1
|
Fang B, Bai H, Zhang J, Wang L, Li P, Ge Y, Yang H, Wang H, Peng B, Hu W, Ma H, Chen X, Fu L, Li L. Albumins constrainting the conformation of mitochondria-targeted photosensitizers for tumor-specific photodynamic therapy. Biomaterials 2025; 315:122914. [PMID: 39461059 DOI: 10.1016/j.biomaterials.2024.122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Tumor ablation Preclinical organelle-targeted phototherapies have effectively achieved tumor photoablation for regenerative biomedical applications in cancer therapies. However, engineering effective phototherapy drugs with precise tumor-localization targeting and organelle direction remains challenging. Herein, we report a albumins constrainting mitochondrial-targeted photosensitizer nanoparticles (PSs@BSAs) for tumor-specific photodynamic therapy. X-ray crystallography elucidates the two-stage assembly mechanism of PSs@BSAs. Femtosecond transient absorption spectroscopy and quantum mechanical calculations reveal the implications of conformational dynamics at the excited state. PSs@BSAs can efficiently disable mitochondrial activity, and further disrupt tumor angiogenesis based on the photodynamic effect. This triggers a metabolic and oxidative stress crisis to facilitate photoablation of solid tumor and antitumor metastasis. The study fully elucidates the interdisciplinary issues of chemistry, physics, and biological interfaces, thereby opening new horizons to inspire the engineering of organelle-targeted tumor-specific photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - PanPan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yihao Ge
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Hui Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361102, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Li Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361102, China; Future Display Institute in Xiamen, Xiamen, 361005, China.
| |
Collapse
|
2
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Ma YJ, Wang FQ, Wang DW, He XW, Li WY, Zhang YK. Near-infrared-triggered release of self-accelerating cascade nanoreactor delivered by macrophages for synergistic tumor photothermal therapy/starvation therapy/chemodynamic therapy. J Colloid Interface Sci 2025; 685:661-673. [PMID: 39862845 DOI: 10.1016/j.jcis.2025.01.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT). Attributed to the inherent tumor tropism of macrophages, HCFG@R could accumulate in tumor tissues and subsequently be disrupted by NIR laser, allowing the release of HCFG nanoparticles (NPs) from macrophage carriers. The released HCFG catalyzed the generation of O2 from hydrogen peroxide (H2O2), which in turn enhanced glucose oxidase (GOx)-mediated ST. Simultaneously, the H2O2 and gluconic acid generated by ST could promote the production of hydroxyl radicals (·OH), thereby improving the therapeutic effect of CDT. The present study provides an innovative strategy for enhanced PTT/ST/CDT synergistic therapy through a macrophage-mediated delivery system.
Collapse
Affiliation(s)
- Yao-Jia Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China
| | - Fang-Qi Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China
| | - Da-Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China.
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
| |
Collapse
|
4
|
Li X, Zhang R, Yang Y, Huang W. Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0534. [PMID: 39801503 PMCID: PMC11717998 DOI: 10.34133/research.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications. This review aims to introduce the recent progress of CSMNs for NIR imaging, therapy, and synergistic PTs with a comprehensive summary of their molecular structures, structure types, and optical properties. Moreover, the working principles of CSMNs are illustrated from photophysical and photochemical mechanisms and light-tissue interactions. In addition, molecular engineering and nanomodulation approaches of CSMs are discussed, with an emphasis on strategies for improving performances and extending absorption and emission wavelengths to the NIR range. Furthermore, the in vivo investigation of CSMNs is illustrated with solid examples from imaging in different scenarios, therapy in 2 modes, and synergistic PTs in combinational functionalities. This review concludes with a brief conclusion, current challenges, and future outlook of CSMNs.
Collapse
Affiliation(s)
- Xiaozhen Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Ruohan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Yanlong Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Specht A, Klimezak M, Cambridge S. Seeing in the Future - a Perspective on Combining Light with Chemical Biology Approaches to Treat Retinal Pathologies. ChemMedChem 2025:e202400827. [PMID: 39778017 DOI: 10.1002/cmdc.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Indexed: 01/11/2025]
Abstract
New concepts to treat eye diseases have emerged that elegantly combine unnatural light exposure with chemical biology approaches to achieve superior cellular specificity and, as a result, improvement of visual function. Historically, light exposure without further molecular eye treatment has offered limited success including photocoagulation to halt pathological blood vessel growth or low light exposure to stimulate retinal cell viability. To add cellular specificity to such treatments, researchers have introduced various biological or chemical light-sensing molecules and combined those with light exposure. (Pre-)clinical trials describe the use of optogenetics and channelrhodpsins, i. e. light-sensitive ion channels, in patient vision restoration. In the chemical arena, pharmacological agents, rendered light-sensitive by reversible modification with photosensitive protecting compounds ("caging"), have been applied to eyes of living mice to photo-release specific cellular activities. Among these were successful proof-of-principle experiments that were conducted to establish photo-sensitive gene therapies in the eye. For light-mediated treatment in combination with chemical biology, we wish to describe here the current frontiers of research in vision restoration with an eye on differences between biological and chemical light-sensing molecules, patient requirements, and future outlooks.
Collapse
Affiliation(s)
- Alexandre Specht
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, F-67401, Illkirch Cedex, France
| | - Maxime Klimezak
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, F-67401, Illkirch Cedex, France
| | - Sidney Cambridge
- Department of Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| |
Collapse
|
6
|
Dai B, You S, Wang K, Long Y, Chen J, Upreti N, Peng J, Zheng L, Chang C, Huang TJ, Guan Y, Zhuang S, Zhang D. Deep learning-enabled filter-free fluorescence microscope. SCIENCE ADVANCES 2025; 11:eadq2494. [PMID: 39742468 DOI: 10.1126/sciadv.adq2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Optical filtering is an indispensable part of fluorescence microscopy for selectively highlighting molecules labeled with a specific fluorophore and suppressing background noise. However, the utilization of optical filtering sets increases the complexity, size, and cost of microscopic systems, making them less suitable for multifluorescence channel, high-speed imaging. Here, we present filter-free fluorescence microscopic imaging enabled with deep learning-based digital spectral filtering. This approach allows for automatic fluorescence channel selection after image acquisition and accurate prediction of fluorescence by computing color changes due to spectral shifts with the presence of excitation scattering. Fluorescence prediction for cells and tissues labeled with various fluorophores was demonstrated under different magnification powers. The technique offers accurate identification of labeling with robust sensitivity and specificity, achieving consistent results with the reference standard. Beyond fluorescence microscopy, the deep learning-enabled spectral filtering strategy has the potential to drive the development of other biomedical applications, including cytometry and endoscopy.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shaojie You
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kan Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junyi Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Neil Upreti
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709, USA
| | - Jing Peng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chenliang Chang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709, USA
| | - Yangtai Guan
- Department of Neurology, Punan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University (Punan Hospital in Pudong New District, Shanghai), Shanghai 200125, China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Cho S, Martino N, Yun SH. Half-wave nanolasers and intracellular plasmonic lasing particles. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-024-01843-7. [PMID: 39747602 DOI: 10.1038/s41565-024-01843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n)3, where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InxGa1-xAs1-yPy in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency. This configuration supports only the lowest-order dipolar mode within the semiconductor's broad gain bandwidth. A quasi-continuous-level semiconductor laser model explains the lasing dynamics under optical pumping. In addition, we fabricate isolated gold-coated semiconductor discs and demonstrate higher-order lasing within live biological cells. These plasmonic nanolasers hold promise for multi-colour imaging and optical barcoding in cellular applications.
Collapse
Affiliation(s)
- Sangyeon Cho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicola Martino
- Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Hoffman MAT, Keppler MA, Smith AL, Fasci A, Macasadia ME, Tijerina AJ, Lyle Hood R, DeLisi MP, Bixler JN. Effects of cold storage on double integrating sphere optical property measurements of porcine dermis and subcutaneous fat from 400 to 1100 nm. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:015001. [PMID: 39845727 PMCID: PMC11751729 DOI: 10.1117/1.jbo.30.1.015001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Significance Accurate values of skin optical properties are essential for developing reliable computational models and optimizing optical imaging systems. However, published values show a large variability due to a variety of factors, including differences in sample collection, preparation, experimental methodology, and analysis. Aim We aim to explore the influence of storage conditions on the optical properties of the excised skin from 400 to 1100 nm. Approach We utilize a double integrating sphere system and inverse adding-doubling approach to determine absorption,μ a , and reduced scattering,μ s ' , coefficients of the porcine dermis and subcutaneous fat before and after refrigeration, freezing, or flash freezing. Results Our findings indicate a small average change of - 0.005 , - 0.003 , and 0.002 mm - 1 inμ a for the dermis and 0.001, - 0.003 , and - 0.008 mm - 1 for the subcutaneous tissue after refrigeration, freezing, and flash freezing, respectively, with the most notable differences observed in the hemoglobin absorption region. The value ofμ s ' shows a negligible average change of - 0.05 , - 0.001 , and - 0.02 mm - 1 for the dermis, and 0.06, - 0.1 , and 0.03 mm - 1 change for the subcutaneous tissue for refrigerated, frozen, and flash-frozen samples, respectively. Conclusions The results provide additional context for the variability of published values of optical parameters and enable informed selection of sample storage conditions for future measurements. In addition, the results discussed here can be used to improve study planning, particularly with regard to maximizing the use of finite samples that have been collected.
Collapse
Affiliation(s)
| | - Mark A. Keppler
- SAIC, JBSA Fort Sam Houston, Texas, United States
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | | | - Anjelyka Fasci
- SAIC, JBSA Fort Sam Houston, Texas, United States
- University of Texas at San Antonio, Department of Mechanical Engineering, San Antonio, Texas, United States
| | | | | | - Robert Lyle Hood
- University of Texas at San Antonio, Department of Mechanical Engineering, San Antonio, Texas, United States
| | | | - Joel N. Bixler
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas, United States
| |
Collapse
|
9
|
Jacinto C, Silva WF, Garcia J, Zaragosa GP, Ilem CND, Sales TO, Santos HDA, Conde BIC, Barbosa HP, Malik S, Sharma SK. Nanoparticles based image-guided thermal therapy and temperature feedback. J Mater Chem B 2024; 13:54-102. [PMID: 39535040 DOI: 10.1039/d4tb01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticles have emerged as versatile tools in the realm of thermal therapy, offering precise control and feedback mechanisms for targeted treatments. This review explores the intersection of nanotechnology and thermal therapy, focusing on the utilization of nanoparticles for image-guided interventions and temperature monitoring. Starting with an exploration of local temperature dynamics compared to whole-body responses, we delve into the landscape of nanomaterials and their pivotal role in nanomedicine. Various physical stimuli employed in therapy and imaging are scrutinized, laying the foundation for nanothermal therapies and the accompanying challenges. A comprehensive analysis of nanomaterial architecture ensues, delineating the functionalities of magnetic, plasmonic, and luminescent nanomaterials within the context of thermal therapies. Nano-design intricacies, including core-shell structures and monodisperse properties, are dissected for their impact on therapeutic efficacy. Furthermore, considerations in designing in vivo nanomaterials, such as hydrodynamic radii and core sizes at sub-tissue levels, are elucidated. The review then delves into specific modalities of thermally induced therapy, including magnetically induced hyperthermia and luminescent-based thermal treatments. Magnetic hyperthermia treatment is explored alongside its imaging and relaxometric properties, emphasizing the implications of imaging formulations on biotransformation and biodistribution. This review also provides an overview of the magnetic hyperthermia treatment using magnetic nanoparticles to induce localized heat in tissues. Similarly, optical and thermal imaging techniques utilizing luminescent nanomaterials are discussed, highlighting their potential for light-induced thermal therapy and cellular-level temperature monitoring. Finally, the application landscape of diagnosis and photothermal therapy (PTT) is surveyed, encompassing diverse areas such as cancer treatment, drug delivery, antibacterial therapy, and immunotherapy. The utility of nanothermometers in elucidating thermal relaxation dynamics as a diagnostic tool is underscored, alongside discussions on PTT hyperthermia protocols. Moreover, the advancements in nanoparticle magnetic imaging and implications of imaging formulations especially in creating positive MRI contrast agents are also presented. This comprehensive review offers insights into the evolving landscape of nanoparticle-based image-guided thermal therapies, promising advancements in precision medicine and targeted interventions, underscoring the importance of continued research in optimization for the full potential of magnetic hyperthermia to improve its efficacy and clinical translation.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Wagner F Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Joel Garcia
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | - Gelo P Zaragosa
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | | | - Tasso O Sales
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Harrisson D A Santos
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | | | | | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans, 45067, France.
- Department of Biotechnology, Baba Farid College, Bathinda, 151001, India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil
| |
Collapse
|
10
|
Mestre-Torà B, Duocastella M. Parallelized Ultrasound-Guiding for Enhanced Light Delivery within Scattering Media. ACS PHOTONICS 2024; 11:5161-5169. [PMID: 39712391 PMCID: PMC11660215 DOI: 10.1021/acsphotonics.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
The delivery of light over an extended area within a sample forms the basis of biomedical applications that are as relevant as photoacoustic tomography, fluorescence imaging, and phototherapy techniques. However, light scattering limits the ability of these methods to reach deep regions within biological tissues. As a result, their operational range remains confined to superficial areas of samples, posing a significant barrier to effective optical treatment and diagnosis. Here, we propose an approach to address this issue and enhance light delivery across an extended region inside scattering samples. Our strategy involves using ultrasound to directly modulate the optical properties of the sample, generating refractive index gradients that act as embedded optical waveguides. By employing two perpendicularly oriented piezoelectric plates, several parallel waveguides can be simultaneously formed within the sample, allowing light to be guided over a wide area (3 × 3 mm2 in current experiments). Supported by Monte Carlo simulations, we demonstrate that ultrasound-light-guiding can enhance the intensity of light delivered inside scattering samples with an optical thickness of 2.5 and 12.5 by up to a factor of 700 and 42%, respectively. As a proof-of-concept, we demonstrated the ability of our approach to irradiate nanoparticles located within a scattering sample at light intensities that are not possible without ultrasound.
Collapse
Affiliation(s)
- Blanca Mestre-Torà
- Department
of Applied Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Martí Duocastella
- Department
of Applied Physics, University of Barcelona, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (In2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Zhou K, Du L, Ding R, Xu L, Shi S, Wang S, Wang Z, Zhang G, He G, Zhao Z, Tang BZ. Photocatalytic therapy via photoinduced redox imbalance in biological system. Nat Commun 2024; 15:10551. [PMID: 39632877 PMCID: PMC11618361 DOI: 10.1038/s41467-024-55060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Redox balance is essential for sustaining normal physiological metabolic activities of life. In this study, we present a photocatalytic system to perturb the balance of NADH/NAD+ in oxygen-free conditions, achieving photocatalytic therapy to cure anaerobic bacterial infected periodontitis. Under light irradiation, the catalyst TBSMSPy+ can bind bacterial DNA and initiate the generation of radical species through a multi-step electron transfer process. It catalyzes the conversion from NADH to NAD+ (the turnover frequency up to 60.7 min-1), inhibits ATP synthesis, disrupts the energy supply required for DNA replication, and successfully accomplishes photocatalytic sterilization in an oxygen-free environment. The catalyst participates in the redox reaction, interfering with the balance of NADH/NAD+ contents under irradiation, so we termed this action as photoinduced redox imbalance. Additionally, animal experiments in male rats also validate that the TBSMSPy+ could effectively catalyze the NADH oxidation, suppress metabolism and stimulate osteogenesis. Our research substantiates the concept of photoinduced redox imbalance and the application of photocatalytic therapy, further advocating the development of such catalyst based on photoinduced redox imbalance strategy for oxygen-free phototherapy.
Collapse
Grants
- 52003228 National Natural Science Foundation of China (National Science Foundation of China)
- 52273197 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2023YFB3810001), Shenzhen Key Laboratory of Functional Aggregate Materials (ZDSYS 20211021111400001), Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ 2021324134613038, KQTD 20210811090142053, JCYJ20220818103007014, GJHZ 20210705141810031), the Innovation and Technology Commission (ITC-CNERC14SC01), the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (2021-kllma-08), Guangzhou 510640, China (South China University of Technology). Guangzhou Science and Technology Planning Project (202201010439). Guangdong Basic and Applied Basic Research Foundation (2023A1515110346, 2021A1515110826). Guangzhou Science and Technology Planning Project (202201010439).
Collapse
Affiliation(s)
- Kun Zhou
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Letian Xu
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, China
| | - Shuai Shi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Siyuan Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zaiyu Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Guoqing Zhang
- University of Science and Technology of China, Hefei, Anhui, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangdong, China.
| |
Collapse
|
12
|
Cho S, Moon W, Martino N, Yun SH. Wideband Tuning and Deep-Tissue Spectral Detection of Indium Phosphide Nano-Laser Particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626128. [PMID: 39677764 PMCID: PMC11642806 DOI: 10.1101/2024.11.29.626128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Laser particles (LPs) emitting narrowband spectra across wide spectral ranges are highly promising for high-multiplex optical barcoding. Here, we present LPs based on indium phosphide (InP) nanodisks, operating in the near-infrared wavelength range of 740-970 nm. Utilizing low-order whispering gallery resonance modes in size-tuned nanodisks, we achieved an ultrawide color palette with 27% bandwidth utilization and nanometer-scale linewidth. The minimum laser size was 430 nm in air and 560 nm within the cytoplasm, operating at mode order 4 or 5. We further demonstrated spectral detection of laser peaks with high signal-to-background ratios in highly-scattering media, including 1-cm-thick chicken breast tissue and blood vessels in live mice.
Collapse
Affiliation(s)
- Sangyeon Cho
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA
| | - Wonjoon Moon
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA
| | - Nicola Martino
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
13
|
Ghosh D, Khan A, Bag S, Mallick AI, De P. Dual stimuli-responsive biotinylated polymer-drug conjugate for dual drug delivery. J Mater Chem B 2024; 12:11826-11840. [PMID: 39439369 DOI: 10.1039/d4tb01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stimuli-responsive nanoscale polymer-drug conjugates are one of the most promising alternatives in the realm of advanced therapeutics, rendering several characteristics such as spatio-temporal control over drug release, reduced off-target toxicity, enhanced bioavailability, and longer blood circulation time of the drug. Fostered by the aforementioned conceptualization, our quest to develop an ideal polymer-drug conjugate has originated the present investigation of developing a reactive oxygen species (ROS) and esterase-responsive self-assembled polymer-drug (chlorambucil, CBL) conjugate with biotin pendants (DP2) for cancer cell targeting, surrogating another antineoplastic drug, doxorubicin (DOX) via physical encapsulation (DP2@DOX). The ROS and esterase trigger not only released the covalently stitched CBL but also resulted in DOX release by dismantling the amphiphilic balance of the nanoaggregates. Biotinylation-mediated enhancement of cellular uptake of DP2@DOX was reflected in the synergistic anticancer activity of both the drugs (CBL and DOX) in HeLa cells (biotin receptor-positive cells) compared to HEK 293T cells (biotin receptor-negative cells). Furthermore, the selective internalization of the fluorophore-tagged DOX-loaded polymer (DP4@DOX) in HeLa cells compared to HEK 293T cells was confirmed by confocal microscopy and flow cytometry. In summary, the present investigation demonstrates a state-of-the-art self-assembled polymer-drug conjugate as a next-generation dual stimuli-responsive drug delivery vehicle.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
14
|
Pinho S, Coelho JMP, Gaspar MM, Reis CP. Advances in localized prostate cancer: A special focus on photothermal therapy. Eur J Pharmacol 2024; 983:176982. [PMID: 39260812 DOI: 10.1016/j.ejphar.2024.176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) is a high prevalence disease, per 10000 habitants, that tends to increase with age. This pathology is difficult to detect at an early stage due to the absence of symptoms, hence the importance of monitoring signs for early detection. This disease can be detected by various methods, including plasmatic levels of prostate-specific antigen (PSA) and rectal touch, with biopsy being necessary to confirm the diagnosis. Patients affected by prostate cancer can have localized or advanced disease. There are conventional approaches that have been used as a reference in localized cancer, such as active surveillance, surgery, or radiotherapy. However, the adverse effects might vary and, sometimes, they can be permanent. An overview about the innovative therapeutic approaches to improve outcomes in terms of both tumor remission and side effects for localized PCa is presented. In case of emerging light-based treatment strategies, they aimed at ablating tumor tissue by inducing an external light are non-invasive, localized and, considerably, they are able to reduce lesions in peripheral tissues. One is photodynamic therapy (PDT) and it involves the photooxidation of molecules culminating in the formation of reactive oxygen species (ROS), inducing cell death. On the other hand, photothermal therapy (PTT) is based on inducing hyperthermia in cancer cells by irradiating them with beams of light at a specific wavelength. To improve the heat generated, gold nanoparticles (AuNPs) have those desirable characteristics that have drawn attention to PTT. Various studies point to AuNPs as efficient nanomaterials in PTT for the treatment of tumors, including prostate cancer. This review includes the most representative advances in this research field, dated from 1998 to 2023. It is noticed that several advances have been made and the way to find the effective treatment without impacting adverse side effects is shorter.
Collapse
Affiliation(s)
- Sara Pinho
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
15
|
Lu Y, Li Z, Song J, Hu GH. A single-particle energy-conserving dissipative particle dynamics approach for simulating thermophoresis of nanoparticles in polymer networks. J Chem Phys 2024; 161:184101. [PMID: 39513437 DOI: 10.1063/5.0227060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
The transport of nanoparticles in polymer networks has critical implications in biology and medicine, especially through thermophoresis in response to temperature gradients. This study presents a single-particle energy-conserving dissipative particle dynamics (seDPD) method by integrating a single-particle model into the energy-conserving DPD model to simulate the mesoscopic thermophoretic behavior of nanoparticles in polymer matrices. We first validate the newly developed seDPD model through comparisons with analytical solutions for nanoparticle viscosity, thermal diffusivity, and hydrodynamic drag and then demonstrate the effectiveness of the seDPD model in capturing thermophoretic forces induced by temperature gradients. The results show that nanoparticles driven by the Soret forces exhibit unique transport characteristics, such as drift velocity and diffusivity, leading to a significant acceleration of nanoparticle diffusion in the polymer network, which has been known as the giant acceleration of diffusion. Quantifying how nanoparticles move in flexible polymer networks sheds light on the interaction dynamics of nanoparticles within polymer networks, providing insight into nanoparticle behavior in complex environments that could be leveraged in various applications from drug delivery to material design.
Collapse
Affiliation(s)
- Yu Lu
- School of Mechanical Engineering, Nantong University, Nantong 226019, China
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Guo-Hui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
16
|
Khalid A, Dremin V, El-Tamer A, Surnina M, Lancelot C, Rafailov E, Sokolovski S. Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents. BIOMEDICAL OPTICS EXPRESS 2024; 15:6299-6312. [PMID: 39553855 PMCID: PMC11563319 DOI: 10.1364/boe.510610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024]
Abstract
The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE. We designed high-resolution 3D scaffolds to support the growth and maturation of these skin models. Additionally, we developed and validated a cost-effective, custom-built system combining fluorescence spectroscopy (FS) and optical coherence tomography (OCT) for non-destructive analysis of the metabolism and morphology of 3D FSEs. This system proved highly sensitive in detecting fluorescence from key metabolic co-enzymes (NADH and FAD) in solutions and cell suspensions, while OCT provided adequate resolution to observe the morphology of FSEs. As a result, both the 3D FSE model and the dual-mode optical system hold significant potential for use in 3D bioprinting of biological tissues, as well as in the development of cosmetics, drugs, and in monitoring their maturation over time.
Collapse
Affiliation(s)
- Arooj Khalid
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| | - Viktor Dremin
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| | | | | | - Celine Lancelot
- StratiCELL Ltd., Science Park Crealys, 5032 Les Isnes, Gembloux, Belgium
| | - Edik Rafailov
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| | - Sergei Sokolovski
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| |
Collapse
|
17
|
Cheng P, Pu K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem Soc Rev 2024; 53:10171-10188. [PMID: 39229642 DOI: 10.1039/d4cs00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Optical imaging is an indispensable tool for non-invasive visualization of biomolecules in living organisms, thereby offering a sensitive approach for disease diagnosis and image-guided disease treatment. Single-lock activatable optical probes (SOPs) that specifically switch on optical signals in the presence of biomarkers-of-interest have shown both higher detection sensitivity and imaging quality as compared to conventional "always-on" optical probes. However, such SOPs can still show "false-positive" results in disease diagnosis due to non-specific biomarker expression in healthy tissues. By contrast, multi-lock activatable optical probes (MOPs) that simultaneously detect multiple biomarkers-of-interest could improve detection specificity towards certain biomolecular events or pathological conditions. In this Review, we discuss the recent advancements of enzyme-responsive MOPs, with a focus on their biomedical applications. The higher detection specificity of MOPs could in turn enhance disease diagnosis accuracy and improve treatment efficacy in image-guided disease therapy with minimal toxicity in the surrounding healthy tissues. Finally, we discuss the current challenges and suggest future applications of MOPs.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
18
|
Wang F, Zhou C. 'Transparent mice': deep-tissue live imaging using food dyes. Commun Biol 2024; 7:1307. [PMID: 39394420 PMCID: PMC11470001 DOI: 10.1038/s42003-024-07012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Affiliation(s)
- Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
19
|
Guo F, Jooken S, Ahmad A, Yu W, Deschaume O, Thielemans W, Bartic C. Optically Active, Paper-Based Scaffolds for 3D Cardiac Pacing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53449-53459. [PMID: 39332816 PMCID: PMC11472259 DOI: 10.1021/acsami.4c10183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
In this work, we report the design and fabrication of a light-addressable, paper-based nanocomposite scaffold for optical pacing and read-out of in vitro grown cardiac tissue. The scaffold consists of paper cellulose microfibers functionalized with gold nanorods (GNRs) and semiconductor quantum dots (QDs), embedded in a cell-permissive collagen matrix. The GNRs enable cardiomyocyte activity modulation through local temperature gradients induced by modulated near-infrared (NIR) laser illumination, with the local temperature changes reported by temperature-dependent QD photoluminescence (PL). The micrometer-sized paper fibers promote the tubular organization of HL-1 cardiac muscle cells, while the NIR plasmonic stimulation modulates reversibly their activity. Given the nanoscale spatial resolution and facile fabrication, paper-based nanocomposite scaffolds with NIR modulation offer excellent alternatives to electrode-based or optogenetic methods for cell activity modulation, at the single cell level, and are compatible with 3D tissue constructs. Such paper-based optical platforms can provide new possibilities for the development of in vitro drug screening assays and heart disease modeling.
Collapse
Affiliation(s)
- Fanglei Guo
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Stijn Jooken
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Amin Ahmad
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Wei Yu
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Olivier Deschaume
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable
Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Carmen Bartic
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Li H, Zhang W, Meng Q, Shuai Q. Advancements of prodrug technologies for enhanced drug selectivity in pharmacotherapies. Invest New Drugs 2024; 42:590-600. [PMID: 39136898 DOI: 10.1007/s10637-024-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 12/08/2024]
Abstract
The therapeutic effects of many pharmacotherapies have been explored, but disadvantages such as low drug specificity, drug resistance and side effects makes their effective delivery to target sites a great challenge. Consequently, a distinctive prodrug-based technology have emerged as an effective treatments because of their distinctive advantages, such as high drug loading capacity, precise targeting, reduced side effects and spatial and temporal controllability. In particular, the use of gamma/X-ray-mediated strategies in radiotherapy is a new strategy that could enable the precise drug release from implanted devices. This review presents readers with the current state of prodrug therapy and reports the design protocols of rational and effective prodrugs for clinical use.
Collapse
Affiliation(s)
- Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wenjing Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
21
|
Nizam NI, Pandey V, Erbas I, Smith JT, Intes X. A Novel Technique for Fluorescence Lifetime Tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613888. [PMID: 39345436 PMCID: PMC11430024 DOI: 10.1101/2024.09.19.613888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fluorescence lifetime has emerged as a unique imaging modality for quantitatively assessing in vivo the molecular environment of diseased tissues. Although fluorescence lifetime microscopy (in 2D) is a mature field, 3D imaging in deep tissues remains elusive and challenging owing to scattering. Herein, we report on a deep neural network (coined AUTO-FLI) that performs both 3D intensity and quantitative lifetime reconstructions in deep tissues. The proposed Deep Learning (DL)-based approach involves an in silico scheme to generate fluorescence lifetime data accurately. The developed DL model is validated both in silico and on experimental phantoms. Overall, AUTO-FLI provides accurate 3D quantitative estimates of both intensity and lifetime distributions in highly scattering media, demonstrating its unique potential for fluorescence lifetime-based molecular imaging at the mesoscopic and macroscopic scale.
Collapse
Affiliation(s)
- Navid Ibtehaj Nizam
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vikas Pandey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ismail Erbas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
22
|
Shahi Ardakani A, Benedicenti S, Solimei L, Shahabi S, Afrasiabi S. Reduction of Multispecies Biofilms on an Acrylic Denture Base Model by Antimicrobial Photodynamic Therapy Mediated by Natural Photosensitizers. Pharmaceuticals (Basel) 2024; 17:1232. [PMID: 39338394 PMCID: PMC11435042 DOI: 10.3390/ph17091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The aim of this study is to investigate the antimicrobial efficacy of antimicrobial photodynamic therapy (PDT) using natural photosensitizers (curcumin, riboflavin, and phycocyanin) and light-emitting diode (LED) irradiation against multispecies biofilms in an acrylic denture base model. MATERIALS AND METHODS Forty-five acrylic specimens were fabricated using heat-curing acrylic resin. The specimens were then infected with a mixed culture of bacterial and fungal species (including Streptococcus mutans, Streptococcus sanguinis, Candida albicans, and Candida glabrata) for 4 days. The acrylic discs were divided into nine groups, with each group containing five discs: control, 0.2% chlorhexidine, 5.25% sodium hypochlorite, curcumin, riboflavin, phycocyanin alone or along with LED. After treatment, the number of colony-forming units (CFUs) per milliliter was counted. In addition, the extent of biofilm degradation was assessed using the crystal violet staining method and scanning electron microscopy. RESULTS All experimental groups exhibited a significant reduction in colony numbers for both bacterial and fungal species compared to the control (p < 0.001). The PDT groups exhibited a statistically significant reduction in colony counts for both bacteria and fungi compared to the photosensitizer-only groups. CONCLUSIONS The results of this in vitro study show that PDT with natural photosensitizers and LED devices can effectively reduce the viability and eradicate the biofilm of microorganisms responsible for causing denture infections.
Collapse
Affiliation(s)
- Ali Shahi Ardakani
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy
| | - Luca Solimei
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy
| | - Sima Shahabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| | - Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| |
Collapse
|
23
|
Zhou D, Zhang G, Li J, Zhuang Z, Shen P, Fu X, Wang L, Qian J, Qin A, Tang BZ. Near-Infrared II Agent with Excellent Overall Performance for Imaging-Guided Photothermal Thrombolysis. ACS NANO 2024; 18:25144-25154. [PMID: 39190833 DOI: 10.1021/acsnano.4c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Near-infrared II (NIR-II) imaging and photothermal therapy hold tremendous potential in precision diagnosis and treatment within biological organisms. However, a significant challenge is the shortage of NIR-II fluorescent probes with both high photothermal conversion coefficient (PCE) and fluorescence quantum yield (ΦF). Herein, we address this issue by integrating a large conjugated electron-withdrawing core, multiple rotors, and multiple alkyl chains into a molecule to successfully generate a NIR-II agent 4THTPB with excellent PCE (87.6%) and high ΦF (3.2%). 4THTPB shows a maximum emission peak at 1058 nm, and the emission tail could extend to as long as 1700 nm. These characteristics make its nanoparticles (NPs) perform well in NIR-II high-resolution angiography, thereby allowing for precise diagnosis of thrombus through NIR-II imaging and enabling efficient photothermal thrombolysis. This work not only furnishes a NIR-II agent with excellent overall performance but also provides valuable guidance for the design of high-performance NIR-II agents.
Collapse
Affiliation(s)
- Daming Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Li
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Hong Kong Branch of the Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
24
|
Ou Z, Duh YS, Rommelfanger NJ, Keck CHC, Jiang S, Brinson K, Zhao S, Schmidt EL, Wu X, Yang F, Cai B, Cui H, Qi W, Wu S, Tantry A, Roth R, Ding J, Chen X, Kaltschmidt JA, Brongersma ML, Hong G. Achieving optical transparency in live animals with absorbing molecules. Science 2024; 385:eadm6869. [PMID: 39236186 DOI: 10.1126/science.adm6869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 09/07/2024]
Abstract
Optical imaging plays a central role in biology and medicine but is hindered by light scattering in live tissue. We report the counterintuitive observation that strongly absorbing molecules can achieve optical transparency in live animals. We explored the physics behind this observation and found that when strongly absorbing molecules dissolve in water, they can modify the refractive index of the aqueous medium through the Kramers-Kronig relations to match that of high-index tissue components such as lipids. We have demonstrated that our straightforward approach can reversibly render a live mouse body transparent to allow visualization of a wide range of deep-seated structures and activities. This work suggests that the search for high-performance optical clearing agents should focus on strongly absorbing molecules.
Collapse
Affiliation(s)
- Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Yi-Shiou Duh
- Department of Physics, Stanford University, Stanford, CA, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Carl H C Keck
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Kenneth Brinson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Su Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Elizabeth L Schmidt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Wei Qi
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shifu Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Adarsh Tantry
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Neurosciences IDP Graduate program, Stanford University, Stanford, CA
| | - Richard Roth
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Ding
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Julia A Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark L Brongersma
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Xu Y, Teng C, Wang Y, Chen D, Yin D, Yan L. Self-enhanced regulation of stable organic radicals with polypeptide nanoparticles for mild second near-infrared phototheranostics. J Colloid Interface Sci 2024; 669:578-589. [PMID: 38729006 DOI: 10.1016/j.jcis.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stable organic radicals have emerged as a promising option to enhance fluorescence quantum yield (QY), gaining traction in medical treatment due to their unique electronic transitions from the ground state (D0) to the doublet excited state (D1). We synthesized a stable dicyanomethyl radical with a NIR-II fluorescence QY of 0.86 %, surpassing many NIR-II organic dyes. Subsequently, amphiphilic polymer-encapsulated nanoparticles (NPs) containing the radical were created, achieving a NIR-II fluorescence QY of 0.32 %, facilitating high-contrast bio-imaging. These CNPPs exhibit self-enhanced photothermal properties, elevating photothermal conversion efficiency (PCE) from 43.5 % to 57.5 % under 915 nm laser irradiation. This advancement enables more efficient photothermal therapy (PTT) with lower dye concentrations and reduced laser power, enhancing both feasibility and safety. Through regular fractionated mild photothermal therapy, we observed the release of damage-associated molecular patterns (DAMPs) and an increase in cytokine expression, culminating in combined mild phototherapy (m-PTT)-mediated immunogenic cell death (ICD). Consequently, we developed an immunostimulatory tumor vaccine, showcasing a novel approach for refining photothermal agents (PTA) and optimizing the PTT process.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dejia Chen
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China.
| |
Collapse
|
26
|
Li L, Zhang B, Zhao W, Sheng D, Yin L, Sheng X, Yao D. Multimodal Technologies for Closed-Loop Neural Modulation and Sensing. Adv Healthc Mater 2024; 13:e2303289. [PMID: 38640468 DOI: 10.1002/adhm.202303289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2024] [Indexed: 04/21/2024]
Abstract
Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, current and potential integration of various modalities to achieve precise, closed-loop modulation, and sensing in neural systems are summarized. Advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals are highlighted and utilized to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality is elaborated.
Collapse
Affiliation(s)
- Lizhu Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Wenxin Zhao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - David Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
27
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
28
|
Yang Z, Shen X, Jin J, Jiang X, Pan W, Wu C, Yu D, Li P, Feng W, Chen Y. Sonosynthetic Cyanobacteria Oxygenation for Self-Enhanced Tumor-Specific Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400251. [PMID: 38867396 PMCID: PMC11304326 DOI: 10.1002/advs.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/27/2024] [Indexed: 06/14/2024]
Abstract
Photosynthesis, essential for life on earth, sustains diverse processes by providing nutrition in plants and microorganisms. Especially, photosynthesis is increasingly applied in disease treatments, but its efficacy is substantially limited by the well-known low penetration depth of external light. Here, ultrasound-mediated photosynthesis is reported for enhanced sonodynamic tumor therapy using organic sonoafterglow (ultrasound-induced afterglow) nanoparticles combined with cyanobacteria, demonstrating the proof-of-concept sonosynthesis (sonoafterglow-induced photosynthesis) in cancer therapy. Chlorin e6, a typical small-molecule chlorine, is formulated into nanoparticles to stimulate cyanobacteria for sonosynthesis, which serves three roles, i.e., overcoming the tissue-penetration limitations of external light sources, reducing hypoxia, and acting as a sonosensitizer for in vivo tumor suppression. Furthermore, sonosynthetic oxygenation suppresses the expression of hypoxia-inducible factor 1α, leading to reduced stability of downstream SLC7A11 mRNA, which results in glutathione depletion and inactivation of glutathione peroxidase 4, thereby inducing ferroptosis of cancer cells. This study not only broadens the scope of microbial nanomedicine but also offers a distinct direction for sonosynthesis.
Collapse
Affiliation(s)
- Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiu Shen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Junyi Jin
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaoyan Jiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenqi Pan
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ping Li
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
| |
Collapse
|
29
|
Du B, Xiong S, Sun L, Tagawa Y, Inoue D, Hashizume D, Wang W, Guo R, Yokota T, Wang S, Ishida Y, Lee S, Fukuda K, Someya T. A water-resistant, ultrathin, conformable organic photodetector for vital sign monitoring. SCIENCE ADVANCES 2024; 10:eadp2679. [PMID: 39047100 PMCID: PMC11268404 DOI: 10.1126/sciadv.adp2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Ultrathin flexible photodetectors can be conformably integrated with the human body, offering promising advancements for emerging skin-interfaced sensors. However, the susceptibility to degradation in ambient and particularly in aqueous environments hinders their practical application. Here, we report a 3.2-micrometer-thick water-resistant organic photodetector capable of reliably monitoring vital sign while submerged underwater. Embedding the organic photoactive layer in an adhesive elastomer matrix induces multidimensional hybrid phase separation, enabling high adhesiveness of the photoactive layer on both the top and bottom surfaces with maintained charge transport. This improves the water-immersion stability of the photoactive layer and ensures the robust sealing of interfaces within the device, notably suppressing fluid ingression in aqueous environments. Consequently, our fabricated ultrathin organic photodetector demonstrates stability in deionized water or cell nutrient media over extended periods, high detectivity, and resilience to cyclic mechanical deformation. We also showcase its potential for vital sign monitoring while submerged underwater.
Collapse
Affiliation(s)
- Baocai Du
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yusaku Tagawa
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wenqing Wang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ruiqi Guo
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuxu Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sunghoon Lee
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenjiro Fukuda
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Huang S, Huang X, Liu Z, Yao C, Liu J, He M, Xu X, Zhang T, Wang J, Jiang L, Chen HJ, Xie X. Advances in Multifunctional Electronic Catheters for Precise and Intelligent Diagnosis and Therapy in Minimally Invasive Surgery. ACS NANO 2024; 18:18129-18150. [PMID: 38954632 DOI: 10.1021/acsnano.4c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
31
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
32
|
Kokkiligadda S, Mondal A, Um SH, Park SH, Biswas C. Observation of Ultrahigh Photoconductivity in DNA-MoS 2 Nano-Biocomposite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400124. [PMID: 38488277 DOI: 10.1002/adma.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Indexed: 05/26/2024]
Abstract
A nano-biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio-optoelectronic applications. A uniform, well-connected, high-concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer-scale continuous nano-biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid-molybdenum disulfide (DNA-MoS2) nano-biocomposite film by incorporating a high-concentration, well-percolated, and uniform MoS2 network in the ss-DNA matrix. This is achieved by utilizing DNA-MoS2 hydrogel formation, which results in crack-free, wafer-scale DNA-MoS2 nano-biocomposite films. Ultra-high photocurrent (5.5 mA at 1 V) with a record-high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W-1). Such high photoconductivity in DNA-MoS2 nano-biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications.
Collapse
Affiliation(s)
- Samanth Kokkiligadda
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ashok Mondal
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Ha Park
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chandan Biswas
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
33
|
Sharma S, Kalyani N, Dutta T, Velázquez-González JS, Llamas-Garro I, Ung B, Bas J, Dubey R, Mishra SK. Optical Devices for the Diagnosis and Management of Spinal Cord Injuries: A Review. BIOSENSORS 2024; 14:296. [PMID: 38920599 PMCID: PMC11201428 DOI: 10.3390/bios14060296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Throughout the central nervous system, the spinal cord plays a very important role, namely, transmitting sensory and motor information inwardly so that it can be processed by the brain. There are many different ways this structure can be damaged, such as through traumatic injury or surgery, such as scoliosis correction, for instance. Consequently, damage may be caused to the nervous system as a result of this. There is no doubt that optical devices such as microscopes and cameras can have a significant impact on research, diagnosis, and treatment planning for patients with spinal cord injuries (SCIs). Additionally, these technologies contribute a great deal to our understanding of these injuries, and they are also essential in enhancing the quality of life of individuals with spinal cord injuries. Through increasingly powerful, accurate, and minimally invasive technologies that have been developed over the last decade or so, several new optical devices have been introduced that are capable of improving the accuracy of SCI diagnosis and treatment and promoting a better quality of life after surgery. We aim in this paper to present a timely overview of the various research fields that have been conducted on optical devices that can be used to diagnose spinal cord injuries as well as to manage the associated health complications that affected individuals may experience.
Collapse
Affiliation(s)
- Sonika Sharma
- Department of Physics, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India;
| | - Neeti Kalyani
- Department of Biotechnology and Biomedicine, Denmark Technical University, 2800 Kongens Lyngby, Denmark;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, West Bengal, India;
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Ignacio Llamas-Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Bora Ung
- Electrical Engineering Department, Ecole de Technologie Superieure, Montreal, QC H3C 1K3, Canada;
| | - Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, 70-453 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
34
|
Rho S, Sanders HS, Smith BD, O'Sullivan TD. Miniature wireless LED-device for photodynamic-induced cell pyroptosis. Photodiagnosis Photodyn Ther 2024; 47:104209. [PMID: 38734196 PMCID: PMC11336689 DOI: 10.1016/j.pdpdt.2024.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The inability of visible light to penetrate far through biological tissue limits its use for phototherapy and photodiagnosis of deep-tissue sites of disease. This is unfortunate because many visible dyes are excellent photosensitizers and photocatalysts that can induce a wide range of photochemical processes, including photogeneration of reactive oxygen species. One potential solution is to bring the light source closer to the site of disease by using a miniature implantable LED. With this goal in mind, we fabricated a wireless LED-based device (volume of 23 mm3) that is powered by RF energy and emits light with a wavelength of 573 nm. It has the capacity to excite the green absorbing dye Rose Bengal, which is an efficient type II photosensitizer. The wireless transfer of RF power is effective even when the device is buried in chicken breast and located 6 cm from the transmitting antenna. The combination of a wireless device as light source and Rose Bengal as photosensitizer was found to induce cell death of cultured HT-29 human colorectal adenocarcinoma cells. Time-dependent generation of protruding bubbles was observed in the photoactivated cells suggesting cell death by light-induced pyroptosis and supporting evidence was gained by cell staining with the fluorescence probes Annexin-V FITC and Propidium Iodide. The results reveal a future path towards a wireless implanted LED-based device that can trigger photodynamic immunogenic cell death in deep-seated cancerous tissue.
Collapse
Affiliation(s)
- Sunghoon Rho
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA
| | - Hailey S Sanders
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Thomas D O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA.
| |
Collapse
|
35
|
Bozuyuk U, Wrede P, Yildiz E, Sitti M. Roadmap for Clinical Translation of Mobile Microrobotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311462. [PMID: 38380776 DOI: 10.1002/adma.202311462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Medical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use. From the concept of a "magic bullet" to the physicochemical interactions of microrobots in complex biological environments in medical applications, there are several translational steps to consider. Clinical translation of mobile microrobots is only possible with a close collaboration between clinical experts and microrobotics researchers to address the technical challenges in microfabrication, safety, and imaging. The clinical application potential can be materialized by designing microrobots that can solve the current main challenges, such as actuation limitations, material stability, and imaging constraints. The strengths and weaknesses of the current progress in the microrobotics field are discussed and a roadmap for their clinical applications in the near future is outlined.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- School of Medicine and College of Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
36
|
Zhou M, Wang Y, Xia Y, Li Y, Bao J, Zhang Y, Cheng J, Shi Y. MRI-guided cell membrane-camouflaged bimetallic coordination nanoplatform for combined tumor phototherapy. Mater Today Bio 2024; 26:101019. [PMID: 38516170 PMCID: PMC10950690 DOI: 10.1016/j.mtbio.2024.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Nanotechnology for tumor diagnosis and optical therapy has attracted widespread interest due to its low toxicity and convenience but is severely limited due to uncontrollable tumor targeting. In this work, homologous cancer cell membrane-camouflaged multifunctional hybrid metal coordination nanoparticles (DRu/Gd@CM) were prepared for MRI-guided photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors. Bimetallic coordination nanoparticles are composed of three functional modules: dopamine, Ru(dcbpy)3Cl2 and GdCl3, which are connected through 1,4-Bis[(1H-imidazole-1-yl)methyl]benzene (BIX). Their morphology can be easily controlled by adjusting the ratio of precursors. Optimistically, the intrinsic properties of the precursors, including the photothermal properties of polydopamine (PDA), the magnetic resonance (MR) response of Gd3+, and the singlet oxygen generation of Ru(dcbpy)3Cl2, are well preserved in the hybrid metal nanoparticles. Furthermore, the targeting of homologous cancer cell membranes enables these coordinated nanoparticles to precisely target tumor cells. The MR imaging capabilities and the combination of PDT and PTT were demonstrated in in vitro experiments. In addition, in vivo experiments indicated that the nanoplatform showed excellent tumor accumulation and therapeutic effects on mice with subcutaneous tumors, and could effectively eliminate tumors within 14 days. Therefore, it expanded the new horizon for the preparation of modular nanoplatform and imaging-guided optical therapy of tumors.
Collapse
Affiliation(s)
| | | | - Yaning Xia
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Yinhua Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Jianfeng Bao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| |
Collapse
|
37
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
38
|
Huang J, Xu M, Cheng P, Yu J, Wu J, Pu K. A Tandem-Locked Chemiluminescent Probe for Imaging of Tumor-Associated Macrophage Polarization. Angew Chem Int Ed Engl 2024; 63:e202319780. [PMID: 38523406 DOI: 10.1002/anie.202319780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Singapore, 636921, Singapore
| |
Collapse
|
39
|
Xia J, Quan H, Huang Y, Zhang Z, Zhang Y, Lu B. Side Chain Programming Synchronously Enhances the Photothermal Conversion Efficiency and Photodynamic Activity of A-D-A Photosensitizers. ACS Macro Lett 2024; 13:489-494. [PMID: 38607650 DOI: 10.1021/acsmacrolett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.
Collapse
Affiliation(s)
- Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuehua Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
40
|
Tachikawa S, Ordonez-Miranda J, Jalabert L, Wu Y, Anufriev R, Guo Y, Kim B, Fujita H, Volz S, Nomura M. Enhanced Far-Field Thermal Radiation through a Polaritonic Waveguide. PHYSICAL REVIEW LETTERS 2024; 132:186904. [PMID: 38759170 DOI: 10.1103/physrevlett.132.186904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 03/13/2024] [Indexed: 05/19/2024]
Abstract
We experimentally demonstrate the enhancement of the far-field thermal radiation between two nonabsorbent Si microplates coated with energy-absorbent silicon dioxide (SiO_{2}) nanolayers supporting the propagation of surface phonon polaritons. By measuring the radiative thermal conductance between two coated Si plates, we find that its values are twice those obtained without the SiO_{2} coating. This twofold increase results from the hybridization of polaritons with guided modes inside Si and is well predicted by fluctuational electrodynamics and an analytical model based on a two-dimensional density of polariton states. These findings could be applied to thermal management in microelectronics, silicon photonics, energy conversion, atmospheric sciences, and astrophysics.
Collapse
Affiliation(s)
- Saeko Tachikawa
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8505, Japan
| | - Jose Ordonez-Miranda
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Laurent Jalabert
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yunhui Wu
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Roman Anufriev
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- Univ. Lyon, INSA Lyon, CNRS, CETHIL, UMR5008, 69621 Villeurbanne, France
| | - Yangyu Guo
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Byunggi Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Hiroyuki Fujita
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Sebastian Volz
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Masahiro Nomura
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
41
|
Yang Z, Wang T, Lin Y, Chen Y, Zeng H, Pei J, Wang J, Liu X, Zhou Y, Zhang J, Wang X, Lv X, Zhao R, Shi L. A vision chip with complementary pathways for open-world sensing. Nature 2024; 629:1027-1033. [PMID: 38811710 DOI: 10.1038/s41586-024-07358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/26/2024] [Indexed: 05/31/2024]
Abstract
Image sensors face substantial challenges when dealing with dynamic, diverse and unpredictable scenes in open-world applications. However, the development of image sensors towards high speed, high resolution, large dynamic range and high precision is limited by power and bandwidth. Here we present a complementary sensing paradigm inspired by the human visual system that involves parsing visual information into primitive-based representations and assembling these primitives to form two complementary vision pathways: a cognition-oriented pathway for accurate cognition and an action-oriented pathway for rapid response. To realize this paradigm, a vision chip called Tianmouc is developed, incorporating a hybrid pixel array and a parallel-and-heterogeneous readout architecture. Leveraging the characteristics of the complementary vision pathway, Tianmouc achieves high-speed sensing of up to 10,000 fps, a dynamic range of 130 dB and an advanced figure of merit in terms of spatial resolution, speed and dynamic range. Furthermore, it adaptively reduces bandwidth by 90%. We demonstrate the integration of a Tianmouc chip into an autonomous driving system, showcasing its abilities to enable accurate, fast and robust perception, even in challenging corner cases on open roads. The primitive-based complementary sensing paradigm helps in overcoming fundamental limitations in developing vision systems for diverse open-world applications.
Collapse
Affiliation(s)
- Zheyu Yang
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
- Lynxi Technologies, Beijing, China
| | - Taoyi Wang
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yihan Lin
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yuguo Chen
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Hui Zeng
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jing Pei
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jiazheng Wang
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Xue Liu
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | | | | | - Xin Wang
- Lynxi Technologies, Beijing, China
| | | | - Rong Zhao
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Luping Shi
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- THU-CET HIK Joint Research Center for Brain-Inspired Computing, Tsinghua University, Beijing, China.
| |
Collapse
|
42
|
Zhang Y, Deng J, Tian H, Qi H, Xiong T, Lin S, Dong Y, Luo L, Wu D, Zhang K, Ji M, Du T, Sheng L, Chen X, Xu H. Design, Synthesis, and Bioevaluation of Novel Reversibly Photoswitchable PI3K Inhibitors Based on Phenylazopyridine Derivatives toward Light-Controlled Cancer Treatment. J Med Chem 2024; 67:3504-3519. [PMID: 38377311 DOI: 10.1021/acs.jmedchem.3c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Photopharmacology is an emerging approach for achieving light-controlled drug activity. Herein, we design and synthesize a novel series of photoswitchable PI3K inhibitors by replacing a sulfonamide moiety with an azo group in a 4-methylquinazoline-based scaffold. Through structure-activity relationship studies, compound 6g is identified to be effectively switched between its trans- and cis-configuration under irradiation with proper wavelengths. Molecular docking studies show the cis-isomer of 6g is favorable to bind to the PI3K target, supporting compound 6g in the PSS365 (cis-isomer enriched) was more potent than that in the PSSdark (trans-isomer dominated) in PI3K enzymatic assay, cell antiproliferative assay, Western blotting analysis on PI3K downstream effectors, cell cycle analysis, colony formation assay, and wound-healing assay. Relative to the cis-isomer, the trans-isomer is more metabolically stable and shows good pharmacokinetic properties in mice. Moreover, compound 6g inhibits tumor growth in nude mice and a zebrafish HGC-27 xenograft model.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jialing Deng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijun Luo
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
43
|
Vyas S, Chu CH, Yeh JA, Luo Y. Abrupt autofocusing beam from a phase-only mask. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:A40-A46. [PMID: 38437424 DOI: 10.1364/josaa.507228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/05/2024] [Indexed: 03/06/2024]
Abstract
Airy beams have become an important beam shape for structured light beams because of their interesting self-accelerating and parabolic propagation properties. Many variants of Airy beams have been proposed, among which the Airy beam with cylindrical symmetry [also known as the circular Airy beam or abrupt autofocusing (AAF) beam] is particularly peculiar and has attracted special attention due to its shape transformation during propagation. Much effort has been devoted to understanding the properties of the AAF beam. In this work, we present simulation results for generating the AAF beam using a phase-only mask. A cubic chirp-modulated axicon phase is used to create the mask. We found an optimal value for the axiconic phase, and the cubic phase is essential for controlling the AAF beam's shape. We demonstrate that a phase-only mask is an effective and simple method for generating high contrast between the initial and AAF plane. We present the results for beam formation and propagation dynamics of the AAF beam using the control parameters of the phase mask. We also discuss the design parameters and their influence on the AAF beam shapes. Our results pave the way for a deeper understanding of the beam formation and propagation dynamics of the AAF beam.
Collapse
|
44
|
Wang X, Wei W, Guo Z, Liu X, Liu J, Bing T, Yu Y, Yang X, Cai Q. Organic-inorganic composite hydrogels: compositions, properties, and applications in regenerative medicine. Biomater Sci 2024; 12:1079-1114. [PMID: 38240177 DOI: 10.1039/d3bm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Guo
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ju Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing 100176, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
45
|
Lin Q, Li Z, Wang B, Zhou M, Xie Y, Wang D, Hou C, Wang R, Liu X, Sun X, Shan H, Chen Z, Wu H, Yang Y, Fei C, Chen Z. Acoustic hologram-induced virtual in vivo enhanced waveguide (AH-VIEW). SCIENCE ADVANCES 2024; 10:eadl2232. [PMID: 38354252 DOI: 10.1126/sciadv.adl2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Optical imaging and phototherapy in deep tissues face notable challenges due to light scattering. We use encoded acoustic holograms to generate three-dimensional acoustic fields within the target medium, enabling instantaneous and robust modulation of the volumetric refractive index, thereby noninvasively controlling the trajectory of light. Through this approach, we achieved a remarkable 24.3% increase in tissue heating rate in vitro photothermal effect tests on porcine skin. In vivo photoacoustic imaging of mouse brain vasculature exhibits an improved signal-to-noise ratio through the intact scalp and skull. These findings demonstrate that our strategy can effectively suppress light scattering in complex biological tissues by inducing low-angle scattering, achieving an effective depth reaching the millimeter scale. The versatility of this strategy extends its potential applications to neuroscience, lithography, and additive manufacturing.
Collapse
Affiliation(s)
- Qibo Lin
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhaoxi Li
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Mengqing Zhou
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yang Xie
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Danfeng Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Chenxue Hou
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Runyu Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xin Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Han Shan
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Ziyan Chen
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Huayi Wu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yintang Yang
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Zeyu Chen
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
46
|
Sheng S, Jin L, Zhang Y, Sun W, Mei L, Zhu D, Dong X, Lv F. A Twindrive Precise Delivery System of Platelet-Neutrophil Hybrid Membrane Regulates Macrophage Combined with CD47 Blocking for Postoperative Immunotherapy. ACS NANO 2024; 18:4981-4992. [PMID: 38193386 DOI: 10.1021/acsnano.3c10862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
During wound healing after cancer surgery, platelets, neutrophils, and macrophages accumulate at the wound site and induce important pathophysiological features. Utilizing these pathophysiological features, the development of targeted delivery systems for postoperative tumor immunotherapy is an important strategy. Herein, a twindrive precise delivery system of hybrid membrane combined with CD47 blocking is developed for targeted delivery and targeted regulation to induce postoperative immunotherapy. The precise delivery system consists of IR820-modified platelet-neutrophil hybrid membranes loaded with R848 nanoparticles. Based on the pathological characteristics of platelet aggregation and neutrophil tendency caused by the wound inflammatory microenvironment after tumor surgery, the twindrive delivery system could achieve targeted delivery and targeted regulation of immune drugs to tumor sites. After precise delivery guided by fluorescence imaging, R848 is targeted to reprogram M2 macrophages into M1 macrophages, stimulate dendritic cell maturation as an adjuvant, and then activate T cell immunity. R848 polarization and CD47 blockade together enhanced the phagocytosis function of macrophages, which combined with T cell-mediated cellular immune response to finally effectively inhibit postsurgical tumor recurrence, metastasis, and prolonged survival time. It develops a targeted delivery and regulatory system for cell-specific responses to the pathophysiological features of wound healing for postoperative immunotherapy.
Collapse
Affiliation(s)
- Shupei Sheng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Limin Jin
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Weiting Sun
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| |
Collapse
|
47
|
Ran C, Pu K. Molecularly generated light and its biomedical applications. Angew Chem Int Ed Engl 2024; 63:e202314468. [PMID: 37955419 DOI: 10.1002/anie.202314468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Molecularly generated light, referred to here as "molecular light", mainly includes bioluminescence, chemiluminescence, and Cerenkov luminescence. Molecular light possesses unique dual features of being both a molecule and a source of light. Its molecular nature enables it to be delivered as molecules to regions deep within the body, overcoming the limitations of natural sunlight and physically generated light sources like lasers and LEDs. Simultaneously, its light properties make it valuable for applications such as imaging, photodynamic therapy, photo-oxidative therapy, and photobiomodulation. In this review article, we provide an updated overview of the diverse applications of molecular light and discuss the strengths and weaknesses of molecular light across various domains. Lastly, we present forward-looking perspectives on the potential of molecular light in the realms of molecular imaging, photobiological mechanisms, therapeutic applications, and photobiomodulation. While some of these perspectives may be considered bold and contentious, our intent is to inspire further innovations in the field of molecular light applications.
Collapse
Affiliation(s)
- Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| |
Collapse
|
48
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
49
|
Ferreira-Gonçalves T, Nunes D, Fortunato E, Martins R, de Almeida AP, Carvalho L, Ferreira D, Catarino J, Faísca P, Ferreira HA, Gaspar MM, Coelho JMP, Reis CP. Rational approach to design gold nanoparticles for photothermal therapy: the effect of gold salt on physicochemical, optical and biological properties. Int J Pharm 2024; 650:123659. [PMID: 38042383 DOI: 10.1016/j.ijpharm.2023.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Among the unique characteristics associated to gold nanoparticles (AuNPs) in biomedicine, their ability to convert light energy into heat opens ventures for improved cancer therapeutic options, such as photothermal therapy (PTT). PTT relies on the local hyperthermia of tumor cells upon irradiation with light beams, and the association of AuNPs with radiation within the near infrared (NIR) range constitutes an advantageous strategy to potentially improve PTT efficacy. Herein, it was explored the effect of the gold salt on the AuNPs' physicochemical and optical properties. Mostly spherical-like negatively charged AuNPs with variable sizes and absorbance spectra were obtained. In addition, photothermal features were assessed using in vitro phantom models. The best formulation showed the ability to increase their temperature in aqueous solution up to 19 °C when irradiated with a NIR laser for 20 min. Moreover, scanning transmission electron microscopy confirmed the rearrangement of the gold atoms in a face-centered cubic structure, which further allowed to calculate the photothermal conversion efficiency upon combination of theoretical and experimental data. AuNPs also showed local retention after being locally administered in in vivo models. These last results obtained by computerized tomography allow to consider these AuNPs as promising elements for a PTT system. Moreover, AuNPs showed high potential for PTT by resulting in in vitro cancer cells' viability reductions superior to 70 % once combine with 5 min of NIR irradiation.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Daniela Nunes
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, 2829-516 Caparica, Portugal.
| | - Rodrigo Martins
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, 2829-516 Caparica, Portugal.
| | - António P de Almeida
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Lina Carvalho
- Central Testing Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-594 Valverde, Évora, Portugal.
| | - José Catarino
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
50
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|