1
|
Pagoti GF, Hogan JA, Willemart RH. Habituation to a predatory stimulus in a harvester (Arachnida, Opiliones). Anim Cogn 2024; 27:21. [PMID: 38441671 PMCID: PMC10914851 DOI: 10.1007/s10071-024-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 03/07/2024]
Abstract
Several studies have investigated habituation in a defensive context, but few have addressed responses to dangerous stimuli. In such cases, animals should not habituate since this could cost their lives. Here we have stimulated individuals of the harvester Mischonyx squalidus with a predatory stimulus (squeezing with tweezers) in repeated trials within and between days, and measured the occurrence and magnitude of nipping, a defensive behavior. Contrary to our expectations, they did habituate to this stimulus. The probability and magnitude of response declined over trials during each of three days of testing in a typical habituation pattern. During the trials we also observed other defensive behaviors. We discuss our results mainly considering alternative defensive responses. Our data show that we lack information on (1) the role played by the ambiguity of stimuli, (2) the role played by subsequent stimuli and (3) the importance of the array of defensive behaviors of a species in understanding habituation. Although ubiquitous across animals and therefore expected, habituation is described for the first time in the order Opiliones.
Collapse
Affiliation(s)
- Guilherme Ferreira Pagoti
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil.
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| | - Jerry A Hogan
- Department of Psychology, University of Toronto, 100 St. George Street, 4th Floor Sidney Smith Hall, Toronto, Ontario, M5S 3G3, Canada
| | - Rodrigo Hirata Willemart
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
2
|
Atanas AA, Kim J, Wang Z, Bueno E, Becker M, Kang D, Park J, Kramer TS, Wan FK, Baskoylu S, Dag U, Kalogeropoulou E, Gomes MA, Estrem C, Cohen N, Mansinghka VK, Flavell SW. Brain-wide representations of behavior spanning multiple timescales and states in C. elegans. Cell 2023; 186:4134-4151.e31. [PMID: 37607537 PMCID: PMC10836760 DOI: 10.1016/j.cell.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior.
Collapse
Affiliation(s)
- Adam A Atanas
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungsoo Kim
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziyu Wang
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - McCoy Becker
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungyeon Park
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talya S Kramer
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K Wan
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Saba Baskoylu
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ugur Dag
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elpiniki Kalogeropoulou
- School of Computing, University of Leeds, Leeds, UK; School of Biology, University of Leeds, Leeds, UK
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassi Estrem
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, UK
| | - Vikash K Mansinghka
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Santistevan NJ, Nelson JC, Ortiz EA, Miller AH, Kenj Halabi D, Sippl ZA, Granato M, Grinblat Y. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold. PLoS One 2022; 17:e0270903. [PMID: 35834485 PMCID: PMC9282658 DOI: 10.1371/journal.pone.0270903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering. METHODS To identify genes critical for plasticity, a forward genetic screen for zebrafish genes that mediate habituation learning was performed, which identified a mutant allele, doryp177, that caused reduced habituation of the acoustic startle response. In this study, we combine whole-genome sequencing with behavioral analyses to characterize and identify the gene affected in doryp177 mutants. RESULTS Whole-genome sequencing identified the calcium voltage-gated channel auxiliary subunit alpha-2/delta-3 (cacna2d3) as a candidate gene affected in doryp177 mutants. Behavioral characterization of larvae homozygous for two additional, independently derived mutant alleles of cacna2d3, together with failure of these alleles to complement doryp177, confirmed a critical role for cacna2d3 in habituation learning. Notably, detailed analyses of the acoustic response in mutant larvae also revealed increased startle sensitivity to acoustic stimuli, suggesting a broader role for cacna2d3 in controlling innate response thresholds to acoustic stimuli. CONCLUSIONS Taken together, our data demonstrate a critical role for cacna2d3 in sensory filtering, a process that is disrupted in human CNS disorders, e.g. ADHD, schizophrenia, and autism.
Collapse
Affiliation(s)
- Nicholas J. Santistevan
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew H. Miller
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dima Kenj Halabi
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Zoë A. Sippl
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MG); (YG)
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (MG); (YG)
| |
Collapse
|
4
|
Barlow IL, Feriani L, Minga E, McDermott-Rouse A, O'Brien TJ, Liu Z, Hofbauer M, Stowers JR, Andersen EC, Ding SS, Brown AEX. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol 2022; 5:253. [PMID: 35322206 PMCID: PMC8943053 DOI: 10.1038/s42003-022-03206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.
Collapse
Affiliation(s)
- Ida L Barlow
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Luigi Feriani
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Eleni Minga
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Adam McDermott-Rouse
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Thomas James O'Brien
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Ziwei Liu
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
5
|
Luo J, Portman DS. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Curr Biol 2021; 31:4449-4461.e4. [PMID: 34437843 DOI: 10.1016/j.cub.2021.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
To make adaptive feeding and foraging decisions, animals must integrate diverse sensory streams with multiple dimensions of internal state. In C. elegans, foraging and dispersal behaviors are influenced by food abundance, population density, and biological sex, but the neural and genetic mechanisms that integrate these signals are poorly understood. Here, by systematically varying food abundance, we find that chronic avoidance of the population-density pheromone ascr#3 is modulated by food thickness, such that hermaphrodites avoid ascr#3 only when food is scarce. The integration of food and pheromone signals requires the conserved neuropeptide receptor PDFR-1, as pdfr-1 mutant hermaphrodites display strong ascr#3 avoidance, even when food is abundant. Conversely, increasing PDFR-1 signaling inhibits ascr#3 aversion when food is sparse, indicating that this signal encodes information about food abundance. In both wild-type and pdfr-1 hermaphrodites, chronic ascr#3 avoidance requires the ASI sensory neurons. In contrast, PDFR-1 acts in interneurons, suggesting that it modulates processing of the ascr#3 signal. Although a sex-shared mechanism mediates ascr#3 avoidance, food thickness modulates this behavior only in hermaphrodites, indicating that PDFR-1 signaling has distinct functions in the two sexes. Supporting the idea that this mechanism modulates foraging behavior, ascr#3 promotes ASI-dependent dispersal of hermaphrodites from food, an effect that is markedly enhanced when food is scarce. Together, these findings identify a neurogenetic mechanism that sex-specifically integrates population and food abundance, two important dimensions of environmental quality, to optimize foraging decisions. Further, they suggest that modulation of attention to sensory signals could be an ancient, conserved function of pdfr-1.
Collapse
Affiliation(s)
- Jintao Luo
- Department of Biomedical Genetics, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
6
|
Reiss AP, Rankin CH. Gaining an understanding of behavioral genetics through studies of foraging in Drosophila and learning in C. elegans. J Neurogenet 2021; 35:119-131. [PMID: 34151727 DOI: 10.1080/01677063.2021.1928113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The pursuit of understanding behavior has led to investigations of how genes, the environment, and the nervous system all work together to produce and influence behavior, giving rise to a field of research known as behavioral neurogenetics. This review focuses on the research journeys of two pioneers of aspects of behavioral neurogenetic research: Dr. Marla Sokolowski and Dr. Catharine Rankin as examples of how different approaches have been used to understand relationships between genes and behavior. Marla Sokolowski's research is centered around the discovery and analysis of foraging, a gene responsible for the natural behavioral polymorphism of Drosophila melanogaster larvae foraging behavior. Catharine Rankin's work began with demonstrating the ability to learn in Caenorhabditis elegans and then setting out to investigate the mechanisms underlying the "simplest" form of learning, habituation. Using these simple invertebrate organisms both investigators were able to perform in-depth dissections of behavior at genetic and molecular levels. By exploring their research and highlighting their findings we present ways their work has furthered our understanding of behavior and contributed to the field of behavioral neurogenetics.
Collapse
Affiliation(s)
- Aaron P Reiss
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Luth ES, Hodul M, Rennich BJ, Riccio C, Hofer J, Markoja K, Juo P. VER/VEGF receptors regulate AMPA receptor surface levels and glutamatergic behavior. PLoS Genet 2021; 17:e1009375. [PMID: 33561120 PMCID: PMC7899335 DOI: 10.1371/journal.pgen.1009375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/22/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023] Open
Abstract
Several intracellular trafficking pathways contribute to the regulation of AMPA receptor (AMPAR) levels at synapses and the control of synaptic strength. While much has been learned about these intracellular trafficking pathways, a major challenge is to understand how extracellular factors, such as growth factors, neuropeptides and hormones, impinge on specific AMPAR trafficking pathways to alter synaptic function and behavior. Here, we identify the secreted ligand PVF-1 and its cognate VEGF receptor homologs, VER-1 and VER-4, as regulators of glutamate signaling in C. elegans. Loss of function mutations in ver-1, ver-4, or pvf-1, result in decreased cell surface levels of the AMPAR GLR-1 and defects in glutamatergic behavior. Rescue experiments indicate that PVF-1 is expressed and released from muscle, whereas the VERs function in GLR-1-expressing neurons to regulate surface levels of GLR-1 and glutamatergic behavior. Additionally, ver-4 is unable to rescue glutamatergic behavior in the absence of pvf-1, suggesting that VER function requires endogenous PVF-1. Inducible expression of a pvf-1 rescuing transgene suggests that PVF-1 can function in the mature nervous system to regulate GLR-1 signaling. Genetic double mutant analysis suggests that the VERs act together with the VPS-35/retromer recycling complex to promote cell surface levels of GLR-1. Our data support a genetic model whereby PVF-1/VER signaling acts with retromer to promote recycling and cell surface levels of GLR-1 to control behavior. Sensation, behavior, and cognition all depend on the proper function of neuronal connections called synapses. Synapses that use the neurotransmitter glutamate to signal between nerve cells are the most abundant type in our brain. Presynaptic neurons release glutamate, which activates glutamate receptors on postsynaptic neurons. Dysfunction of glutamate synapses leads to several neurological disorders, and changing their strength–in part by altering glutamate receptors numbers on the surface of the postsynaptic cell—provides the cellular basis of learning and memory. Much remains to be learned about how factors released from other cell types affects synaptic communication. We took advantage of light-activated molecular switches engineered into specific sensory neurons of C. elegans worms to trigger a behavioral reflex that depends on glutamate synapses. Using this behavior, we identified proteins called VER-1 and VER-4 as important for glutamate synapse function. We found that worms missing these VER proteins or their activator PVF-1 have reduced levels of glutamate receptors at the postsynaptic surface and defects in glutamate-dependent behaviors. Our results suggest that inter-tissue cross-talk between muscle PVF-1 and neuronal VERs is important for controlling the number of glutamate receptors at the cell surface, robust neuronal communication and behavioral responses.
Collapse
Affiliation(s)
- Eric S. Luth
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Molly Hodul
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Bethany J. Rennich
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Carmino Riccio
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julia Hofer
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Kaitlin Markoja
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
9
|
Saberi-Bosari S, Flores KB, San-Miguel A. Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock. BMC Biol 2020; 18:130. [PMID: 32967665 PMCID: PMC7510121 DOI: 10.1186/s12915-020-00861-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Access to quantitative information is crucial to obtain a deeper understanding of biological systems. In addition to being low-throughput, traditional image-based analysis is mostly limited to error-prone qualitative or semi-quantitative assessment of phenotypes, particularly for complex subcellular morphologies. The PVD neuron in Caenorhabditis elegans, which is responsible for harsh touch and thermosensation, undergoes structural degeneration as nematodes age characterized by the appearance of dendritic protrusions. Analysis of these neurodegenerative patterns is labor-intensive and limited to qualitative assessment. RESULTS In this work, we apply deep learning to perform quantitative image-based analysis of complex neurodegeneration patterns exhibited by the PVD neuron in C. elegans. We apply a convolutional neural network algorithm (Mask R-CNN) to identify neurodegenerative subcellular protrusions that appear after cold-shock or as a result of aging. A multiparametric phenotypic profile captures the unique morphological changes induced by each perturbation. We identify that acute cold-shock-induced neurodegeneration is reversible and depends on rearing temperature and, importantly, that aging and cold-shock induce distinct neuronal beading patterns. CONCLUSION The results of this work indicate that implementing deep learning for challenging image segmentation of PVD neurodegeneration enables quantitatively tracking subtle morphological changes in an unbiased manner. This analysis revealed that distinct patterns of morphological alteration are induced by aging and cold-shock, suggesting different mechanisms at play. This approach can be used to identify the molecular components involved in orchestrating neurodegeneration and to characterize the effect of other stressors on PVD degeneration.
Collapse
Affiliation(s)
- Sahand Saberi-Bosari
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kevin B Flores
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
De Fruyt N, Yu AJ, Rankin CH, Beets I, Chew YL. The role of neuropeptides in learning: Insights from C. elegans. Int J Biochem Cell Biol 2020; 125:105801. [DOI: 10.1016/j.biocel.2020.105801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
|
11
|
Nelson JC, Witze E, Ma Z, Ciocco F, Frerotte A, Randlett O, Foskett JK, Granato M. Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. Curr Biol 2020; 30:2729-2738.e4. [PMID: 32502414 PMCID: PMC8446937 DOI: 10.1016/j.cub.2020.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/06/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Habituation is an adaptive learning process that enables animals to adjust innate behaviors to changes in their environment. Despite its well-documented implications for a wide diversity of behaviors, the molecular and cellular basis of habituation learning is not well understood. Using whole-genome sequencing of zebrafish mutants isolated in an unbiased genetic screen, we identified the palmitoyltransferase Huntingtin interacting protein 14 (Hip14) as a critical regulator of habituation learning. We demonstrate that Hip14 regulates depression of sensory inputs onto an identified hindbrain neuron and provide evidence that Hip14 palmitoylates the Shaker-like K+ voltage-gated channel subunit (Kv1.1), thereby regulating Kv1.1 subcellular localization. Furthermore, we show that, like for Hip14, loss of Kv1.1 leads to habituation deficits and that Hip14 is dispensable in development and instead acts acutely to promote habituation. Combined, these results uncover a previously unappreciated role for acute posttranslational palmitoylation at defined circuit components to regulate learning.
Collapse
Affiliation(s)
- Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eric Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Francesca Ciocco
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Abigaile Frerotte
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Owen Randlett
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Byrne Rodgers J, Ryu WS. Targeted thermal stimulation and high-content phenotyping reveal that the C. elegans escape response integrates current behavioral state and past experience. PLoS One 2020; 15:e0229399. [PMID: 32218560 PMCID: PMC7100941 DOI: 10.1371/journal.pone.0229399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 12/03/2022] Open
Abstract
The ability to avoid harmful or potentially harmful stimuli can help an organism escape predators and injury, and certain avoidance mechanisms are conserved across the animal kingdom. However, how the need to avoid an imminent threat is balanced with current behavior and modified by past experience is not well understood. In this work we focused on rapidly increasing temperature, a signal that triggers an escape response in a variety of animals, including the nematode Caenorhabditis elegans. We have developed a noxious thermal response assay using an infrared laser that can be automatically controlled and targeted in order to investigate how C. elegans responds to noxious heat over long timescales and to repeated stimuli in various behavioral and sensory contexts. High-content phenotyping of behavior in individual animals revealed that the C. elegans escape response is multidimensional, with some features that extend for several minutes, and can be modulated by (i) stimulus amplitude; (ii) other sensory inputs, such as food context; (iii) long and short-term thermal experience; and (iv) the animal's current behavioral state.
Collapse
Affiliation(s)
- Jarlath Byrne Rodgers
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - William S. Ryu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
McDiarmid TA, Yu AJ, Rankin CH. Habituation Is More Than Learning to Ignore: Multiple Mechanisms Serve to Facilitate Shifts in Behavioral Strategy. Bioessays 2019; 41:e1900077. [DOI: 10.1002/bies.201900077] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Troy A. McDiarmid
- Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia 2211 Wesbrook Mall Vancouver BC V6T 2B5 Canada
| | - Alex J. Yu
- Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia 2211 Wesbrook Mall Vancouver BC V6T 2B5 Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia 2211 Wesbrook Mall Vancouver BC V6T 2B5 Canada
- Department of PsychologyUniversity of British Columbia 2136 West Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
14
|
Randlett O, Haesemeyer M, Forkin G, Shoenhard H, Schier AF, Engert F, Granato M. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Curr Biol 2019; 29:1337-1345.e4. [PMID: 30955936 PMCID: PMC6545104 DOI: 10.1016/j.cub.2019.02.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
Habituation is a simple form of learning where animals learn to reduce their responses to repeated innocuous stimuli [1]. Habituation is thought to occur via at least two temporally and molecularly distinct mechanisms, which lead to short-term memories that last for seconds to minutes and long-term memories that last for hours or longer [1, 2]. Here, we focus on long-term habituation, which, due to the extended time course, necessitates stable alterations to circuit properties [2-4]. In its simplest form, long-term habituation could result from a plasticity event at a single point in a circuit, and many studies have focused on identifying the site and underlying mechanism of plasticity [5-10]. However, it is possible that these individual sites are only one of many points in the circuit where plasticity is occurring. Indeed, studies of short-term habituation in C. elegans indicate that in this paradigm, multiple genetically separable mechanisms operate to adapt specific aspects of behavior [11-13]. Here, we use a visual assay in which larval zebrafish habituate their response to sudden reductions in illumination (dark flashes) [14, 15]. Through behavioral analyses, we find that multiple components of the dark-flash response habituate independently of one another using different molecular mechanisms. This is consistent with a modular model in which habituation originates from multiple independent processes, each adapting specific components of behavior. This may allow animals to more specifically or flexibly habituate based on stimulus context or internal states.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Greg Forkin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, Rabinowitch I, Bai J, Rankin CH, Lu H, Beets I, Schafer WR. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018; 99:1233-1246.e6. [PMID: 30146306 PMCID: PMC6162336 DOI: 10.1016/j.neuron.2018.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yoshinori Tanizawa
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yongmin Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Buyun Zhao
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Ithai Rabinowitch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK; Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
| |
Collapse
|
16
|
Hanson A, Burrell BD. Are the persistent effects of "gate control" stimulation on nociception a form of generalization of habituation that is endocannabinoid-dependent? Neurobiol Learn Mem 2018; 155:361-370. [PMID: 30196136 DOI: 10.1016/j.nlm.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Repetitive activation of non-nociceptive afferents is known to attenuate nociceptive signaling. However, the functional details of how this modulatory process operates are not understood and this has been a barrier in using such stimuli to effectively treat chronic pain. The present study tests the hypothesis that the ability of repeated non-nociceptive stimuli to reduce nociception is a form of generalized habituation from the non-nociceptive stimulus-response pathway to the nociceptive pathway. Habituation training, using non-nociceptive mechanosensory stimuli, did reduce responses to nociceptive thermal stimulation. This generalization of habituation to nociceptive stimuli required endocannabinoid-mediated neuromodulation, although disrupting of endocannabinoid signaling did not affect "direct" habituation of to the non-nociceptive stimulus. Surprisingly, the reduced response to nociceptive stimuli following habituation training was very long-lasting (3-8 days). This long-term habituation required endocannabinoid signaling during the training/acquisition phase, but endocannabinoids were not required for post-training retention phase. The implications of these results are that applying principles of habituation learning could potentially improve anti-nociceptive therapies utilizing repeated non-nociceptive stimulation such as transcutaneous nerve stimulation (TENS), spinal cord stimulation (SCS), or electro-acupuncture.
Collapse
Affiliation(s)
- Alex Hanson
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States.
| |
Collapse
|
17
|
Liu M, Sharma AK, Shaevitz JW, Leifer AM. Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation. eLife 2018; 7:e36419. [PMID: 29943731 PMCID: PMC6054533 DOI: 10.7554/elife.36419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/10/2018] [Indexed: 11/13/2022] Open
Abstract
A quantitative understanding of how sensory signals are transformed into motor outputs places useful constraints on brain function and helps to reveal the brain's underlying computations. We investigate how the nematode Caenorhabditis elegans responds to time-varying mechanosensory signals using a high-throughput optogenetic assay and automated behavior quantification. We find that the behavioral response is tuned to temporal properties of mechanosensory signals, such as their integral and derivative, that extend over many seconds. Mechanosensory signals, even in the same neurons, can be tailored to elicit different behavioral responses. Moreover, we find that the animal's response also depends on its behavioral context. Most dramatically, the animal ignores all tested mechanosensory stimuli during turns. Finally, we present a linear-nonlinear model that predicts the animal's behavioral response to stimulus.
Collapse
Affiliation(s)
- Mochi Liu
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityNew JerseyUnited States
| | - Anuj K Sharma
- Department of PhysicsPrinceton UniversityNew JerseyUnited States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityNew JerseyUnited States
- Department of PhysicsPrinceton UniversityNew JerseyUnited States
| | - Andrew M Leifer
- Department of PhysicsPrinceton UniversityNew JerseyUnited States
- Princeton Neuroscience InstitutePrinceton UniversityNew JerseyUnited States
| |
Collapse
|
18
|
McDiarmid TA, Yu AJ, Rankin CH. Beyond the response-High throughput behavioral analyses to link genome to phenome in Caenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2018; 17:e12437. [DOI: 10.1111/gbb.12437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- T. A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - A. J. Yu
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - C. H. Rankin
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|