1
|
Guo D, Yao B, Shao WW, Zuo JC, Chang ZH, Shi JX, Hu N, Bao SQ, Chen MM, Fan X, Li XH. The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410188. [PMID: 39656892 DOI: 10.1002/advs.202410188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.
Collapse
Affiliation(s)
- Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| |
Collapse
|
2
|
Mizoguchi Y, Kamimura M, Kitabatake K, Uchiumi F, Aoki S, Tsukimoto M. Changing the gravity vector direction by inverted culture enhances radiation-induced cell damage. Biochem Biophys Rep 2024; 39:101792. [PMID: 39149414 PMCID: PMC11325285 DOI: 10.1016/j.bbrep.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
In recent years, it has become clear that the cytotoxicity of γ-irradiation of cells is increased under microgravity conditions. However, there has been no study of the effect of the gravity vector direction, rather than the magnitude, on γ-ray-induced cytotoxicity. Therefore, in this study, we inverted cultures of human bronchial epithelium BEAS-2B cells and human lung cancer A549 cells in order to change the gravity vector direction by 180° with respect to the cells and observed the cellular response to radiation in this state. We found that cells in inverted culture showed increased irradiation-induced production of reactive oxygen species and decreased expression of the antioxidant protein thioredoxin-1 compared to cells in normal culture. Furthermore, the DNA damage response was delayed in γ-irradiated cells in inverted culture, and the number of unrepaired DNA sites was increased, compared to irradiated cells in normal culture. γ-Ray-induced cell death and the number of G2-M arrested cells were increased in inverted culture, in accordance with the decreased capacity for DNA repair. Our findings suggest that the gravity vector direction, as well as its magnitude, alters the cellular response to radiation.
Collapse
Affiliation(s)
- Yuma Mizoguchi
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Masao Kamimura
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Shin Aoki
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| |
Collapse
|
3
|
Hu M, Hu L, Yang T, Zhou B, Feng X, Fan Z, Shan Z. Intragland Expression of the Shh Gene Alleviates Irradiation-Induced Salivary Gland Injury through Microvessel Protection and the Regulation of Oxidative Stress. Antioxidants (Basel) 2024; 13:904. [PMID: 39199151 PMCID: PMC11351712 DOI: 10.3390/antiox13080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 09/01/2024] Open
Abstract
Radiation-induced salivary gland injury (RISGI) is a common complication of radiotherapy in patients with head and neck cancer. Intragland expression of the Sonic Hedgehog (Shh) gene may partially rescue irradiation (IR)-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation, maintaining resident macrophages, and maintaining microvascular density. Previous studies have revealed that Ad-Rat Shh transduction through the salivary glands of miniature pigs can ameliorate oxidative stress-induced microvascular dysfunction after radiotherapy. Changes in the parotid salivary flow rate were analyzed, and the parotid tissue was collected at 5 and 20 weeks after IR. Changes in the Hedgehog pathway and vascular function-related markers (vascular endothelial growth factor (VEGF) and CD31) and oxidative stress-related markers were detected via immunohistochemistry, immunofluorescence, and Western blotting. A stable Shh-overexpressing cell line was generated from human umbilical vein endothelial cells (HUVECs) and exposed to 10 Gy X-ray irradiation, after which endothelial cell proliferation, senescence, apoptosis, and vascular function were evaluated. We found that intragland expression of the Shh gene efficiently alleviated IR-induced parotid gland injury in a miniature pig model. Our results indicate that the antioxidative stress and microvascular-protective effects of the Hh pathway are regulated by nuclear factor-erythroid 2-related factor 2 (Nrf2).
Collapse
Affiliation(s)
- Meijun Hu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China;
| | - Liang Hu
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China; (L.H.)
| | - Tao Yang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China; (L.H.)
| | - Bowen Zhou
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China; (L.H.)
| | - Xuanhe Feng
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China; (L.H.)
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China;
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China; (L.H.)
| |
Collapse
|
4
|
Smith MB, Chen H, Oliver BGG. The Lungs in Space: A Review of Current Knowledge and Methodologies. Cells 2024; 13:1154. [PMID: 38995005 PMCID: PMC11240436 DOI: 10.3390/cells13131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Space travel presents multiple risks to astronauts such as launch, radiation, spacewalks or extravehicular activities, and microgravity. The lungs are composed of a combination of air, blood, and tissue, making it a complex organ system with interactions between the external and internal environment. Gravity strongly influences the structure of the lung which results in heterogeneity of ventilation and perfusion that becomes uniform in microgravity as shown during parabolic flights, Spacelab, and Skylab experiments. While changes in lung volumes occur in microgravity, efficient gas exchange remains and the lungs perform as they would on Earth; however, little is known about the cellular response to microgravity. In addition to spaceflight and real microgravity, devices, such as clinostats and random positioning machines, are used to simulate microgravity to study cellular responses on the ground. Differential expression of cell adhesion and extracellular matrix molecules has been found in real and simulated microgravity. Immune dysregulation is a known consequence of space travel that includes changes in immune cell morphology, function, and number, which increases susceptibility to infections. However, the majority of in vitro studies do not have a specific respiratory focus. These studies are needed to fully understand the impact of microgravity on the function of the respiratory system in different conditions.
Collapse
Affiliation(s)
- Michaela B Smith
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Brian G G Oliver
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Forenzo C, Larsen J. Bridging clinical radiotherapy and space radiation therapeutics through reactive oxygen species (ROS)-triggered delivery. Free Radic Biol Med 2024; 219:88-103. [PMID: 38631648 DOI: 10.1016/j.freeradbiomed.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.
Collapse
Affiliation(s)
- Chloe Forenzo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA; Department of Bioengineering, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
6
|
Saracaloğlu A, Demiryürek Ş, Güngör K, Düzen B, Eronat Ö, Temiz E, Demiryürek AT. Expression Analysis of the Small GTP-Binding Protein Rac in Pterygium. Turk J Ophthalmol 2023; 53:343-348. [PMID: 38014881 PMCID: PMC10750086 DOI: 10.4274/tjo.galenos.2023.93765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/06/2023] [Indexed: 11/29/2023] Open
Abstract
Objectives To determine the roles of small GTP-binding proteins Rac1, Rac2, and Rac3 expression in pterygial tissue and to compare these expressions with normal conjunctival tissue. Materials and Methods Seventy-eight patients with primary pterygium were enrolled. Healthy conjunctival graft specimens obtained during pterygium surgery were used as control tissue. The real-time polymerase chain reaction method on the BioMark HD dynamic array system was utilized in genomic mRNA for the gene expression analysis. Protein expressions were analyzed using western blot and immunohistochemical methods. Results RAC1, RAC2, and RAC3 gene expressions in pterygial tissues were not markedly elevated when compared to the control specimens (p>0.05). As a very low level of RAC1 gene expression was observed, further protein expression analysis was performed for the Rac2 and Rac3 proteins. Western blot and immunohistochemical analysis of Rac2 and Rac3 protein expression revealed no significant differences between pterygial and healthy tissues (p>0.05). Conclusion This is the first study to identify the contribution of Rac proteins in pterygium. Our results indicate that the small GTP-binding protein Rac may not be involved in pterygium pathogenesis.
Collapse
Affiliation(s)
- Ahmet Saracaloğlu
- Gaziantep University Faculty of Medicine, Department of Medical Pharmacology, Gaziantep, Türkiye
| | - Şeniz Demiryürek
- Gaziantep University Faculty of Medicine, Department of Physiology, Gaziantep, Türkiye
| | - Kıvanç Güngör
- Gaziantep University Faculty of Medicine, Department of Ophthalmology, Gaziantep, Türkiye
| | - Betül Düzen
- Gaziantep Dr. Ersin Arslan Training and Research Hospital, Clinic Ophthalmology, Gaziantep, Türkiye
| | - Ömer Eronat
- Gaziantep University Faculty of Medicine, Department of Pathology, Gaziantep, Türkiye
| | - Ebru Temiz
- Harran University Health Services Vocational School, Medical Promotion and Marketing, Şanlıurfa, Türkiye
| | | |
Collapse
|
7
|
Dai J, Chen Q, Li G, Chen M, Sun H, Yan M. DIRAS3, GPR171 and RAC2 were identified as the key molecular patterns associated with brain metastasis of breast cancer. Front Oncol 2022; 12:965136. [PMID: 36212434 PMCID: PMC9532569 DOI: 10.3389/fonc.2022.965136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Brain metastasis is a primary cause of morbidity and mortality in breast cancer patients. Therefore, elucidation and understanding of the underlying mechanisms are essential for the development of new therapeutic strategies. Methods Differential gene analysis was performed for those with and without distant metastasis in The Cancer Genome Atlas (TCGA) database and those with and without recurrence in the brain in the dataset GSE12276. The differentially expressed genes procured from the two databases were intersected to obtain the intersecting genes associated with brain metastasis. Thereafter, the intersecting genes were subjected to LASSO model construction to screen for prognostic genes. The expression of the obtained genes in metastatic breast cancer was observed, and survival analysis was performed. Finally, GSEA analysis of the obtained genes was performed, and the relationship between them and immune cells was explored. Results A total of 335 differential genes for the occurrence of distant metastases were obtained based on the TCGA database. A total of 1070 differential genes for recurrence to the brain were obtained based on the dataset GSE12276. The Venn diagram showed 24 intersecting genes associated with brain metastasis. The LASSO prognostic model contained a total of five genes (GBP2, GPR171, DIRAS3, RAC2, and CACNA1D). Expression difference analysis showed that GBP2, GPR171, DIRAS3, and RAC2 were significantly down-regulated in expression in metastatic breast cancer compared with primary breast cancer tumors. Only GPR171, DIRAS3, and RAC2 were strongly correlated with the overall survival of breast cancer patients. Their correlation analysis with immune cells showed that the correlation coefficient between the expression levels of DIRAS3 and immune cells was low, and the expression levels of GPR171 and RAC2 were more closely correlated with B cells and macrophages. Conclusions The expression of DIRAS3, GPR171 and RAC2, genes associated with brain metastasis, was reduced in metastatic breast cancer, and GPR171 was found to promote brain metastasis of breast cancer cells by inducing B cells and thereby.
Collapse
|
8
|
DDAH1 Promotes Lung Endothelial Barrier Repair by Decreasing Leukocyte Transendothelial Migration and Oxidative Stress in Explosion-Induced Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8407635. [PMID: 35620579 PMCID: PMC9130000 DOI: 10.1155/2022/8407635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Explosion-induced injury is the most commonly encountered wound in modern warfare and incidents. The vascular inflammatory response and subsequent oxidative stress are considered the key causes of morbidity and mortality among those in blast lung injury. It has been reported dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays important roles in regulating vascular endothelial injury repair and angiogenesis, but its role in explosion-induced injury remains to be explained. To explore the mechanism of vascular injury in blast lung, 40 C57BL/6 wild type mice and 40 DDAH1 knockout mice were randomly equally divided into control group and blast group, respectively. Body weight, lung weight, and dry weight of the lungs were recorded. Diffuse vascular leakage was detected by Evans blue test. The serum inflammatory factors, nitric oxide (NO) contents, and ADMA level were determined through ELISA. Hematoxylin-eosin staining and ROS detection were performed for histopathological changes. Western blot was used to detect the proteins related to oxidative stress, cell adhesion molecules and leukocyte transendothelial migration, vascular injury, endothelial barrier dysfunction, and the DDAH1/ADMA/eNOS signaling pathway. We found that DDAH1 deficiency aggravated explosion-induced body weight reduction, lung weight promotion, diffuse vascular leakage histopathological changes, and the increased levels of inflammatory-related factors. Additionally, DDAH1 deficiency also increased ROS generation, MDA, and IRE-1α expression. Regarding vascular endothelial barrier dysfunction, DDAH1 deficiency increased the expression of ICAM-1, Itgal, Rac2, VEGF, MMP9, vimentin, and N-cadherin, while lowering the expression of occludin, CD31, and dystrophin. DDAH1 deficiency also exacerbated explosion-induced increase of ADMA and decrease of eNOS activity and NO contents. Our results indicated that explosion could induce severe lung injury and pulmonary vascular insufficiency, whereas DDAH1 could promote lung endothelial barrier repair and reduce inflammation and oxidative stress by inhibiting ADMA signaling which in turn increased eNOS activity.
Collapse
|
9
|
Xu Y, Pei W, Hu W. A Current Overview of the Biological Effects of Combined Space Environmental Factors in Mammals. Front Cell Dev Biol 2022; 10:861006. [PMID: 35493084 PMCID: PMC9039719 DOI: 10.3389/fcell.2022.861006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Distinct from Earth’s environment, space environmental factors mainly include space radiation, microgravity, hypomagnetic field, and disrupted light/dark cycles that cause physiological changes in astronauts. Numerous studies have demonstrated that space environmental factors can lead to muscle atrophy, bone loss, carcinogenesis, immune disorders, vascular function and cognitive impairment. Most current ground-based studies focused on single environmental factor biological effects. To promote manned space exploration, a better understanding of the biological effects of the spaceflight environment is necessary. This paper summarizes the latest research progress of the combined biological effects of double or multiple space environmental factors on mammalian cells, and discusses their possible molecular mechanisms, with the hope of providing a scientific theoretical basis to develop appropriate countermeasures for astronauts.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- *Correspondence: Weiwei Pei, ; Wentao Hu,
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- *Correspondence: Weiwei Pei, ; Wentao Hu,
| |
Collapse
|
10
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Yan HF, Zhang T, Sun PM, Sun HW, Zhou JL, Yang JW, Li ZP, Cui Y. Proteomic analysis of the effects of simulated microgravity in human gastric mucosal cells. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:26-37. [PMID: 35065758 DOI: 10.1016/j.lssr.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
Microgravity is an ecological factor that affects the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) method was used to study the changes in human gastric mucosal cells under simulated microgravity for the first time. Comparative proteomic analysis identified 394 (202 upregulated and 192 downregulated) and 542 (286 upregulated and 256 downregulated) proteins differentially regulated by simulated microgravity after 3 and 7 days, respectively. Then the identified proteins were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for further exploration. The results of the analysis showed that the ribosomes of gastric mucosal cells were significantly impacted after exposure to simulated microgravity for 3 days, and the cells appeared to be in a state of stress and inflammation. Exposure to simulated microgravity for 7 days significantly affected the mitochondria of the cells, oxidative stress became more evident, while inflammation and weakened connections were observed in the cells. The results of this study highlighted the temporal response trend of gastric mucosal cells to the stressor of microgravity at the two time points of 3 and 7 days. These findings will provide insights into the development of methods to protect the gastric mucosa during space flight.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
11
|
Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021; 10:biomedicines10010025. [PMID: 35052703 PMCID: PMC8773191 DOI: 10.3390/biomedicines10010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
| | - Jonas Callant
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
- Department Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
12
|
Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021; 9:750775. [PMID: 34778261 PMCID: PMC8586646 DOI: 10.3389/fcell.2021.750775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
Collapse
Affiliation(s)
- Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Melanie L. Ferlazzo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Nicholas R. Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - S. Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021; 7:35. [PMID: 34556658 PMCID: PMC8460669 DOI: 10.1038/s41526-021-00162-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Exposure to microgravity and ionizing radiation during spaceflight missions causes excessive reactive oxygen species (ROS) production that contributes to cellular stress and damage in astronauts. Average spaceflight mission time is expected to lengthen as humanity aims to visit other planets. However, longer missions or spaceflights will undoubtedly lead to an increment in microgravity, ionizing radiation and ROS production. Strategies to minimize ROS damage are necessary to maintain the health of astronauts, future space colonists, and tourists during and after spaceflight missions. An antioxidant cocktail formulated to prevent or mitigate ROS damage during space exploration could help maintain the health of space explorers. We propose key points to consider when developing an antioxidant cocktail. We discuss how ROS damages our body and organs, the genetic predisposition of astronauts to its damage, characteristics and evidence of the effectiveness of antioxidants to combat excess ROS, differences in drug metabolism when on Earth and in space that could modify antioxidant effects, and the characteristics and efficacy of common antioxidants. Based on this information we propose a workflow for assessing astronaut resistance to ROS damage, infight monitoring of ROS production, and an antioxidant cocktail. Developing an antioxidant cocktail represents a big challenge to translate current medical practices from an Earth setting to space. The key points presented in this review could promote the development of different antioxidant formulations to maintain space explorers' health in the future.
Collapse
Affiliation(s)
- Xavier Gómez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Cornell University, Ithaca, NY, USA
- Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Samira Asquel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Mariuxi Bassantes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Julián E Morales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Gabriela Otáñez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Core Pomaquero
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Sarah Villarroel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Alejandro Zurita
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Carlos Calvache
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Kathlyn Celi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Terry Contreras
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Dylan Corrales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - María Belén Naciph
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - José Peña
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador.
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador.
- Mito-Act Research Consortium, Quito, Ecuador.
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
14
|
Choi DH, Jeon B, Lim MH, Lee DH, Ye SK, Jeong SY, Kim S. 3D cell culture using a clinostat reproduces microgravity-induced skin changes. NPJ Microgravity 2021; 7:20. [PMID: 34075058 PMCID: PMC8169764 DOI: 10.1038/s41526-021-00148-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to microgravity affects human physiology in various ways, and astronauts frequently report skin-related problems. Skin rash and irritation are frequent complaints during space missions, and skin thinning has also been reported after returning to Earth. However, spaceflight missions for studying the physiological changes in microgravity are impractical. Thus, we used a previously developed 3D clinostat to simulate a microgravity environment and investigate whether physiological changes of the skin can be reproduced in a 3D in vitro setting. Our results showed that under time-averaged simulated microgravity (taSMG), the thickness of the endothelial cell arrangement increased by up to 59.75%, indicating skin irritation due to vasodilation, and that the diameter of keratinocytes and fibroblast co-cultured spheroids decreased by 6.66%, representing skin thinning. The α1 chain of type I collagen was upregulated, while the connective tissue growth factor was downregulated under taSMG. Cytokeratin-10 expression was significantly increased in the taSMG environment. The clinostat-based 3D culture system can reproduce physiological changes in the skin similar to those under microgravity, providing insight for understanding the effects of microgravity on human health before space exploration.
Collapse
Affiliation(s)
- Dong Hyun Choi
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea.,Department of Emergency Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Min Hyuk Lim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea. .,Institute of Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
15
|
Wang H, Dong J, Li G, Tan Y, Zhao H, Zhang L, Wang Y, Hu Z, Cao X, Shi F, Zhang S. The small protein MafG plays a critical role in MC3T3-E1 cell apoptosis induced by simulated microgravity and radiation. Biochem Biophys Res Commun 2021; 555:175-181. [PMID: 33819748 DOI: 10.1016/j.bbrc.2021.03.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Microgravity and radiation exposure-induced bone damage is one of the most significant alterations in astronauts after long-term spaceflight. However, the underlying mechanism is still largely unknown. Recent ground-based simulation studies have suggested that this impairment is likely mediated by increased production of reactive oxygen species (ROS) during spaceflight. The small Maf protein MafG is a basic-region leucine zipper-type transcription factor, and it globally contributes to regulation of antioxidant and metabolic networks. Our research investigated the role of MafG in the process of apoptosis induced by simulated microgravity and radiation in MC3T3-E1 cells. We found that simulated microgravity or radiation alone decreased MafG expression and elevated apoptosis in MC3T3-E1 cells, and combined simulated microgravity and radiation treatment aggravated apoptosis. Meanwhile, under normal conditions, increased ROS levels facilitated apoptosis and downregulated the expression of MafG in MC3T3-E1 cells. Overexpression of MafG decreased apoptosis induced by simulated microgravity and radiation. These findings provide new insight into the mechanism of bone damage induced by microgravity and radiation during space flight.
Collapse
Affiliation(s)
- Honghui Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 100094, Beijing, China
| | - Jingjing Dong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China; Rehabilitation Physiotherapy Department, Lintong Rehabilitation and Recuperation Center, PLA Joint Logistic Support Force, 710600, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 100094, Beijing, China
| | - Hai Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 100094, Beijing, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|