1
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Corcelli M, Sagar R, Petzendorfer E, Hasan MM, van Dijk FS, David AL, Guillot PV. Pleiotropic effects of a recessive Col1a2 mutation occurring in a mouse model of severe osteogenesis imperfecta. PLoS One 2025; 20:e0309801. [PMID: 39908220 DOI: 10.1371/journal.pone.0309801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/19/2024] [Indexed: 02/07/2025] Open
Abstract
In Europe, approximately 85-90% of individuals with Osteogenesis Imperfecta (OI) have dominant pathogenic variants in the Col1a1 or Col1a2 genes whilst for Asian, especially Indian and Chinese cohorts, this ratio is much lower. This leads to decreased or abnormal Collagen type I production. Subsequently, bone formation is strongly reduced, causing bone fragility and liability to fractures throughout life. OI is clinically heterogeneous, with the severity ranging from mild to lethal depending on the gene and the type and location of the OI-causative variant and the subsequent effect on (pro) collagen type I synthesis. However, the specific effects on the phenotype and function of osteoblasts are not fully understood. To investigate this, one of the OI murine models was used, i.e. the oim/oim (OIM) mice, which closest resembling severely deforming OI in humans. We showed that in OIM, the Col1a2 mutation results in a multifactorial inhibition of the osteogenic differentiation and maturation as well as inhibition of osteoclastogenesis. The phenotype of differentiated OIM osteoblasts also differs from that of wild type mature osteoblasts, with upregulated oxidative cell stress and autophagy pathways. The extracellular accumulation of defective type I collagen fibres contributes to activation of the TGF-β signalling pathway and activates the inflammatory pathway. These effects combine to destabilise the balance of bone turnover, increasing bone fragility. Together, these findings identify the complex mechanisms underlying OI bone fragility in the OIM model of severe OI and can potentially enable identification of clinically relevant endpoints to assess the efficacy of innovative pro-osteogenic treatment for patients with OI.
Collapse
Affiliation(s)
- Michelangelo Corcelli
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Rachel Sagar
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Ellen Petzendorfer
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Mohammad Mehedi Hasan
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Fleur S van Dijk
- Northwest Thames Regional Genetics Service, London Northwest University Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Section of Genomics and Genetics, Imperial College London, London, United Kingdom
| | - Anna L David
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pascale V Guillot
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Yang Y, Zhu M, Qiu Y, Tan D, Luo S, Li M, Yu Y, Zhou M, Hong D. Acute corticosteroid-responsive post-infection myositis in adults. J Neuroimmunol 2025; 400:578543. [PMID: 39919387 DOI: 10.1016/j.jneuroim.2025.578543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Functional disability myalgia is a common condition that frequently leads to significant disability, but its diagnosis is challenging because of its diverse etiologies. While hereditary myalgia has been wells tudied, infection-related myalgia, particularly post-infection forms, remains underrecognized. In this study, six adult patients with severe post-infection myalgia were described. The mean age of onset for these patients was 63.2 ± 16.2 years. All patients experienced myalgia and muscle weakness in the proximal muscles of the lower limbs, which occurred 1-4 weeks after the recovery from symptoms of suspected viral infection, resulting in a significant functional disability. Laboratory tests revealed that creatine kinase levels were not elevated, yet increases in C-reactive protein, erythrocyte sedimentation rate, and interleukin-6 levels were observed. Muscle MRI demonstrated significant edema in the lower limb muscles of 5 patients, while muscle biopsy indicated mild inflammatory myopathy changes in 5 patients. Severe muscle pain were unresponsive to nonsteroidal anti-inflammatory drugs but showed a significant response to steroids, and most patients had favorable prognoses. These clinical features differed from previously documented cases of post-infection myositis, suggesting a distinct subset of infection-related myalgia. Our findings highlighted the importance of recognizing this condition in adults and suggested the need for broader diagnostic criteria to better classify infection-related myopathies.
Collapse
Affiliation(s)
- Yirong Yang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Si Luo
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Menghua Li
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Muramatsu W, Maryanovich M, Akiyama T, Karagiannis GS. Thymus ad astra, or spaceflight-induced thymic involution. Front Immunol 2025; 15:1534444. [PMID: 39926601 PMCID: PMC11802524 DOI: 10.3389/fimmu.2024.1534444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Spaceflight imposes a constellation of physiological challenges-cosmic radiation, microgravity, disrupted circadian rhythms, and psychosocial stress-that critically compromise astronaut health. Among the most vulnerable organs is the thymus, a cornerstone of immune system functionality, tasked with generating naive T cells essential for adaptive immunity. The thymus is particularly sensitive to spaceflight conditions, as its role in maintaining immune homeostasis is tightly regulated by a balance of systemic and local factors easily disrupted in space. Cosmic radiation, an omnipresent hazard beyond Earth's magnetosphere, accelerates DNA damage and cellular senescence in thymic epithelial cells, impairing thymopoiesis and increasing the risk of immune dysregulation. Microgravity and circadian rhythm disruption exacerbate this by altering immune cell migration patterns and stromal support, critical for T-cell development. Psychosocial stressors, including prolonged isolation and mission-induced anxiety, further compound thymic atrophy by elevating systemic glucocorticoid levels. Ground-based analogs simulating cosmic radiation and microgravity have been instrumental in elucidating mechanisms of thymic involution and its downstream effects on immunity. These models reveal that long-duration missions result in diminished naive T-cell output, leaving astronauts vulnerable to infections and possibly at high risk for developing neoplasia. Advances in countermeasures, such as pharmacological interventions targeting thymic regeneration and bioengineering approaches to protect thymic architecture, are emerging as vital strategies to preserve immune resilience during prolonged space exploration. Focusing on the thymus as a central hub of immune vulnerability underscores its pivotal role in spaceflight-induced health risks. Understanding these dynamics will not only enhance the safety of human space missions but also provide critical insights into thymus biology under extreme conditions.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - George S. Karagiannis
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
5
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024; 13:1521-1530. [PMID: 39466845 PMCID: PMC11580378 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C. Miller
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S. Temenoff
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Houerbi N, Kim J, Overbey EG, Batra R, Schweickart A, Patras L, Lucotti S, Ryon KA, Najjar D, Meydan C, Damle N, Chin C, Narayanan SA, Guarnieri JW, Widjaja G, Beheshti A, Tobias G, Vatter F, Hirschberg JW, Kleinman A, Afshin EE, MacKay M, Chen Q, Miller D, Gajadhar AS, Williamson L, Tandel P, Yang Q, Chu J, Benz R, Siddiqui A, Hornburg D, Gross S, Shirah B, Krumsiek J, Mateus J, Mao X, Matei I, Mason CE. Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight. Nat Commun 2024; 15:4862. [PMID: 38862464 PMCID: PMC11166969 DOI: 10.1038/s41467-024-48841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.
Collapse
Affiliation(s)
- Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Joseph W Guarnieri
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gabrielle Widjaja
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Gabriel Tobias
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Fanny Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Qiu Yang
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ryan Benz
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | - Steven Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Jan Krumsiek
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Xiao Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
8
|
Duscher AA, Vroom MM, Foster JS. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci Rep 2024; 14:2912. [PMID: 38316910 PMCID: PMC10844198 DOI: 10.1038/s41598-024-53477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The innate immune response is the first line of defense for all animals to not only detect invading microbes and toxins but also sense and interface with the environment. One such environment that can significantly affect innate immunity is spaceflight. In this study, we explored the impact of microgravity stress on key elements of the NFκB innate immune pathway. The symbiosis between the bobtail squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri was used as a model system under a simulated microgravity environment. The expression of genes associated with the NFκB pathway was monitored over time as the symbiosis progressed. Results revealed that although the onset of the symbiosis was the major driver in the differential expression of NFκB signaling, the stress of simulated low-shear microgravity also caused a dysregulation of expression. Several genes were expressed at earlier time points suggesting that elements of the E. scolopes NFκB pathway are stress-inducible, whereas expression of other pathway components was delayed. The results provide new insights into the role of NFκB signaling in the squid-vibrio symbiosis, and how the stress of microgravity negatively impacts the host immune response. Together, these results provide a foundation to develop mitigation strategies to maintain host-microbe homeostasis during spaceflight.
Collapse
Affiliation(s)
- Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Chesapeake Bay Governor's School, Warsaw, VA, 22572, USA
| | - Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Vaxxinity, Space Life Sciences Lab, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
9
|
Zhao L, Zhang G, Tang A, Huang B, Mi D. Microgravity alters the expressions of DNA repair genes and their regulatory miRNAs in space-flown Caenorhabditis elegans. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:25-38. [PMID: 37087176 DOI: 10.1016/j.lssr.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
During spaceflight, multiple unique hazardous factors, particularly microgravity and space radiation, can induce different types of DNA damage, which pose a constant threat to genomic integrity and stability of living organisms. Although organisms have evolved different kinds of conserved DNA repair pathways to eliminate this DNA damage on Earth, the impact of space microgravity on the expressions of these DNA repair genes and their regulatory miRNAs has not been fully explored. In this study, we integrated all existing datasets, including both transcriptional and miRNA microarrays in wild-type (WT) Caenorhabditis elegans that were exposed to the treatments of spaceflight (SF), spaceflight control with a 1g centrifugal device (SC), and ground control (GC) in three space experiments with the periods of 4, 8 and 16.5 days. The results of principal component analysis showed the gene expression patterns for five major DNA repair pathways (i.e., non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), nucleotide excision repair (NER), and base excision repair (BER)) were well separated and clustered between SF/GC and SC/GC treatments after three spaceflights. In the 16.5-days space experiment, we also selected the datasets of dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity. Compared to the WT C. elegans flown in the 16.5-days spaceflight, the separation distances between SF and SC samples were significantly reduced in the dys-1 mutant, while greatly enhanced in the ced-1 mutant for five DNA repair pathways. By comparing the results of differential expression analysis in SF/GC versus SC/GC samples, we found the DNA repair genes annotated in the pathways of BER and NER were prominently down-regulated under microgravity during both the 4- and 8-days spaceflights. While, under microgravity, the genes annotated in MMR were dominatingly up-regulated during the 4-days spaceflight, and those annotated in HR were mainly up-regulated during the 8-days spaceflight. And, most of the DNA repair genes annotated in the pathways of BER, NER, MMR, and HR were up-regulated under microgravity during the 16.5-days spaceflight. Using miRNA-mRNA integrated analysis, we determined the regulatory networks of differentially expressed DNA repair genes and their regulatory miRNAs in WT C. elegans after three spaceflights. Compared to GC conditions, the differentially expressed miRNAs were analyzed under SF and SC treatments of three spaceflights, and some altered miRNAs that responded to SF and SC could regulate the expressions of corresponding DNA repair genes annotated in different DNA repair pathways. In summary, these findings indicate that microgravity can significantly alter the expression patterns of DNA repair genes and their regulatory miRNAs in space-flown C. elegans. The alterations of the expressions of DNA repair genes and the dominating DNA repair pathways under microgravity are possibly related to the spaceflight period. In addition, the key miRNAs are identified as the post-transcriptional regulators to regulate the expressions of various DNA repair genes under microgravity. These altered miRNAs that responded to microgravity can be implicated in regulating diverse DNA repair processes in space-flown C. elegans.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Aiping Tang
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| |
Collapse
|
10
|
Le H, Rai V, Agrawal DK. Cholesterol: An Important Determinant of Muscle Atrophy in Astronauts. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2023; 6:67-79. [PMID: 37006714 PMCID: PMC10062007 DOI: 10.26502/jbb.2642-91280072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Since cholesterol is not routinely measured in astronauts before and after their return from space, there is no data on the role of blood cholesterol level in muscle atrophy and microgravity. Since the first moon landing, aerospace medicine became outdated and has not pushed boundaries like its rocket engineering counterpart. Since the 2019 astronaut twin study, there has yet to be another scientific breakthrough for aerospace medicine. Microgravity-induced muscle atrophy is the most known consequence of spaceflight. Yet, so far, there is no therapeutic solution to prevent it or any real efforts in understanding it on a cellular or molecular level. The most obvious reason to this unprecedented level of research is due to the small cohort of astronauts. With the establishment of private space industries and exponential recruitment of astronauts, there is more reason to push forward spaceflight-related health guidelines and ensure the safety of the brave humans who risk their lives for the progression of mankind. Spaceflight is considered the most challenging job and the failure to prevent injury or harm should be considered reckless negligence by the institutions that actively prevented sophistication of aerospace medicine. In this critical review, role of cholesterol is analyzed across the NASA-established parameters of microgravity-induced muscle atrophy with a focus on potential therapeutic targets for research.
Collapse
Affiliation(s)
- Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
11
|
Zhang X, Xue T, Hu Z, Guo X, Li G, Wang Y, Zhang L, Xu L, Cao X, Zhang S, Shi F, Wang K. Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Front Genet 2022; 13:985025. [PMID: 36425065 PMCID: PMC9681495 DOI: 10.3389/fgene.2022.985025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Researchers have linked microgravity in space to the significant imbalance between bone formation and bone resorption that induces persistent bone loss in load-bearing bones. However, the underlying molecular mechanisms are still unclear, which hinders the development of therapeutic measures. The aim of this study was to identify hub genes and explore novel molecular mechanisms underlying microgravity-induced bone loss using transcriptome datasets obtained from the GEO and SRA databases. In summary, comparative RNA expression pattern studies that differ in species (Homo or Mus), models (in vitro or in vivo), microgravity conditions (real microgravity or ground-based simulators) and microgravity duration showed that it is difficult to reach a consistent conclusion about the pathogenesis of microgravity-induced bone loss across these studies. Even so, we identified 11 hub genes and some miRNA-mRNA interactions mainly based on the GSE100930 dataset. Also, the expression of CCL2, ICAM1, IGF1, miR-101-3p and miR-451a markedly changed under clinorotation-microgravity condition. Remarkedly, ICAM1 and miR-451a were key mediators of the osteogenesis of hMSCs under clinorotation-microgravity condition. These findings provide novel insights into the molecular mechanisms of bone loss during microgravity and could indicate potential targets for further countermeasures against this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| |
Collapse
|
12
|
Istomin N, Härma MA, Akhi R, Nissinen AE, Savolainen MJ, Adeshara K, Lehto M, Groop PH, Koivukangas V, Hukkanen J, Hörkkö S. Total fecal IgA levels increase and natural IgM antibodies decrease after gastric bypass surgery. APMIS 2022; 130:637-646. [PMID: 35959517 PMCID: PMC9805076 DOI: 10.1111/apm.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023]
Abstract
Obesity is associated with low-grade inflammation and increased systemic oxidative stress. Roux-en-Y gastric bypass (RYGB) surgery is known to ameliorate the obesity-induced metabolic dysfunctions. We aimed to study the levels of natural antibodies in feces, before and 6 months after RYGB surgery in obese individuals with and without type 2 diabetes (T2D). Sixteen individuals with T2D and 14 non-diabetic (ND) individuals were operated. Total IgA, IgG and IgM antibody levels and specific antibodies to oxidized low-density lipoprotein (oxLDL), malondialdehyde-acetaldehyde adducts (MAA adducts), Porphyromonas gingivalis gingipain A hemagglutinin domain (Rgp44) and phosphocholine (PCho) were measured using chemiluminescence immunoassay. Total fecal IgA was elevated, while total IgM and IgG were not affected by the surgery. Fecal natural IgM specific to oxLDL decreased significantly in both T2D and ND individuals, while fecal IgM to Rgp44 and PCho decreased significantly in T2D individuals. A decrease in IgG to MAA-LDL, Rgp44 and PCho was detected. RYGB surgery increases the levels of total fecal IgA and decreases fecal natural IgG and IgM antibodies specific to oxLDL. Natural antibodies and IgA are important in maintaining the normal gut homeostasis and first-line defense against microbes, and their production is markedly altered with RYGB surgery.
Collapse
Affiliation(s)
- Natalie Istomin
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Nordlab, Oulu University Hospital, Oulu, Finland
| | - Mari-Anne Härma
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Antti E Nissinen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Markku J Savolainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Krishna Adeshara
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Vesa Koivukangas
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
Chen YF, Lee CW, Wu HH, Lin WT, Lee OK. Immunometabolism of macrophages regulates skeletal muscle regeneration. Front Cell Dev Biol 2022; 10:948819. [PMID: 36147742 PMCID: PMC9485946 DOI: 10.3389/fcell.2022.948819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia is an age-related progressive loss of skeletal muscle mass, quality, and strength disease. In addition, sarcopenia is tightly correlated with age-associated pathologies, such as sarcopenic obesity and osteoporosis. Further understanding of disease mechanisms and the therapeutic strategies in muscle regeneration requires a deeper knowledge of the interaction of skeletal muscle and other cells in the muscle tissue. Skeletal muscle regeneration is a complex process that requires a series of highly coordinated events involving communication between muscle stem cells and niche cells, such as muscle fibro/adipogenic progenitors and macrophages. Macrophages play a critical role in tissue regeneration and the maintenance of muscle homeostasis by producing growth factors and cytokines that regulate muscle stem cells and myofibroblast activation. Furthermore, the aging-related immune dysregulation associated with the release of trophic factors and the polarization in macrophages transiently affect the inflammatory phase and impair muscle regeneration. In this review, we focus on the role and regulation of macrophages in skeletal muscle regeneration and homeostasis. The aim of this review is to highlight the important roles of macrophages as a therapeutic target in age-related sarcopenia and the increasing understanding of how macrophages are regulated will help to advance skeletal muscle regeneration.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Wei Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ting Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Oscar K. Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Oscar K. Lee,
| |
Collapse
|
14
|
Selvakumar D, Vijayasamundeeswari C, Gnanadesigan E, Sivasubramanian N. Gene polymorphism among hypertensive patients with coronary artery disease. Bioinformation 2022; 18:239-244. [PMID: 36518119 PMCID: PMC9722429 DOI: 10.6026/97320630018239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 09/19/2023] Open
Abstract
The obstruction of the coronary arteries causes Coronary Artery Disease (CAD). It has been reported that interleukin-6 gene is related to the development of cardiovascular diseases such as atherosclerosis and coronary artery disease. This was due to the large variability and short half-life of interleukin 6 (IL-6). There are few studies on the link between interleukin 6 and CAD on the patients with hypertension. Therefore, goal of this study was to see if there is a link between IL-6 gene polymorphisms and coronary artery disease with hypertension patients. The polymorphisms were carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The data was determined for statistical significance using chi-square analysis. A significant difference was found in the GG genotype of IL-6 -174, which was more frequent in cases of CAD (48.67 %) than in controls (8%) and 95% CI was 0.473455 - 0.500326; P<0.010620511. The GG genotype of IL-6-572C/G polymorphism was more frequent in cases of CAD (42.6%) compared with controls (8%) and 95% CI 0.386724 - 0.480945; P<0.017939631). likewise, significant association of variant allele G with CAD patients was reported. Hypertension was significantly higher among patients as compared to controls (P<0.022847535). Our findings indicated that both gene polymorphisms may be associated with development of CAD.
Collapse
Affiliation(s)
- D Selvakumar
- Department of Biochemistry, Vinayaka Mission's Kirupananda Variyar Medical college and Hospitals, Salem, Vinayaka Mission's Research Foundation (Deemed to be University), Salem -636 308, Tamilnadu, India
| | - C.K Vijayasamundeeswari
- Department of Biochemistry, Vinayaka Mission's Kirupananda Variyar Medical college and Hospitals, Salem, Vinayaka Mission's Research Foundation (Deemed to be University), Salem -636 308, Tamilnadu, India
| | - E Gnanadesigan
- Department of Physiology, Nootan Medical College & Research Centre, Sankalchand Patel University, Visnagar - 384315, Gujarat, India
| | - N Sivasubramanian
- Department of Psychiatric Nursing, Nootan College of Nursing, Sankalchand Patel University, Visnagar- 384315, Gujarat, India
| |
Collapse
|
15
|
Relevance of Cellular Redox Homeostasis for Vital Functions of Human Dental Pulp Cells. Antioxidants (Basel) 2021; 11:antiox11010023. [PMID: 35052527 PMCID: PMC8772760 DOI: 10.3390/antiox11010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023] Open
Abstract
Odontogenic MSCs are vulnerable to LPS-triggered bacterial infections, and they respond by secreting inflammatory mediators, such as IL-6, and with mineralization. Since both processes might be prone to a disturbance of the redox homeostasis, the oxidative stress influence on vital functions of human dental pulp cells (HPCs) was investigated. With these aims, a model of LPS-stimulated primary HPCs was established, and anti- and pro-oxidant substances were administered up to 21 days to measure inflammation and mineralization parameters. LPS-stimulated HPCs retained mineralization potential, which was decreased with the antioxidants NAC and fisetin and the pro-oxidant BSO. The expression of surface markers related to odontogenic commitment was influenced accordingly but counteracted by the enhanced expression of BMP2 and ALP at the transcriptional level. LPS triggers an early IL-6 production in non-odontogenic conditions, while it can be measured only after 15 days in the presence of the differentiation medium. The present study shows that HPCs functions causally depend on a tightly regulated cellular redox balance. Our data demonstrate a redox control of pulp MSC odontogenic commitment along with a potential association between an IL-6 late secretion and mineralization. These findings lay the groundwork for investigations on the molecular role of IL-6 in dental hard tissue metabolism.
Collapse
|
16
|
Xu G, Gu Y, Yan N, Li Y, Sun L, Li B. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:2161-2173. [PMID: 34272803 DOI: 10.1002/tox.23330] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Chronic arsenic exposure has been associated with various toxic effects, especially to the organs of liver and kidney. As a plant polyphenol, curcumin is the most vital bioactive ingredient of turmeric and has a wide range of pharmacological activities. In the present study, we investigated the potential roles of curcumin against arsenic-induced liver and kidney dysfunctions in mice. Curcumin treatment (200 mg/kg) not only decreased the deposition of arsenic in liver and kidney, but also relieved the hepatic and nephritic biochemical indexes (Glutamic oxaloacetic transaminase [AST], Alanine aminotransferase [ALT], albumin, and creatinine) altered by arsenic at doses of 10 and 25 mg/L via drinking water. What's more, curcumin exerted influences on the activities of myeloperoxidase and on the secretion of inflammatory cytokines in liver and kidney tissues. In addition, the levels of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) phosphorylation were declining while NRF2-signaling targets were increasing in mice liver and kidney by curcumin administration. In conclusion, our results here suggest that curcumin could exert both anti-inflammatory and antioxidant functions on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways cooperatively.
Collapse
Affiliation(s)
- Guowei Xu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Yuqin Gu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Nan Yan
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Yongfang Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Lin Sun
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Interleukin-6 gene -174G>C promoter polymorphism reduces the risk of periodontitis in Brazilian populations: A meta-analysis. J Oral Biosci 2021; 63:388-393. [PMID: 34478874 DOI: 10.1016/j.job.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Periodontitis is a multifactorial host-mediated oral disease caused by microbes. Previous studies suggested that interleukin-6 (IL-6) gene promoter polymorphism (-174G > C) are associated with the risk of periodontitis, although the results were inconclusive. This study investigated the association between IL-6 -174G > C polymorphism and susceptibility to periodontitis. METHOD A comprehensive search was conducted in PubMed, EMBASE, Web of Science, and Google Scholar databases to retrieve relevant studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of the association between 174G > C polymorphism and the risk of periodontitis. Cochrane Q and I2 statistics were used to measure heterogeneity between studies. Publication bias was estimated using Begg's funnel plots and Egger's test. RESULTS Our results showed significant differences in the allelic (C vs. G: OR = 0.82, CI = 0.65-1.03), recessive (CC vs. GC + GG: OR = 0.69, CI = 0.42-1.13), and dominant (GC + CC vs. GG: OR = 0.85, CI = 0.63-1.13) genetic models of the IL6 -174G > C polymorphism and risk of periodontitis. Further, subgroup analysis showed decreased susceptibility to periodontitis associated with IL6 -174 G > C in a Brazilian population (C vs. G: OR = 0.60, CI = 0.41-0.88; GC + CC vs. GG: OR = 0.57, CI = 0.42-0.78) but not in Asian or Caucasian populations. CONCLUSION The findings of this study revealed that the IL6 -174 "C" allele is protective against periodontitis in the Brazilian population.
Collapse
|
18
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
19
|
Yoo M, Cho S, Shin S, Kim JM, Park HG, Cho S, Hwang YK, Park DH. Therapeutic Effect of IL1β Priming Tonsil Derived-Mesenchymal Stem Cells in Osteoporosis. Tissue Eng Regen Med 2021; 18:851-862. [PMID: 34115339 PMCID: PMC8440756 DOI: 10.1007/s13770-021-00350-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Stem cell therapies can be a new therapeutic strategy that may rebalance anabolic and anti-resorptive effects in osteoporosis patients. Tonsil-derived mesenchymal stem cells (TMSCs) can be an alternative therapeutic source for chronic degenerative diseases including osteoporosis. MSCs acquire immune regulatory function under the inflammatory cytokines. Since interleukin (IL) 1β is known to be one of inflammatory cytokines involved in osteoporosis progression, treatment of IL1β with TMSCs may enhance immunomodulatory function and therapeutic effects of TMSCs in osteoporosis. METHODS For IL1β priming, TMSCs were cultured in the presence of the medium containing IL1β for 1 day. Characteristics of IL1β priming TMSCs such as multipotent differentiation properties, anti-inflammatory potential, and suppression of osteoclast differentiation were assessed in vitro. For in vivo efficacy study, IL1β priming TMSCs were intravenously infused twice with ovariectomized (OVX) osteoporosis mouse model, and blood serum and bone parameters from micro computed tomography images were analyzed. RESULTS IL1β priming TMSCs had an enhanced osteogenic differentiation and secreted factors that regulate both osteoclastogenesis and osteoblastogenesis. IL1β priming TMSCs also suppressed proliferation of peripheral blood mononuclear cells (PBMCs) and decreased expression of Receptor activator of nuclear factor kappa-Β ligand (RANKL) in PHA-stimulated PBMCs. Furthermore, osteoclast specific genes such as Nuclear factor of activated T cells c1 (NFATc1) were effectively down regulated when co-cultured with IL1β priming TMSCs in RANKL induced osteoclasts. In OVX mice, IL1β priming TMSCs induced low level of serum RANKL/osteoprotegerin (OPG) ratio on the first day of the last administration. Four weeks after the last administration, bone mineral density and serum Gla-osteocalcin were increased in IL1β priming TMSC-treated OVX mice. Furthermore, bone formation and bone resorption markers that had been decreased in OVX mice with low calcium diet were recovered by infusion of IL1β priming TMSCs. CONCLUSION IL1β priming can endow constant therapeutic efficacy with TMSCs, which may contribute to improve bone density and maintain bone homeostasis in postmenopausal osteoporosis. Therefore, IL1β priming TMSCs can be a new therapeutic option for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Minjoo Yoo
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Sungkuk Cho
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Sunhye Shin
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Jung-Mi Kim
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Hyeon-Gyeong Park
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Sungyoo Cho
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yu Kyeong Hwang
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea.
| |
Collapse
|
20
|
Green MJ, Aylott JW, Williams P, Ghaemmaghami AM, Williams PM. Immunity in Space: Prokaryote Adaptations and Immune Response in Microgravity. Life (Basel) 2021; 11:life11020112. [PMID: 33540536 PMCID: PMC7912908 DOI: 10.3390/life11020112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Immune dysfunction has long been reported by medical professionals regarding astronauts suffering from opportunistic infections both during their time in space and a short period afterwards once back on Earth. Various species of prokaryotes onboard these space missions or cultured in a microgravity analogue exhibit increased virulence, enhanced formation of biofilms, and in some cases develop specific resistance for specific antibiotics. This poses a substantial health hazard to the astronauts confined in constant proximity to any present bacterial pathogens on long space missions with a finite number of resources including antibiotics. Furthermore, some bacteria cultured in microgravity develop phenotypes not seen in Earth gravity conditions, providing novel insights into bacterial evolution and avenues for research. Immune dysfunction caused by exposure to microgravity may increase the chance of bacterial infection. Immune cell stimulation, toll-like receptors and pathogen-associated molecular patterns can all be altered in microgravity and affect immunological crosstalk and response. Production of interleukins and other cytokines can also be altered leading to immune dysfunction when responding to bacterial infection. Stem cell differentiation and immune cell activation and proliferation can also be impaired and altered by the microgravity environment once more adding to immune dysfunction in microgravity. This review elaborates on and contextualises these findings relating to how bacteria can adapt to microgravity and how the immune system subsequently responds to infection.
Collapse
Affiliation(s)
- Macauley J. Green
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
| | - Paul Williams
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- Correspondence:
| |
Collapse
|
21
|
Gertz ML, Chin CR, Tomoiaga D, MacKay M, Chang C, Butler D, Afshinnekoo E, Bezdan D, Schmidt MA, Mozsary C, Melnick A, Garrett-Bakelman F, Crucian B, Lee SMC, Zwart SR, Smith SM, Meydan C, Mason CE. Multi-omic, Single-Cell, and Biochemical Profiles of Astronauts Guide Pharmacological Strategies for Returning to Gravity. Cell Rep 2020; 33:108429. [PMID: 33242408 PMCID: PMC9444344 DOI: 10.1016/j.celrep.2020.108429] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The National Aeronautics and Space Administration (NASA) Twins Study created an integrative molecular profile of an astronaut during NASA’s first 1-year mission on the International Space Station (ISS) and included comparisons to an identical Earth-bound twin. The unique biochemical profiles observed when landing on Earth after such a long mission (e.g., spikes in interleukin-1 [IL-1]/6/10, c-reactive protein [CRP], C-C motif chemokine ligand 2 [CCL2], IL-1 receptor antagonist [IL-1ra], and tumor necrosis factor alpha [TNF-α]) opened new questions about the human body’s response to gravity and how to plan for future astronauts, particularly around initiation or resolution of inflammation. Here, single-cell, multi-omic (100-plex epitope profile and gene expression) profiling of peripheral blood mononuclear cells (PBMCs) showed changes to blood cell composition and gene expression post-flight, specifically for monocytes and dendritic cell precursors. These were consistent with flight-induced cytokine and immune system stress, followed by skeletal muscle regeneration in response to gravity. Finally, we examined these profiles relative to 6-month missions in 28 other astronauts and detail potential pharmacological interventions for returning to gravity in future missions. Gertz et al. present a re-analysis of the landing data from the NASA Twins Study, suggesting that the biochemical signature reflects muscle regeneration after atrophy rather than a detrimental inflammatory response. This is mediated through muscle-derived IL-6 anti-inflammatory cascades. Single-cell analysis supports this role. Potential pharmacological interventions are also discussed.
Collapse
Affiliation(s)
- Monica L Gertz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Delia Tomoiaga
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; Becton Dickinson & Co., Washington, DC 20001
| | | | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tübingen 72076, Germany
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Boulder, CO 80302, USA; Sovaris Aerospace, Boulder, CO 80302, USA
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Brian Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | | | - Sara R Zwart
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
22
|
Chen J, Hamm LL, Bundy JD, Kumbala DR, Bodana S, Chandra S, Chen CS, Starcke CC, Guo Y, Schaefer CM, Lustigova E, Mahone E, Vadalia AM, Livingston T, Obst K, Hernandez J, Bokhari SR, Kleinpeter M, Alper AB, Lukitsch I, He H, Nieman DC, He J. Combination Treatment with Sodium Nitrite and Isoquercetin on Endothelial Dysfunction among Patients with CKD: A Randomized Phase 2 Pilot Trial. Clin J Am Soc Nephrol 2020; 15:1566-1575. [PMID: 33023894 PMCID: PMC7646238 DOI: 10.2215/cjn.02020220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Endothelial dysfunction is common among patients with CKD. We tested the efficacy and safety of combination treatment with sodium nitrite and isoquercetin on biomarkers of endothelial dysfunction in patients with CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This randomized, double-blind, placebo-controlled phase 2 pilot trial enrolled 70 patients with predialysis CKD. Thirty-five were randomly assigned to combination treatment with sodium nitrite (40 mg twice daily) and isoquercetin (225 mg once daily) for 12 weeks, and 35 were randomly assigned to placebo. The primary outcome was mean change in flow-mediated vasodilation over the 12-week intervention. Secondary and safety outcomes included biomarkers of endothelial dysfunction, inflammation, and oxidative stress as well as kidney function, methemoglobin, and adverse events. Intention-to-treat analysis was conducted. RESULTS Baseline characteristics, including age, sex, race, cigarette smoking, history of hypertension and diabetes, use of renin-angiotensin system blockers, BP, fasting glucose, lipid profile, kidney function, urine albumin-creatinine ratio, and endothelial biomarkers, were comparable between groups. Over the 12-week intervention, flow-mediated vasodilation increased 1.1% (95% confidence interval, -0.1 to 2.3) in the treatment group and 0.3% (95% confidence interval, -0.9 to 1.5) in the placebo group, and net change was 0.8% (95% confidence interval, -0.9 to 2.5). In addition, changes in biomarkers of endothelial dysfunction (vascular adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, vWf, endostatin, and asymmetric dimethylarginine), inflammation (TNF-α, IL-6, C-reactive protein, IL-1 receptor antagonist, and monocyte chemoattractant protein-1), and oxidative stress (oxidized LDL and nitrotyrosines) were not significantly different between the two groups. Furthermore, changes in eGFR, urine albumin-creatinine ratio, methemoglobin, and adverse events were not significantly different between groups. CONCLUSIONS This randomized phase 2 pilot trial suggests that combination treatment with sodium nitrite and isoquercetin did not significantly improve flow-mediated vasodilation or other endothelial function biomarkers but also did not increase adverse events compared with placebo among patients with CKD. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Nitrite, Isoquercetin, and Endothelial Dysfunction (NICE), NCT02552888.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
- Department of Medicine, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| | - L. Lee Hamm
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Joshua D. Bundy
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | | | - Shirisha Bodana
- Department of Nephrology, Ochsner Health System, New Orleans, Louisiana
| | - Sehgal Chandra
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Charlton C. Starcke
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Yajun Guo
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Caroline M. Schaefer
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Eva Lustigova
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Erin Mahone
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Aarti M. Vadalia
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Terra Livingston
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Katherine Obst
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - Jesus Hernandez
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Syed Rizwan Bokhari
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Myra Kleinpeter
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Arnold B. Alper
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ivo Lukitsch
- Department of Nephrology, Ochsner Health System, New Orleans, Louisiana
| | - Hua He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| | - David C. Nieman
- Human Performance Lab, Appalachian State University, Kannapolis, North Carolina
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Tulane University Translational Science Institute, New Orleans, Louisiana
| |
Collapse
|
23
|
Osteoclasts and Microgravity. Life (Basel) 2020; 10:life10090207. [PMID: 32947946 PMCID: PMC7555718 DOI: 10.3390/life10090207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Astronauts are at risk of losing 1.0% to 1.5% of their bone mass for every month they spend in space despite their adherence to diets and exercise regimens designed to protect their musculoskeletal systems. This loss is the result of microgravity-related impairment of osteocyte and osteoblast function and the consequent upregulation of osteoclast-mediated bone resorption. This review describes the ontogeny of osteoclast hematopoietic stem cells and the contributions macrophage colony stimulating factor, receptor activator of the nuclear factor-kappa B ligand, and the calcineurin pathways make in osteoclast differentiation and provides details of bone formation, the osteoclast cytoskeleton, the immune regulation of osteoclasts, and osteoclast mechanotransduction on Earth, in space, and under conditions of simulated microgravity. The article discusses the need to better understand how osteoclasts are able to function in zero gravity and reviews current and prospective therapies that may be used to treat osteoclast-mediated bone disease.
Collapse
|
24
|
He B, Yin X, Hao D, Zhang X, Zhang Z, Zhang K, Yang X. Blockade of IL-6 alleviates bone loss induced by modeled microgravity in mice. Can J Physiol Pharmacol 2020; 98:678-683. [PMID: 32787688 DOI: 10.1139/cjpp-2019-0632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study investigated the effects of blockade of IL-6 on bone loss induced by modeled microgravity (MG). Adult male mice were exposed to hind-limb suspension (HLS) and treated with IL-6-neutralizing antibody (IL-6 nAb) for 4 weeks. HLS in mice led to upregulation of IL-6 expression in both sera and femurs. IL-6 nAb treatment in HLS mice significantly alleviated bone loss, evidenced by increased bone mineral density of whole tibia, trabecular thickness and number, bone volume fraction of proximal tibiae, and ultimate load and stiffness of femoral diaphysis. IL-6 nAb treatment in HLS mice significantly enhanced levels of osteocalcin in sera and reduced levels of deoxypyridinoline. In MC3T3-E1 cells exposed to MG in vitro, IL-6 nAb treatment increased mRNA expression and activity of alkaline phosphatase, mRNA expression of osteopontin and runt-related transcription factor 2, and protein levels of osteoprotegerin and decreased protein levels of receptor activator of the NF-κB ligand. In RAW254.7 cells exposed to MG, IL-6 nAb treatment downregulated mRNA expression of cathepsin K and tartrate-resistant acid phosphatase (TRAP) and reduced numbers of TRAP-positive multinucleated osteoclasts. In conclusion, blockade of IL-6 alleviated the bone loss induced by MG.
Collapse
Affiliation(s)
- Baorong He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xuefang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhen Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ke Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaobin Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
25
|
Podolich O, Kukharenko O, Zaets I, Orlovska I, Palchykovska L, Zaika L, Sysoliatin S, Zubova G, Reva O, Galkin M, Horid'ko T, Kosiakova H, Borisova T, Kravchenko V, Skoryk M, Kremenskoy M, Ghosh P, Barh D, Góes-Neto A, Azevedo V, de Vera JP, Kozyrovska N. Fitness of Outer Membrane Vesicles From Komagataeibacter intermedius Is Altered Under the Impact of Simulated Mars-like Stressors Outside the International Space Station. Front Microbiol 2020; 11:1268. [PMID: 32676055 PMCID: PMC7333525 DOI: 10.3389/fmicb.2020.01268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Outer membrane vesicles (OMVs), produced by nonpathogenic Gram-negative bacteria, have potentially useful biotechnological applications in extraterrestrial extreme environments. However, their biological effects under the impact of various stressors have to be elucidated for safety reasons. In the spaceflight experiment, model biofilm kombucha microbial community (KMC) samples, in which Komagataeibacter intermedius was a dominant community-member, were exposed under simulated Martian factors (i.e., pressure, atmosphere, and UV-illumination) outside the International Space Station (ISS) for 1.5 years. In this study, we have determined that OMVs from post-flight K. intermedius displayed changes in membrane composition, depending on the location of the samples and some other factors. Membrane lipids such as sterols, fatty acids (FAs), and phospholipids (PLs) were modulated under the Mars-like stressors, and saturated FAs, as well as both short-chain saturated and trans FAs, appeared in the membranes of OMVs shed by both post-UV-illuminated and “dark” bacteria. The relative content of zwitterionic and anionic PLs changed, producing a change in surface properties of outer membranes, thereby resulting in a loss of interaction capability with polynucleotides. The changed composition of membranes promoted a bigger OMV size, which correlated with changes of OMV fitness. Biochemical characterization of the membrane-associated enzymes revealed an increase in their activity (DNAse, dehydrogenase) compared to wild type. Other functional membrane-associated capabilities of OMVs (e.g., proton accumulation, interaction with linear DNA, or synaptosomes) were also altered after exposure to the spaceflight stressors. Despite alterations in membranes, vesicles did not acquire endotoxicity, cytotoxicity, and neurotoxicity. Altogether, our results show that OMVs, originating from rationally selected nonpathogenic Gram-negative bacteria, can be considered as candidates in the design of postbiotics or edible mucosal vaccines for in situ production in extreme environment. Furthermore, these OMVs could also be used as promising delivery vectors for applications in Astromedicine.
Collapse
Affiliation(s)
- Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Leonid Zaika
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Ganna Zubova
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Maxym Galkin
- Palladin Institute of Biochemistry of NASU, Kyiv, Ukraine
| | | | | | | | | | - Mykola Skoryk
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
26
|
Bradbury P, Wu H, Choi JU, Rowan AE, Zhang H, Poole K, Lauko J, Chou J. Modeling the Impact of Microgravity at the Cellular Level: Implications for Human Disease. Front Cell Dev Biol 2020; 8:96. [PMID: 32154251 PMCID: PMC7047162 DOI: 10.3389/fcell.2020.00096] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
A lack of gravity experienced during space flight has been shown to have profound effects on human physiology including muscle atrophy, reductions in bone density and immune function, and endocrine disorders. At present, these physiological changes present major obstacles to long-term space missions. What is not clear is which pathophysiological disruptions reflect changes at the cellular level versus changes that occur due to the impact of weightlessness on the entire body. This review focuses on current research investigating the impact of microgravity at the cellular level including cellular morphology, proliferation, and adhesion. As direct research in space is currently cost prohibitive, we describe here the use of microgravity simulators for studies at the cellular level. Such instruments provide valuable tools for cost-effective research to better discern the impact of weightlessness on cellular function. Despite recent advances in understanding the relationship between extracellular forces and cell behavior, very little is understood about cellular biology and mechanotransduction under microgravity conditions. This review will examine recent insights into the impact of simulated microgravity on cell biology and how this technology may provide new insight into advancing our understanding of mechanically driven biology and disease.
Collapse
Affiliation(s)
- Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Hanjie Wu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Jung Un Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|
28
|
Fu H, Su F, Zhu J, Zheng X, Ge C. Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:1-8. [PMID: 31987473 DOI: 10.1016/j.lssr.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose a constant threat to astronaut health. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are functional RNAs that play critical roles in regulating multiple cellular processes. To gain insight into the role of non-coding RNAs in response to radiation and microgravity, we analyzed RNA expression profiles in human lymphoblastoid TK6 cells incubated for 24 h under static or rotating conditions to stimulate microgravity in space, after 2-Gy γ-ray irradiation. The expression of 14 lncRNAs and 17 mRNAs (differentially-expressed genes, DEGs) was found to be significantly downregulated under simulated microgravity conditions. In contrast, irradiation upregulated 55 lncRNAs and 56 DEGs, whereas only one lncRNA, but no DEGs, was downregulated. Furthermore, two miRNAs, 70 lncRNAs, and 87 DEGs showed significantly altered expression in response to simulated microgravity after irradiation, and these changes were independently induced by irradiation and simulated microgravity. GO enrichment and KEGG pathway analyses indicated that the associated target genes showed similar patterns to the noncoding RNAs and were suggested to be involved in the immune/inflammatory response including LPS/TLR, TNF, and NF-κB signaling pathways. However, synergistic effects on RNA expression and cellular responses were also observed with a combination of simulated microgravity and irradiation based on microarray and RT-PCR analysis. Together, our results indicate that simulated microgravity and irradiation additively alter expression patterns but synergistically modulate the expression levels of RNAs and their target genes in human lymphoblastoid cells.
Collapse
Affiliation(s)
- Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China.
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China.
| |
Collapse
|
29
|
Proteasome inhibition suppress microgravity elevated RANK signaling during osteoclast differentiation. Cytokine 2020; 125:154821. [DOI: 10.1016/j.cyto.2019.154821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
30
|
Mechesso AF, Yixian Q, Park SC. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS One 2019; 14:e0221386. [PMID: 31490973 PMCID: PMC6730861 DOI: 10.1371/journal.pone.0221386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Nymphaea tetragona Georgi (Nymphaceae) is traditionally used in Asia for the treatment of diarrhea, dysentery and fever. The plant contains various active compounds, including methyl gallate (MG) which are reported to inhibit bacterial virulence mechanisms. This study aimed to evaluate the alterations on viability, membrane potential and integrity of Salmonella enterica Serovar Typhimurium exposed to MG in combination with Tylosin (Ty), which is relatively inactive against Gram-negative bacteria, but it is commonly used as a feed additive in livestock. Besides, the effects of sub-inhibitory concentrations of the combination (MT) on the interaction between S. Typhimurium and the host cell, as well as on the indirect host responses, were characterized. Flow cytometry, confocal and electron microscopic examinations were undertaken to determine the effects of MT on S. Typhimurium. The impacts of sub-inhibitory concentrations of MT on biofilm formation, as well as on the adhesion, invasion and intracellular survival of S. Typhimurium were assessed. The result demonstrated significant damage to the bacterial membrane, leakage of cell contents and a reduction in the membrane potential when treated with MT. Sub-inhibitory concentrations of MT significantly reduced (P < 0.05) the biofilm-forming, adhesive and invasive abilities of S. Typhimurium. Exposure to MT drastically reduced the bacterial count in macrophages. Up-regulation of interleukin (IL)-6, IL-8 and IL-10 cytokine genes were detected in intestinal epithelial cells pre-treated with MT. This report is the first to describe the effects of MT against S. Typhimurium. The result indicates a synergistic interaction between MG and Ty against S. Typhimurium. Therefore, the combination may be a promising option to combat S. Typhimurium in swine and, indirectly, safeguard the health of the public.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Quah Yixian
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
- * E-mail:
| |
Collapse
|