li H, Pang L, Shi H, Ren S, Yu Z, Shen X, Li H, Zhang H. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacol Res 2024; 209:107445. [PMID: 39396767 DOI: 10.1016/j.phrs.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Gout is characterized by dysregulation of uric acid (UA) metabolism, and the gut microbiota may serve as a regulatory target. This two-month randomized, double-blind, placebo-controlled trial aimed to investigate the additional benefits of coadministering Probio-X alongside febuxostat. A total of 160 patients with gout were randomly assigned to either the probiotic group (n = 120; Probio-X [3 × 1010 CFU/day] with febuxostat) or the placebo group (n = 40; placebo material with febuxostat). Coadministration of Probio-X significantly decreased serum UA levels and the rate of acute gout attacks (P < 0.05). Based on achieving a target sUA level (360 μmol/L) after the intervention, the probiotic group was further subdivided into probiotic-responsive (ProA; n = 54) and probiotic-unresponsive (ProB; n = 66) subgroups. Post-intervention clinical indicators, metagenomic, and metabolomic changes in the ProB and placebo groups were similar, but differed from those in the ProA group, which exhibited significantly lower levels of acute gout attack, gout impact score, serum indicators (UA, XOD, hypoxanthine, and IL-1β), and fecal gene abundances of UA-producing pathways (KEGG orthologs of K13479 and K01487; gut metabolic modules for formate conversion and lactose and galactose degradation). Additionally, the ProA group showed significantly higher levels (P < 0.05) of gut SCFAs-producing bacteria and UA-related metabolites (xanthine, hypoxanthine, bile acids) after the intervention. Finally, we established a gout metagenomic classifier to predict probiotic responsiveness based on subjects' baseline gut microbiota composition. Our results indicate that probiotic-driven therapeutic responses are highly individual, with the probiotic-responsive cohort benefitting significantly from probiotic coadministration.
Collapse
Affiliation(s)
- Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Dafu Man
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Xiangzheng Yuan
- Physical examination center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiyun Li
- Department of Rheumatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Lixia Pang
- Department of Rheumatology and Immunology, Hulunbuir People's Hospital, Hohhot, Inner Mongolia, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, China
| | - Shuiming Ren
- Department of Rheumatology and Immunology, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
2
|
Singh AK, Durairajan SSK, Iyaswamy A, Williams LL. Elucidating the role of gut microbiota dysbiosis in hyperuricemia and gout: Insights and therapeutic strategies. World J Gastroenterol 2024; 30:4404-4410. [PMID: 39494101 PMCID: PMC11525862 DOI: 10.3748/wjg.v30.i40.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/16/2024] Open
Abstract
Hyperuricemia (HUA) is a condition associated with a high concentration of uric acid (UA) in the bloodstream and can cause gout and chronic kidney disease. The gut microbiota of patients with gout and HUA is significantly altered compared to that of healthy people. This article focused on the complex interconnection between alterations in the gut microbiota and the development of this disorder. Some studies have suggested that changes in the composition, diversity, and activity of microbes play a key role in establishing and progressing HUA and gout pathogenesis. Therefore, we discussed how the gut microbiota contributes to HUA through purine metabolism, UA excretion, and intestinal inflammatory responses. We examined specific changes in the composition of the gut microbiota associated with gout and HUA, highlighting key bacterial taxa and the metabolic pathways involved. Additionally, we discussed the effect of conventional gout treatments on the gut microbiota composition, along with emerging therapeutic approaches that target the gut microbiome, such as the use of probiotics and prebiotics. We also provided insights into a study regarding the gut microbiota as a possible novel therapeutic intervention for gout treatment and dysbiosis-related diagnosis.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, TN 610005, India
| | - Siva Sundara Kumar Durairajan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, TN 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Leonard L Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| |
Collapse
|
3
|
Malan-Müller S, Vidal R, O'Shea E, Montero E, Figuero E, Zorrilla I, de Diego-Adeliño J, Cano M, García-Portilla MP, González-Pinto A, Leza JC. Probing the oral-brain connection: oral microbiome patterns in a large community cohort with anxiety, depression, and trauma symptoms, and periodontal outcomes. Transl Psychiatry 2024; 14:419. [PMID: 39368974 PMCID: PMC11455920 DOI: 10.1038/s41398-024-03122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
The role of the oral microbiome in mental health has recently been appreciated within the proposed oral-brain axis. This study examined the structure and composition of the salivary microbiome in a large-scale population-based cohort of individuals reporting mental health symptoms (n = 306) compared to mentally healthy controls (n = 164) using 16S rRNA sequencing. Mental health symptoms were evaluated using validated questionnaires and included depression, anxiety, and posttraumatic stress disorder (PTSD), with accompanying periodontal outcomes. Participants also indicated current or previous diagnoses of anxiety, depression, periodontitis, and gingivitis. Mental and periodontal health variables influenced the overall composition of the oral microbiome. PTSD symptoms correlated with a lower clr-transformed relative abundance of Haemophilus sputorum and a higher clr-transformed relative abundance of Prevotella histicola. The clr-transformed relative abundance of P. histicola was also positively associated with depressive scores and negatively associated with psychological quality of life. Anxiety disorder diagnosis was associated with a lower clr-transformed relative abundance of Neisseria elongate and a higher clr-transformed relative abundance of Oribacterium asaccharolyticum. A higher clr-transformed relative abundance of Shuttleworthia and lower clr-transformed relative abundance of Capnocytophaga were evident in those who reported a clinical periodontitis diagnosis. Higher Eggerthia and lower Haemophilus parainfluenzae clr-transformed relative abundances were associated with reported clinical periodontitis diagnoses and psychotherapeutic efficacy. Functional prediction analysis revealed a potential role for tryptophan metabolism/degradation in the oral-brain axis, which was confirmed by lower plasma serotonin levels across symptomatic groups. This study sheds light on the intricate interplay between oral microbiota, periodontal and mental health outcomes, and a potential role for tryptophan metabolism in the proposed oral-brain axis, emphasizing the need for further exploration to pave the way for novel therapeutic interventions and predicting therapeutic response.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain.
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain.
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain.
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain.
| | - Rebeca Vidal
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd-ISCIII), Madrid, Spain
| | - Esther O'Shea
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd-ISCIII), Madrid, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain
- Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain
- Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Iñaki Zorrilla
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- BIOARABA, Department of Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Javier de Diego-Adeliño
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Marta Cano
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Maria Paz García-Portilla
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Psychiatry, Universidad de Oviedo, Servicio de Psiquiatría, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana González-Pinto
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- BIOARABA, Department of Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
| |
Collapse
|
4
|
Deng J, Zhou K, Feng C, Bao Y, Zhang Z, Luo W, Li M. Effect of konjac glucomannan on gut microbiota from hyperuricemia subjects in vitro: fermentation characteristics and inhibitory xanthine oxidase activity. Front Nutr 2024; 11:1465940. [PMID: 39364150 PMCID: PMC11446875 DOI: 10.3389/fnut.2024.1465940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Background The disorder of uric acid metabolism is closely associated with gut microbiota and short-chain fatty acids (SCFAs) dysregulation, but the biological mechanism is unclear, limiting the development of uric acid-lowering active polysaccharides. Konjac glucomannan (KGM) could attenuate metabolic disturbance of uric acid and modulate the gut microbiota. However, the relationship between uric acid metabolism and gut microbiota is still unknown. Methods In this study, The fecal samples were provided by healthy volunteers and hyperuricemia (HUA) patients. Fecal samples from healthy volunteers was regarded as the NOR group. Similarly, 10% HUA fecal suspension was named as the HUA group. Then, fecal supernatant was inoculated into a growth basal medium containing glucose or KGM, and healthy fecal samples were designated as the NOR-GLU and NOR-KGM groups, while HUA fecal samples were designated as the HUA-GLU and HUA-KGM groups. All samples were cultured in an anaerobic bag system. After fermentation for 24 h, the samples were collected for further analysis of composition of intestinal microbiota, SCFAs concentration and XOD enzyme activity. Results The results showed that KGM could be utilized and degraded by the gut microbiota from HUA subjects, and it could modulate the composition and structure of their HUA gut microbiota to more closely resemble that of a healthy group. In addition, KGM showed a superior modulated effect on HUA gut microbiota by increasing Megasphaera, Faecalibacterium, Lachnoclostridium, Lachnospiraceae, Anaerostipes, and Ruminococcus levels and decreasing Butyricicoccus, Eisenbergiella, and Enterococcus levels. Furthermore, the fermentation solution of KGM showed an inhibitory effect on xanthine oxidase (XOD) enzyme activity, which might be due to metabolites such as SCFAs. Conclusion In conclusion, the effect of KGM on hyperuricemia subjects was investigated based on the gut microbiota in vitro. In the present study. It was found that KGM could be metabolized into SCFAs by HUA gut microbiota. Furthermore, KGM could modulate the structure of HUA gut microbiota. At the genus level, KGM could decrease the relative abundances of Butyricicoccus, Eisenbergiella, and Enterococcus, while Lachnoclostridium and Lachnospiraceae in HUA gut microbiota were significantly increased by the addition of KGM. The metabolites of gut microbiota, such as SCFAs, might be responsible for the inhibition of XOD activity. Thus, KGM exhibited a superior probiotic function on the HUA gut microbiota, which is expected as a promising candidate for remodeling the HUA gut microbiota.
Collapse
Affiliation(s)
- Jie Deng
- Shunde Vocational and Technical College, Foshan, China
| | - Kai Zhou
- Institute of Jiangxi Oil-Tea Camellia, College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Caimin Feng
- Shunde Vocational and Technical College, Foshan, China
| | - Yilu Bao
- Shunde Vocational and Technical College, Foshan, China
| | - Zhiming Zhang
- Shunde Vocational and Technical College, Foshan, China
| | - Wenfeng Luo
- Central Laboratory of Panyu Central Hospital, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Wang Z, Xu H, Song X, Chen Z, Wang G, Yang Y, Zhu B, Ai L, Liu C, Zhang Y, Yang Y, Wang C, Xia Y. Revealing Interactions of Gut Microbiota and Metabolite in Confined Environments Using High-Throughput Sequencing and Metabolomic Analysis. Nutrients 2024; 16:2998. [PMID: 39275313 PMCID: PMC11397237 DOI: 10.3390/nu16172998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
A confined environment is a special kind of extreme working environment, and prolonged exposure to it tends to increase psychological stress and trigger rhythmic disorders, emotional abnormalities and other phenomena, thus seriously affecting work efficiency. However, the mechanisms through which confined environments affect human health remain unclear. Therefore, this study simulates a strictly controlled confined environment and employs integrative multi-omics techniques to analyze the alterations in gut microbiota and metabolites of workers under such conditions. The aim is to identify metabolic biomarkers and elucidate the relationship between gut microbiota and metabolites. High-throughput sequencing results showed that a confined environment significantly affects gut microbial composition and clusters subjects' gut microbiota into two enterotypes (Bla and Bi). Differences in abundance of genera Bifidobacterium, Collinsella, Ruminococcus_gnavus_group, Faecalibacterium, Bacteroides, Prevotella and Succinivibronaceae UCG-002 were significant. Untarget metabolomics analyses showed that the confined environment resulted in significant alterations in intestinal metabolites and increased the activity of the body's amino acid metabolism and bile acid metabolism pathways. Among the metabolites that differed after confined environment living, four metabolites such as uric acid and beta-PHENYL-gamma-aminobutyric acid may be potential biomarkers. Further correlation analysis demonstrated a strong association between the composition of the subjects' gut microbiota and these four biomarkers. This study provides valuable reference data for improving the health status of workers in confined environments and facilitates the subsequent proposal of targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Ziying Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai 200433, China
| | - Haodan Xu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai 200433, China
| | - Xin Song
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yijin Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chenxi Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai 200433, China
| | - Yaxuan Zhang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai 200433, China
| | - Yong Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chuan Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai 200433, China
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
6
|
Zeng H, Lai J, Liu Z, Liu W, Zhang Y. Specific blood metabolite associations with Gout: a Mendelian randomization study. Eur J Clin Nutr 2024:10.1038/s41430-024-01497-7. [PMID: 39215202 DOI: 10.1038/s41430-024-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Gout, common metabolic disorders, have poorly understood links with blood metabolites. Exploring these relationships could enhance clinical prevention and treatment strategies. METHODS We applied bidirectional two-sample Mendelian randomization (MR) analysis, using data from a genome-wide association (GWAS) study of 486 blood metabolites. Gout data was obtained from FinnGen R8 (7461 gout and 221,323 control cases). We implemented the inverse variance-weighted (IVW) method for main analytical approach. Extensive heterogeneity, pleiotropy tests, leave-one-out analysis, and reverse MR were conducted to validate the robustness of our findings. Both Bonferroni and False Discovery Rate (FDR) corrections were used to adjust for multiple comparisons, ensuring stringent validation of our results. RESULTS Initial MR identified 31 candidate metabolites with potential genetic associations to gout. Following rigorous sensitivity analysis, 23 metabolites as potential statistical significance after final confirmation. These included metabolites enhancing gout risk such as X-11529 (OR = 1.225, 95% CI 1.112-1.350, P < 0.001), as well as others like piperine and stachydrine, which appeared to confer protective effects. The analysis was strengthened by reverse MR analysis. Additionally, an enrichment analysis was conducted, suggesting that 1-methylxanthine may be involved in the metabolic process of gout through the caffeine metabolism pathway. CONCLUSION Identifying causal metabolites offers new insights into the mechanisms influencing gout, suggesting pathways for future research and potential therapeutic targets.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, #2002 Jintian Road, Shenzhen, 518000, China
| | - Junda Lai
- Department of Human Life Sciences, Beijing Sport University, Haidian district, Beijing, #48 Xinxi Road, 100029, China
| | - Zhihang Liu
- Department of National Cybersecurity Center, Wuhan University, Wuchang District, #299 Bayi Road, Wuhan, 430072, Hubei, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, #314 Anshanxi Road, Tianjin, 300381, China.
| | - Ye Zhang
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, #2002 Jintian Road, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Yang X, Liu D, Zhao X, Han Y, Zhang X, Zhou Q, Lv Q. Hyperuricemia drives intestinal barrier dysfunction by regulating gut microbiota. Heliyon 2024; 10:e36024. [PMID: 39224259 PMCID: PMC11367111 DOI: 10.1016/j.heliyon.2024.e36024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hyperuricemia elevates gut permeability; however, the risk of its influence on the compromised intestinal barrier is poorly understood. Aims This study was carried out, aiming to elucidate the orchestrators and disruptors of intestinal barrier in hyperuricemia. Methods A mouse model of hyperuricemia was induced by administering adenine and oteracil potassium to mice. Allopurinol was used to decrease uric acid level, and antibiotics were administered to mice to deplete gut microbiota. Intestinal permeability was assessed using FITC-labeled dextran. Changes in gut microbial community were analyzed through 16S rRNA sequencing. IL-1β and TNF-α levels were quantified using ELISA. The expression of tight junction protein genes, TLR4, p65 and IL-1β, was determined with Q-PCR and Western blotting. Results Allopurinol treatment effectively reduced intestinal permeability and serum TNF-α levels. Antibiotic treatment alleviated but not abolished intestinal permeability. Uric acid alone was insufficient to increase Coca2 monolayer permeability. Allopurinol treatment altered microbial composition and suppressed opportunistic infections. Re-establishing hyperuricemia in a germfree mouse model protected mice from intestinal injury. Allopurinol and antibiotic treatments reduced TLR4 and IL-1β expressions, increased occludin and claudin-1 expressions but suppressed NF-ĸB p65 signaling. However, removing gut microbiota aggravated lipid metabolic dysfunction. Conclusion Gut microbiota is a direct and specific cause for intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Xiaomin Yang
- Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Dan Liu
- Laboratory Medicine, Qingdao Fuwai Cardiovascular Hospital, PR China
| | - Xiangzhong Zhao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Yafei Han
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Xiao Zhang
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Quan Zhou
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Qiulan Lv
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| |
Collapse
|
8
|
Xiao N, Zhang X, Xi Y, Li Z, Wei Y, Shen J, Wang L, Qin D, Xie Z, Li Z. Study on the effects of intestinal flora on gouty arthritis. Front Cell Infect Microbiol 2024; 14:1341953. [PMID: 39176260 PMCID: PMC11339034 DOI: 10.3389/fcimb.2024.1341953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Gouty arthritis (GA), a metabolic and immunologic disease, primarily affects joints. Dysbiosis of intestinal flora is an important cause of GA. The metabolic disorders of intestinal flora leading to GA and immune disorders might play an important role in patients with hyperuricemia and established GA. However, the exact mechanisms, through which the dysbiosis of intestinal flora causes the development of GA, are not fully understood yet. Moreover, several therapies commonly used to treat GA might alter the intestinal flora, suggesting that modulation of the intestinal flora might help prevent or treat GA. Therefore, a better understanding of the changes in the intestinal flora of GA patients might facilitate the discovery of new diagnostic and therapeutic approaches. The current review article discusses the effects of intestinal flora dysbiosis on the pathogenesis of GA and the cross-regulatory effects between gut flora and drugs for treating GA. This article also highlights the modulatory effects of gut flora by traditional Chinese medicine (TCM) to lower uric acid levels and relieve joint pain as well as provides a summary and outlook, which might help guide future research efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Li H, Su Q, Fu D, Huang H, Lu Z, Huang C, Chen Y, Tan M, Huang J, Kang Z, Wei Q, Guo X. Alteration of gut microbiome in goslings infected with goose astrovirus. Poult Sci 2024; 103:103869. [PMID: 38909510 PMCID: PMC11253677 DOI: 10.1016/j.psj.2024.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Goose astrovirus (GoAstV) is an emerging avian pathogen that induces gout in goslings with a mortality of up to 50%. Organ damage caused by GoAstV infection was considered the cause of gout, but it is still unclear whether other factors are involved. Human and murine studies have linked the gut microbiome-derived urate and gout, thus we hypothesized that gut microbiome may also play an important role in gout induced by GoAstV infection. This study tested the pathogenicity of our isolated GoAstV genotype 2 strain on goslings, while the appearance of clinical signs, histopathological changes, viral distribution and the blood level of cytokines were monitored for 18 d postinfection (dpi). The dynamics in the gut microbiome were profiled by 16S sequencing and then correlated with GoAstV infection. Results showed that this study successfully developed an experimental infection model for studying the pathogenicity of the GoAstV infection which induces typical symptoms of gout. GoAstV infection significantly altered the gut microbiome of goslings with the enrichment of potential proinflammatory bacteria and depletion of beneficial bacteria that can produce short-chain fatty acids. More importantly, the microbial pathway involved in urate production was significantly increased in goslings infected with GoAstV, suggesting that gut microbiome-derived urate may also contribute to the gout symptoms. Overall, this study demonstrated the role of gut microbiome in the pathogenesis of GoAstV infection, highlighting the potential of gut microbiome-based therapeutics against gout symptoms.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qi Su
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Duanfeng Fu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haoyu Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunfeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
10
|
DeChristopher LR, Tucker KL. Disproportionately higher cardiovascular disease risk and incidence with high fructose corn syrup sweetened beverage intake among black young adults-the CARDIA study. Nutr J 2024; 23:84. [PMID: 39075463 PMCID: PMC11285415 DOI: 10.1186/s12937-024-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The black/white heart disease mortality disparity began increasing in the early 1980's, coincident with the switch from sucrose to high-fructose-corn-syrup/(HFCS) in the US food supply. There has been more fructose in HFCS than generally-recognized-as-safe/GRAS, which has contributed to unprecedented excess-free-fructose/(unpaired-fructose) in foods/beverages. Average- per-capita excess-free-fructose, from HFCS, began exceeding dosages/(5-10 g) that trigger fructose-malabsorption in the early 1980's. Fructose malabsorption contributes to gut-dysbiosis and gut-in-situ-fructosylation of dietary peptides/incretins/(GLP-1/GIP) which forms atherosclerotic advanced-glycation-end-products. Both dysregulate gut endocrine function and are risk factors for cardiovascular disease/(CVD). Limited research shows that African Americans have higher fructose malabsorption prevalence than others. CVD risk begins early in life. METHODS Coronary-Artery-Risk-Development-in-Adults/(CARDIA) study data beginning in 1985-86 with 2186 Black and 2277 White participants, aged 18-30 y, were used to test the hypothesis that HFCS sweetened beverage intake increases CVD risk/incidence, more among Black than White young adults, and at lower intakes; while orange juice-a low excess-free-fructose juice with comparable total sugars and total fructose, but a 1:1 fructose-to-glucose-ratio, i.e., low excess-free-fructose, does not. Cox proportional hazards models were used to calculate hazard ratios. RESULTS HFCS sweetened beverage intake was associated with higher CVD risk (HR = 1.7) than smoking (HR = 1.6). CVD risk was higher at lower HFCS sweetened beverage intake among Black than White participants. Intake, as low as 3 times/wk, was associated with twice the CVD risk vs. less frequent/never, among Black participants only (HR 2.1, 95% CI 1.2-3.7; P = 0.013). Probability of an ordered relationship approached significance. Among Black participants, CVD incidence jumped 62% from 59.8/1000, among ≤ 2-times/wk, to 96.9/1000 among 3-6 times/wk consumers. Among White participants, CVD incidence increased from 37.6/1000, among ≤ 1.5-times/wk, to 41.1/1000, among 2 times/wk-once/d - a 9% increase. Hypertension was highest among Black daily HFCS sweetened beverage consumers. CONCLUSION The ubiquitous presence of HFCS over-the-past-40 years, at higher fructose-to-glucose ratios than generally-recognized-as-safe, may have contributed to CVD racial disparities, due to higher fructose-malabsorption prevalence among Black individuals, unpaired/excess-free-fructose induced gut dysbiosis and gut fructosylation of dietary peptides/incretins (GLP-1/GIP). These disturbances contribute to atherosclerotic plaque; promote incretin insufficiency/dysregulation/altered satiety/dysglycemia; decrease protective microbiota metabolites; and increase hypertension, CVD morbidity and mortality.
Collapse
Affiliation(s)
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
11
|
Huang Y, Jing H, Wang Z, Li Z, Chacha S, Teng Y, Mi B, Zhang B, Liu Y, Li Q, Shen Y, Yang J, Qu Y, Wang D, Yan H, Dang S. Does Serum Uric Acid Mediate Relation between Healthy Lifestyle and Components of Metabolic Syndrome? Nutrients 2024; 16:2137. [PMID: 38999885 PMCID: PMC11243389 DOI: 10.3390/nu16132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
A healthy lifestyle is related to metabolic syndrome (MetS), but the mechanism is not fully understood. This study aimed to examine the association of components of MetS with lifestyle in a Chinese population and potential mediation role of serum uric acid (SUA) in the association between lifestyle behaviors and risk of components of MetS. Data were derived from a baseline survey of the Shaanxi urban cohort in the Regional Ethnic Cohort Study in northwest China. The relationship between components of MetS, healthy lifestyle score (HLS), and SUA was investigated by logistic or linear regression. A counterfactual-based mediation analysis was performed to ascertain whether and to what extent SUA mediated the total effect of HLS on components of MetS. Compared to those with 1 or less low-risk lifestyle factors, participants with 4-5 factors had 43.6% lower risk of impaired glucose tolerance (OR = 0.564; 95%CI: 0.408~0.778), 60.8% reduction in risk of high blood pressure (OR = 0.392; 95%CI: 0.321~0.478), 69.4% reduction in risk of hypertriglyceridemia (OR = 0.306; 95%CI: 0.252~0.372), and 47.3% lower risk of low levels of HDL cholesterol (OR = 0.527; 95%CI: 0.434~0.641). SUA mediated 2.95% (95%CI: 1.81~6.16%) of the total effect of HLS on impaired glucose tolerance, 14.68% (95%CI: 12.04~18.85%) on high blood pressure, 17.29% (95%CI: 15.01~20.5%) on hypertriglyceridemia, and 12.83% (95%CI: 10.22~17.48%) on low levels of HDL cholesterol. Increased HLS tends to reduce risk of components of MetS partly by decreasing the SUA level, which could be an important mechanism by which lifestyle influences MetS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Hui Jing
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Ziping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Zongkai Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Samuel Chacha
- Department of Molecular Diagnostics, Sumbwanga Regional Referral Hospital, Rukwa 413, Tanzania;
| | - Yuxin Teng
- Department of Human Resources, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Baibing Mi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Binyan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yezhou Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Qiang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Jiaomei Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yang Qu
- HKU Business School, 3/F K.K. Leung Building, The University of Hong Kong, Pokfulam Road, Hong Kong;
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L7 8XZ, UK;
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
12
|
Han L, Zhang L, Hu W, Lu Y, Wang Z. Association of C-reactive protein with all-cause and cause-specific mortality in people with gout. Eur J Med Res 2024; 29:320. [PMID: 38858782 PMCID: PMC11163753 DOI: 10.1186/s40001-024-01923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
AIMS To test the association of C-reactive protein (CRP) with all-cause and cause-specific mortality in people with gout. METHODS This cohort study included 502 participants with gout from the National Health and Nutrition Examination Survey. Multivariate Cox regression analysis, subgroup analysis, and restricted cubic spline (RCS) analyses were utilized to examine the association of CRP levels with all-cause, cardiovascular, and cancer mortality. RESULTS After adjusting for multiple variables, Cox regression analysis showed that compared with individuals in the lowest tertile of CRP levels, those in the middle and highest tertiles experienced increases in all-cause mortality risk of 74.2% and 149.7%, respectively. Similarly, the cancer mortality risk for individuals in the highest tertile of CRP levels increased by 283.9%. In addition, for each standard deviation increase in CRP, the risks of all-cause and cancer mortality increased by 25.9% and 35.4%, respectively (P < 0.05). Subgroup analyses demonstrated that the association between CRP levels and all-cause mortality remained significant across subgroups of age (≤ 60 and > 60 years), gender (male), presence or absence of hypertension, non-diabetes, cardiovascular disease, non-cardiovascular disease and non-cancer. Furthermore, the association with cancer mortality was significant in subgroups including males, those without hypertension and cancer, and those with or without diabetes. However, the association with cardiovascular mortality was only significant in the non-hypertension subgroup (P < 0.05). Nonlinear association of CRP with all-cause mortality and linear association with cancer mortality were also confirmed (P for nonlinearity = 0.008 and 0.135, respectively). CONCLUSIONS CRP levels were associated with increased all-cause and cancer mortality among individuals with gout.
Collapse
Affiliation(s)
- Lishuai Han
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijuan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenlu Hu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenwei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Yan Q, Li S, Yan Q, Huo X, Wang C, Wang X, Sun Y, Zhao W, Yu Z, Zhang Y, Guo R, Lv Q, He X, Yao C, Li Z, Chen F, Ji Q, Zhang A, Jin H, Wang G, Feng X, Feng L, Wu F, Ning J, Deng S, An Y, Guo DA, Martin FM, Ma X. A genomic compendium of cultivated human gut fungi characterizes the gut mycobiome and its relevance to common diseases. Cell 2024; 187:2969-2989.e24. [PMID: 38776919 DOI: 10.1016/j.cell.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.
Collapse
Affiliation(s)
- Qiulong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan 430076, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Qingsong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; First Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10027, USA
| | - Yan Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wenyu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhenlong Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan 430076, China
| | - Xin He
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | | | - Fang Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qianru Ji
- Puensum Genetech Institute, Wuhan 430076, China
| | - Aiqin Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Hao Jin
- Puensum Genetech Institute, Wuhan 430076, China
| | - Guangyang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoying Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue An
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Francis M Martin
- Université de Lorraine, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux 54280, France; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100091, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
14
|
Zhai J, Qiu Z, Liu Y, Niu Y, Chen R, Kao X, Dong W, Kou L, Zhao G. Single-cell calcium monitoring of Caco-2 cell co-cultured with intestinal microbiome through carbon fiber based potentiometric microelectrode. Anal Chim Acta 2024; 1306:342615. [PMID: 38692795 DOI: 10.1016/j.aca.2024.342615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 μmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Zhedong Qiu
- The First School of Clinical Medicine of Binzhou Medical University, Yantai, 264003, China
| | - Yushan Liu
- The First School of Clinical Medicine of Binzhou Medical University, Yantai, 264003, China
| | - Yahui Niu
- School of Medical Imaging, Binzhou Medical University, Yantai, 264003, China
| | - Ronghua Chen
- School of Medical Imaging, Binzhou Medical University, Yantai, 264003, China
| | - Xiaomeng Kao
- School of Nursing, Binzhou Medical University, Yantai, 264003, China
| | - Wencheng Dong
- Queen Marry School, Nanchang University, Nanchang, 330000, China
| | - Lijuan Kou
- School of Pharmacy, Binzhou Medical University, Yantai, PR, 264003, China.
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
15
|
Tang C, Li L, Jin X, Wang J, Zou D, Hou Y, Yu X, Wang Z, Jiang H. Investigating the Impact of Gut Microbiota on Gout Through Mendelian Randomization. Orthop Res Rev 2024; 16:125-136. [PMID: 38766545 PMCID: PMC11100514 DOI: 10.2147/orr.s454211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Background The relationship between gout and gut microbiota has attracted significant attention in current research. However, due to the diverse range of gut microbiota, the specific causal effect on gout remains unclear. This study utilizes Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and gout, aiming to elucidate the underlying mechanism of microbiome-mediated gout and provide valuable guidance for clinical prevention and treatment. Materials and Methods The largest genome-wide association study meta-analysis conducted by the MiBioGen Consortium (n=18,340) was utilized to perform a two-sample Mendelian randomization investigation on aggregate statistics of intestinal microbiota. Summary statistics for gout were utilized from the data released by EBI. Various methods, including inverse variance weighted, weighted median, weighted model, MR-Egger, and Simple-mode, were employed to assess the causal relationship between gut microbiota and gout. Reverse Mendelian randomization analysis revealed a causal association between bacteria and gout in forward Mendelian randomization analysis. Cochran's Q statistic was used to quantify instrumental variable heterogeneity. Results The inverse variance weighted estimation revealed that Rikenellaceae exhibited a slight protective effect on gout, while the presence of Ruminococcaceae UCG_011 is associated with a marginal increase in the risk of gout. According to the reverse Mendelian Randomization results, no significant causal relationship between gout and gut microbiota was observed. No significant heterogeneity of instrumental variables or level pleiotropy was detected. Conclusion Our MR analysis revealed a potential causal relationship between the development of gout and specific gut microbiota; however, the causal effect was not robust, and further research is warranted to elucidate its underlying mechanism in gout development. Considering the significant association between diet, gut microbiota, and gout, these findings undoubtedly shed light on the mechanisms of microbiota-mediated gout and provide new insights for translational research on managing and standardizing treatment for this condition.
Collapse
Affiliation(s)
- Chaoqun Tang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Lei Li
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Xin Jin
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Jinfeng Wang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Debao Zou
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Yan Hou
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Xin Yu
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Zhizhou Wang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Hongjiang Jiang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| |
Collapse
|
16
|
Zhou Y, Zeng Y, Wang R, Pang J, Wang X, Pan Z, Jin Y, Chen Y, Yang Y, Ling W. Resveratrol Improves Hyperuricemia and Ameliorates Renal Injury by Modulating the Gut Microbiota. Nutrients 2024; 16:1086. [PMID: 38613119 PMCID: PMC11013445 DOI: 10.3390/nu16071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Resveratrol (RES) has been reported to prevent hyperuricemia (HUA); however, its effect on intestinal uric acid metabolism remains unclear. This study evaluated the impact of RES on intestinal uric acid metabolism in mice with HUA induced by a high-fat diet (HFD). Moreover, we revealed the underlying mechanism through metagenomics, fecal microbiota transplantation (FMT), and 16S ribosomal RNA analysis. We demonstrated that RES reduced the serum uric acid, creatinine, urea nitrogen, and urinary protein levels, and improved the glomerular atrophy, unclear renal tubule structure, fibrosis, and renal inflammation. The results also showed that RES increased intestinal uric acid degradation. RES significantly changed the intestinal flora composition of HFD-fed mice by enriching the beneficial bacteria that degrade uric acid, reducing harmful bacteria that promote inflammation, and improving microbial function via the upregulation of purine metabolism. The FMT results further showed that the intestinal microbiota is essential for the effect of RES on HUA, and that Lactobacillus may play a key role in this process. The present study demonstrated that RES alleviates HFD-induced HUA and renal injury by regulating the gut microbiota composition and the metabolism of uric acid.
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Ruijie Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
17
|
Pham DT, Phan V. MetaBIDx: a new computational approach to bacteria identification in microbiomes. MICROBIOME RESEARCH REPORTS 2024; 3:25. [PMID: 38841411 PMCID: PMC11149084 DOI: 10.20517/mrr.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Objectives: This study introduces MetaBIDx, a computational method designed to enhance species prediction in metagenomic environments. The method addresses the challenge of accurate species identification in complex microbiomes, which is due to the large number of generated reads and the ever-expanding number of bacterial genomes. Bacterial identification is essential for disease diagnosis and tracing outbreaks associated with microbial infections. Methods: MetaBIDx utilizes a modified Bloom filter for efficient indexing of reference genomes and incorporates a novel strategy for reducing false positives by clustering species based on their genomic coverages by identified reads. The approach was evaluated and compared with several well-established tools across various datasets. Precision, recall, and F1-score were used to quantify the accuracy of species prediction. Results: MetaBIDx demonstrated superior performance compared to other tools, especially in terms of precision and F1-score. The application of clustering based on approximate coverages significantly improved precision in species identification, effectively minimizing false positives. We further demonstrated that other methods can also benefit from our approach to removing false positives by clustering species based on approximate coverages. Conclusion: With a novel approach to reducing false positives and the effective use of a modified Bloom filter to index species, MetaBIDx represents an advancement in metagenomic analysis. The findings suggest that the proposed approach could also benefit other metagenomic tools, indicating its potential for broader application in the field. The study lays the groundwork for future improvements in computational efficiency and the expansion of microbial databases.
Collapse
Affiliation(s)
| | - Vinhthuy Phan
- Department of Computer Science, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
18
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
19
|
Lin X, Hu T, Wu Z, Li L, Wang Y, Wen D, Liu X, Li W, Liang H, Jin X, Xu X, Wang J, Yang H, Kristiansen K, Xiao L, Zou Y. Isolation of potentially novel species expands the genomic and functional diversity of Lachnospiraceae. IMETA 2024; 3:e174. [PMID: 38882499 PMCID: PMC11170972 DOI: 10.1002/imt2.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024]
Abstract
The Lachnospiraceae family holds promise as a source of next-generation probiotics, yet a comprehensive delineation of its diversity is lacking, hampering the identification of suitable strains for future applications. To address this knowledge gap, we conducted an in-depth genomic and functional analysis of 1868 high-quality genomes, combining data from public databases with our new isolates. This data set represented 387 colonization-selective species-level clusters, of which eight genera represented multilineage clusters. Pan-genome analysis, single-nucleotide polymorphism (SNP) identification, and probiotic functional predictions revealed that species taxonomy, habitats, and geography together shape the functional diversity of Lachnospiraceae. Moreover, analyses of associations with atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD) indicated that several strains of potentially novel Lachnospiraceae species possess the capacity to reduce the abundance of opportunistic pathogens, thereby imparting potential health benefits. Our findings shed light on the untapped potential of novel species enabling knowledge-based selection of strains for the development of next-generation probiotics holding promise for improving human health and disease management.
Collapse
Affiliation(s)
- Xiaoqian Lin
- BGI Research Shenzhen China
- School of Bioscience and Biotechnology South China University of Technology Guangzhou China
| | | | - Zhinan Wu
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | | | | | | | - Xudong Liu
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Wenxi Li
- BGI Research Shenzhen China
- School of Bioscience and Biotechnology South China University of Technology Guangzhou China
| | | | | | - Xun Xu
- BGI Research Shenzhen China
| | - Jian Wang
- BGI Research Shenzhen China
- James D. Watson Institute of Genome Sciences Hangzhou China
| | - Huanming Yang
- BGI Research Shenzhen China
- James D. Watson Institute of Genome Sciences Hangzhou China
| | - Karsten Kristiansen
- BGI Research Shenzhen China
- Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | - Liang Xiao
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen Shenzhen China
| | - Yuanqiang Zou
- BGI Research Shenzhen China
- Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen Shenzhen China
| |
Collapse
|
20
|
Qiu Y, Li C, Huang Y, Wu C, Li F, Zhang X, Xia D. Exploring the causal associations of micronutrients on urate levels and the risk of gout: A Mendelian randomization study. Clin Nutr 2024; 43:1001-1012. [PMID: 38484526 DOI: 10.1016/j.clnu.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND & AIMS Growing evidence has indicated a potential association between micronutrient levels, urate levels, and the risk of gout. However, the causal association underlying these associations still remains uncertain. Previous observational studies and randomized controlled trials investigating the association between micronutrients, urate levels, and the risk of gout have been limited in their scope and depth. The aim of this study was to utilize Mendelian randomization (MR) to investigate the causal associations between genetically predicted micronutrient levels, urate levels, and the risk of gout. METHODS In this study, we conducted a comprehensive examination of 10 specific micronutrients (vitamin B6, vitamin B12, vitamin C, vitamin D, folate, calcium, iron, copper, zinc, and selenium) as potential exposures. Two-sample MR analyses were performed to explore their causal associations with urate levels and the risk of gout. In these analyses, gout data were collected from the Global Biobank Meta-Analysis Initiative (N = 1,069,839, N cases = 30,549) and urate levels data from CKDGen Consortium (N = 288,649) by utilizing publicly available summary statistics from independent cohorts of European ancestry. We performed inverse-variance weighted MR analyses as main analyses, along with a range of sensitivity analyses, such as MR-Egger, weighted median, simple mode, weighted mode, Steiger filtering, MR-PRESSO, and Radial MR analysis, to ensure the robustness of our findings. RESULTS The results of our study indicate that there were negative associations between serum vitamin B12 and urate levels, as well as serum folate and the risk of gout. Specifically, we found a negative association between vitamin B12 levels and urate levels, with a β coefficient of -0.324 (95% CI -0.0581 to -0.0066, P = 0.0137) per one standard deviation (SD) increase. Similarly, a negative association was observed between folate levels and gout risk, with an odds ratio of 0.8044 (95% CI 0.6637 to 0.9750, P = 0.0265) per one SD increase. On the other hand, we identified positive associations between serum calcium levels and both urate levels and the risk of gout. Specifically, there was a positive association between serum calcium levels and urate levels (β coefficient: 0.0994, 95% CI 0.0519 to 0.1468, P = 4.11E-05) per one SD increase. Furthermore, a positive association was found between serum calcium levels and the risk of gout, with an odds ratio of 1.1479 (95% CI 1.0460 to 1.2598, P = 0.0036) per one SD increase. These findings were robust in extensive sensitivity analyses. By employing MR-PRESSO and Radial MR to eliminate outliers, the observed associations have been reinforced. No clear associations were found between the other micronutrients and the urate levels, as well as the risk of gout. CONCLUSION Our findings provided evidence that there were negative associations between serum vitamin B12 and urate levels, as well as serum folate and the risk of gout, while positive associations existed between the serum calcium levels and urate levels, as well as the risk of gout.
Collapse
Affiliation(s)
- Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
21
|
Zou Y, Ro KS, Jiang C, Yin D, Zhao L, Zhang D, Du L, Xie J. The anti-hyperuricemic and gut microbiota regulatory effects of a novel purine assimilatory strain, Lactiplantibacillus plantarum X7022. Eur J Nutr 2024; 63:697-711. [PMID: 38147149 DOI: 10.1007/s00394-023-03291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Probiotics have been reported to effectively alleviate hyperuricemia and regulate the gut microbiota. The aim of this work was to study the in vivo anti-hyperuricemic properties and the mechanism of a novel strain, Lactiplantibacillus plantarum X7022. METHODS Purine content and mRNA expression of purine assimilation related enzymes were determined by HPLC and qPCR, respectively. Hyperuricemic mice were induced by potassium oxonate and hypoxanthine. Uric acid (UA), blood urea nitrogen, creatinine and renal inflammation were examined by kits. The expression of renal UA transporters was subjected to western blotting. Kidney tissues were sectioned for histological analysis. The fecal short-chain fatty acids (SCFAs) were determined by HPLC, and gut microbiota was investigated using the 16S rDNA metagenomic sequencing. RESULTS L. plantarum X7022 possesses a complete purine assimilation pathway and can exhaust xanthine, guanine, and adenine by 82.1%, 33.1%, and 12.6%, respectively. The strain exhibited gastrointestinal viability as 44% at the dose of 109 CFU/mL in mice. After four-week administration of the strain, a significant decrease of 35.5% in the serum UA level in hyperuricemic mice was achieved. The diminished contents of fecal propionate and butyrate were dramatically boosted. The treatment also alleviated renal inflammation and restored renal damage. The above physiological changes may due to the inhibited xanthine oxidase (XO) activity, as well as the expressional regulation of UA transporters (GLUT9, URAT1 and OAT1) to the normal level. Notably, gut microbiota dysbiosis in hyperuricemic mice was improved with the inflammation and hyperuricemia related flora depressed, and SCFAs production related flora promoted. CONCLUSION The strain is a promising probiotic strain for ameliorating hyperuricemia.
Collapse
Affiliation(s)
- Yuan Zou
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Kum-Song Ro
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
- Department of Biotechnology, Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Chentian Jiang
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Deyi Yin
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China
| |
Collapse
|
22
|
Lou Y, Liu B, Jiang Z, Wen X, Song S, Xie Z, Mao Y, Shao T. Assessing the causal relationships of gut microbial genera with hyperuricemia and gout using two-sample Mendelian randomization. Nutr Metab Cardiovasc Dis 2024; 34:1028-1035. [PMID: 38403483 DOI: 10.1016/j.numecd.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS The causal relationship between gut microbiota and gout and hyperuricemia (HUA) has not been clarified. The objective of this research was to evaluate the potential causal effects of gut microbiota on HUA and gout using a two-sample Mendelian randomization (MR) approach. METHODS AND RESULTS Genetic instruments were selected using summary statistics from genome-wide association studies (GWASs) comprising a substantial number of individuals, including 18,473 participants for gut microbiome, 288,649 for serum urate (SU), and 763,813 for gout. Two-sample MR analyses were performed to determine the possible causal associations of gut microbial genera with the risk of HUA and gout using the inverse-variance weighted (IVW) method, and robustness of the results was confirmed by several sensitivity analyses. A reverse MR analysis was conducted on the bacterial taxa that were identified in forward MR analysis. Based on the results of MR analyses, Escherichia-Shigella (OR = 1.05; 95% CI, 1.01-1.08; P = 0.009) exhibited a positive association with SU levels, while Lachnospiraceae NC2004 group (OR = 0.95; 95% CI, 0.92-0.98; P = 0.001) and Family XIII AD3011 group (OR = 0.94; 95% CI, 0.90-0.99; P = 0.015) were associated with a reduced HUA risk. Moreover, Coprococcus 3 (OR = 1.17, 95% CI: 1.01-1.34, P = 0.031) was causally associated with a higher gout risk. In reverse MR analysis, no causal relationships were identified between these bacterial genera and HUA or gout. CONCLUSION This study provides evidence for a causal association between gut microbial genera and HUA or gout, and further investigations of the underlying mechanism are warranted.
Collapse
Affiliation(s)
- Yu Lou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhounan Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyue Song
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Tiejuan Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
23
|
Bemmelen JV, Smyth DS, Baaijens JA. Amplidiff: an optimized amplicon sequencing approach to estimating lineage abundances in viral metagenomes. BMC Bioinformatics 2024; 25:126. [PMID: 38521945 PMCID: PMC10960382 DOI: 10.1186/s12859-024-05735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Metagenomic profiling algorithms commonly rely on genomic differences between lineages, strains, or species to infer the relative abundances of sequences present in a sample. This observation plays an important role in the analysis of diverse microbial communities, where targeted sequencing of 16S and 18S rRNA, both well-known hypervariable genomic regions, have led to insights into microbial diversity and the discovery of novel organisms. However, the variable nature of discriminatory regions can also act as a double-edged sword, as the sought-after variability can make it difficult to design primers for their amplification through PCR. Moreover, the most variable regions are not necessarily the most informative regions for the purpose of differentiation; one should focus on regions that maximize the number of lineages that can be distinguished. RESULTS Here we present AmpliDiff, a computational tool that simultaneously finds highly discriminatory genomic regions in viral genomes of a single species, as well as primers allowing for the amplification of these regions. We show that regions and primers found by AmpliDiff can be used to accurately estimate relative abundances of SARS-CoV-2 lineages, for example in wastewater sequencing data. We obtain errors that are comparable with using whole genome information to estimate relative abundances. Furthermore, our results show that AmpliDiff is robust against incomplete input data and that primers designed by AmpliDiff also bind to genomes sampled months after the primers were selected. CONCLUSIONS With AmpliDiff we provide an effective, cost-efficient alternative to whole genome sequencing for estimating lineage abundances in viral metagenomes.
Collapse
Affiliation(s)
- Jasper van Bemmelen
- Intelligent Systems Department, Delft University of Technology, Delft, Netherlands
| | - Davida S Smyth
- Department of Natural Sciences, Texas A &M University-San Antonio, San Antonio, TX, USA
| | - Jasmijn A Baaijens
- Intelligent Systems Department, Delft University of Technology, Delft, Netherlands.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Fu Y, Chen YS, Xia DY, Luo XD, Luo HT, Pan J, Ma WQ, Li JZ, Mo QY, Tu Q, Li MM, Zhao Y, Li Y, Huang YT, Chen ZX, Li ZJ, Bernard L, Dione M, Zhang YM, Miao K, Chen JY, Zhu SS, Ren J, Zhou LJ, Jiang XZ, Chen J, Lin ZP, Chen JP, Ye H, Cao QY, Zhu YW, Yang L, Wang X, Wang WC. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model. NPJ Biofilms Microbiomes 2024; 10:25. [PMID: 38509085 PMCID: PMC10954633 DOI: 10.1038/s41522-024-00486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.
Collapse
Affiliation(s)
- Yang Fu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Song Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Dai-Yang Xia
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Xiao-Dan Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao-Tong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Pan
- Hunan Shihua Biotech Co. Ltd., Changsha, 410000, China
| | - Wei-Qing Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Ze Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qian-Yuan Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Meng-Meng Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yi-Teng Huang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhi-Xian Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhen-Jun Li
- Key Laboratory of Carcinogenesis and Translational Research, Departments of Lymphoma, Radiology and Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100080, China
| | - Lukuyu Bernard
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Michel Dione
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Jian-Ying Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shan-Shan Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ling-Juan Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, 510535, China
| | - Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, 510535, China
| | - Zhen-Ping Lin
- Shantou Baisha Research Institute of Origin Species of Poultry and Stock, Shantou, 515041, China
| | - Jun-Peng Chen
- Shantou Baisha Research Institute of Origin Species of Poultry and Stock, Shantou, 515041, China
| | - Hui Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qing-Yun Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Wen Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Wen-Ce Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Zeng J, Li Y, Zou Y, Yang Y, Yang T, Zhou Y. Intestinal toxicity alleviation and efficacy potentiation through therapeutic administration of Lactobacillus paracasei GY-1 in the treatment of gout flares with colchicine. Food Funct 2024; 15:1671-1688. [PMID: 38251779 DOI: 10.1039/d3fo04858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Gout flares have emerged as a significant public health concern. Colchicine (COL) is a first-line and standard drug for treating gout flares. However, its clinical use is limited due to various adverse effects. Besides, COL fails to adequately meet the needs of patients, particularly young patients. In this study, we investigate the therapeutic administration of Lactobacillus paracasei GY-1 (GY-1) to overcome the limitations of COL. Our results demonstrate that GY-1 attenuates COL toxicity in terms of body weight loss, decreased feed intake, mortality, reduced locomotor activity, colon shortening, increased oxidative stress, histological damage, and impaired gut permeability. Meanwhile, we demonstrate that GY-1 enhances the therapeutic effect for gout flares when combined with COL, as evidenced by the reduction in paw swelling, decreased levels of proinflammatory cytokines including IL-1β and TNF-α, and an increase in the anti-inflammatory cytokine IL-10. Additionally, the absolute quantification of the gut microbiota shows that GY-1 restores the gut microbiota imbalance caused by COL. Furthermore, GY-1 reduces the abundance of 4 Alistipes species and 6 Porphyromonadaceae species, which may be responsible for toxicity alleviation. At the same time, GY-1 increases the abundance of Bacteroides sartorii and Enterococcus sp., which may contribute to its therapeutic efficacy. This study demonstrates the feasibility of developing probiotic-based adjuvant therapy or bacteriotherapy for treating gout flares. To our knowledge, GY-1 is the first probiotic that could be used as an alternative synergetic agent with COL for the therapeutic treatment of gout flares.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Yan Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Yizhi Zou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Ying Yang
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, China
| | - Tingting Yang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Yizhuang Zhou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
26
|
Tang Y, Du Y, Ye J, Deng L, Cui W. Intestine-Targeted Explosive Hydrogel Microsphere Promotes Uric Acid Excretion for Gout Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310492. [PMID: 37997010 DOI: 10.1002/adma.202310492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Uric acid metabolism disorder triggers metabolic diseases, especially gout. However, increasing uric acid excretion remains a challenge. Here, an accelerative uric acid excretion pathway via an oral intestine-explosive hydrogel microsphere merely containing uricase and dopamine is reported. After oral administration, uricase is exposed and immobilized on intestinal mucosa along with an in situ dopamine polymerization via a cascade reaction triggered by the intestinal specific environment. By this means, trace amount of uricase is required to in situ up-regulate uric acid transporter proteins of intestinal epithelial cells, causing accelerated intestinal uric acid excretion. From in vitro data, the uric acid in fecal samples from gout patients could be significantly reduced by up to 37% by the mimic mucosa-immobilized uricase on the isolated porcine tissues. Both hyperuricemia and acute gouty arthritis in vivo mouse models confirm the uric acid excretion efficacy of intestine-explosive hydrogel microspheres. Fecal uric acid excretion is increased around 30% and blood uric acid is reduced more than 70%. In addition, 16S ribosomal RNA sequencing showed that the microspheres optimized intestinal flora composition as well. In conclusion, a unique pathway via the intestine in situ regulation to realize an efficient uric acid intestinal excretion for gout therapy is developed.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
27
|
Wang L, Ye J. Commentary: Gut microbiota reduce the risk of hyperuricemia and gout in the human body. Acta Pharm Sin B 2024; 14:433-435. [PMID: 38261824 PMCID: PMC10793086 DOI: 10.1016/j.apsb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Lin Wang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
28
|
Su J, Lin X, Li D, Yang C, Lv S, Chen X, Yang X, Pan B, Xu R, Ren L, Zhang Y, Xie Y, Chen Q, Xia C. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: inactivation of AMPK via UHRF1-mediated negative regulation. Gut Microbes 2024; 16:2347757. [PMID: 38773738 PMCID: PMC11123460 DOI: 10.1080/19490976.2024.2347757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.
Collapse
Affiliation(s)
- Jiyan Su
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaojie Lin
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Dan Li
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, P. R. China
| | - Chunmin Yang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shumei Lv
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
| | - Xiaohong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, P. R. China
| | - Xiujuan Yang
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Botao Pan
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Rui Xu
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Liping Ren
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yanfang Zhang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yizhen Xie
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- R&D Department, Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, P. R. China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Chenglai Xia
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
29
|
Zhang R, Qiu W, Sun X, Li J, Geng X, Yu S, Liu Y, Huang H, Li M, Fan Z, Li M, Lv G. Gut microbiota dynamics in a 1-year follow-up after adult liver transplantation in Northeast China. Front Physiol 2023; 14:1266635. [PMID: 38187130 PMCID: PMC10766776 DOI: 10.3389/fphys.2023.1266635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background: Liver transplantation (LTx) is the most effective treatment for end-stage liver diseases. Gut microorganisms influence the host physiology. We aim to profile the dynamics of gut microbiota in the perioperative period and a 1-year follow-up of LTx recipients in Northeast China. Methods: A total of 257 fecal samples were longitudinally collected from 85 LTx patients using anal swabs from pre-LTx to 1-year post-LTx. A total of 48 fecal samples from end-stage liver disease patients without LTx served as the control. 16S rRNA sequencing was used to analyze gut microbiota diversity, bacterial genera, phenotype classification, and metabolic pathways. Results: The diversity of gut microbiota decreased significantly after transplantation, accompanied by a profound change in the microbial structure, which is characterized by increased abundance of facultative anaerobic bacteria dominated by g_Enterococcus and reduced anaerobic bacteria composition. Predicted functional analysis also revealed disturbances in the metabolic pathway of the gut microbiota. After LTx, the diversity of microbiota gradually recovered but to a less preoperative level after 1 year of recovery. Compared with pre-transplantation, the microbiome structure was characterized by an increase in Acidaminococcus and Acidithiobacillus after 1 year of transplantation. Conclusion: LTx and perioperative treatment triggered gut microbial dysbiosis. The gut microbiota was restructured after LTx to near to but significantly differed from that of pre-LTx.
Collapse
Affiliation(s)
- Ruoyan Zhang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaochen Geng
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shichao Yu
- The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Ying Liu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyue Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Joerger AK, Albrecht C, Rothhammer V, Neuhaus K, Wagner A, Meyer B, Wostrack M. The Role of Gut and Oral Microbiota in the Formation and Rupture of Intracranial Aneurysms: A Literature Review. Int J Mol Sci 2023; 25:48. [PMID: 38203219 PMCID: PMC10779325 DOI: 10.3390/ijms25010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, there has been a growing interest in the role of the microbiome in cardiovascular and cerebrovascular diseases. Emerging research highlights the potential role of the microbiome in intracranial aneurysm (IA) formation and rupture, particularly in relation to inflammation. In this review, we aim to explore the existing literature regarding the influence of the gut and oral microbiome on IA formation and rupture. In the first section, we provide background information, elucidating the connection between inflammation and aneurysm formation and presenting potential mechanisms of gut-brain interaction. Additionally, we explain the methods for microbiome analysis. The second section reviews existing studies that investigate the relationship between the gut and oral microbiome and IAs. We conclude with a prospective overview, highlighting the extent to which the microbiome is already therapeutically utilized in other fields. Furthermore, we address the challenges associated with the context of IAs that still need to be overcome.
Collapse
Affiliation(s)
- Ann-Kathrin Joerger
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Carolin Albrecht
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany;
| | - Klaus Neuhaus
- Core Facility Microbiom, ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany;
| | - Arthur Wagner
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Maria Wostrack
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| |
Collapse
|
31
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Meng Q, Lin M, Song W, Wu J, Cao G, Huang P, Su Z, Gu W, Deng X, Xu P, Yang Y, Li H, Liu H, Zhang F. The gut-joint axis mediates the TNF-induced RA process and PBMT therapeutic effects through the metabolites of gut microbiota. Gut Microbes 2023; 15:2281382. [PMID: 38017660 PMCID: PMC10730145 DOI: 10.1080/19490976.2023.2281382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
The gut-joint axis, one of the mechanisms that mediates the onset and progression of joint and related diseases through gut microbiota, and shows the potential as therapeutic target. A variety of drugs exert therapeutic effects on rheumatoid arthritis (RA) through the gut-joint axis. However, the anti-inflammatory and immunomodulatory effect of novel photobiomodulatory therapy (PBMT) on RA need further validation and the involvement of gut-joint axis in this process remains unknown. The present study demonstrated the beneficial effects of PBMT on RA, where we found the restoration of gut microbiota homeostasis, and the related key pathways and metabolites after PBMT. We also discovered that the therapeutic effects of PBMT on RA mainly through the gut-joint axis, in which the amino acid metabolites (Alanine and N-acetyl aspartate) play the key role and rely on the activity of metabolic enzymes in the target organs. Together, the results prove that the metabolites of amino acid from gut microbiota mediate the regulation effect on the gut-joint axis and the therapeutic effect on rheumatoid arthritis of PBMT.
Collapse
Affiliation(s)
- Qingtai Meng
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Monan Lin
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Wuqi Song
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Jiahui Wu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Guoding Cao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Ping Huang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zaiyu Su
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Wei Gu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Xueqing Deng
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Peng Xu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yi Yang
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hui Li
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hailiang Liu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Zhang H, Xiu M, Li H, Li M, Xue X, He Y, Sun W, Yuan X, Liu Z, Li X, Merriman TR, Li C. Cadmium exposure dysregulates purine metabolism and homeostasis across the gut-liver axis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115587. [PMID: 37837700 DOI: 10.1016/j.ecoenv.2023.115587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Cadmium (Cd) exposure has been associated with the development of enterohepatic circulation disorders and hyperuricemia, but the possible contribution of chronic low-dose Cd exposure to disease progression is still need to be explored. A mouse model of wild-type mice (WT) and Uox-knockout mice (Uox-KO) to find out the toxic effects of chronic low-dose Cd exposure on liver purine metabolism by liquid chromatography-mass spectrometry (LC-MS) platform and associated intestinal flora. High throughput omics analysis including metabolomics and transcriptomics showed that Cd exposure can cause disruption of purine metabolism and energy metabolism. Cd changes several metabolites associated with purine metabolism (xanthine, hypoxanthine, adenosine, uridine, inosine) and related genes, which are associated with elevated urate levels. Microbiome analysis showed that Cd exposure altered the disturbance of homeostasis in the gut. Uox-KO mice were more susceptible to Cd than WT mice. Our findings extend the understanding of potential toxicological interactions between liver and gut microbiota and shed light on the progression of metabolic diseases caused by Cd exposure.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Xiu
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, China
| | - Hailong Li
- Medical College, Binhai University, Qingdao, China
| | - Maichao Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomei Xue
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuwei He
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenyan Sun
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Yuan
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Liu
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinde Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tony R Merriman
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, AL, United States
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Terkeltaub R. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs 2023; 83:1501-1521. [PMID: 37819612 DOI: 10.1007/s40265-023-01944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Hyperuricemia with consequent monosodium urate crystal deposition leads to gout, characterized by painful, incapacitating inflammatory arthritis flares that are also associated with increased cardiovascular event and related mortality risk. This narrative review focuses on emerging pharmacologic urate-lowering treatment (ULT) and management strategies in gout. Undertreated, gout can progress to palpable tophi and joint damage. In oral ULT clinical trials, target serum urate of < 6.0 mg/dL can be achieved in ~ 80-90% of subjects, with flare burden reduction by 1-2 years. However, real-world ULT results are far less successful, due to both singular patient nonadherence and prescriber undertreatment, particularly in primary care, where most patients are managed. Multiple dose titrations commonly needed to optimize first-line allopurinol ULT monotherapy, and substantial potential toxicities and other limitations of approved, marketed oral monotherapy ULT drugs, promote hyperuricemia undertreatment. Common gout comorbidities with associated increased mortality (e.g., moderate-severe chronic kidney disease [CKD], type 2 diabetes, hypertension, atherosclerosis, heart failure) heighten ULT treatment complexity and emphasize unmet needs for better and more rapid clinically significant outcomes, including attenuated gout flare burden. The gout drug armamentarium will be expanded by integrating sodium-glucose cotransporter-2 (SGLT2) inhibitors with uricosuric and anti-inflammatory properties as well as clinically indicated antidiabetic, nephroprotective, and/or cardioprotective effects. The broad ULT developmental pipeline is loaded with multiple uricosurics that selectively target uric acid transporter 1 (URAT1). Evolving ULT approaches include administering selected gut anaerobic purine degrading bacteria (PDB), modulating intestinal urate transport, and employing liver-targeted xanthine oxidoreductase mRNA knockdown. Last, emerging measures to decrease the immunogenicity of systemically administered recombinant uricases should simplify treatment regimens and further improve outcomes in managing the most severe gout phenotypes.
Collapse
Affiliation(s)
- Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
He X, Shao W, Yu S, Yu J, Huang C, Ren H, Liu C, Xu Y, Zhu Y. Healthy lifestyle scores associate with incidence of type 2 diabetes mediated by uric acid. Nutr Metab (Lond) 2023; 20:47. [PMID: 37915083 PMCID: PMC10619235 DOI: 10.1186/s12986-023-00763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Whether and to what extent serum uric acid (SUA) mediates the association between combined lifestyle behaviors and type 2 diabetes mellitus (T2DM) remain unclear. This study aimed to investigate the role of SUA in the relationship between healthy lifestyle scores (HLS) and the incidence of T2DM. METHODS This prospective study used data from Zhejiang Metabolic Syndrome cohort. A HLS (5-point scale including healthy waist circumference (WC), never smoking, high physical activity, healthy diet and moderate alcohol intake) was estimated in 13,919 participants, who had SUA at baseline examination in 2009-2014, and were followed-up to 2021-2022 to ascertain incident of T2DM. Cox proportional hazards models and mediation analysis were used to examine the associations between HLS, SUA and T2DM. RESULTS We included 13,919 participants aged 18 years or older without diabetes at baseline (mean age 54.6 [SD 13.9] years, 58.7% female). During a median follow-up of 9.94 years, 645 cases of T2DM occurred. Compared with participants with a poor HLS, those with 4-5 low-risk lifestyle factors showed a 60% reduction in the risk of developing T2DM (adjusted HR, 0.40; 95% CI: 0.28-0.57). Further, the population-attributable risk percent (95% CI) of T2DM for poor adherence to the overall healthy lifestyle (< 4 low-risk factors) was 43.24% (30.02%, 56.46%). The HLS was inversely associated with SUA level. With per score increased in HLS, the beta (95% CI) of SUA (log transformed) was - 0.03 (- 0.03, - 0.02), and the odds ratio (95% CI) of hyperuricemia was 0.82 (0.77, 0.86). The relationship between the HLS and risk of T2DM was mediated by SUA with a 13.06% mediation effect. There was no significant combined effect of HLS and SUA on risk of T2DM (P = 0.097). CONCLUSIONS The relationship between overall healthy lifestyle behaviors and T2DM was reconfirmed and the association appeared to be mediated by SUA. The mediation effect of baseline SUA was more pronounced among women who were below 60 years old.
Collapse
Affiliation(s)
- Xinyue He
- Department of Epidemiology and Biostatistics and Department of Respiratory Diseases of Sir Run Run Show Hospital, Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Wei Shao
- Zhejiang Putuo Hospital, Zhoushan, Zhejiang, People's Republic of China
| | - Senhai Yu
- Xiaoshan District Yiqiao Community Health Service Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiazhou Yu
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Changzhen Huang
- Dongyang Traditional Chinese Medicine Hospital, Dongyang, Zhejiang, People's Republic of China
| | - Haiqing Ren
- Dongyang Traditional Chinese Medicine Hospital, Dongyang, Zhejiang, People's Republic of China
| | - Chengguo Liu
- Zhejiang Putuo Hospital, Zhoushan, Zhejiang, People's Republic of China.
| | - Yuying Xu
- Department of Epidemiology and Biostatistics and Teaching Experiment Center for Public Health, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics and Department of Respiratory Diseases of Sir Run Run Show Hospital, Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
36
|
Xu F, Chen R, Zhang C, Wang H, Ding Z, Yu L, Tian F, Chen W, Zhou Y, Zhai Q. Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients 2023; 15:4399. [PMID: 37892474 PMCID: PMC10609985 DOI: 10.3390/nu15204399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cholecystectomy (CCE) is a standard clinical treatment for conditions like gallstones and cholecystitis. However, its link to post-CCE syndrome, colorectal cancer, and nonalcoholic fatty liver disease has raised concerns. Additionally, studies have demonstrated the disruptive effects of CCE on gut microbiota homeostasis and bile acid (BA) metabolism. Considering the role of gut microbiota in regulating host metabolic and immune pathways, the use of dietary and probiotic intervention strategies to maintain a stable gut ecosystem after CCE could potentially reduce associated disease risks. Inter-study variations have made it challenging to identify consistent gut microbiota patterns after CCE, a prerequisite for targeted interventions. In this study, we first meta-analyzed 218 raw 16S rRNA gene sequencing datasets to determine consistent patterns of structural and functional changes in the gut microbiota after CCE. Our results revealed significant alterations in the gut microbiota's structure and function due to CCE. Furthermore, we identified characteristic gut microbiota changes associated with CCE by constructing a random model classifier. In the validation cohort, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.713 and 0.683 when distinguishing between the microbiota of the CCE and healthy groups at the family and genus levels, respectively. Further, fecal metabolomics analysis demonstrated that CCE also substantially modified the metabolic profile, including decreased fecal short-chain fatty acid levels and disrupted BA metabolism. Importantly, dietary patterns, particularly excessive fat and total energy intake, influenced gut microbiota and metabolic profile changes post-CCE. These dietary habits were associated with further enrichment of the microbiota related to BA metabolism and increased levels of intestinal inflammation after CCE. In conclusion, our study identified specific alterations in gut microbiota homeostasis and metabolic profiles associated with CCE. It also revealed a potential link between dietary patterns and gut microbiota changes following CCE. Our study provides a theoretical basis for modulating gut microbiota homeostasis after CCE using long-term dietary strategies and probiotic interventions.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruimin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Zhijie Ding
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yongping Zhou
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Chen Y, Liu J, Li Y, Cong C, Hu Y, Zhang X, Han Q. The Independent Value of Neutrophil to Lymphocyte Ratio in Gouty Arthritis: A Narrative Review. J Inflamm Res 2023; 16:4593-4601. [PMID: 37868831 PMCID: PMC10588658 DOI: 10.2147/jir.s430831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Since the incidence of gouty arthritis (GA) exhibits yearly increases, accurate assessment and early treatment have significant values for improving disease conditions and monitoring prognosis. Neutrophil to lymphocyte ratio (NLR) is a common indicator in blood routine, which has the characteristics of easy access and low cost. In recent years, NLR has been proven to be an effective indicator for guiding the diagnosis, treatment, and prognosis of various diseases. Moreover, NLR has varying degrees of relationship with various inflammatory biomarkers, which can affect and reflect the inflammatory response in the body. This paper reviews the independent value of NLR for GA and its underlying molecular pathological mechanisms, intending to contribute to the further application of NLR.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- National Traditional Chinese Medicine Inheritance and Innovation Center, Hefei, Anhui Province, People’s Republic of China
| | - Yang Li
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Chengzhi Cong
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yuedi Hu
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xianheng Zhang
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Qi Han
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
38
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
39
|
Wang M, Fan J, Huang Z, Zhou D, Wang X. Causal Relationship between Gut Microbiota and Gout: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4260. [PMID: 37836544 PMCID: PMC10574468 DOI: 10.3390/nu15194260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Gout is a form of prevalent and painful inflammatory arthritis characterized by elevated serum urate (SUA) levels. The gut microbiota (GM) is believed to influence the development of gout and SUA levels. Our study aimed to explore the causal relationship between GM composition and gout, as well as SUA levels, utilizing a two-sample Mendelian Randomization (MR) approach. A total of 196 GM taxa from five levels were available for analysis. We identified five taxa associated with SUA levels and 10 taxa associated with gout. In reverse MR analysis, we discovered that gout affected the composition of five GM taxa, while SUA levels influenced the composition of 30 GM taxa. Combining existing research, our study unveiled a potential negative feedback loop between phylum Actinobacteria and SUA levels, establishing connections with gout. We also proposed two novel associations connecting GM taxa (genus Faecalibacterium and genus Prevotella9), SUA levels, and gout. These findings provide compelling evidence of causal relationships between specific GM taxa with SUA levels and gout, contributing valuable insights for the treatment of gout.
Collapse
Affiliation(s)
- Mengna Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaohui Huang
- Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xue Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
Dang K, Zhang N, Gao H, Wang G, Liang H, Xue M. Influence of intestinal microecology in the development of gout or hyperuricemia and the potential therapeutic targets. Int J Rheum Dis 2023; 26:1911-1922. [PMID: 37606177 DOI: 10.1111/1756-185x.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Gout and hyperuricemia are common metabolic diseases. Patients with purine metabolism disorder and/or decreased uric acid excretion showed increased uric acid levels in the blood. The increase of uric acid in the blood leads to the deposition of urate crystals in tissues, joints, and kidneys, and causes gout. Recent studies have revealed that imbalance of the intestinal microecology is closely related to the occurrence and development of hyperuricemia and gout. Disorder of the intestinal flora often occurs in patients with gout, and high purine and high fructose may induce the disorder of intestinal flora. Short-chain fatty acids and endotoxins produced by intestinal bacteria are closely related to the inflammatory response of gout. This article summarizes the characteristics of intestinal microecology in patients or animal models with hyperuricemia or gout, and explores the relationship between intestinal microecology and gout or hyperuricemia from the aspect of the intestinal barrier, intestinal microorganisms, intestinal metabolites, and intestinal immune system. We also review the current status of hyperuricemia treatment by targeting intestinal microecology.
Collapse
Affiliation(s)
- Kai Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiqi Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guifa Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Tong Y, Wei Y, Ju Y, Li P, Zhang Y, Li L, Gao L, Liu S, Liu D, Hu Y, Li Z, Yu H, Luo Y, Wang J, Wang Y, Zhang Y. Anaerobic purinolytic enzymes enable dietary purine clearance by engineered gut bacteria. Cell Chem Biol 2023; 30:1104-1114.e7. [PMID: 37164019 DOI: 10.1016/j.chembiol.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Uric acid, the end product of purine degradation, causes hyperuricemia and gout, afflicting hundreds of millions of people. The debilitating effects of gout are exacerbated by dietary purine intake, and thus a potential therapeutic strategy is to enhance purine degradation in the gut microbiome. Aerobic purine degradation involves oxidative dearomatization of uric acid catalyzed by the O2-dependent uricase. The enzymes involved in purine degradation in strictly anaerobic bacteria remain unknown. Here we report the identification and characterization of these enzymes, which include four hydrolases belonging to different enzyme families, and a prenyl-flavin mononucleotide-dependent decarboxylase. Introduction of the first two hydrolases to Escherichia coli Nissle 1917 enabled its anaerobic growth on xanthine as the sole nitrogen source. Oral supplementation of these engineered probiotics ameliorated hyperuricemia in a Drosophila melanogaster model, including the formation of renal uric acid stones and a shortened lifespan, providing a route toward the development of purinolytic probiotics.
Collapse
Affiliation(s)
- Yang Tong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemistry, Tianjin University, Tianjin 300072, P.R. China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yingjie Ju
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Peishan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China
| | - Liqin Li
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Zhangjiawo Industrial Park, No. 16 Huiyuan Road, Zhangjiawo Town, Xiqing District, Tianjin 300380, China
| | - Lujuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shengnan Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Dazhi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Meining Pharma Inc, 2-401-1, Bldg 8, Huiying Industrial Park, No. 86 West Zhonghuan Road, Tianjin Pilot Free Trade Zone, Tianjin 300308, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhi Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hongbin Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Wang
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Zhangjiawo Industrial Park, No. 16 Huiyuan Road, Zhangjiawo Town, Xiqing District, Tianjin 300380, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemistry, Tianjin University, Tianjin 300072, P.R. China.
| |
Collapse
|
42
|
Song N, Wang M, Zhong G, Zhu K, Chen P, Zhang N, Liu X, Zhang W. Bacteroides xylanisolvens possesses a potent anti-hyperuricemia effect in goslings fed on a high-protein diet. Front Microbiol 2023; 14:1173856. [PMID: 37455728 PMCID: PMC10348916 DOI: 10.3389/fmicb.2023.1173856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Hyperuricemia is widespread in humans and birds which is a necessary physiological factor leading to gout. Studies have shown an inextricable relationship between gut microbiota and hyperuricemia. This study explored the association between intestinal flora and hyperuricemia in Goslings. Methods and results The hyperuricemia model was established in gosling by a high protein diet (HPD). 16S rDNA sequencing showed that the cecal microbiota differed significantly between the HPD and control groups (fed with the normal protein). The abundance of Firmicutes was higher in the HPD group, while the Bacteroidetes were lower than in controls. To investigate the role of intestinal flora in hyperuricemia, the cecum microbiotas from the HPD group and the control group were transplanted to the newly born goslings by gavage. The serum uric acid levels of the goslings that transplanted the cecal microbiota of the HPD group were significantly higher than the goslings that transplanted the cecal microbiota of the controls. Furthermore, the transplantation of cecal microbiota also affects the production and excretion of uric acid in goslings. Then we identify the gut bacterium Bacteroides xylanisolvens as an effective anti-hyperuricemia in the Goslings. B. xylanisolvens reduces serum uric acid concentrations in hyperuricemia in the Goslings' model, and it can up-regulation ABCG2 mRNA expression in the kidney and down-regulation XDH mRNA expression in the liver. Discussion The intestinal flora acts as a novel target for the therapeutic approach to hyperuricemia and gout, suggest Bacteroides xylanisolvens is a possible route to therapy for hyperuricemia and gout in goslings.
Collapse
Affiliation(s)
- Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingze Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangxu Zhong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kunpeng Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengju Chen
- Henan Institute of Modern Chinese Veterinary Medicine, Zhengzhou, Henan, China
- Shandong Xindehui Biotechnology Company Ltd., Yuncheng, Shandong, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaobo Liu
- School of Life Science, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
43
|
Xue Y, Zhang L, Chen Y, Wang H, Xie J. Gut microbiota and atopic dermatitis: a two-sample Mendelian randomization study. Front Med (Lausanne) 2023; 10:1174331. [PMID: 37425302 PMCID: PMC10323683 DOI: 10.3389/fmed.2023.1174331] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Accumulating evidence suggests that alterations in gut microbiota composition and diversity are associated with Atopic dermatitis (AD). But until now, the causal association between them has been unclear. Methods We employed a two-sample Mendelian Randomization (MR) study to estimate the potential causality of gut microbiota on AD risk. The summary statistics related to the gut microbiota were obtained from a large-scale genome-wide genotype and 16S fecal microbiome dataset from 18,340 individuals (24 cohorts) analyzed by the MiBioGen Consortium, comprising 211 gut microbiota. AD data were also derived from strictly defined AD data collected by FinnGen biobank analysis, which included 218,467 European ancestors (5,321 AD patients and 213,146 controls). The inverse variance weighted method (IVW), weighted median (WME), and MR-Egger were used to determine the changes of AD pathogenic bacterial taxa, followed by sensitivity analysis including horizontal pleiotropy analysis, Cochran's Q test, and the leave-one-out method to assess the reliability of the results. In addition, MR Steiger's test was used to test the suppositional relationship between exposure and outcome. Results A total of 2,289 SNPs (p < 1 × 10-5) were included, including 5 taxa and 17 bacterial characteristics (1 phylum, 3 classes, 1 order, 4 families, and 8 genera), after excluding the IVs with linkage disequilibrium (LD). Combining the analysis of the results of the IVW models, there were 6 biological taxa (2 families, and 4 genera) of the intestinal flora positively associated with the risk of AD and 7 biological taxa (1 phylum, 2 classes, 1 order, 1 family, and 2 genera) of the intestinal flora negatively associated. The IVW analysis results showed that Tenericutes, Mollicutes, Clostridia, Bifidobacteriaceae, Bifidobacteriales, Bifidobacterium, and Christensenellaceae R 7 group were negatively correlated with the risk of AD, while Clostridiaceae 1, Bacteroidaceae, Bacteroides, Anaerotruncus, the unknown genus, and Lachnospiraceae UCG001 showed the opposite trend. And the results of the sensitivity analysis were robust. MR Steiger's test showed a potential causal relationship between the above intestinal flora and AD, but not vice versa. Conclusion The present MR analysis genetically suggests a causal relationship between changes in the abundance of the gut microbiota and AD risk, thus not only providing support for gut microecological therapy of AD but also laying the groundwork for further exploration of the mechanisms by which the gut microbiota contributes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Yan Xue
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
| | - Linzhu Zhang
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yajun Chen
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Han Wang
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
| | - Jiang Xie
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
| |
Collapse
|
44
|
Lin X, Wang M, He Z, Hao G. Gut microbiota mediated the therapeutic efficiency of Simiao decoction in the treatment of gout arthritis mice. BMC Complement Med Ther 2023; 23:206. [PMID: 37344836 DOI: 10.1186/s12906-023-04042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in the development and treatment of gouty arthritis. Simiao decoction has been shown to alleviate gouty arthritis by inhibiting inflammation, regulating NLRP3 inflammasome, and altering gut microbiota. However, there is no evidence to prove whether gut microbiota directly mediates the therapeutic efficiency of Simiao decoction in treating gout arthritis. METHODS In this study, fecal microbiota transplantation (FMT) was used to transfer the gut microbiota of gout arthritis mice treated with Simiao decoction or allopurinol to blank gout arthritis mice, in order to investigate whether FMT had therapeutic effects on gout arthritis. RESULTS Both Simiao decoction and allopurinol effectively reduced the levels of serum uric acid, liver XOD activity, foot thickness, serum IL-1β, and G-CSF in gout arthritis mice. However, Simiao decoction also had additional benefits, including raising the pain threshold, reducing serum TNF-α and IL-6, alleviating gut inflammation, and repairing intestinal pathology, which were not observed with allopurinol treatment. Moreover, Simiao decoction had a greater impact on gut microbiota than allopurinol, as it was able to restore the abundance of phylum Proteobacteria and genus Helicobacter. After transplantation into gout arthritis mice, gut microbiota altered by Simiao decoction exhibited similar therapeutic effects to those of Simiao decoction, but gut microbiota altered by allopurinol showed no therapeutic effect. CONCLUSIONS These findings demonstrates that Simiao decoction can alleviate gout arthritis symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mingzhu Wang
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guifeng Hao
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
45
|
Kasahara K, Kerby RL, Zhang Q, Pradhan M, Mehrabian M, Lusis AJ, Bergström G, Bäckhed F, Rey FE. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 2023; 31:1038-1053.e10. [PMID: 37279756 PMCID: PMC10311284 DOI: 10.1016/j.chom.2023.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
The microbes and microbial pathways that influence host inflammatory disease progression remain largely undefined. Here, we show that variation in atherosclerosis burden is partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and energy sources anaerobically. We identify a gene cluster that encodes key steps of anaerobic purine degradation and that is widely distributed among gut-dwelling bacteria. Furthermore, we show that colonization of gnotobiotic mice with purine-degrading bacteria modulates levels of UA and other purines in the gut and systemically. Thus, gut microbes are important drivers of host global purine homeostasis and serum UA levels, and gut bacterial catabolism of purines may represent a mechanism by which gut bacteria influence health.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Meenakshi Pradhan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Margarete Mehrabian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
Shirvani-Rad S, Khatibzade-Nasari N, Ejtahed HS, Larijani B. Exploring the role of gut microbiota dysbiosis in gout pathogenesis: a systematic review. Front Med (Lausanne) 2023; 10:1163778. [PMID: 37265486 PMCID: PMC10230090 DOI: 10.3389/fmed.2023.1163778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Objectives Gut dysbiosis is believed to be one of the several mechanisms that are involved in the pathogenesis of gout. This systematic review aimed to summarize the role of gut dysbiosis in gout disease and uncover the underlying mechanisms. Methods A comprehensive search was conducted on PubMed, Web of Science, and Scopus databases up to October 2021. Animal studies and human observational studies, including case-control, cross-sectional, and cohort studies assessing the association between gut microbiota composition and gout were included. The quality of included studies has been evaluated using the Newcastle-Ottawa Quality Assessment scale (NOS) and the SYRCLE's risk of bias tool. Results Initially, we found 274 studies among which 15 studies were included in this systematic review. Of them, 10 studies were conducted on humans and 5 studies were conducted on animals. Increased abundance of Alistipes and decreased abundance of Enterobacteriaceae alters purine metabolism, thereby aggravating gout condition. Moreover, a higher abundance of Phascolarctobacterium and Bacteroides in gout modulates enzymatic activity in purine metabolism. Butyrate-producing bacteria such as Faecalibacterium, prausnitzii, Oscillibacter, Butyricicoccus, and Bifidobacterium have higher abundance in healthy controls compared to gout patients, suggesting the anti-inflammatory and anti-microbial role of short-chain fatty acids (SCFAs). Lipopolysaccharides (LPS)-releasing bacteria, such as Enterobacteriaceae, Prevotella, and Bacteroides, are also involved in the pathogenesis of gout disease by stimulating the innate immune system. Conclusion Exploring the role of gut dysbiosis in gout and the underlying mechanisms can help develop microbiota-modulating therapies for gout.
Collapse
Affiliation(s)
- Salman Shirvani-Rad
- Microbiota Research Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Qeshm International Medical Sciences Branch, Islamic Azad University, Qeshm, Iran
| | - Niloufar Khatibzade-Nasari
- Faculty of Medicine, Qeshm International Medical Sciences Branch, Islamic Azad University, Qeshm, Iran
- Young Researchers and Elite Club, Qeshm International Medical Sciences Branch, Islamic Azad University, Qeshm, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Lee Y, Cho JY, Cho KY. Serum, Urine, and Fecal Metabolome Alterations in the Gut Microbiota in Response to Lifestyle Interventions in Pediatric Obesity: A Non-Randomized Clinical Trial. Nutrients 2023; 15:2184. [PMID: 37432339 DOI: 10.3390/nu15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Pediatric obesity is associated with alterations in the gut microbiota and its metabolites. However, how they influence obesity and the effect of lifestyle interventions remains unknown.. In this non-randomized clinical trial, we analyzed metabolomes and microbial features to understand the associated metabolic pathways and the effect of lifestyle interventions on pediatric obesity. Anthropometric/biochemical data and fasting serum, urine, and fecal samples were collected at baseline and after an eight-week, weight-reduction lifestyle modification program. Post-intervention, children with obesity were classified into responder and non-responder groups based on changes in total body fat. At baseline, serum L-isoleucine and uric acid levels were significantly higher in children with obesity compared with those in normal-weight children and were positively correlated with obesogenic genera. Taurodeoxycholic and tauromuricholic α + β acid levels decreased significantly with obesity and were negatively correlated with obesogenic genera. Branched-chain amino acid and purine metabolisms were distinguished metabolic pathways in the obese group. Post-intervention, urinary myristic acid levels decreased significantly in the responder group, showing a significant positive correlation with Bacteroides. Fatty acid biosynthesis decreased significantly in the responder group. Thus, lifestyle intervention with weight loss is associated with changes in fatty acid biosynthesis, and myristic acid is a possible therapeutic target for pediatric obesity.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
- CBNUH Cheongju-Osong National Advanced Clinical Trial Center, 77, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Chungcheongbuk-do, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| |
Collapse
|
48
|
KISIMBA CM, DONAHUE JL, CHIVUKULA KK, SUBRAMANIAN P, MISTRY SD, WOLSKA A, REMALEY AT, YANOVSKI JA, DEMIDOWICH AP. Colchicine effects on the gut microbiome in adults with metabolic syndrome. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:236-242. [PMID: 37791340 PMCID: PMC10542426 DOI: 10.12938/bmfh.2023-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/05/2023] [Indexed: 10/05/2023]
Abstract
Obesity-induced inflammation plays a substantial role in the development of insulin resistance and type 2 diabetes. The altered gut flora in obesity can also contribute to metabolic dysregulation and systemic inflammation. However, it remains unclear how dysregulation of systemic inflammation in obesity affects the gut microbiome. We hypothesized that colchicine's systemic anti-inflammatory effects in obesity would be associated with improvements in gut microbial diversity. We conducted a secondary analysis of a double-blind randomized placebo-controlled trial, in which 40 adults with obesity, high C-reactive protein (CRP) (≥2.0 mg/L), insulin resistance (homeostatic model of insulin resistance: HOMA-IR ≥2.6 mg/L), and metabolic syndrome (MetS) were randomized to three months of colchicine 0.6 mg or placebo tablets twice daily. Serum and stool samples were collected at baseline and final visit. Gut microbiota composition was characterized from stool DNA by dual-index amplification and sequencing of 16S ribosomal RNA. Pre- and post-intervention stool samples were available for 15 colchicine- and 12 placebo-treated subjects. Circulating high sensitivity CRP (hsCRP), interleukin-6, resistin, white blood count, and neutrophils were significantly decreased in the colchicine arm as compared to placebo. However, changes in stool microbiome alpha diversity, as assessed by the Chao1, Shannon, and Pielou indices, were not significant between groups. Amplicon sequence variant counts were unchanged among all examined phyla or families. Oscillibacter was the only genus to demonstrate even a nominally significant change. Among adults with obesity and MetS, colchicine significantly improved systemic inflammation. However, this anti-inflammatory effect was not associated with significant changes in the gut microbiome. Further studies are warranted to investigate this relationship.
Collapse
Affiliation(s)
- Celine M. KISIMBA
- Section on Growth and Obesity, Division of Intramural
Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, Room 1-3330 MSC
1103 Bethesda, MD 20892, USA
| | - Jack L. DONAHUE
- Section on Growth and Obesity, Division of Intramural
Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, Room 1-3330 MSC
1103 Bethesda, MD 20892, USA
| | - Krishna Karthik CHIVUKULA
- Section on Growth and Obesity, Division of Intramural
Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, Room 1-3330 MSC
1103 Bethesda, MD 20892, USA
| | - Poorani SUBRAMANIAN
- Bioinformatics and Computational Biosciences Branch, Office
of Cyber Infrastructure and Computational Biology, National Institute of Allergy and
Infectious Diseases (NIAID), National Institutes of Health (NIH), 10 Center Drive, Room
1-3330 MSC 1103 Bethesda, MD 20892, USA
| | - Shreni D. MISTRY
- NIAID Microbiome Program, National Institute of Allergy and
Infectious Diseases (NIAID), National Institutes of Health (NIH), 10 Center Drive, Room
1-3330 MSC 1103 Bethesda, MD 20892, USA
| | - Anna WOLSKA
- Lipoprotein Metabolism Laboratory, Translational Vascular
Medicine Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, 10 Center Drive,
Room 1-3330 MSC 1103 Bethesda, MD 20892, USA
| | - Alan T. REMALEY
- Lipoprotein Metabolism Laboratory, Translational Vascular
Medicine Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, 10 Center Drive,
Room 1-3330 MSC 1103 Bethesda, MD 20892, USA
| | - Jack A. YANOVSKI
- Section on Growth and Obesity, Division of Intramural
Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, Room 1-3330 MSC
1103 Bethesda, MD 20892, USA
| | - Andrew P. DEMIDOWICH
- Section on Growth and Obesity, Division of Intramural
Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, Room 1-3330 MSC
1103 Bethesda, MD 20892, USA
- Division of Endocrinology, Diabetes and Metabolism, Johns
Hopkins School of Medicine, 1830 E Monument St Ste 333, Baltimore, MD 21287, USA
| |
Collapse
|
49
|
Ma Q, Chen M, Liu Y, Tong Y, Liu T, Wu L, Wang J, Han B, Zhou L, Hu X. Lactobacillus acidophilus Fermented Dandelion Improves Hyperuricemia and Regulates Gut Microbiota. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Foodborne prevention and treatment of hyperuricemia (HUA) has received widespread attention. Lactic acid bacteria (LAB) can improve intestinal function, while traditional medicine dandelion has the functions of detoxification and detumescence. Whether LAB fermented dandelion has any effects on HUA and the underlying mechanism is not clear. To address these questions, Lactobacillus acidophilus was selected or maximal xanthine oxidase activity. The effect of Lactobacillus acidophilus fermented dandelion (LAFD) on uric acid metabolism was evaluated by the HUA mouse model. Expression levels of UA, BUN, CRE, XOD, and inflammatory factors in serum were detected. Paraffin sections and staining were used to observe the kidney and small intestine, and mRNA expression of GLUT9, URAT1, OAT1, and ABCG2 related to uric acid metabolism were investigated. Furthermore, the intestinal flora was studied by contents of the cecum and high throughput 16S rRNA sequencing. The results showed that LAFD had a significant inhibitory effect on XOD in vitro (p < 0.01). LAFD could reduce the levels of UA, BUN, CRE, XOD, IL-1 β, IL-6, and TNF- α in serum (p < 0.05), thus inhibiting inflammatory reaction, and reducing UA by decreasing the mRNA expression of GLUT9, URAT1 in kidney and increasing the mRNA expression of OAT1 and ABCG2 in kidney and small intestine (p < 0.05). In addition, the 16S rRNA gene sequencing analysis demonstrated that LAFD treatment can help restore the imbalance of the intestinal microbial ecosystem and reverse the changes in Bacterodietes/Firmicutes, Muribaculaceae, Lachnospiraceae in mice with HUA. It is suggested that the mechanism of LAFD in treating HUA may be related to the regulation of the mRNA expressions of GLUT9, URAT1, OAT1, and ABCG2 in the kidney and small intestine, as well as the regulation of intestinal flora, which provides the experimental basis for the development of new plant fermented products.
Collapse
Affiliation(s)
- Qianwen Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingju Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Tong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianfeng Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lele Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiliang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Han
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuguang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
50
|
Hou T, Dai H, Wang Q, Hou Y, Zhang X, Lin H, Wang S, Li M, Zhao Z, Lu J, Xu Y, Chen Y, Gu Y, Zheng J, Wang T, Wang W, Bi Y, Ning G, Xu M. Dissecting the causal effect between gut microbiota, DHA, and urate metabolism: A large-scale bidirectional Mendelian randomization. Front Immunol 2023; 14:1148591. [PMID: 37063923 PMCID: PMC10097983 DOI: 10.3389/fimmu.2023.1148591] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
ObjectivesOur aim was to investigate the interactive causal effects between gut microbiota and host urate metabolism and explore the underlying mechanism using genetic methods.MethodsWe extracted summary statistics from the abundance of 211 microbiota taxa from the MiBioGen (N =18,340), 205 microbiota metabolism pathways from the Dutch Microbiome Project (N =7738), gout from the Global Biobank Meta-analysis Initiative (N =1,448,128), urate from CKDGen (N =288,649), and replication datasets from the Global Urate Genetics Consortium (N gout =69,374; N urate =110,347). We used linkage disequilibrium score regression and bidirectional Mendelian randomization (MR) to detect genetic causality between microbiota and gout/urate. Mediation MR and colocalization were performed to investigate potential mediators in the association between microbiota and urate metabolism.ResultsTwo taxa had a common causal effect on both gout and urate, whereas the Victivallaceae family was replicable. Six taxa were commonly affected by both gout and urate, whereas the Ruminococcus gnavus group genus was replicable. Genetic correlation supported significant results in MR. Two microbiota metabolic pathways were commonly affected by gout and urate. Mediation analysis indicated that the Bifidobacteriales order and Bifidobacteriaceae family had protective effects on urate mediated by increasing docosahexaenoic acid. These two bacteria shared a common causal variant rs182549 with both docosahexaenoic acid and urate, which was located within MCM6/LCT locus.ConclusionsGut microbiota and host urate metabolism had a bidirectional causal association, implicating the critical role of host-microbiota crosstalk in hyperuricemic patients. Changes in gut microbiota can not only ameliorate host urate metabolism but also become a foreboding indicator of urate metabolic diseases.
Collapse
Affiliation(s)
- Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Min Xu,
| |
Collapse
|