1
|
Sun Z, Liu B, Ma M, Alexander-Katz A, Ross CA, Johnson JA. ROMP of Macromonomers Prepared by ROMP: Expanding Access to Complex, Functional Bottlebrush Polymers. J Am Chem Soc 2025; 147:3855-3865. [PMID: 39808775 DOI: 10.1021/jacs.4c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors. Overall, this work expands the scope of complex macromolecular architectures and provides insights into the interplay of backbone rigidity and self-assembly that will guide future nanolithography applications.
Collapse
Affiliation(s)
- Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Martin J, Michaelis M, Petrović S, Lehnen A, Müllers Y, Wendler P, Möller HM, Hartlieb M, Glebe U. Application of Sortase-Mediated Ligation for the Synthesis of Block Copolymers and Protein-Polymer Conjugates. Macromol Biosci 2025; 25:e2400316. [PMID: 39360589 PMCID: PMC11727822 DOI: 10.1002/mabi.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX1TGX2) or its nucleophilic counterpart (Gx) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX1TGX2 and Gx-polymer building blocks and gives insight into their application in SML.
Collapse
Affiliation(s)
- Johannes Martin
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Marcus Michaelis
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Saša Petrović
- Department of BiochemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Anne‐Catherine Lehnen
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Yannic Müllers
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Petra Wendler
- Department of BiochemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Heiko M. Möller
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Matthias Hartlieb
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Ulrich Glebe
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| |
Collapse
|
3
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
4
|
Yildirim T, Bali A, Koch M, Paul P, Latta L, Schneider-Daum N, Gallei M, Lehr CM. A New Class of Polyion Complex Vesicles (PIC-somes) to Improve Antimicrobial Activity of Tobramycin in Pseudomonas Aeruginosa Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401926. [PMID: 38829185 DOI: 10.1002/smll.202401926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Pseudomonas aeruginosa (PA) is a major healthcare concern due to its tolerance to antibiotics when enclosed in biofilms. Tobramycin (Tob), an effective cationic aminoglycoside antibiotic against planktonic PA, loses potency within PA biofilms due to hindered diffusion caused by interactions with anionic biofilm components. Loading Tob into nano-carriers can enhance its biofilm efficacy by shielding its charge. Polyion complex vesicles (PIC-somes) are promising nano-carriers for charged drugs, allowing higher drug loadings than liposomes and polymersomes. In this study, a new class of nano-sized PIC-somes, formed by Tob-diblock copolymer complexation is presented. This approach replaces conventional linear PEG with brush-like poly[ethylene glycol (methyl ether methacrylate)] (PEGMA) in the shell-forming block, distinguishing it from past methods. Tob paired with a block copolymer containing hydrophilic PEGMA induces micelle formation (PIC-micelles), while incorporating hydrophobic pyridyldisulfide ethyl methacrylate (PDSMA) monomer into PEGMA chains reduces shell hydrophilicity, leads to the formation of vesicles (PIC-somes). PDSMA unit incorporation enables unprecedented dynamic disulfide bond-based shell cross-linking, significantly enhancing stability under saline conditions. Neither PIC-somes nor PIC-micelles show any relevant cytotoxicity on A549, Calu-3, and dTHP-1 cells. Tob's antimicrobial efficacy against planktonic PA remains unaffected after encapsulation into PIC-somes and PIC-micelles, but its potency within PA biofilms significantly increases.
Collapse
Affiliation(s)
- Turgay Yildirim
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Aghiad Bali
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Pascal Paul
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Lorenz Latta
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123, Saarbrücken, Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Qi Y, Han H, Liu A, Zhao S, Lawanprasert A, Nielsen JE, Choudhary H, Liang D, Barron AE, Murthy N. Ethylene oxide graft copolymers reduce the immunogenicity of lipid nanoparticles. RSC Adv 2024; 14:30071-30076. [PMID: 39309654 PMCID: PMC11414743 DOI: 10.1039/d4ra05007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Lipid nanoparticle (LNP)/mRNA complexes have great therapeutic potential but their PEG chains can induce the production of anti-PEG antibodies. New LNPs that do not contain PEG are greatly needed. We demonstrate here that poly-glutamic acid-ethylene oxide graft copolymers can replace the PEG on LNPs and outperform PEG-LNPs after chronic administration.
Collapse
Affiliation(s)
- Yalin Qi
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Albert Liu
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Sheng Zhao
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Atip Lawanprasert
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine, Stanford University Stanford California 94305 USA
- Department of Science and Environment, Roskilde University Roskilde 4000 Denmark
| | - Hema Choudhary
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Dengpan Liang
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine, Stanford University Stanford California 94305 USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| |
Collapse
|
6
|
Shahriar SM, An JM, Surwase SS, Lee DY, Lee YK. Enhancing the Therapeutic Efficacy of GLP-1 for Hyperglycemia Treatment: Overcoming Barriers of Oral Gene Therapy with Taurocholic Acid-Conjugated Protamine Sulfate and Calcium Phosphate. ACS NANOSCIENCE AU 2024; 4:194-204. [PMID: 38912289 PMCID: PMC11191724 DOI: 10.1021/acsnanoscienceau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 06/25/2024]
Abstract
Activating the glucagon-like peptide-1 (GLP-1) receptor by oral nucleic acid delivery would be a promising treatment strategy against hyperglycemia due to its various therapeutic actions. However, GLP-1 receptor agonists are effective only in subcutaneous injections because they face multiple barriers due to harsh gastrointestinal tract (GIT) conditions before reaching the site of action. The apical sodium bile acid transporter (ASBT) pathway at the intestinal site could be an attractive target to overcome the problem. Herein, we used our previously established multimodal carrier system utilizing bile salt, protamine sulfate, and calcium phosphate as excipients (PTCA) and the GLP-1 gene as an active ingredient (GENE) to test the effects of different formulation doses against diabetes and obesity. The carrier system demonstrated the ability to protect the GLP-1 model gene encoded within the plasmid at the GIT and transport it via ASBT at the target site. A single oral dose, regardless of quantity, showed the generation of GLP-1 and insulin from the body and maintained the normoglycemic condition by improving insulin sensitivity and blood sugar tolerance for a prolonged period. This oral gene therapy approach shows significantly higher therapeutic efficacy in preclinical studies than currently available US Food and Drug Administration-approved GLP-1 receptor agonists such as semaglutide and liraglutide. Also, a single oral dose of GENE/PTCA is more effective than 20 insulin injections. Our study suggests that oral GENE/PTCA formulation could be a promising alternative to injection-based therapeutics for diabetics, which is effective in long-term treatment and has been found to be highly safe in all aspects of toxicology.
Collapse
Affiliation(s)
- S. M.
Shatil Shahriar
- Department
of Surgery—Transplant and Mary & Dick Holland Regenerative
Medicine Program, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United States
- KB
Biomed Inc., Chungju 27469, Republic of Korea
| | - Jeong Man An
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Sachin S. Surwase
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department
of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical
Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic
of Korea
- Institute
of Nano Science and Technology (INST), Hanyang
University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department
of Green BioEngineering, Korea National
University of Transportation, Chungju 27469, Republic
of Korea
- 4D
Biomaterials Center, Korea National University
of Transportation, Jeungpyeong 27909, Republic
of Korea
| |
Collapse
|
7
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Saha B, Lee JH, Kwon I, Chung H. Site-Specific Conjugation of Bottlebrush Polymers to Therapeutic Protein via Bioorthogonal Chemistry. Biomacromolecules 2024; 25:3200-3211. [PMID: 38591457 DOI: 10.1021/acs.biomac.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.
Collapse
Affiliation(s)
- Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| |
Collapse
|
9
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Liu B, Rodriguez J, J Kilgallon L, Wang W, Wang Y, Wang A, Dai Y, Nguyen HVT, Pentelute BL, Johnson JA. An organometallic swap strategy for bottlebrush polymer-protein conjugate synthesis. Chem Commun (Camb) 2024; 60:4238-4241. [PMID: 38529790 PMCID: PMC11008127 DOI: 10.1039/d4cc00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Polymer-protein bioconjugation offers a powerful strategy to alter the physical properties of proteins, and various synthetic polymer compositions and architectures have been investigated for this purpose. Nevertheless, conjugation of molecular bottlebrush polymers (BPs) to proteins remains an unsolved challenge due to the large size of BPs and a general lack of methods to transform the chain ends of BPs into functional groups suitable for bioconjugation. Here, we present a strategy to address this challenge in the context of BPs prepared by "graft-through" ring-opening metathesis polymerization (ROMP), one of the most powerful methods for BP synthesis. Quenching ROMP of PEGylated norbornene macromonomers with an activated enyne terminator facilitates the transformation of the BP Ru alkylidene chain ends into Pd oxidative addition complexes (OACs) for facile bioconjugation. This strategy is shown to be effective for the synthesis of two BP-protein conjugates (albumin and ERG), setting the stage for a new class of BP-protein conjugates for future therapeutic and imaging applications.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Yuyan Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Aiden Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Yutong Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Hung V-T Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology Cambridge, MA, 02142, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology Cambridge, MA, 02142, USA
| |
Collapse
|
11
|
Thoma JL, Little H, Duhamel J. Location of a Hydrophobic Load in Poly(oligo(ethylene glycol) methyl ether methacrylate)s (PEGMAs) Dissolved in Water and Probed by Fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5900-5912. [PMID: 38442036 DOI: 10.1021/acs.langmuir.3c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two series of pyrene-labeled poly(oligo(ethylene glycol) methyl ether methacrylate)s referred to as PyEG5-PEGnMA and PyC4-PEGnMA were prepared to probe the region surrounding the polymethacrylate backbone by using the fluorescence of the dye pyrene. PyEG5-PEGnMA and PyC4-PEGnMA were prepared by copolymerizing the EGnMA methacrylate monomers with penta(ethylene glycol) 1-pyrenemethyl ether methacrylate or 1-pyrenebutyl methacrylate, respectively. In organic solvents, the much longer 18 non-hydrogen atom linker connecting the pyrene moieties to the polymethacrylate backbone in the PyEG5-PEGnMA samples enabled the deployment of the pyrenyl labels into the solution. In water, however, an excited pyrene for PyEG5-PEGnMA was found to probe a same volume as for the PyC4-PEGnMA samples where a much shorter 6 non-hydrogen atom spacer connected pyrene to the backbone. Another surprising observation, considering that the hydrophobicity of pyrene induces strong pyrene aggregation for many pyrene-labeled water-soluble polymers (Py-WSPs) in water, was the little pyrene aggregation found for the PyEG5-PEGnMA and PyC4-PEGnMA samples in water. These effects could be related to the organic-like domain (OLD) generated by the oligo(ethylene glycol) side chains densely arranged around the polymethacrylate backbone of the polymeric bottlebrush (PBB). Additional fluorescence experiments conducted with the penta(ethylene glycol) 1-pyrenemethyl ether derivative indicated that the cylindrical OLD surrounding the polymethacrylate backbone had a chemical composition similar to that of ethylene glycol. Binding of hydrophobic pyrene molecules to unlabeled PEGnMA bottlebrushes in water further supported the existence of the OLD. The demonstration, that PEGnMA samples form an OLD in water, which can host and protect hydrophobic cargoes like pyrene, should lead to the development of improved PEGnMA-based drug delivery systems.
Collapse
Affiliation(s)
- Janine L Thoma
- Department of Chemistry, Institute for Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hunter Little
- Department of Chemistry, Institute for Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Department of Chemistry, Institute for Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
13
|
Davis E, Caparco AA, Jones E, Steinmetz NF, Pokorski JK. Study of uricase-polynorbornene conjugates derived from grafting-from ring-opening metathesis polymerization. J Mater Chem B 2024; 12:2197-2206. [PMID: 38323642 DOI: 10.1039/d3tb02726k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PEGylation has been the 'gold standard' in bioconjugation due to its ability to improve the pharmacokinetics and pharmacodynamics of native proteins. However, growing clinical evidence of hypersensitivity reactions to PEG due to pre-existing anti-PEG antibodies in healthy humans have raised concerns. Advancements in controlled polymerization techniques and conjugation chemistries have paved the way for the development of protein-polymer conjugates that can circumvent these adverse reactions while retaining the benefits of such modifications. Herein, we show the development of polynorbornene based bioconjugates of therapeutically relevant urate oxidase (UO) enzymes used in the treatment of gout synthesized by grafting-from ring-opening metathesis polymerization (ROMP). Notably, these conjugates exhibit comparable levels of bioactivity to PEGylated UO and demonstrate increased stability across varying temperatures and pH conditions. Immune recognition of conjugates by anti-UO antibodies reveal low protein immunogenicity following the conjugation process. Additionally, UO conjugates employing zwitterionic polynorbornene successfully avoid recognition by anti-PEG antibodies, further highlighting a potential replacement for PEG.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Adam A Caparco
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Jones
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Davis E, Caparco AA, Steinmetz NF, Pokorski JK. Poly(Oxanorbornene)-Protein Conjugates Prepared by Grafting-to ROMP as Alternatives for PEG. Macromol Biosci 2024; 24:e2300255. [PMID: 37688508 DOI: 10.1002/mabi.202300255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/14/2023] [Indexed: 09/11/2023]
Abstract
PEGylation is the gold standard in protein-polymer conjugation, improving circulation half-life of biologics while mitigating the immune response to a foreign substance. However, preexisting anti-PEG antibodies in healthy humans are becoming increasingly prevalent and elicitation of anti-PEG antibodies when patients are administered with PEGylated therapeutics challenges their safety profile. In the current study, two distinct amine-reactive poly(oxanorbornene) (PONB) imide-based water-soluble block co-polymers are synthesized using ring-opening metathesis polymerization (ROMP). The synthesized block-copolymers include PEG-based PONB-PEG and sulfobetaine-based PONB-Zwit. The polymers are then covalently conjugated to amine residues of lysozyme (Lyz) and urate oxidase (UO) using a grafting-to bioconjugation technique. Both Lyz-PONB and UO-PONB conjugates retained significant bioactivities after bioconjugation. Immune recognition studies of UO-PONB conjugates indicated a comparable lowering of protein immunogenicity when compared to PEGylated UO. PEG-specific immune recognition is negligible for UO-PONB-Zwit conjugates, as expected. These polymers provide a new alternative for PEG-based systems that retain high levels of activity for the biologic while showing improved immune recognition profiles.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Sun J, Chen J, Sun Y, Hou Y, Liu Z, Lu H. On the origin of the low immunogenicity and biosafety of a neutral α-helical polypeptide as an alternative to polyethylene glycol. Bioact Mater 2024; 32:333-343. [PMID: 37927900 PMCID: PMC10622589 DOI: 10.1016/j.bioactmat.2023.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Poly(ethylene glycol) (PEG) is a prominent synthetic polymer widely used in biomedicine. Despite its notable success, recent clinical evidence highlights concerns regarding the immunogenicity and adverse effects associated with PEG in PEGylated proteins and lipid nanoparticles. Previous studies have found a neutral helical polypeptide poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethyl l-glutamate), namely L-P(EG3Glu), as a potential alternative to PEG, displaying lower immunogenicity. To comprehensively assess the immunogenicity, distribution, degradation, and biosafety of L-P(EG3Glu), herein, we employ assays including enzyme-linked immunosorbent assay, positron emission tomography-computed tomography, and fluorescent resonance energy transfer. Our investigations involve in vivo immune responses, biodistribution, and macrophage activation of interferon (IFN) conjugates tethered with helical L-P(EG3Glu) (L20k-IFN), random-coiled DL-P(EG3Glu) (DL20k-IFN), and PEG (PEG20k-IFN). Key findings encompass: minimal anti-IFN and anti-polymer antibodies elicited by L20k-IFN; length-dependent affinity of PEG to anti-PEG antibodies; accelerated clearance of DL20k-IFN and PEG20k-IFN linked to anti-IFN and anti-polymer IgG; complement activation for DL20k-IFN and PEG20k-IFN but not L20k-IFN; differential clearance with L20k-IFN kidney-based, and DL20k-IFN/PEG20k-IFN accumulation mainly in liver/spleen; enhanced macrophage activation by DL20k-IFN and PEG20k-IFN; L-P(EG3Glu) resistance to proteolysis; and safer repeated administrations of L-P(EG3Glu) in rats. Overall, this study offers comprehensive insights into the lower immunogenicity of L-P(EG3Glu) compared to DL-P(EG3Glu) and PEG, supporting its potential clinical use in protein conjugation and nanomedicines.
Collapse
Affiliation(s)
- Jialing Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yiming Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking University–Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Li X, Duan Z, Li Z, Gu L, Li Y, Gong Q, Gu Z, Luo K. Dendritic polymer-functionalized nanomedicine potentiates immunotherapy via lethal energy crisis-induced PD-L1 degradation. Biomaterials 2023; 302:122294. [PMID: 37657175 DOI: 10.1016/j.biomaterials.2023.122294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The advent of immune checkpoint inhibitors ushers in a new era of anti-tumor immunity. However, current clinical anti-PD-L1 antibodies only interdict PD-L1 on the membrane, which cannot diminish the complex cancer-promoting effects of intracellular PD-L1. Therefore, directly reducing the PD-L1 abundance of cancer cells might be a potential PD-L1 inhibitory strategy to circumvent the issues of current anti-PD-L1 antibodies. Herein, we develop a dendritic polymer-functionalized nanomedicine with a potent cellular energy depletion effect on colon cancer cells. Treatment with the nanomedicine significantly promotes phosphorylation of AMPK, which in turn leads to PD-L1 degradation and eventual T cell activation. Meanwhile, the nanomedicine can potently induce immunogenic cell death (ICD) to enhance the anti-cancer immunity. Moreover, the combination of the nanomedicine with PD-1 blockade further enhances the activity of cytotoxic T lymphocytes, and dramatically inhibits tumor growth in vivo without distinct side effects. Overall, this study provides a promising nanoplatform to induce lethal energy crisis and ICD, and suppress PD-L1 expression, thus potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
17
|
Zhang S, Sun Y, Zhang L, Zhang F, Gao W. Thermoresponsive Polypeptide Fused L-Asparaginase with Mitigated Immunogenicity and Enhanced Efficacy in Treating Hematologic Malignancies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300469. [PMID: 37271878 PMCID: PMC10427413 DOI: 10.1002/advs.202300469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Indexed: 06/06/2023]
Abstract
L-Asparaginase (ASP) is well-known for its excellent efficacy in treating hematological malignancies. Unfortunately, the intrinsic shortcomings of ASP, namely high immunogenicity, severe toxicity, short half-life, and poor stability, restrict its clinical usage. Poly(ethylene glycol) conjugation (PEGylation) of ASP is an effective strategy to address these issues, but it is not ideal in clinical applications due to complex chemical synthesis procedures, reduced ASP activity after conjugation, and pre-existing anti-PEG antibodies in humans. Herein, the authors genetically engineered an elastin-like polypeptide (ELP)-fused ASP (ASP-ELP), a core-shell structured tetramer predicted by AlphaFold2, to overcome the limitations of ASP and PEG-ASP. Notably, the unique thermosensitivity of ASP-ELP enables the in situ formation of a sustained-release depot post-injection with zero-order release kinetics over a long time. The in vitro and in vivo studies reveal that ASP-ELP possesses increased activity retention, improved stability, extended half-life, mitigated immunogenicity, reduced toxicity, and enhanced efficacy compared to ASP and PEG-ASP. Indeed, ASP-ELP treatment in leukemia or lymphoma mouse models of cell line-derived xenograft (CDX) shows potent anti-cancer effects with significantly prolonged survival. The findings also indicate that artificial intelligence (AI)-assisted genetic engineering is instructive in designing protein-polypeptide conjugates and may pave the way to develop next-generation biologics to enhance cancer treatment.
Collapse
Affiliation(s)
- Sanke Zhang
- Institute of Medical TechnologyPeking University Health Science CenterPeking University School and Hospital of StomatologyBiomedical Engineering DepartmentPeking UniversityPeking University International Cancer InstitutePeking University‐Yunnan Baiyao International Medical Research CenterBeijing100191China
| | - Yuanzi Sun
- Institute of Medical TechnologyPeking University Health Science CenterPeking University School and Hospital of StomatologyBiomedical Engineering DepartmentPeking UniversityPeking University International Cancer InstitutePeking University‐Yunnan Baiyao International Medical Research CenterBeijing100191China
| | - Longshuai Zhang
- Institute of Medical TechnologyPeking University Health Science CenterPeking University School and Hospital of StomatologyBiomedical Engineering DepartmentPeking UniversityPeking University International Cancer InstitutePeking University‐Yunnan Baiyao International Medical Research CenterBeijing100191China
| | - Fan Zhang
- Institute of Medical TechnologyPeking University Health Science CenterPeking University School and Hospital of StomatologyBiomedical Engineering DepartmentPeking UniversityPeking University International Cancer InstitutePeking University‐Yunnan Baiyao International Medical Research CenterBeijing100191China
| | - Weiping Gao
- Institute of Medical TechnologyPeking University Health Science CenterPeking University School and Hospital of StomatologyBiomedical Engineering DepartmentPeking UniversityPeking University International Cancer InstitutePeking University‐Yunnan Baiyao International Medical Research CenterBeijing100191China
| |
Collapse
|
18
|
Abdulmalik S, Gallo J, Nip J, Katebifar S, Arul M, Lebaschi A, Munch LN, Bartly JM, Choudhary S, Kalajzic I, Banasavadi-Siddegowdae YK, Nukavarapu SP, Kumbar SG. Nanofiber matrix formulations for the delivery of Exendin-4 for tendon regeneration: In vitro and in vivo assessment. Bioact Mater 2023; 25:42-60. [PMID: 36733930 PMCID: PMC9876843 DOI: 10.1016/j.bioactmat.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Tendon and ligament injuries are the most common musculoskeletal injuries, which not only impact the quality of life but result in a massive economic burden. Surgical interventions for tendon/ligament injuries utilize biological and/or engineered grafts to reconstruct damaged tissue, but these have limitations. Engineered matrices confer superior physicochemical properties over biological grafts but lack desirable bioactivity to promote tissue healing. While incorporating drugs can enhance bioactivity, large matrix surface areas and hydrophobicity can lead to uncontrolled burst release and/or incomplete release due to binding. To overcome these limitations, we evaluated the delivery of a peptide growth factor (exendin-4; Ex-4) using an enhanced nanofiber matrix in a tendon injury model. To overcome drug surface binding due to matrix hydrophobicity of poly(caprolactone) (PCL)-which would be expected to enhance cell-material interactions-we blended PCL and cellulose acetate (CA) and electrospun nanofiber matrices with fiber diameters ranging from 600 to 1000 nm. To avoid burst release and protect the drug, we encapsulated Ex-4 in the open lumen of halloysite nanotubes (HNTs), sealed the HNT tube endings with a polymer blend, and mixed Ex-4-loaded HNTs into the polymer mixture before electrospinning. This reduced burst release from ∼75% to ∼40%, but did not alter matrix morphology, fiber diameter, or tensile properties. We evaluated the bioactivity of the Ex-4 nanofiber formulation by culturing human mesenchymal stem cells (hMSCs) on matrix surfaces for 21 days and measuring tenogenic differentiation, compared with nanofiber matrices in basal media alone. Strikingly, we observed that Ex-4 nanofiber matrices accelerated the hMSC proliferation rate and elevated levels of sulfated glycosaminoglycan, tendon-related genes (Scx, Mkx, and Tnmd), and ECM-related genes (Col-I, Col-III, and Dcn), compared to control. We then assessed the safety and efficacy of Ex-4 nanofiber matrices in a full-thickness rat Achilles tendon defect with histology, marker expression, functional walking track analysis, and mechanical testing. Our analysis confirmed that Ex-4 nanofiber matrices enhanced tendon healing and reduced fibrocartilage formation versus nanofiber matrices alone. These findings implicate Ex-4 as a potentially valuable tool for tendon tissue engineering.
Collapse
Affiliation(s)
- Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Jack Gallo
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jonathan Nip
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Lucas N. Munch
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jenna M. Bartly
- Department of Immunology, Center on Aging, University of Connecticut Health, Farmington, CT, USA
| | - Shilpa Choudhary
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, USA
| | | | - Syam P. Nukavarapu
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Li X, Duan Z, Chen X, Pan D, Luo Q, Gu L, Xu G, Li Y, Zhang H, Gong Q, Chen R, Gu Z, Luo K. Impairing Tumor Metabolic Plasticity via a Stable Metal-Phenolic-Based Polymeric Nanomedicine to Suppress Colorectal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300548. [PMID: 36917817 DOI: 10.1002/adma.202300548] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Targeting metabolic vulnerability of tumor cells is a promising anticancer strategy. However, the therapeutic efficacy of existing metabolism-regulating agents is often compromised due to tolerance resulting from tumor metabolic plasticity, as well as their poor bioavailability and tumor-targetability. Inspired by the inhibitive effect of N-ethylmaleimide on the mitochondrial function, a dendronized-polymer-functionalized metal-phenolic nanomedicine (pOEG-b-D-SH@NP) encapsulating maleimide-modified doxorubicin (Mal-DOX) is developed to enable improvement in the overall delivery efficiency and inhibition of the tumor metabolism via multiple pathways. It is observed that Mal-DOX and its derived nanomedicine induces energy depletion of CT26 colorectal cancer cells more efficiently than doxorubicin, and shifts the balance of programmed cell death from apoptosis toward necroptosis. Notably, pOEG-b-D-SH@NP simultaneously inhibits cellular oxidative phosphorylation and glycolysis, thus potently suppressing cancer growth and peritoneal intestinal metastasis in mouse models. Overall, the study provides a promising dendronized-polymer-derived nanoplatform for the treatment of cancers through impairing metabolic plasticity.
Collapse
Affiliation(s)
- Xiaoling Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Yinggang Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
20
|
Active-targeting long-acting protein-glycopolymer conjugates for selective cancer therapy. J Control Release 2023; 356:175-184. [PMID: 36871646 DOI: 10.1016/j.jconrel.2023.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Non-fouling polymers are effective in improving the pharmacokinetics of therapeutic proteins, but short of biological functions for tumor targeting. In contrast, glycopolymers are biologically active, but usually have poor pharmacokinetics. To address this dilemma, herein we report in situ growth of glucose- and oligo(ethylene glycol)-containing copolymers at the C-terminal site of interferon alpha, an antitumor and antivirus biological drug, to generate C-terminal interferon alpha-glycopolymer conjugates with tunable glucose contents. The in vitro activity and in vivo circulatory half-life of these conjugates were found to decrease with the increase of glucose content, which can be ascribed to complement activation by the glycopolymers. Additionally, the cancer cell endocytosis of the conjugates was observed to maximize at a critical glucose content due to the tradeoff between complement activation and glucose transporter recognition by the glycopolymers. As a result, in mice bearing ovarian cancers with overexpressed glucose transporter 1, the conjugates with optimized glucose contents were identified to possess improved cancer-targeting ability, enhanced anticancer immunity and efficacy, and increased animal survival rate. These findings provided a promising strategy for screening protein-glycopolymer conjugates with optimized glucose contents for selective cancer therapy.
Collapse
|
21
|
Ozer I, Slezak A, Sirohi P, Li X, Zakharov N, Yao Y, Everitt JI, Spasojevic I, Craig SL, Collier JH, Campbell JE, D'Alessio DA, Chilkoti A. An injectable PEG-like conjugate forms a subcutaneous depot and enables sustained delivery of a peptide drug. Biomaterials 2023; 294:121985. [PMID: 36630826 PMCID: PMC10918641 DOI: 10.1016/j.biomaterials.2022.121985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Many biologics have a short plasma half-life, and their conjugation to polyethylene glycol (PEG) is commonly used to solve this problem. However, the improvement in the plasma half-life of PEGylated drugs' is at an asymptote because the development of branched PEG has only had a modest impact on pharmacokinetics and pharmacodynamics. Here, we developed an injectable PEG-like conjugate that forms a subcutaneous depot for the sustained delivery of biologics. The PEG-like conjugate consists of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) conjugated to exendin, a peptide drug used in the clinic to treat type 2 diabetes. The depot-forming exendin-POEGMA conjugate showed greater efficacy than a PEG conjugate of exendin as well as Bydureon, a clinically approved sustained-release formulation of exendin. The injectable depot-forming exendin-POEGMA conjugate did not elicit an immune response against the polymer, so that it remained effective and safe for long-term management of type 2 diabetes upon chronic administration. In contrast, the PEG conjugate induced an anti-PEG immune response, leading to early clearance and loss of efficacy upon repeat dosing. The exendin-POEGMA depot also showed superior long-term efficacy compared to Bydureon. Collectively, these results suggest that an injectable POEGMA conjugate of biologic drugs that forms a drug depot under the skin, providing favorable pharmacokinetic properties and sustained efficacy while remaining non-immunogenic, offers significant advantages over other commonly used drug delivery technologies.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Anna Slezak
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nikita Zakharov
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ivan Spasojevic
- Duke School of Medicine, Department of Medicine-Oncology, Durham, NC, USA; Duke Cancer Institute, PK/PD Core Laboratory, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Division of Endocrinology, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
22
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Laubach JM, Sani RK. Thermophilic Exopolysaccharide Films: A Potential Device for Local Antibiotic Delivery. Pharmaceutics 2023; 15:pharmaceutics15020557. [PMID: 36839880 PMCID: PMC9960241 DOI: 10.3390/pharmaceutics15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Natural polysaccharides being investigated for use in the field of drug delivery commonly require the addition of sugars or pretreated biomass for fabrication. Geobacillus sp. strain WSUCF1 is a thermophile capable of secreting natural polymers, termed exopolysaccharides (EPSs), cultivated from cost-effective, non-treated lignocellulosic biomass carbon substrates. This preliminary investigation explores the capabilities of a 5% wt/wt amikacin-loaded film constructed from the crude EPS extracted from the strain WSUCF1. Film samples were seen to be non-cytotoxic to human keratinocytes and human skin-tissue fibroblasts, maintaining cell viability, on average, above 85% for keratinocytes over 72-h during a cell viability assay. The drug release profile of a whole film sample revealed a steady release of the antibiotic up to 12 h. The amikacin eluted by the EPS film was seen to be active against Staphylococcus aureus, maintaining above a 91% growth inhibition over a period of 48 h. Overall, this study demonstrates that a 5% amikacin-EPS film, grown from lignocellulosic biomass, can be a viable option for preventing or combating infections in clinical treatment.
Collapse
Affiliation(s)
- Joseph M. Laubach
- Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Correspondence:
| |
Collapse
|
24
|
Church DC, Davis E, Caparco AA, Takiguchi L, Chung YH, Steinmetz NF, Pokorski JK. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101067. [PMID: 36816463 PMCID: PMC9933924 DOI: 10.1016/j.xcrp.2022.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-polymer conjugates (PPCs) improve therapeutic efficacy of proteins and have been widely used for the treatment of various diseases such as cancer, diabetes, and hepatitis. PEGylation is considered as the "gold standard" in bioconjugation, although in practice its clinical applications are becoming limited because of extensive evidence of immunogenicity induced by pre-existing anti-PEG antibodies in patients. Here, optimized reaction conditions for living aqueous grafting-from ring-opening metathesis polymerization (ROMP) are utilized to synthesize water-soluble polynorbornene (PNB)-based PPCs of lysozyme (Lyz-PPCs) and bacteriophage Qβ (Qβ-PPCs) as PEG alternatives. Lyz-PPCs retain nearly 100% bioactivity and Qβ-PPCs exhibit up to 35% decrease in protein immunogenicity. Qβ-PPCs derived from NB-PEG show no reduction in recognition by anti-PEG antibodies while Qβ-PPCs derived from NB-Zwit show >95% reduction as compared with Qβ-PEG. This work demonstrates a new method for PPC synthesis and the utility of grafting from PPCs to evade immune recognition.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Adam A. Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Lead contact
| |
Collapse
|
25
|
Chen J, Rizvi A, Patterson JP, Hawker CJ. Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity. J Am Chem Soc 2022; 144:19466-19474. [PMID: 36240519 DOI: 10.1021/jacs.2c07859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(ethylene glycol) (PEG) is an important and widely used polymer in biological and pharmaceutical applications for minimizing nonspecific binding while improving blood circulation for therapeutic/imaging agents. However, commercial PEG samples are polydisperse, which hampers detailed studies on chain length-dependent properties and potentially increases antibody responses in pharmaceutical applications. Here, we report a practical and scalable method to prepare libraries of discrete PEG analogues with a branched, nonlinear structure. These lipid-PEG derivatives have a monodisperse backbone with side chains containing a discrete number of ethylene glycol units (3 or 4) and unique functionalizable chain ends. Significantly, the branched, nonlinear structure is shown to allow for efficient nanoparticle assembly while reducing anti-PEG antibody recognition when compared to commercial polydisperse linear systems, such as DMG-PEG2000. By enabling the scalable synthesis of a broad library of graft copolymers, fundamental self-assembly properties can be understood and shown to directly correlate with the total number of PEG units, nature of the chain ends, and overall backbone length. These results illustrate the advantages of discrete macromolecules when compared to traditional disperse materials.
Collapse
Affiliation(s)
- Junfeng Chen
- Materials Department, Materials Research Laboratory, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Craig J Hawker
- Materials Department, Materials Research Laboratory, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
26
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
27
|
Zhang P, Du C, Huang T, Hu S, Bai Y, Li C, Feng G, Gao Y, Li Z, Wang B, Hirvonen JT, Fan J, Santos HA, Liu D. Surface Adsorption-Mediated Ultrahigh Efficient Peptide Encapsulation with a Precise Ratiometric Control for Type 1 and 2 Diabetic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200449. [PMID: 35229498 DOI: 10.1002/smll.202200449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A surface adsorption strategy is developed to enable the engineering of microcomposites featured with ultrahigh loading capacity and precise ratiometric control of co-encapsulated peptides. In this strategy, peptide molecules (insulin, exenatide, and bivalirudin) are formulated into nanoparticles and their surface is decorated with carrier polymers. This polymer layer blocks the phase transfer of peptide nanoparticles from oil to water and, consequently, realizes ultrahigh peptide loading degree (up to 78.9%). After surface decoration, all three nanoparticles are expected to exhibit the properties of adsorbed polymer materials, which enables the co-encapsulation of insulin, exenatide, and bivalirudin with a precise ratiometric control. After solidification of this adsorbed polymer layer, the release of peptides is synchronously prolonged. With the help of encapsulation, insulin achieves 8 days of glycemic control in type 1 diabetic rats with one single injection. The co-delivery of insulin and exenatide (1:1) efficiently controls the glycemic level in type 2 diabetic rats for 8 days. Weekly administration of insulin and exenatide co-encapsulated microcomposite effectively reduces the weight gain and glycosylated hemoglobin level in type 2 diabetic rats. The surface adsorption strategy sets a new paradigm to improve the pharmacokinetic and pharmacological performance of peptides, especially for the combination of peptides.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Chunyang Du
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianhe Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuancheng Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Cong Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guobing Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhi Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Baoxun Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
28
|
Gu L, Duan Z, Chen X, Li X, Luo Q, Bhamra A, Pan D, Zhu H, Tian X, Chen R, Gu Z, Zhang H, Qian Z, Gong Q, Luo K. A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200048. [PMID: 35170102 DOI: 10.1002/adma.202200048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), is presented, which allows a cathepsin-B-triggered stealthy-to-sticky structural transformation. The compositions and ratios are optimized through dissipative particle dynamics simulations. GFLG-DP displays tumor-specific transformation and the consequently released dendron-Ppa is found to effectively accumulate on the tumor cell membrane. The interaction between the dendron-Ppa and the tumor cell membrane results in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in the solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with the endoplasmic reticulum disrupts cell homeostasis, making tumor cells more vulnerable and susceptible to photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems.
Collapse
Affiliation(s)
- Lei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Apanpreet Bhamra
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Zhiyong Qian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
29
|
Ozer I, Kelly G, Gu R, Li X, Zakharov N, Sirohi P, Nair SK, Collier JH, Hershfield MS, Hucknall AM, Chilkoti A. Polyethylene Glycol-Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103672. [PMID: 35133079 PMCID: PMC9008788 DOI: 10.1002/advs.202103672] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Indexed: 05/13/2023]
Abstract
Protein therapeutics, except for antibodies, have a short plasma half-life and poor stability in circulation. Covalent coupling of polyethylene glycol (PEG) to protein drugs addresses this limitation. However, unlike previously thought, PEG is immunogenic. In addition to induced PEG antibodies, ≈70% of the US population has pre-existing anti-PEG antibodies. Both induced and preexisting anti-PEG antibodies result in accelerated drug clearance, reduced clinical efficacy, and severe hypersensitivity reactions that have limited the clinical utility of uricase, an enzyme drug for treatment for refractory gout that is decorated with a PEG corona. Here, the authors synthesize a poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) conjugate of uricase that decorates the protein with multiple polymer chains to create a corona to solve these problems. The resulting uricase-POEGMA is well-defined, has high bioactivity, and outperforms its PEG counterparts in its pharmacokinetics (PK). Furthermore, the conjugate does not induce anti-POEGMA antibodies and is not recognized by anti-PEG antibodies. These findings suggest that POEGMA conjugation may provide a solution to the immunogenicity and antigenicity limitations of PEG while improving upon its PK benefits. These results transcend uricase and can be applied to other PEGylated therapeutics and the broader class of biologics with suboptimal PK.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Garrett Kelly
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Renpeng Gu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Xinghai Li
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Nikita Zakharov
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Parul Sirohi
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Smita K. Nair
- Department of SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Joel H. Collier
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Michael S. Hershfield
- Department of MedicineDivision of RheumatologyDuke University Medical CenterDurhamNC27710USA
- Department of BiochemistryDuke University School of MedicineDurhamNC27710USA
| | | | | |
Collapse
|
30
|
Ozer I, Pitoc GA, Layzer JM, Moreno A, Olson LB, Layzer KD, Hucknall AM, Sullenger BA, Chilkoti A. PEG-Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107852. [PMID: 34994037 DOI: 10.1002/adma.202107852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo-a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer-PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre-existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody-reactivity of this RNA aptamer is eliminated by conjugating it to a next-generation PEG-like brush polymer-poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre-existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side-effects of PEG.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Pitoc
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Juliana M Layzer
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
- Duke Clinical and Translational Science Institute, Durham, NC, 27707, USA
| | - Angelo Moreno
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Lyra B Olson
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Kyle D Layzer
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
31
|
Hu Y, Tian ZY, Xiong W, Wang D, Zhao R, Xie Y, Song YQ, Zhu J, Lu H. Water-Assisted and Protein-Initiated Fast and Controlled Ring-Opening Polymerization of Proline N-Carboxyanhydride. Natl Sci Rev 2022; 9:nwac033. [PMID: 36072505 PMCID: PMC9438472 DOI: 10.1093/nsr/nwac033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
The production of polypeptides via the ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) is usually conducted under stringent anhydrous conditions. The ROP of proline NCA (ProNCA) for the synthesis of poly-L-proline (PLP) is particularly challenging due to the premature product precipitation as polyproline type I helices, leading to slow reactions for up to one week, poor control of the molar mass and laborious workup. Here, we report the unexpected water-assisted controlled ROP of ProNCA, which affords well-defined PLP as polyproline II helices in 2–5 minutes and almost-quantitative yields. Experimental and theoretical studies together suggest the as-yet-unreported role of water in facilitating proton shift, which significantly lowers the energy barrier of the chain propagation. The scope of initiators can be expanded from hydrophobic amines to encompass hydrophilic amines and thiol-bearing nucleophiles, including complex biomacromolecules such as proteins. Protein-mediated ROP of ProNCA conveniently affords various protein-PLP conjugates via a grafting-from approach. PLP modification not only preserves the biological activities of the native proteins, but also enhances their resistance to extreme conditions. Moreover, PLP modification extends the elimination half-life of asparaginase (ASNase) 18-fold and mitigates the immunogenicity of wt ASNase >250-fold (ASNase is a first-line anticancer drug for lymphoma treatment). This work provides a simple solution to a long-standing problem in PLP synthesis, and offers valuable guidance for the development of water-resistant ROP of other proline-like NCAs. The facile access to PLP can greatly boost the application potential of PLP-based functional materials for engineering industry enzymes and therapeutic proteins.
Collapse
Affiliation(s)
- Yali Hu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Wei Xiong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Ruichi Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Yu-Qin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| |
Collapse
|
32
|
Chen H, Zhang P, Shi Y, Liu C, Zhou Q, Zeng Y, Cheng H, Dai Q, Gao X, Wang X, Liu G. Functional nanovesicles displaying anti-PD-L1 antibodies for programmed photoimmunotherapy. J Nanobiotechnology 2022; 20:61. [PMID: 35109867 PMCID: PMC8811970 DOI: 10.1186/s12951-022-01266-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Background Photoimmunotherapy is one of the most promising strategies in tumor immunotherapies, but targeted delivery of photosensitizers and adjuvants to tumors remains a major challenge. Here, as a proof of concept, we describe bone marrow mesenchymal stem cell-derived nanovesicles (NVs) displaying anti-PD-L1 antibodies (aPD-L1) that were genetically engineered for targeted drug delivery. Results The high affinity and specificity between aPD-L1 and tumor cells allow aPD-L1 NVs to selectively deliver photosensitizers to cancer tissues and exert potent directed photothermal ablation. The tumor immune microenvironment was programmed via ablation, and the model antigen ovalbumin (OVA) was designed to fuse with aPD-L1. The corresponding membrane vesicles were then extracted as an antigen–antibody integrator (AAI). AAI can work as a nanovaccine with the immune adjuvant R837 encapsulated. This in turn can directly stimulate dendritic cells (DCs) to boast the body's immune response to residual lesions. Conclusions aPD-L1 NV-based photoimmunotherapy significantly improves the efficacy of photothermal ablation and synergistically enhances subsequent immune activation. This study describes a promising strategy for developing ligand-targeted and personalized cancer photoimmunotherapy. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01266-3.
Collapse
Affiliation(s)
- Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510080, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qianqian Zhou
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xing Gao
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
33
|
Cai H, Tan P, Chen X, Kopytynski M, Pan D, Zheng X, Gu L, Gong Q, Tian X, Gu Z, Zhang H, Chen R, Luo K. Stimuli-Sensitive Linear-Dendritic Block Copolymer-Drug Prodrug as a Nanoplatform for Tumor Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108049. [PMID: 34875724 DOI: 10.1002/adma.202108049] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Linear-dendritic block copolymer (LDBCs) are highly attractive candidates for smart drug-delivery vehicles. Herein, an amphiphilic poly[(ethylene glycol) methyl ether methacrylate] (POEGMA) linear-peptide dendritic prodrug of doxorubicin (DOX) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The hydrophobic-dye-based photosensitizer chlorin e6 (Ce6) is employed for encapsulation in the prodrug nanoparticles (NPs) to obtain an LDBCs-based drug-delivery system (LD-DOX/Ce6) that offers a combination cancer therapy. Due to the presence of Gly-Phe-Leu-Gly peptides and hydrazone bonds in the prodrug structure, LD-DOX/Ce6 is degraded into small fragments, thus specifically triggering the intracellular release of DOX and Ce6 in the tumor microenvironment. Bioinformatics analysis suggests that LD-DOX/Ce6 with laser irradiation treatment significantly induces apoptosis, DNA damage, and cell cycle arrest. The combination treatment can not only suppress tumor growth, but also significantly reduce tumor metastasis compared with treatments with DOX or Ce6 through regulating EMT pathway, TGFβ pathway, angiogenesis, and the hypoxia pathway. LD-DOX/Ce6 displays a synergistic chemo-photodynamic antitumor efficacy, resulting in a high inhibition in tumor growth and metastasis, while maintaining an excellent biosafety. Therefore, this study demonstrates the potential of the biodegradable and tumor-microenvironment-responsive LDBCs as an intelligent multifunctional drug-delivery vehicle for high-efficiency cancer combination therapy.
Collapse
Affiliation(s)
- Hao Cai
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ping Tan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital Sichuan University Chengdu 610041 China
| | - Michal Kopytynski
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
34
|
Chu S, Wang AL, Bhattacharya A, Montclare JK. Protein Based Biomaterials for Therapeutic and Diagnostic Applications. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012003. [PMID: 34950852 PMCID: PMC8691744 DOI: 10.1088/2516-1091/ac2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins are some of the most versatile and studied macromolecules with extensive biomedical applications. The natural and biological origin of proteins offer such materials several advantages over their synthetic counterparts, such as innate bioactivity, recognition by cells and reduced immunogenic potential. Furthermore, proteins can be easily functionalized by altering their primary amino acid sequence and can often be further self-assembled into higher order structures either spontaneously or under specific environmental conditions. This review will feature the recent advances in protein-based biomaterials in the delivery of therapeutic cargo such as small molecules, genetic material, proteins, and cells. First, we will discuss the ways in which secondary structural motifs, the building blocks of more complex proteins, have unique properties that enable them to be useful for therapeutic delivery. Next, supramolecular assemblies, such as fibers, nanoparticles, and hydrogels, made from these building blocks that are engineered to behave in a cohesive manner, are discussed. Finally, we will cover additional modifications to protein materials that impart environmental responsiveness to materials. This includes the emerging field of protein molecular robots, and relatedly, protein-based theranostic materials that combine therapeutic potential with modern imaging modalities, including near-infrared fluorescence spectroscopy (NIRF), single-photo emission computed tomography/computed tomography (SPECT/CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound/photoacoustic imaging (US/PAI).
Collapse
Affiliation(s)
- Stanley Chu
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Andrew L Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, NY, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Molecular and Cellular Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Chemistry, NYU, New York, NY, USA
- Department of Biomaterials, NYU College of Dentistry, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
35
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
36
|
Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.735434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Currently, cancer is among the most challenging diseases due to its ability to continuously evolve into a more complex muldimentional system, in addition to its high capability to spread to other organs and tissues. In this context, the relevance of nanobiomaterials (NBMs) for the development of new more effective and less harmful treatments is increasing. NBMs provide the possibility of combining several functionalities on a single system, expectedly in a synergic way, to better perform the treatment and cure. However, the control of properties such as colloidal stability, circulation time, pharmacokinetics, and biodistribution, assuring the concentration in specific target tissues and organs, while keeping all desired properties, tends to be dependent on subtle changes in surface chemistry. Hence, the behavior of such materials in different media/environments is of uttermost relevance and concern since it can compromise their efficiency and safety on application. Given the bright perspectives, many efforts have been focused on the development of nanomaterials fulfilling the requirements for real application. These include robust and reproducible preparation methods to avoid aggregation while preserving the interaction properties. The possible impact of nanomaterials in different forms of diagnosis and therapy has been demonstrated in the past few years, given the perspectives on how revolutionary they can be in medicine and health. Considering the high biocompatibility and suitability, this review is focused on titanium dioxide– and iron oxide–based nanoagents highlighting the current trends and main advancements in the research for cancer therapies. The effects of phenomena, such as aggregation and agglomeration, the formation of the corona layer, and how they can compromise relevant properties of nanomaterials and their potential applicability, are also addressed. In short, this review summarizes the current understanding and perspectives on such smart nanobiomaterials for diagnostics, treatment, and theranostics of diseases.
Collapse
|
37
|
Huynh V, Ifraimov N, Wylie RG. Modulating the Thermoresponse of Polymer-Protein Conjugates with Hydrogels for Controlled Release. Polymers (Basel) 2021; 13:2772. [PMID: 34451311 PMCID: PMC8399950 DOI: 10.3390/polym13162772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Sustained release is being explored to increase plasma and tissue residence times of polymer-protein therapeutics for improved efficacy. Recently, poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) polymers have been established as potential PEG alternatives to further decrease immunogenicity and introduce responsive or sieving properties. We developed a drug delivery system that locally depresses the lower critical solution temperature (LCST) of PEGMA-protein conjugates within zwitterionic hydrogels for controlled release. Inside the hydrogel the conjugates partially aggregate through PEGMA-PEGMA chain interactions to limit their release rates, whereas conjugates outside of the hydrogel are completely solubilized. Release can therefore be tuned by altering hydrogel components and the PEGMA's temperature sensitivity without the need for traditional controlled release mechanisms such as particle encapsulation or affinity interactions. Combining local LCST depression technology and degradable zwitterionic hydrogels, complete release of the conjugate was achieved over 13 days.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Natalie Ifraimov
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada;
| |
Collapse
|
38
|
Zhou Y, Chen Z, Zhao D, Li D, He C, Chen X. A pH-Triggered Self-Unpacking Capsule Containing Zwitterionic Hydrogel-Coated MOF Nanoparticles for Efficient Oral Exendin-4 Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102044. [PMID: 34216408 DOI: 10.1002/adma.202102044] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Oral peptide or protein delivery is considered a revolutionary alternative to daily subcutaneous injection; however, major challenges remain in terms of impediments of the gastrointestinal environment and the intestinal epithelium consisting of mucus and the epithelial cell layer, leading to low bioavailability. To protect against gastrointestinal degradation and promote penetration across the intestinal mucosa, a pH-triggered self-unpacking capsule encapsulating zwitterionic hydrogel-coated metal-organic framework (MOF) nanoparticles is engineered. The MOF nanoparticles possess a high exendin-4 loading capacity, and the zwitterionic hydrogel layer imparts unique capability of permeation across the mucus layer and effective internalization by epithelial cells to the nano-vehicles. In addition to the gastro-resistant feature, the pH-responsive capsules are dissociated drastically in the intestinal environment due to the rapid generation of abundant CO2 bubbles, which triggers a sudden release of the nanoparticles. After oral administration of the capsules containing exendin-4-loaded nanoparticles into a diabetes rat model, markedly enhanced plasma exendin-4 levels are achieved for over 8 h, leading to significantly increased endogenous insulin secretion and a remarkable hypoglycemic effect with a relative pharmacological availability of 17.3%. Owing to the low risk of hypoglycemia, this oral exendin-4 strategy will provide a vast potential for daily and facile diabetes treatment.
Collapse
Affiliation(s)
- Yuhao Zhou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
39
|
Tully M, Wedepohl S, Kutifa D, Weise C, Licha K, Schirner M, Haag R. Prolonged activity of exenatide: Detailed comparison of Site-specific linear polyglycerol- and poly(ethylene glycol)-conjugates. Eur J Pharm Biopharm 2021; 164:105-113. [PMID: 33957224 DOI: 10.1016/j.ejpb.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022]
Abstract
Exenatide is a small therapeutic peptide being currently used in clinic for the treatment of diabetes mellitus type II, however, displaying a short blood circulation time which makes two daily injections necessary. Covalent polymer modification of a protein is a well-known approach to overcome this limitation, resulting in steric shielding, an increased size and therefore a longer circulation half-life. In this study, we employed site-selective C-terminal polymer ligation of exenatide via copper-catalyzed azide-alkyne-cycloaddition (CuAAC) to yield 1:1-conjugates of either poly(ethylene glycol) (PEG) or linear polyglycerol (LPG) of different molecular weights. Our goal was to compare the impact of the two polymers on size, structure and activity of exenatide on the in vitro and in vivo level. Both polymers did not alter the secondary structure of exenatide and expectedly increased its hydrodynamic size, where the LPG-versions of exenatide showed slightly smaller values than their PEG-analogs of same molecular weight. Upon conjugation, GLP-1 receptor activation was diminished, however, still enabled maximum receptor response at slightly higher concentrations. Exenatide modified with a 40 kDa LPG (Ex-40-LPG) showed significant reduction of the blood glucose level in diabetic mice for up to 72 h, which was comparable to its PEG-analog, but 9-fold longer than native exenatide (8 h).
Collapse
Affiliation(s)
- Michael Tully
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Daniel Kutifa
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Kai Licha
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Michael Schirner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
40
|
Dai S, Hong H, Zhou K, Zhao K, Xie Y, Li C, Shi J, Zhou Z, Nie L, Wu Z. Exendin 4-Hapten Conjugate Capable of Binding with Endogenous Antibodies for Peptide Half-life Extension and Exerting Long-Acting Hypoglycemic Activity. J Med Chem 2021; 64:4947-4959. [PMID: 33825469 DOI: 10.1021/acs.jmedchem.1c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hapten-specific endogenous antibodies are naturally occurring antibodies present in human blood. Herein, we investigated a new strategy in which small-molecule haptens were utilized as naturally occurring antibody binders for peptide half-life extension. The glucagon-like peptide 1 receptor agonist exendin 4 was site-specifically functionalized with the dinitrophenyl (DNP) hapten at the C-terminus via sortase A-mediated ligation. The resulting Ex4-DNP conjugates retained GLP-1 receptor activation potency in vitro and had a similar in vivo acute glucose-lowering effect comparable to that of native Ex4. Pharmacokinetic studies and hypoglycemic duration tests demonstrated that the Ex4-DNP conjugates displayed significantly elongated half-lives and improved long-acting antidiabetic activity in the presence of endogenous anti-DNP antibodies. In chronic treatment studies, once-daily administration of optimal conjugate 7 demonstrated more beneficial effects without prominent toxicity compared with Ex4. This strategy provides a new approach and represents an alternative to the well-established peptide-Fc fusion strategy to improve the peptide half-life and the therapeutic efficacy.
Collapse
Affiliation(s)
- Shijie Dai
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Kai Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Yuntian Xie
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Lei Nie
- Hisun Biopharmaceutical Co., Limited, 8 Hisun Road, Xialian Village, Xukou Town, Fuyang District, 311404 Hangzhou, Zhejiang, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
41
|
Huang LCS, Le D, Hsiao IL, Fritsch-Decker S, Hald C, Huang SC, Chen JK, Hwu JR, Weiss C, Hsu MH, Delaittre G. Boron-rich, cytocompatible block copolymer nanoparticles by polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00710b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new methacrylic boronate ester is synthesized and exploited to produce biocompatible nanoparticles with a boron-rich core by PISA.
Collapse
|
42
|
Wang L, Liu J. Engineered drug-loaded cells and cell derivatives as a delivery platform for cancer immunotherapy. Biomater Sci 2021; 9:1104-1116. [DOI: 10.1039/d0bm01676d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in improving cancer immunotherapy have been summarized with a focus on using functionalized intact cells and cell derivatives.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine
- Institute of Molecular Medicine
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine
- Institute of Molecular Medicine
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
| |
Collapse
|
43
|
Laubach J, Joseph M, Brenza T, Gadhamshetty V, Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J Control Release 2021; 329:971-987. [DOI: 10.1016/j.jconrel.2020.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
44
|
Beloqui A, Mane SR, Langer M, Glassner M, Bauer DM, Fruk L, Barner‐Kowollik C, Delaittre G. Hetero‐Diels‐Alder‐Cycloaddition mit RAFT‐Polymeren als Biokonjugationsplattform. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Beloqui
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Department of Applied Chemistry (UPV/EHU) Avda. Manuel de Lardizabal 3 E-20018 Donostia – San Sebastian Spanien
- IKERBASQUE Basque Foundation for Science Maria Diaz de Haro 3 E-48013 Bilbao Spanien
| | - Shivshankar R. Mane
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Marcel Langer
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Mathias Glassner
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Dennis M. Bauer
- Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Straße 1a 76131 Karlsruhe Deutschland
| | - Ljiljana Fruk
- Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Straße 1a 76131 Karlsruhe Deutschland
- Department of Chemical Engineering and Biotechnology University of Cambridge West Cambridge Site, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Organic Functional Molecules Organic Chemistry University of Wuppertal Gaußstrasse 20 42119 Wuppertal Deutschland
| |
Collapse
|
45
|
Beloqui A, Mane SR, Langer M, Glassner M, Bauer DM, Fruk L, Barner‐Kowollik C, Delaittre G. Hetero-Diels-Alder Cycloaddition with RAFT Polymers as Bioconjugation Platform. Angew Chem Int Ed Engl 2020; 59:19951-19955. [PMID: 32729643 PMCID: PMC7693046 DOI: 10.1002/anie.202005747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/16/2022]
Abstract
We introduce the bioconjugation of polymers synthesized by RAFT polymerization, bearing no specific functional end group, by means of hetero-Diels-Alder cycloaddition through their inherent terminal thiocarbonylthio moiety with a diene-modified model protein. Quantitative conjugation occurs over the course of a few hours, at ambient temperature and neutral pH, and in the absence of any catalyst. Our technology platform affords thermoresponsive bioconjugates, whose aggregation is solely controlled by the polymer chains.
Collapse
Affiliation(s)
- Ana Beloqui
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Department of Applied Chemistry (UPV/EHU)Avda. Manuel de Lardizabal 3E-20018Donostia – San SebastianSpain
- IKERBASQUEBasque Foundation for ScienceMaria Diaz de Haro 3E-48013BilbaoSpain
| | - Shivshankar R. Mane
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Marcel Langer
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Mathias Glassner
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Dennis M. Bauer
- Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)Wolfgang-Gaede-Straße 1a76131KarlsruheGermany
| | - Ljiljana Fruk
- Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)Wolfgang-Gaede-Straße 1a76131KarlsruheGermany
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeWest Cambridge Site, Philippa Fawcett DriveCambridgeCB3 0ASUK
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Organic Functional MoleculesOrganic ChemistryUniversity of WuppertalGaußstrasse 2042119WuppertalGermany
| |
Collapse
|
46
|
McSweeney MD, Shen L, DeWalle AC, Joiner JB, Ciociola EC, Raghuwanshi D, Macauley MS, Lai SK. Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. J Control Release 2020; 329:774-781. [PMID: 33038448 DOI: 10.1016/j.jconrel.2020.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Immune responses against polyethylene glycol (PEG) can lead to the rapid clearance of PEGylated drugs and are associated with increased risk of serious adverse events such as infusion reactions and anaphylaxis. Although select PEGylated therapeutics can induce anti-PEG antibodies (APA), there is currently no readily deployable strategy to mitigate their negative effects. Given the large number of PEGylated therapeutics that are either FDA-approved or in clinical development, methods that suppress APA induction to ensure the safety and efficacy of PEGylated drugs in patients would be a valuable clinical tool. We previously showed that infusion of high molecular weight (MW) free PEG can safely and effectively restore the circulation of PEG liposomes in animals with high pre-existing titers of APA, without stimulating additional APA production. Here, we explored the effectiveness of prophylaxis with free PEG or tolerogenic PEGylated liposomes as a strategy to reduce the amount of APA induced by subsequently administered PEGylated liposomes. Surprisingly, we found that a single administration of free PEG alone was capable of markedly reducing the APA response to PEG-liposomes for ~2 months; the effectiveness was comparable to, and frequently exceeded, interventions with different tolerogenic PEG-liposomes. These results support further investigations of free PEG prophylaxis as a potential strategy to ameliorate the APA response to sensitizing PEGylated therapeutics.
Collapse
Affiliation(s)
- Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Alexander C DeWalle
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Elizabeth C Ciociola
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Dharmendra Raghuwanshi
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, USA.
| | - Matthew S Macauley
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, USA.
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina - Chapel Hill, North Carolina, USA.
| |
Collapse
|
47
|
Yousefpour P, Varanko A, Subrahmanyan R, Chilkoti A. Recombinant Fusion of Glucagon‐Like Peptide‐1 and an Albumin Binding Domain Provides Glycemic Control for a Week in Diabetic Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Anastasia Varanko
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
48
|
Lin Y, Zhong Y, Chen Y, Li L, Chen G, Zhang J, Li P, Zhou C, Sun Y, Ma Y, Xie Z, Liao Q. Ligand-Modified Erythrocyte Membrane-Cloaked Metal-Organic Framework Nanoparticles for Targeted Antitumor Therapy. Mol Pharm 2020; 17:3328-3341. [PMID: 32804508 DOI: 10.1021/acs.molpharmaceut.0c00421] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Systemic chemotherapy for treating tumors often leads to serious systemic side effects and affects patient compliance. Although the emerging technology of drug delivery systems (DDSs) can deliver the required cargo to tumor sites, DDSs are limited due to insufficient targeting ability or deficient pharmacokinetics. Herein, we assembled a novel targeting DDS for precision tumor therapy by applying a tumor-targeting polypeptide cyclic RGD (cRGD)-modified erythrocyte membrane (eM-cRGD) cloaked on zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) with encapsulated doxorubicin (DOX). For a mass ratio of ZIF-8:DOX = 1:1, the loading capacity was up to 49%. The nanoscale-sized targeting DDS promoted NP accumulation in tumor tissues via enhanced permeability and retention (EPR) effects, and the NPs actively targeted ligands and were then transferred to endosomes. The pH-sensitive carriers released higher DOX levels under the low pH mimicking that of a tumor microenvironment and tumor intracellular organelles, allowing enhanced inhibition of cancer cell growth. The cumulative release rate of DOX from DOX@ZIF-8 NPs reached 82.8% at 48 h in acidic conditions of pH = 5.0, while the cumulative release rate of DOX from the DOX@ZIF-8 NPs reached only 24.92% at pH = 7.4. The internalization of the DDS was approximately 44.35% that of the unmodified DDS by immune cells, as confirmed by flow cytometry. In vivo studies verified that the RGD-modified DDS had the ability to prolong blood circulation (t1/2 = 6.81 h), enhancing the tumor-specific accumulation of NPs by means of the integrin αvβ3 receptor-mediated pathway, which was further valuated in mice bearing human cervical cancer (HeLa) cells, and yielding a significant antitumor effect; the tumor inhibition rate was as high as 85.46%. Under the same conditions, the blood circulation half-life of the unmodified DDS was only 3.22 h, and the tumor inhibition rate of free DOX was 81.34%. Moreover, the RGD modified with a carrier could achieve a satisfactory chemotherapeutic effect while minimizing side effects. In summary, our novel targeting DDS could contribute to the development of intelligent DDSs for tumor precision therapy.
Collapse
Affiliation(s)
- Yixuan Lin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuping Zhong
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yongda Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lin Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guoping Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiaxian Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pei Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunhua Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yangwen Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Ma
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
49
|
Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. JOURNAL OF ONCOLOGY 2020; 2020:5194780. [PMID: 32765604 PMCID: PMC7374236 DOI: 10.1155/2020/5194780] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 11/17/2022]
Abstract
The therapeutic efficacy of drugs is dependent upon the ability of a drug to reach its target, and drug penetration into tumors is limited by abnormal vasculature and high interstitial pressure. Chemotherapy is the most common systemic treatment for cancer but can cause undesirable adverse effects, including toxicity to the bone marrow and gastrointestinal system. Therefore, nanotechnology-based drug delivery systems have been developed to reduce the adverse effects of traditional chemotherapy by enhancing the penetration and selective drug retention in tumor tissues. A thorough knowledge of the physical properties (e.g., size, surface charge, shape, and mechanical strength) and chemical attributes of nanoparticles is crucial to facilitate the application of nanotechnology to biomedical applications. This review provides a summary of how the attributes of nanoparticles can be exploited to improve therapeutic efficacy. An ideal nanoparticle is proposed at the end of this review in order to guide future development of nanoparticles for improved drug targeting in vivo.
Collapse
|
50
|
Roberts MG, Yu Q, Keunen R, Liu J, Ngae Wong EC, Rastogi CK, Reilly RM, Allen C, Winnik MA. Functionalization of Cellulose Nanocrystals with POEGMA Copolymers via Copper-Catalyzed Azide–Alkyne Cycloaddition for Potential Drug-Delivery Applications. Biomacromolecules 2020; 21:2014-2023. [DOI: 10.1021/acs.biomac.9b01713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Megan G. Roberts
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Qing Yu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Rachel Keunen
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Jieyi Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Edmond Chi Ngae Wong
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Chandresh Kumar Rastogi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Raymond M. Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, Ontario M5T 1W7, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|