1
|
Hossain MK, Davidson M, Feehan J, Matsoukas JM, Nurgali K, Apostolopoulos V. A methamphetamine vaccine using short monoamine and diamine peptide linkers and poly-mannose. Bioorg Med Chem 2024; 113:117930. [PMID: 39306972 DOI: 10.1016/j.bmc.2024.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Methamphetamine (METH) substance use disorder is a long-standing and ever-growing public health concern. Efforts to develop successful immunotherapies are ongoing with vaccines that generate strong antibody responses are an area of significant research interest. Herein, we describe the development of a METH Hapten conjugate vaccine comprised of either two short-length peptides as linkers and mannan as an immunogenic delivery carrier. Initially, Hapten 1 (with a monoamine linker) and Hapten 2 (with a diamine linker) were synthesised. Each step of the Hapten synthesis were characterized by LC-MS and purified by Flash Chromatography and the identity of the purified Haptens were confirmed by 1H NMR. Haptens were conjugated with mannan (a polymannose), and conjugation efficiency was confirmed by LC-MS, TLC, 1H NMR, and 2,4 DNPH tests. The immunogenic potential of the two conjugated vaccines were assessed in mice with a 3-dose regimen. Concentrations of anti-METH antibodies were measured by enzyme-linked immunosorbent assay. All the analytical techniques confirmed the identity of Hapten 1 and 2 during the synthetic phase. Similarly, all the analytical approaches confirmed the conjugation between the Haptens and mannan. Mouse immunogenicity studies confirmed that both vaccine candidates were immunogenic and the vaccine with the monoamine linker plus adjuvants induced the highest antibody response after the second booster.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia; Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia
| | - Jack Feehan
- Immunology Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, VIC 3021, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - John M Matsoukas
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia; NewDrug PC, Patras Science Park, Patras 26504, Greece; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta T2N4N1, Canada; Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia; Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Sciences, Melbourne, VIC 3021, Australia; Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Vasso Apostolopoulos
- Immunology Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, VIC 3021, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
2
|
Méndez SB, Matus-Ortega M, Miramontes RH, Salazar-Juárez A. The effect of chronic stress on the immunogenicity and immunoprotection of the M 6-TT vaccine in female mice. Physiol Behav 2023; 271:114345. [PMID: 37704173 DOI: 10.1016/j.physbeh.2023.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 09/15/2023]
Abstract
Active vaccination is an effective therapeutic option to reduce the reinforcing effects of opioids. Several studies showed that chronic stress affects the immune system decreasing the efficiency of some vaccines. Heroin withdrawal is a stressor and it is a stage in which the patient who abuses heroin is vulnerable to stress affects the immune response and consequently its immunoprotective capacity, then, the objective was to determine the effect of heroin-withdrawal and heroin-withdrawal plus immobilization, on the immune (immunogenicity) and protective response (behavioral response) of morphine-6-hemisuccinate-tetanus toxoid (M6-TT) vaccine in animals of two inbred mice strains with different sensitivity to drug-opioid and stress. Female BALB/c and C57Bl/6 inbred mice were immunized with the M6-TT. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. During the vaccination period, the animals were subjected to two different stress conditions: drug-withdrawal (DW) and immobilization (IMM). The study used tail-flick testing to evaluate the heroin-induced antinociceptive effects. Additionally, heroin-induced locomotor activity was evaluated. Stress decreased the heroin-specific antibody titer generated by the M6-TT vaccine in the two inbred mouse strains evaluated. In the two stress conditions, the antibody titer was not able to decrease the heroin-induced antinociceptive effects and locomotor activity. These findings suggest that stress decreases the production of antibodies and the immunoprotective capacity of the M6-TT vaccine. This observation is important to determine the efficacy of active vaccination as a potential therapy for patients with opioid drug use disorder, since these patients during drug-withdrawal present stress disorders, which could affect the efficacy of therapy such as active vaccination.
Collapse
Affiliation(s)
- Susana Barbosa Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México
| | - Maura Matus-Ortega
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México
| | - Ricardo Hernández Miramontes
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México.
| |
Collapse
|
3
|
Leon Duque MA, Vallavoju N, Woo CM. Chemical tools for the opioids. Mol Cell Neurosci 2023; 125:103845. [PMID: 36948231 PMCID: PMC10247539 DOI: 10.1016/j.mcn.2023.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.
Collapse
Affiliation(s)
- Mark Anthony Leon Duque
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America.
| |
Collapse
|
4
|
Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol 2023; 119:110210. [PMID: 37099943 DOI: 10.1016/j.intimp.2023.110210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Substance Use Disorder (SUD) is one of the major mental illnesses that is terrifically intensifying worldwide. It is becoming overwhelming due to limited options for treatment. The complexity of addiction disorders is the main impediment to understanding the pathophysiology of the illness. Hence, unveiling the complexity of the brain through basic research, identification of novel signaling pathways, the discovery of new drug targets, and advancement in cutting-edge technologies will help control this disorder. Additionally, there is a great hope of controlling the SUDs through immunotherapeutic measures like therapeutic antibodies and vaccines. Vaccines have played a cardinal role in eliminating many diseases like polio, measles, and smallpox. Further, vaccines have controlled many diseases like cholera, dengue, diphtheria, Haemophilus influenza type b (Hib), human papillomavirus, influenza, Japanese encephalitis, etc. Recently, COVID-19 was controlled in many countries by vaccination. Currently, continuous effort is done to develop vaccines against nicotine, cocaine, morphine, methamphetamine, and heroin. Antibody therapy against SUDs is another important area where serious attention is required. Antibodies have contributed substantially against many serious diseases like diphtheria, rabies, Crohn's disease, asthma, rheumatoid arthritis, and bladder cancer. Antibody therapy is gaining immense momentum due to its success rate in cancer treatment. Furthermore, enormous advancement has been made in antibody therapy due to the generation of high-efficiency humanized antibodies with a long half-life. The advantage of antibody therapy is its instant outcome. This article's main highlight is discussing the drug targets of SUDs and their associated mechanisms. Importantly, we have also discussed the scope of prophylactic measures to eliminate drug dependence.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Javed N Agrewala
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
5
|
Luba R, Martinez S, Jones J, Pravetoni M, Comer SD. Immunotherapeutic strategies for treating opioid use disorder and overdose. Expert Opin Investig Drugs 2023; 32:77-87. [PMID: 36696567 PMCID: PMC10035039 DOI: 10.1080/13543784.2023.2173062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Development and implementation of effective treatments for opioid use disorder (OUD) and prevention of overdose are urgent public health needs. Though existing medications for OUD (MOUD) are effective, barriers to initiation and retention in treatment persist. Therefore, development of novel treatments, especially those may complement existing treatments, is needed. AREAS COVERED This review provides an overview of vaccines for substance use disorders (SUD) and mechanisms underlying their function and efficacy. Next, we focus on existing preclinical and clinical trials of SUD vaccines. We focus briefly on related strategies before providing an expert opinion on prior, current, and future work on vaccines for OUD. We included published findings from preclinical and clinical trials found on PubMed and ScienceDirect as well as ongoing or initiated trials listed on ClinicalTrials.gov. EXPERT OPINION The present opioid overdose and OUD crises necessitate urgent development and implementation of effective treatments, especially those that offer protection from overdose and can serve as adjuvants to existing medications. Promising preclinical trial results paired with careful efforts to develop vaccines that account for prior SUD vaccine shortcomings offer hope for current and future clinical trials of opioid vaccines. Clinical advantages of opioid vaccines appear to outnumber disadvantages, which may result in improved treatment options.
Collapse
Affiliation(s)
- Rachel Luba
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Suky Martinez
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Jermaine Jones
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Marco Pravetoni
- University of Washington, School of Medicine, Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, Center for Medication Development for Substance Use Disorders and Overdose, Seattle, WA
| | - Sandra D Comer
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| |
Collapse
|
6
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Wang K, Zhang T, Liu M, Wang D, Zhu H, Wang Z, Yu F, Liu Y, Zhao W. Synthesis and immunological evaluation of Mincle ligands-based antitumor vaccines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Hossain MK, Davidson M, Kypreos E, Feehan J, Muir JA, Nurgali K, Apostolopoulos V. Immunotherapies for the Treatment of Drug Addiction. Vaccines (Basel) 2022; 10:vaccines10111778. [PMID: 36366287 PMCID: PMC9697687 DOI: 10.3390/vaccines10111778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Substance use disorders (SUD) are a serious public health concern globally. Existing treatment platforms suffer from a lack of effectiveness. The development of immunotherapies against these substances of abuse for both prophylactic and therapeutic use has gained tremendous importance as an alternative and/or supplementary to existing therapies. Significant development has been made in this area over the last few decades. Herein, we highlight the vaccine and other biologics development strategies, preclinical, clinical updates along with challenges and future directions. Articles were searched in PubMed, ClinicalTrial.gov, and google electronic databases relevant to development, preclinical, clinical trials of nicotine, cocaine, methamphetamine, and opioid vaccines. Various new emerging vaccine development strategies for SUD were also identified through this search and discussed. A good number of vaccine candidates demonstrated promising results in preclinical and clinical phases and support the concept of developing a vaccine for SUD. However, there have been no ultimate success as yet, and there remain some challenges with a massive push to take more candidates to clinical trials for further evaluation to break the bottleneck.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Erica Kypreos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Joshua Alexander Muir
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
9
|
Celik M, Fuehrlein B. A Review of Immunotherapeutic Approaches for Substance Use Disorders: Current Status and Future Prospects. Immunotargets Ther 2022; 11:55-66. [PMID: 36199734 PMCID: PMC9528911 DOI: 10.2147/itt.s370435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Muhammet Celik
- Research Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brian Fuehrlein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Mental Health Service Line, VA Connecticut Healthcare System, West Haven, CT, USA
- Correspondence: Brian Fuehrlein, Mental Health Service Line, VA Connecticut Healthcare System, 950 Campbell Ave, West Haven, CT, 06516, Tel +1-203-932-5711 x4471, Fax +1-203-937-4904, Email
| |
Collapse
|
10
|
Sulima A, Li F, Morgan JB, Truong P, Antoline JFG, Oertel T, Barrientos RC, Torres OB, Beck Z, Imler GH, Deschamps JR, Matyas GR, Jacobson AE, Rice KC. Design, Synthesis, and In Vivo Evaluation of C1-Linked 4,5-Epoxymorphinan Haptens for Heroin Vaccines. Molecules 2022; 27:1553. [PMID: 35268659 PMCID: PMC8911913 DOI: 10.3390/molecules27051553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In our continuing effort to develop effective anti-heroin vaccines as potential medications for the treatment of opioid use disorder, herein we present the design and synthesis of the haptens: 1-AmidoMorHap (1), 1-AmidoMorHap epimer (2), 1 Amido-DihydroMorHap (3), and 1 Amido-DihydroMorHap epimer (4). This is the first report of hydrolytically stable haptenic surrogates of heroin with the attachment site at the C1 position in the 4,5-epoxymorophinan nucleus. We prepared respective tetanus toxoid (TT)-hapten conjugates as heroin vaccine immunogens and evaluated their efficacy in vivo. We showed that all TT-hapten conjugates induced high antibody endpoint titers against the targets but only haptens 2 and 3 can induce protective effects against heroin in vivo. The epimeric analogues of these haptens, 1 and 4, failed to protect mice from the effects of heroin. We also showed that the in vivo efficacy is consistent with the results of the in vitro drug sequestration assay. Attachment of the linker at the C1 position induced antibodies with weak binding to the target drugs. Only TT-2 and TT-3 yielded antibodies that bound heroin and 6-acetyl morphine. None of the TT-hapten conjugates induced antibodies that cross-reacted with morphine, methadone, naloxone, or naltrexone, and only TT-3 interacted weakly with buprenorphine, and that subtle structural difference, especially at the C6 position, can vastly alter the specificity of the induced antibodies. This study is an important contribution in the field of vaccine development against small-molecule targets, providing proof that the chirality at C6 in these epoxymorphinans is a vital key to their effectiveness.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Fuying Li
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Jeffrey Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Phong Truong
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Joshua F. G. Antoline
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Therese Oertel
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
| | - Rodell C. Barrientos
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Oscar B. Torres
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gregory H. Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (J.R.D.)
| | - Jeffrey R. Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (J.R.D.)
| | - Gary R. Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
| | - Arthur E. Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| |
Collapse
|
11
|
Lee YK, Gold MS, Fuehrlein BS. Looking beyond the opioid receptor: A desperate need for new treatments for opioid use disorder. J Neurol Sci 2022; 432:120094. [PMID: 34933249 DOI: 10.1016/j.jns.2021.120094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
The mainstay of treatment for opioid use disorder (OUD) is opioid agonist therapy (OAT), which modulates opioid receptors to reduce substance craving and use. OAT maintains dependence on opioids but helps reduce overdose and negative sequelae of substance abuse. Despite increasing availability of OAT, its effectiveness is limited by difficulty in initiating and maintaining patients on treatment. With the worsening opioid epidemic in the United States and rising overdose deaths, a more durable and effective treatment for OUD is necessary. This paper reviews novel treatments being investigated for OUD, including neuromodulatory interventions, psychedelic drugs, and other novel approaches. Neuromodulatory interventions can stimulate the addiction neural circuitry involving the dorsolateral prefrontal cortex and deeper mesolimbic structures to curb craving and reduce use, and multiple clinical trials for interventional treatment for OUD are currently conducted. Similarly, psychedelic agents are being investigated for efficacy in OUD specifically. There is a resurgence of interest in psychedelic agents' therapeutic potential, with evidence of improving mood symptoms and decreased substance use even after just one dose. Exact mechanism of their anti-addictive effect is not fully elucidated, but psychedelic agents do not maintain opioid dependence and some may even be helpful in abating symptoms of withdrawal. Other potential approaches for OUD include targeting different parts of the dopamine-dependent addiction pathway, identifying susceptible genes and modulating gene products, as well as utilizing vaccines as immunotherapy to blunt the addictive effects of substances. Much more clinical data are needed to support efficacy and safety of these therapies in OUD, but these proposed novel treatments look beyond the opioid receptor to offer hope for a more durably effective OUD treatment.
Collapse
Affiliation(s)
- Yu Kyung Lee
- School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA.
| | - Mark S Gold
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | - Brian S Fuehrlein
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Barrientos R, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug Chem 2021; 32:2295-2306. [PMID: 34076427 PMCID: PMC8603354 DOI: 10.1021/acs.bioconjchem.1c00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Collapse
Affiliation(s)
- Rodell
C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Eric W. Bow
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Essie Komla
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Zoltan Beck
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C. Rice
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
13
|
Koo BI, Jin S, Kim H, Lee DJ, Lee E, Nam YS. Conjugation-Free Multilamellar Protein-Lipid Hybrid Vesicles for Multifaceted Immune Responses. Adv Healthc Mater 2021; 10:e2101239. [PMID: 34467659 DOI: 10.1002/adhm.202101239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Various lipid-based nanocarriers have been developed for the co-delivery of protein antigens with immunological adjuvants. However, their in vivo potency in vaccine delivery is limited by structural instability, which causes off-target delivery and low cross-presentation efficacies. Recent works employ covalent cross-linking to stabilize the lipid nanostructures, though the immunogenicity and side effects of chemically modified protein antigens and lipids can cause a long-lasting safety issue. Here robust "conjugation-free" multilamellar protein antigen-lipid hybrid nanovesicles (MPLVs) are introduced through the antigen-mediated self-assembly of unilamellar lipid vesicles for the co-delivery of protein antigens and immunologic adjuvants. The nanocarriers coated with monophosphoryl lipid A and hyaluronic acids elicit highly increase antigen-specific immune responses in vitro and in vivo. The MPLVs increase the generation of immunological surface markers and cytokines in mouse-derived bone-marrow dendritic cells compared to soluble antigens with adjuvants. Besides, the vaccination of mice with the MPLVs significantly increase the production of anti-antigen antibody and interferon-gamma via the activation of CD4+ and CD8+ T cells, respectively. These findings suggest that MPLVs can serve as a promising nanovaccine delivery platform for efficient antigen cross-presentation through the efficient co-delivery of protein antigens with adjuvants.
Collapse
Affiliation(s)
- Bon Il Koo
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Seon‐Mi Jin
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Hayeon Kim
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- KAIST Institute for NanoCentury Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- KAIST Institute for Health Science and Technology Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. Synergistic immune and antinociceptive effects induced from the combination of two different vaccines against morphine/heroin in mouse. Hum Vaccin Immunother 2021; 17:3515-3528. [PMID: 34170784 PMCID: PMC8437472 DOI: 10.1080/21645515.2021.1935171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022] Open
Abstract
Animal studies have reported the use of different opioid-vaccine formulations with relative success These studies have suggested that new opioid-vaccine formulations are required, which are capable of triggering a robust humoral response. One strategy that has been used is the co-administration of two or more vaccines with different but complementary properties, which are capable of generating a robust immune response. We have developed two formulations of opioid-vaccine, the M6-TT, and M3-TT, which generate a robust immune response capable of recognizing heroin and morphine. In this work, we evaluate the combination of two vaccine formulations, which we call the M3/6-TT vaccine, to elicit a robust immune response and protection against heroin and morphine. Balb/c mice were immunized simultaneously with M6-TT vaccine and with M3-TT vaccine. A solid-phase antibody-capture ELISA was used for monitoring antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick and hot-plate testing to evaluate the antinociceptive effects induced by heroin or morphine. Immunization with M3-TT and M6-TT vaccine elicits a robust immune response with an antibody titer of 1: 590 000 able to recognize heroin and morphine. These antibodies are capable of reducing the antinociceptive effects induced by doses of up to 40 mg/Kg. of morphine or 10 mg/kg of heroin. This suggests that the combination of two vaccine formulations that generate antibodies with different but complementary characteristics would be a new therapeutic strategy aimed at reducing drug relapses.
Collapse
Affiliation(s)
- Susana Barbosa-Mendez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Maura Matus-Ortega
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Ricardo Hernandez-Miramontes
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| |
Collapse
|
15
|
The M3-TT Vaccine Decreases the Antinociceptive Effects of Morphine and Heroin in Mice. Int J Ment Health Addict 2021. [DOI: 10.1007/s11469-021-00621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Barbosa-Méndez S, Matus-Ortega M, Hernández-Miramontes R, Salazar-Juárez A. The morphine/heroin vaccine decreased the heroin-induced antinociceptive and reinforcing effects in three inbred strains mouse. Int Immunopharmacol 2021; 98:107887. [PMID: 34186279 DOI: 10.1016/j.intimp.2021.107887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Clinical trials have indicated that a vaccine must be immunogenic in genetically diverse human populations and that immunogenicity and protective efficacy in animal models are two key indices required for the approval of a new vaccine. Additionally, the immune response (immunogenicity) and immunoprotection are dependent on the mouse strain. Therefore, the objective of the present study was to determine the immune response (immunogenicity) and the protective efficacy (behavioral response) in three inbred mouse strains immunized with the M6TT vaccine. Female BALB/c, C57Bl/6, and DBA/2 inbred mice were immunized with the M6-TT vaccine. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick testing to evaluate the antinociceptive effects induced by heroin. Additionally, heroin-induced locomotor activity and place preference were evaluated. The M6-TT vaccine was able to generate a specific antibody titer in the three inbred mouse strains evaluated. The antibodies reduced the antinociceptive effect of different doses of heroin. In addition, they decreased the heroin-induced locomotor activity and place preference. These findings suggest that the M6-TT vaccine generates a powerful immunogenic response capable of reducing the antinociceptive and reinforcing effects of heroin in different inbred mouse strains, which supports its possible future use in clinical trials in genetically diverse human populations.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Maura Matus-Ortega
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Ricardo Hernández-Miramontes
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico.
| |
Collapse
|
17
|
Sei CJ, Rao M, Schuman RF, Daum LT, Matyas GR, Rikhi N, Muema K, Anderson A, Jobe O, Kroscher KA, Alving CR, Fischer GW. Conserved Influenza Hemagglutinin, Neuraminidase and Matrix Peptides Adjuvanted with ALFQ Induce Broadly Neutralizing Antibodies. Vaccines (Basel) 2021; 9:vaccines9070698. [PMID: 34202178 PMCID: PMC8310080 DOI: 10.3390/vaccines9070698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
A universal influenza candidate vaccine that targets multiple conserved influenza virus epitopes from hemagglutinin (HA), neuraminidase (NA) and matrix (M2e) proteins was combined with the potent Army liposomal adjuvant (ALFQ) to promote induction of broad immunity to seasonal and pandemic influenza strains. The unconjugated and CRM-conjugated composite peptides formulated with ALFQ were highly immunogenic and induced both humoral and cellular immune responses in mice. Broadly reactive serum antibodies were induced across various IgG isotypes. Mice immunized with the unconjugated composite peptide developed antibody responses earlier than mice immunized with conjugated peptides, and the IgG antibodies were broadly reactive and neutralizing across Groups 1 and 2 influenza viruses. Multi-epitope unconjugated influenza composite peptides formulated with ALFQ provide a novel strategy for the development of a universal influenza vaccine. These synthetic peptide vaccines avoid the pitfalls of egg-produced influenza vaccines and production can be scaled up rapidly and economically.
Collapse
Affiliation(s)
- Clara J. Sei
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
- Correspondence: ; Tel.: +1-240-848-4293
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
| | | | - Luke T. Daum
- Longhorn Vaccines and Diagnostics, San Antonio, TX 78209, USA;
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
| | - Nimisha Rikhi
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| | - Kevin Muema
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| | - Alexander Anderson
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37831, USA
| | - Ousman Jobe
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Kellie A. Kroscher
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
| | - Gerald W. Fischer
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| |
Collapse
|
18
|
Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. J Virol 2020; 95:JVI.01193-20. [PMID: 33087466 PMCID: PMC7944456 DOI: 10.1128/jvi.01193-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
The RV144 vaccine trial revealed a correlation between reduced risk of HIV infection and the level of nonneutralizing-antibody (Ab) responses targeting specific epitopes in the second variable domain (V2) of the HIV gp120 envelope (Env) protein, suggesting this region as a target for vaccine development. To favor induction of V2-specific Abs, we developed a vaccine regimen that included priming with DNA expressing an HIV V1V2 trimeric scaffold immunogen followed by booster immunizations with a combination of DNA and protein in rhesus macaques. Priming vaccination with DNA expressing the HIV recombinant subtype CRF01_AE V1V2 scaffold induced higher and broader V2-specific Ab responses than vaccination with DNA expressing CRF01_AE gp145 Env. Abs recognizing the V2 peptide that was reported as a critical target in RV144 developed only after the priming immunization with V1V2 DNA. The V2-specific Abs showed several nonneutralizing Fc-mediated functions, including ADCP and C1q binding. Importantly, robust V2-specific Abs were maintained upon boosting with gp145 DNA and gp120 protein coimmunization. In conclusion, priming with DNA expressing the trimeric V1V2 scaffold alters the hierarchy of humoral immune responses to V2 region epitopes, providing a method for more efficient induction and maintenance of V2-specific Env Abs associated with reduced risk of HIV infection.IMPORTANCE The aim of this work was to design and test a vaccine regimen focusing the immune response on targets associated with infection prevention. We demonstrated that priming with a DNA vaccine expressing only the HIV Env V1V2 region induces Ab responses targeting the critical region in V2 associated with protection. This work shows that V1V2 scaffold DNA priming immunization provides a method to focus immune responses to the desired target region, in the absence of immune interference by other epitopes. This induced immune responses with improved recognition of epitopes important for protective immunity, namely, V2-specific humoral immune responses inversely correlating with HIV risk of infection in the RV144 trial.
Collapse
|
19
|
Robinson C, Gradinati V, Hamid F, Baehr C, Crouse B, Averick S, Kovaliov M, Harris D, Runyon S, Baruffaldi F, LeSage M, Comer S, Pravetoni M. Therapeutic and Prophylactic Vaccines to Counteract Fentanyl Use Disorders and Toxicity. J Med Chem 2020; 63:14647-14667. [PMID: 33215913 DOI: 10.1021/acs.jmedchem.0c01042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of fatal overdoses has increased worldwide due to the widespread access to illicit fentanyl and its potent analogues. Vaccines offer a promising strategy to reduce the prevalence of opioid use disorders (OUDs) and to prevent toxicity from accidental and deliberate exposure to fentanyl and its derivatives. This study describes the development and characterization of vaccine formulations consisting of novel fentanyl-based haptens conjugated to carrier proteins. Vaccine efficacy was tested against opioid-induced behavior and toxicity in mice and rats challenged with fentanyl and its analogues. Prophylactic vaccination reduced fentanyl- and sufentanil-induced antinociception, respiratory depression, and bradycardia in mice and rats. Therapeutic vaccination also reduced fentanyl intravenous self-administration in rats. Because of their selectivity, vaccines did not interfere with the pharmacological effects of commonly used anesthetics nor with methadone, naloxone, oxycodone, or heroin. These preclinical data support the translation of vaccines as a viable strategy to counteract fentanyl use disorders and toxicity.
Collapse
Affiliation(s)
- Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Fatima Hamid
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Saadyah Averick
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Marina Kovaliov
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Danni Harris
- RTI International, Raleigh, North Carolina 27616, United States
| | - Scott Runyon
- RTI International, Raleigh, North Carolina 27616, United States
| | - Federico Baruffaldi
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Mark LeSage
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Sandra Comer
- Department of Psychiatry, Columbia University Irving Medical Center, and the New York State Psychiatric Institute, New York, New York 10027-6902, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
21
|
Singh P, Matyas GR, Anderson A, Beck Z. Biophysical characterization of polydisperse liposomal adjuvant formulations. Biochem Biophys Res Commun 2020; 529:362-365. [PMID: 32703436 DOI: 10.1016/j.bbrc.2020.05.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Army Liposome Formulations (ALF) are potent adjuvants, of which there are two primary forms, lyophilized ALF (ALFlyo) containing monophosphoryl lipid A (MPLA) and ALF containing MPLA and QS21 (ALFQ). ALFlyo and ALFQ adjuvants are essential constituents of candidate vaccines for bacterial, viral, and parasitic diseases. They have been widely used in preclinical immunogenicity studies in small animals and non-human primates and are progressing to phase I/IIa clinical trials. ALFQ was prepared by adding saponin QS21 to small unilamellar liposome vesicles (SUVs) of ALF55 that contain 55 mol% cholesterol, whereas ALFlyo was created by reconstituting lyophilized SUVs of ALF43, consisting of 43 mol% cholesterol, in aqueous buffer solution. These formulations display heterogenous particle size distribution. Since biophysical characteristics of liposomes may impact their adjuvant potential, we characterized the particle size distribution and lamellarity of the individual liposome particles in ALFlyo and ALFQ formulations using cryo-electron microscopy and a newly developed MANTA technology. ALFlyo and ALFQ exhibited similar particle size distributions with liposomes ranging from 50 nm to several μm. However, fundamental differences were observed in the lamellar structures of the liposomes. ALFlyo displayed a greater number of multilamellar and multivesicular liposome particles, as compared to that in ALFQ, which was predominately unilamellar.
Collapse
Affiliation(s)
- Pushpendra Singh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Alexander Anderson
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Zoltan Beck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| |
Collapse
|
22
|
Gradinati V, Baruffaldi F, Abbaraju S, Laudenbach M, Amin R, Gilger B, Velagaleti P, Pravetoni M. Polymer-mediated delivery of vaccines to treat opioid use disorders and to reduce opioid-induced toxicity. Vaccine 2020; 38:4704-4712. [PMID: 32439214 DOI: 10.1016/j.vaccine.2020.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022]
Abstract
Vaccines offer a potential strategy to treat opioid use disorders (OUD) and to reduce the incidence of opioid-related overdoses. Vaccines induce opioid-specific polyclonal antibodies that selectively and effectively bind the target opioid and prevent its distribution across the blood-brain barrier. Because antibody-mediated reduction of drug distribution to the brain reduces drug-induced behavior and toxicity, vaccine efficacy depends on the quantity and quality of the antibody response. This study tested whether polymer-mediated delivery could improve vaccine efficacy against opioids as well as eliminate the need for booster injections normally required for a successful immunization. A series of novel biodegradable biocompatible thermogelling pentablock co-polymers were used to formulate a candidate vaccine against oxycodone in mice and rats. Polymer-based delivery of the anti-oxycodone vaccine was equally or more effective than administration in aluminum adjuvant in generating oxycodone-specific antibodies and in reducing oxycodone-induced effects and oxycodone distribution to the brain in mice and rats. The composition and release kinetics of the polymer formulations determined vaccine efficacy. Specifically, a formulation consisting of three simultaneous injections of the anti-oxycodone vaccine formulated in three different polymers with slow, intermediate, and fast release kinetics was more effective than an immunization regimen consisting of three sequential injections with the vaccine adsorbed on aluminum. The novel three-phased polymer vaccine formulation was effective in blocking oxycodone-induced antinociception, respiratory depression and bradycardia in rats.
Collapse
Affiliation(s)
- Valeria Gradinati
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States
| | | | | | - Megan Laudenbach
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Rasidul Amin
- Symmetry Biosciences, Raleigh, NC, United States
| | - Brian Gilger
- North Carolina State University, NC, United States
| | | | - Marco Pravetoni
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States; University of Minnesota, Center for Immunology, Minneapolis, MN, United States.
| |
Collapse
|
23
|
Xu A, Kosten TR. Current status of immunotherapies for addiction. Ann N Y Acad Sci 2020; 1489:3-16. [PMID: 32147860 DOI: 10.1111/nyas.14329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
The treatment of substance use disorders has always been challenging because multiple neurotransmitters mediate addiction. However, with smoking being the leading cause of preventable death and the recent opioid epidemic in the United States, the search for novel solutions becomes more imperative. In this review, we discuss the use of antibodies to treat addictions and highlight areas of success and areas that require improvement, using examples from cocaine, nicotine, and opioid vaccines. Through each example, we examine creative problem-solving strategies for developing future vaccines, such as using an adenovirus vector as a carrier, designing bivalent vaccines, stimulating Toll-like receptors for adjuvant effects, and altering the route of administration. Our review also covers passive immunization alone to override or prevent drug toxicity as well as in combination with vaccines for more rapid and potentially greater efficacy.
Collapse
Affiliation(s)
- Ashley Xu
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| | - Thomas R Kosten
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
24
|
Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020; 19:279-292. [PMID: 32228108 PMCID: PMC7412170 DOI: 10.1080/14760584.2020.1745636] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Introduction: From its earliest days, the US. military has embraced the use of vaccines to fight infectious diseases. The Army Liposome Formulation (ALF) has been a pivotal innovation as a vaccine adjuvant that provides excellent safety and potency and could lead to dual-use military and civilian benefits. For protection of personnel against difficult disease threats found in many areas of the world, Army vaccine scientists have created novel liposome-based vaccine adjuvants.Areas covered: ALF consists of liposomes containing saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA) as an immunostimulant. ALF exhibited safety and strong potency in many vaccine clinical trials. Improvements based on ALF include: ALF adsorbed to aluminum hydroxide (ALFA); ALF containing QS21 saponin (ALFQ); and ALFQ adsorbed to aluminum hydroxide (ALFQA). Preclinical safety and efficacy studies with ALF, LFA, ALFQ, and ALFQA are discussed in preparation for upcoming vaccine trials targeting malaria, HIV-1, bacterial diarrhea, and opioid addiction.Expert opinion: The introduction of ALF in the 1980s stimulated commercial interest in vaccines to infectious diseases, and therapeutic vaccines to cancer, and Alzheimer's disease. It is likely that ALF, ALFA, and ALFQ, will provide momentum for new types of modern vaccines with improved efficacy and safety.
Collapse
Affiliation(s)
- Carl R. Alving
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Kristina K. Peachman
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Mangala Rao
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|
25
|
Pravetoni M, Comer SD. Development of vaccines to treat opioid use disorders and reduce incidence of overdose. Neuropharmacology 2019; 158:107662. [PMID: 31173759 DOI: 10.1016/j.neuropharm.2019.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Vaccines offer a promising therapeutic strategy to treat substance use disorders (SUD). Vaccines have shown extensive preclinical proof of selectivity, safety, and efficacy against opioids, nicotine, cocaine, methamphetamine, and designer drugs. Despite clinical evaluation of vaccines targeting nicotine and cocaine showing proof of concept for this approach, no vaccine for SUD has yet reached the market. This review first discusses how vaccines for treatment of opioid use disorders (OUD) and reduction of opioid-induced fatal overdoses fit within the current medication assisted treatment (MAT) portfolio, and then summarizes ongoing efforts toward translation of vaccines targeting heroin, oxycodone, fentanyl, and other opioids. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Marco Pravetoni
- University of Minnesota Medical School, Departments of Pharmacology and Medicine, Minneapolis, MN, USA; Hennepin Healthcare Research Institute, Minneapolis, MN, USA.
| | - Sandra D Comer
- Columbia University Irving Medical Center, Department of Psychiatry, The New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
26
|
Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules 2019; 24:molecules24101855. [PMID: 31091786 PMCID: PMC6572008 DOI: 10.3390/molecules24101855] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022] Open
Abstract
Peptides constitute molecular diversity with unique molecular mechanisms of action that are proven indispensable in the management of many human diseases, but of only a mere fraction relative to more traditional small molecule-based medicines. The integration of these two therapeutic modalities offers the potential to enhance and broaden pharmacology while minimizing dose-dependent toxicology. This review summarizes numerous advances in drug design, synthesis and development that provide direction for next-generation research endeavors in this field. Medicinal studies in this area have largely focused upon the application of peptides to selectively enhance small molecule cytotoxicity to more effectively treat multiple oncologic diseases. To a lesser and steadily emerging extent peptides are being therapeutically employed to complement and diversify the pharmacology of small molecule drugs in diseases other than just cancer. No matter the disease, the purpose of the molecular integration remains constant and it is to achieve superior therapeutic outcomes with diminished adverse effects. We review linker technology and conjugation chemistries that have enabled integrated and targeted pharmacology with controlled release. Finally, we offer our perspective on opportunities and obstacles in the field.
Collapse
|
27
|
Natori Y, Hwang CS, Lin L, Smith LC, Zhou B, Janda KD. A chemically contiguous hapten approach for a heroin-fentanyl vaccine. Beilstein J Org Chem 2019; 15:1020-1031. [PMID: 31164940 DOI: 10.3762/bjoc.15.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Increased death due to the opioid epidemic in the United States has necessitated the development of new strategies to treat addiction. Monoclonal antibodies and antidrug vaccines provide a tool that both aids addiction management and reduces the potential for overdose. Dual drug vaccines formulated by successive conjugation or by mixture have certain drawbacks. The current study examines an approach for combatting the dangers of fentanyl-laced heroin, by using a hapten with one epitope that has domains for both fentanyl and heroin. Results: We evaluated a series of nine vaccines developed from chemically contiguous haptens composed of both heroin- and fentanyl-like domains. Analysis of the results obtained by SPR and ELISA revealed trends in antibody affinity and titers for heroin and fentanyl based on epitope size and linker location. In antinociception studies, the best performing vaccines offered comparable protection against heroin as our benchmark heroin vaccine, but exhibited attenuated protection against fentanyl compared to our fentanyl vaccine. Conclusion: After thorough investigation of this strategy, we have identified key considerations for the development of a chemically contiguous heroin-fentanyl vaccine. Importantly, this is the first report of such a strategy in the opioid-drug-vaccine field.
Collapse
Affiliation(s)
- Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Candy S Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Department of Chemistry, Southern Connecticut State University, 501 Crescent St, New Haven, CT, 06515, USA
| | - Lucy Lin
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Lauren C Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Kim D Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| |
Collapse
|
28
|
Ramakrishnan A, Schumack NM, Gariepy CL, Eggleston H, Nunez G, Espinoza N, Nieto M, Castillo R, Rojas J, McCoy AJ, Beck Z, Matyas GR, Alving CR, Guerry P, Poly F, Laird RM. Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21. mSphere 2019; 4:e00101-19. [PMID: 31043512 PMCID: PMC6495334 DOI: 10.1128/msphere.00101-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is among the most common causes of diarrheal disease worldwide and efforts to develop protective measures against the pathogen are ongoing. One of the few defined virulence factors targeted for vaccine development is the capsule polysaccharide (CPS). We have developed a capsule conjugate vaccine against C. jejuni strain 81-176 (CPS-CRM) that is immunogenic in mice and nonhuman primates (NHPs) but only moderately immunogenic in humans when delivered alone or with aluminum hydroxide. To enhance immunogenicity, two novel liposome-based adjuvant systems, the Army Liposome Formulation (ALF), containing synthetic monophosphoryl lipid A, and ALF plus QS-21 (ALFQ), were evaluated with CPS-CRM in this study. In mice, ALF and ALFQ induced similar amounts of CPS-specific IgG that was significantly higher than levels induced by CPS-CRM alone. Qualitative differences in antibody responses were observed where CPS-CRM alone induced Th2-biased IgG1, whereas ALF and ALFQ enhanced Th1-mediated anti-CPS IgG2b and IgG2c and generated functional bactericidal antibody titers. CPS-CRM + ALFQ was superior to vaccine alone or CPS-CRM + ALF in augmenting antigen-specific Th1, Th2, and Th17 cytokine responses and a significantly higher proportion of CD4+ IFN-γ+ IL-2+ TNF-α+ and CD4+ IL-4+ IL-10+ T cells. ALFQ also significantly enhanced anti-CPS responses in NHPs when delivered with CPS-CRM compared to alum- or ALF-adjuvanted groups and showed the highest protective efficacy against diarrhea following orogastric challenge with C. jejuni This study provides evidence that the ALF adjuvants may provide enhanced immunogenicity of this and other novel C. jejuni capsule conjugate vaccines in humans.IMPORTANCECampylobacter jejuni is a leading cause of diarrheal disease worldwide, and currently no preventative interventions are available. C. jejuni is an invasive mucosal pathogen that has a variety of polysaccharide structures on its surface, including a capsule. In phase 1 studies, a C. jejuni capsule conjugate vaccine was safe but poorly immunogenic when delivered alone or with aluminum hydroxide. Here, we report enhanced immunogenicity of the conjugate vaccine delivered with liposome adjuvants containing monophosphoryl lipid A without or with QS-21, known as ALF and ALFQ, respectively, in preclinical studies. Both liposome adjuvants significantly enhanced immunity in mice and nonhuman primates and improved protective efficacy of the vaccine compared to alum in a nonhuman primate C. jejuni diarrhea model, providing promising evidence that these potent adjuvant formulations may enhance immunogenicity in upcoming human studies with this C. jejuni conjugate and other malaria and HIV vaccine platforms.
Collapse
Affiliation(s)
| | - Nina M Schumack
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Christina L Gariepy
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Heather Eggleston
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gladys Nunez
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Nereyda Espinoza
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Monica Nieto
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Rosa Castillo
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Jesus Rojas
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Andrea J McCoy
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patricia Guerry
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Frédéric Poly
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
29
|
Robinson C, Baehr C, Schmiel SE, Accetturo C, Mueller DL, Pravetoni M. Alum adjuvant is more effective than MF59 at prompting early germinal center formation in response to peptide-protein conjugates and enhancing efficacy of a vaccine against opioid use disorders. Hum Vaccin Immunother 2019; 15:909-917. [PMID: 30625019 DOI: 10.1080/21645515.2018.1558697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Opioid use disorders (OUD) and fatal overdoses are a national emergency in the United States. Therapeutic vaccines offer a promising strategy to treat OUD and reduce the incidence of overdose. Immunization with opioid-based haptens conjugated to immunogenic carriers elicits opioid-specific antibodies that block opioid distribution to the brain and reduce opioid-induced behavior and toxicity in pre-clinical models. This study tested whether the efficacy of a lead oxycodone conjugate vaccine was improved by formulation in either aluminum hydroxide or the squalene-based oil-in-water emulsion MF59 adjuvant, which was recently FDA-approved for influenza vaccines in subjects 65+ years old. In adult BALB/c mice, alum formulation was more effective than MF59 at promoting the early expansion of hapten-specific B cells and the production of oxycodone-specific serum IgG antibodies, as well as blocking oxycodone distribution to the brain and oxycodone-induced motor activity. Alum was also more effective than MF59 at promoting early differentiation of peptide-specific MHCII-restricted CD4+ Tfh and GC-Tfh cells in adult C57Bl/6 mice immunized with a model peptide-protein conjugate. In contrast, alum and MF59 were equally effective in promoting hapten-specific B cells and peptide-specific MHCII-restricted CD4+ T cell differentiation in older C57Bl/6 mice. These data suggest that alum is a more effective adjuvant than MF59 for conjugate vaccines targeting synthetic small molecule haptens or peptide antigens in adult, but not aged, mice.
Collapse
Affiliation(s)
- Christine Robinson
- a Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation) , Minneapolis, MN , USA
| | - Carly Baehr
- a Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation) , Minneapolis, MN , USA.,b Department of Veterinary Population Medicine , University of Minnesota , Minneapolis, MN, , USA
| | | | - Claudia Accetturo
- d Department of Pharmaceutics , Universita degli Studi di Milano , Milan , Italy
| | - Daniel L Mueller
- e Center for Immunology , University of Minnesota , Minneapolis, MN , USA.,f Department of Medicine , University of Minnesota , Minneapolis, MN , USA
| | - Marco Pravetoni
- a Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation) , Minneapolis, MN , USA.,e Center for Immunology , University of Minnesota , Minneapolis, MN , USA.,f Department of Medicine , University of Minnesota , Minneapolis, MN , USA.,g Department of Pharmacology , University of Minnesota , Minneapolis, MN , USA
| |
Collapse
|
30
|
Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z. Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:206-216. [DOI: 10.1016/j.nano.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
|
31
|
Rao M, Onkar S, Peachman KK, White Y, Trinh HV, Jobe O, Zhou Y, Dawson P, Eller MA, Matyas GR, Alving CR. Liposome-Encapsulated Human Immunodeficiency Virus-1 gp120 Induces Potent V1V2-Specific Antibodies in Humans. J Infect Dis 2018; 218:1541-1550. [DOI: 10.1093/infdis/jiy348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Sayali Onkar
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Kristina K Peachman
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Yohann White
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Hung V Trinh
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Ousman Jobe
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | | | - Michael A Eller
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Gary R Matyas
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Carl R Alving
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
32
|
A rapid solution-based method for determining the affinity of heroin hapten-induced antibodies to heroin, its metabolites, and other opioids. Anal Bioanal Chem 2018; 410:3885-3903. [PMID: 29675707 PMCID: PMC5956019 DOI: 10.1007/s00216-018-1060-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022]
Abstract
We describe for the first time a method that utilizes microscale thermophoresis (MST) technology to determine polyclonal antibody affinities to small molecules. Using a novel type of heterologous MST, we have accurately measured a solution-based binding affinity of serum antibodies to heroin which was previously impossible with other currently available methods. Moreover, this mismatch approach (i.e., using a cross-reactive hapten tracer) has never been reported in the literature. When compared with equilibrium dialysis combined with ultra-performance liquid chromatography/tandem mass spectrometry (ED-UPLC/MS/MS), this novel MST method yields similar binding affinity values for polyclonal antibodies to the major heroin metabolites 6-AM and morphine. Additionally, we herein report the method of synthesis of this novel cross-reactive hapten, MorHap-acetamide—a useful analog for the study of heroin hapten–antibody interactions. Using heterologous MST, we were able to determine the affinities, down to nanomolar accuracies, of polyclonal antibodies to various abused opioids. While optimizing this method, we further discovered that heroin is protected from serum esterase degradation by the presence of these antibodies in a concentration-dependent manner. Lastly, using affinity data for a number of structurally different opioids, we were able to dissect the moieties that are crucial to antibody binding. The novel MST method that is presented herein can be extended to the analysis of any ligand that is prone to degradation and can be applied not only to the development of vaccines to substances of abuse but also to the analysis of small molecule/protein interactions in the presence of serum. Strategy for the determination of hapten-induced antibody affinities using Microscale thermophoresis ![]()
Collapse
|
33
|
Beck Z, Torres OB, Matyas GR, Lanar DE, Alving CR. Immune response to antigen adsorbed to aluminum hydroxide particles: Effects of co-adsorption of ALF or ALFQ adjuvant to the aluminum-antigen complex. J Control Release 2018; 275:12-19. [PMID: 29432824 DOI: 10.1016/j.jconrel.2018.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/04/2018] [Indexed: 12/12/2022]
Abstract
Aluminum salts have been used as vaccine adjuvants for >50 years, and they are currently present in at least 146 licensed vaccines worldwide. In this study we examined whether adsorption of Army Liposome Formulation (ALF) to an aluminum salt that already has an antigen adsorbed to it might result in improved immune potency of the aluminum-adsorbed antigen. ALF is composed of a family of anionic liposome-based adjuvants, in which the liposomes contain synthetic phospholipids having dimyristoyl fatty acyl groups, cholesterol and monophosphoryl lipid A (MPLA). For certain candidate vaccines, ALF has been added to aluminum hydroxide (AH) gel as a second adjuvant to form ALFA. Here we show that different methods of preparation of ALF changed the physical structures of both ALF and ALFA. Liposomes containing the saponin QS21 (ALFQ) have also been mixed with AH to form ALFQA as an effective combination. In this study, we first adsorbed one of two different antigens to AH, either tetanus toxoid conjugated to 34 copies of a hapten (MorHap), which has been used in a candidate heroin vaccine, or gp140 protein derived from the envelope protein of HIV-1. We then co-adsorbed ALF or ALFQ to the AH to form ALFA or ALFQA. In each case, the immune potency of the antigen adsorbed to AH was greatly increased by co-adsorbing either ALF or ALFQ to the AH. Based on IgG subtype and cytokine analysis by ELISPOT, ALFA induced predominately a Th2-type response and ALFQ and ALFQA each induced more balanced Th1/Th2 responses.
Collapse
Affiliation(s)
- Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Oscar B Torres
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - David E Lanar
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
34
|
Sulima A, Jalah R, Antoline JFG, Torres OB, Imler GH, Deschamps JR, Beck Z, Alving CR, Jacobson AE, Rice KC, Matyas GR. A Stable Heroin Analogue That Can Serve as a Vaccine Hapten to Induce Antibodies That Block the Effects of Heroin and Its Metabolites in Rodents and That Cross-React Immunologically with Related Drugs of Abuse. J Med Chem 2017; 61:329-343. [PMID: 29236495 PMCID: PMC5767880 DOI: 10.1021/acs.jmedchem.7b01427] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
An
improved synthesis of a haptenic heroin surrogate 1 (6-AmHap)
is reported. The intermediate needed for the preparation
of 1 was described in the route in the synthesis of 2 (DiAmHap). A scalable procedure was developed to install
the C-3 amido group. Using the Boc protectng group in 18 allowed preparation of 1 in an overall yield of 53%
from 4 and eliminated the necessity of preparing the
diamide 13. Hapten 1 was conjugated to tetanus
toxoid and mixed with liposomes containing monophosphoryl lipid A
as an adjuvant. The 1 vaccine induced high anti-1 IgG levels that reduced heroin-induced antinociception and
locomotive behavioral changes following repeated subcutaneous and
intravenous heroin challenges in mice and rats. Vaccinated mice had
reduced heroin-induced hyperlocomotion following a 50 mg/kg heroin
challenge. The 1 vaccine-induced antibodies bound to
heroin and other abused opioids, including hydrocodone, oxycodone,
hydromorphone, oxymorphone, and codeine.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Rashmi Jalah
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Joshua F G Antoline
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Oscar B Torres
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Gregory H Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory , Washington D.C. 20375, United States
| | - Jeffrey R Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory , Washington D.C. 20375, United States
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Carl R Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
35
|
Bremer PT, Schlosburg JE, Banks ML, Steele FF, Zhou B, Poklis JL, Janda KD. Development of a Clinically Viable Heroin Vaccine. J Am Chem Soc 2017; 139:8601-8611. [PMID: 28574716 PMCID: PMC5612493 DOI: 10.1021/jacs.7b03334] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heroin is a highly abused opioid and incurs a significant detriment to society worldwide. In an effort to expand the limited pharmacotherapy options for opioid use disorders, a heroin conjugate vaccine was developed through comprehensive evaluation of hapten structure, carrier protein, adjuvant and dosing. Immunization of mice with an optimized heroin-tetanus toxoid (TT) conjugate formulated with adjuvants alum and CpG oligodeoxynucleotide (ODN) generated heroin "immunoantagonism", reducing heroin potency by >15-fold. Moreover, the vaccine effects proved to be durable, persisting for over eight months. The lead vaccine was effective in rhesus monkeys, generating significant and sustained antidrug IgG titers in each subject. Characterization of both mouse and monkey antiheroin antibodies by surface plasmon resonance (SPR) revealed low nanomolar antiserum affinity for the key heroin metabolite, 6-acetylmorphine (6AM), with minimal cross reactivity to clinically used opioids. Following a series of heroin challenges over six months in vaccinated monkeys, drug-sequestering antibodies caused marked attenuation of heroin potency (>4-fold) in a schedule-controlled responding (SCR) behavioral assay. Overall, these preclinical results provide an empirical foundation supporting the further evaluation and potential clinical utility of an effective heroin vaccine in treating opioid use disorders.
Collapse
Affiliation(s)
- Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 N Torrey Pines Roadd, La Jolla, CA 92037, USA
| | - Joel E. Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Floyd. F. Steele
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 N Torrey Pines Roadd, La Jolla, CA 92037, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA 23298, USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 N Torrey Pines Roadd, La Jolla, CA 92037, USA
| |
Collapse
|