1
|
Xiong S, Bian Y, An X, Liu J, Yu X, Gao X, Su D. β-galactosidase instructed in situ self-assembly fluorogenic probe for prolonged and accurate imaging of ovarian tumor. Talanta 2025; 282:126994. [PMID: 39383721 DOI: 10.1016/j.talanta.2024.126994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Fluorescent probes are essential for optical imaging and have been extensively employed for precise cancer diagnosis studies. β-galactosidase (β-gal) serves as a primary biomarker for ovarian cancer and has been utilized to develop imaging probes for accurate tumor diagnosis. However, traditional small molecular probes have limitations in terms of rapid diffusion and metabolic clearance from the target lesion, resulting in a short imaging window and compromised tumor-to-background ratios (TBR). Herein, we integrated an enzyme-instructed in situ self-assembly strategy to construct Gal-IRFF, a small molecule-based activatable near-infrared (NIR) fluorogenic probe. Upon cleavage by endogenous β-gal overexpressed in ovarian cancer cells, IRFF exhibited enhanced NIR fluorescence signals and self-assembled into nanoparticles through intermolecular interactions of the Phe-Phe (FF) dipeptide moiety, which facilitated probe accumulation and retention within the tumor lesion. Compared with the small molecule probe Gal-IR, our proposed self-assembly probe Gal-IRFF demonstrated a lower limit of detection (LOD) towards β-gal and showed remarkable improvements in distribution and retention time within SKOV3 cells in vitro and tumors in vivo, thereby providing a long-term imaging window for real-time monitoring β-gal levels in ovarian tumors. Therefore, this study highlights the potential of an enzyme-instructed self-assembly fluorogenic probe design approach for achieving precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Xinru An
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Jiatian Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Xiaohe Yu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China.
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China.
| |
Collapse
|
2
|
Xu C, Qin X, Wei X, Yu J, Zhang Y, Zhang Y, Ding D, Song J, Pu K. A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01809-9. [PMID: 39548317 DOI: 10.1038/s41565-024-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
Leveraging X-rays to initiate prolonged luminescence (radio-afterglow) and stimulate radiodynamic 1O2 production from optical agents provides opportunities for diagnosis and therapy at tissue depths inaccessible to light. However, X-ray-responsive organic luminescent materials are rare due to their intrinsic low X-ray conversion efficiency. Here we report a cascade X-ray energy converting approach to develop organic radio-afterglow nanoprobes (RANPs) for cancer theranostics. RANPs comprise a radiowave absorber that down-converts X-ray energy to emit radioluminescence, which is transferred to a radiosensitizer to produce singlet oxygen (1O2). 1O2 then reacts with a radio-afterglow substrate to generate an active intermediate that simultaneously decomposes to emit radio-afterglow. Through finetuning such a cascade, intraparticle radioluminescence energy transfer and the 1O2 transfer process, RANPs possess tunable wavelengths and long half-lives, and generate radio-afterglow and 1O2 at tissue depths of up to 15 cm. Moreover, we developed a biomarker-activatable nanoprobe (tRANP) that produces a tumour-specific radio-afterglow signal, leading to ultrasensitive detection and the possibility of surgical removal of diminutive tumours (1 mm3) under an X-ray dosage 20 times lower than inorganic materials. The efficient radiodynamic 1O2 generation of tRANP permits complete tumour eradication at an X-ray dosage lower than clinical radiotherapy and a drug dosage one to two orders of magnitude lower than most existing inorganic agents, leading to prolonged survival rates with minimized radiation-related adverse effects. Thus, our work reveals a generic approach to address the lack of organic radiotheranostic materials and provides molecular design towards precision cancer radiotherapy.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Xue Qin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jie Yu
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bio-inorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China
| | - Youjia Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bio-inorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Li Y, Gröhl J, Haney B, Caranovic M, Lorenz-Meyer E, Papatheodorou N, Kempf J, Regensburger AP, Nedoschill E, Buehler A, Siebenlist G, Lang W, Uder M, Neurath MF, Waldner M, Knieling F, Rother U. Teachability of multispectral optoacoustic tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400106. [PMID: 38719459 DOI: 10.1002/jbio.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.
Collapse
Affiliation(s)
- Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Janek Gröhl
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Briain Haney
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Milenko Caranovic
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Lorenz-Meyer
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nikolaos Papatheodorou
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julius Kempf
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Taylor-Williams M, Tao R, Sawyer TW, Waterhouse DJ, Yoon J, Bohndiek SE. Targeted multispectral filter array design for the optimization of endoscopic cancer detection in the gastrointestinal tract. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:036005. [PMID: 38560531 PMCID: PMC10978444 DOI: 10.1117/1.jbo.29.3.036005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Significance Color differences between healthy and diseased tissue in the gastrointestinal (GI) tract are detected visually by clinicians during white light endoscopy; however, the earliest signs of cancer are often just a slightly different shade of pink compared to healthy tissue making it hard to detect. Improving contrast in endoscopy is important for early detection of disease in the GI tract during routine screening and surveillance. Aim We aim to target alternative colors for imaging to improve contrast using custom multispectral filter arrays (MSFAs) that could be deployed in an endoscopic "chip-on-tip" configuration. Approach Using an open-source toolbox, Opti-MSFA, we examined the optimal design of MSFAs for early cancer detection in the GI tract. The toolbox was first extended to use additional classification models (k -nearest neighbor, support vector machine, and spectral angle mapper). Using input spectral data from published clinical trials examining the esophagus and colon, we optimized the design of MSFAs with three to nine different bands. Results We examined the variation of the spectral and spatial classification accuracies as a function of the number of bands. The MSFA configurations tested showed good classification accuracies when compared to the full hyperspectral data available from the clinical spectra used in these studies. Conclusion The ability to retain good classification accuracies with a reduced number of spectral bands could enable the future deployment of multispectral imaging in an endoscopic chip-on-tip configuration using simplified MSFA hardware. Further studies using an expanded clinical dataset are needed to confirm these findings.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Ran Tao
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Travis W. Sawyer
- University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States
| | - Dale J. Waterhouse
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
- University College London, Wellcome/EPRSC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Jonghee Yoon
- Ajou University, Department of Physics, Suwon-si, Republic of Korea
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
5
|
Yu Q, Zhang L, Jiang M, Xiao L, Xiang Y, Wang R, Liu Z, Zhou R, Yang M, Li C, Liu M, Zhou X, Chen S. An NIR Fluorescence Turn-on and MRl Bimodal Probe for Concurrent Real-time in vivo Sensing and Labeling of β-Galactosidase. Angew Chem Int Ed Engl 2023; 62:e202313137. [PMID: 37766426 DOI: 10.1002/anie.202313137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
To realize sensing and labeling biomarkers is quite challenging in terms of designing multimodal imaging probes. In this study, we developed a novel β-galactosidase (β-gal) activated bimodal imaging probe that combines near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) to enable real-time visualization of activity in living organisms. Upon β-gal activation, Gal-Cy-Gd-1 exhibits a remarkable 42-fold increase in NIR fluorescence intensity at 717 nm, allowing covalent labeling of adjacent target enzymes or proteins and avoiding molecular escape to promote probe accumulation at the tumor site. This fluorescence reaction enhances the longitudinal relaxivity by approximately 1.9 times, facilitating high-resolution MRI. The unique features of Gal-Cy-Gd-1 enable real-time and precise visualization of β-gal activity in live tumor cells and mice. The probe's utilization aids in identifying in situ ovarian tumors, offering valuable assistance in the precise removal of tumor tissue during surgical procedures in mice. The fusion of NIR fluorescence and MRI activation through self-immobilizing target enzymes or proteins provides a robust approach for visualizing β-gal activity. Moreover, this approach sets the groundwork for developing other activatable bimodal probes, allowing real-time in vivo imaging of enzyme activity and localization.
Collapse
Affiliation(s)
- Qiao Yu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
| | - Lei Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mou Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
| | - Long Xiao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunhui Xiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifang Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoqing Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Huang J, Su L, Xu C, Ge X, Zhang R, Song J, Pu K. Molecular radio afterglow probes for cancer radiodynamic theranostics. NATURE MATERIALS 2023; 22:1421-1429. [PMID: 37667071 DOI: 10.1038/s41563-023-01659-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
X-ray-induced afterglow and radiodynamic therapy tackle the tissue penetration issue of optical imaging and phototherapy. However, inorganic nanophosphors used in this therapy have their radio afterglow dynamic function as always on, limiting the detection specificity and treatment efficacy. Here we report organic luminophores (IDPAs) with near-infrared afterglow and 1O2 production after X-ray irradiation for cancer theranostics. The in vivo radio afterglow of IDPAs is >25.0 times brighter than reported inorganic nanophosphors, whereas the radiodynamic production of 1O2 is >5.7 times higher than commercially available radio sensitizers. The modular structure of IDPAs permits the development of a smart molecular probe that only triggers its radio afterglow dynamic function in the presence of a cancer biomarker. Thus, the probe enables the ultrasensitive detection of a diminutive tumour (0.64 mm) with superb contrast (tumour-to-background ratio of 234) and tumour-specific radiotherapy for brain tumour with molecular precision at low dosage. Our work reveals the molecular guidelines towards organic radio afterglow agents and highlights new opportunities for cancer radio theranostics.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, Singapore
| | - Lichao Su
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, Singapore
| | - Xiaoguang Ge
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Ruiping Zhang
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China.
| | - Jibin Song
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore.
| |
Collapse
|
7
|
Sullivan TE, Hernandez Vargas S, Ghosh SC, AghaAmiri S, Ikoma N, Azhdarinia A. A translational blueprint for developing intraoperative imaging agents via radiopharmaceutical-guided drug design. Curr Opin Chem Biol 2023; 76:102376. [PMID: 37572489 DOI: 10.1016/j.cbpa.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Cancer imaging is a rapidly evolving field due to the discovery of novel molecular targets and the availability of corresponding techniques to detect them with high precision, accuracy, and sensitivity. Nuclear medicine is the most widely used molecular imaging modality and has a growing toolkit of clinically used radiopharmaceuticals that enable whole-body tumor visualization, staging, and treatment monitoring for a variety of tumors in a non-invasive manner. The need for similar imaging capabilities in the operating room has led to the emergence of fluorescence-guided surgery (FGS) as a powerful technique that gives surgeons unprecedented ability to distinguish tumors from healthy tissues. While a variety of strategies have been used to develop contrast agents for FGS, the use of radiopharmaceuticals as models brings exceptional translational potential and has increasingly been explored. Here, we review strategies used to convert clinically used radiopharmaceuticals into fluorescent and multimodal counterparts. Unique preclinical and clinical capabilities stemming from radiopharmaceutical-based agent design are also discussed to illustrate the advantages of this approach.
Collapse
Affiliation(s)
- Teresa E Sullivan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| |
Collapse
|
8
|
Assi H, Cao R, Castelino M, Cox B, Gilbert FJ, Gröhl J, Gurusamy K, Hacker L, Ivory AM, Joseph J, Knieling F, Leahy MJ, Lilaj L, Manohar S, Meglinski I, Moran C, Murray A, Oraevsky AA, Pagel MD, Pramanik M, Raymond J, Singh MKA, Vogt WC, Wang L, Yang S, Members of IPASC, Bohndiek SE. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption. PHOTOACOUSTICS 2023; 32:100539. [PMID: 37600964 PMCID: PMC10432856 DOI: 10.1016/j.pacs.2023.100539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group.
Collapse
Affiliation(s)
- Hisham Assi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospital, London, UK
| | - Ben Cox
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | | | - Janek Gröhl
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kurinchi Gurusamy
- Department of Surgical Biotechnology, University College London, London, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aoife M. Ivory
- Department of Medical, Marine and Nuclear Physics, National Physical Laboratory, Teddington, UK
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Martin J. Leahy
- School of Natural Sciences – Physics, University of Galway, Galway, Ireland
| | | | | | - Igor Meglinski
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Carmel Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Andrea Murray
- Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Salford Care Organisation, NCA NHS Foundation Trust, UK
| | | | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Jason Raymond
- Department of Engineering Science, University of Oxford, UK
| | | | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lihong Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shufan Yang
- School of Computing, Edinburgh Napier University, UK
| | - Members of IPASC
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Qi J, Tatla T, Nissanka-Jayasuriya E, Yuan AY, Stoyanov D, Elson DS. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat Biomed Eng 2023; 7:971-985. [PMID: 37012312 PMCID: PMC10427430 DOI: 10.1038/s41551-023-01018-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/23/2023] [Indexed: 04/05/2023]
Abstract
The standard-of-care for the detection of laryngeal pathologies involves distinguishing suspicious lesions from surrounding healthy tissue via contrasts in colour and texture captured by white-light endoscopy. However, the technique is insufficiently sensitive and thus leads to unsatisfactory rates of false negatives. Here we show that laryngeal lesions can be better detected in real time by taking advantage of differences in the light-polarization properties of cancer and healthy tissues. By measuring differences in polarized-light retardance and depolarization, the technique, which we named 'surgical polarimetric endoscopy' (SPE), generates about one-order-of-magnitude greater contrast than white-light endoscopy, and hence allows for the better discrimination of cancerous lesions, as we show with patients diagnosed with squamous cell carcinoma. Polarimetric imaging of excised and stained slices of laryngeal tissue indicated that changes in the retardance of polarized light can be largely attributed to architectural features of the tissue. We also assessed SPE to aid routine transoral laser surgery for the removal of a cancerous lesion, indicating that SPE can complement white-light endoscopy for the detection of laryngeal cancer.
Collapse
Affiliation(s)
- Ji Qi
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, China.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
- Centre For Medical Image Computing, University College London, London, UK.
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Taranjit Tatla
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
- Northwick Park Hospital, London North West University Healthcare NHS Trust, London, UK
| | | | - Alan Yilun Yuan
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
- Centre For Medical Image Computing, University College London, London, UK.
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
10
|
Doyle K, Magbagbeola M, Rai ZL, Waterhouse D, Lindenroth L, Dwyer G, Gander A, Stilli A, Davidson BR, Stoyanov D. The Application of Machine Perfusion as an Enhanced ex vivo Model for Optical Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083568 DOI: 10.1109/embc40787.2023.10341091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Optical imaging techniques such as spectral imaging show promise for the assessment of tissue health during surgery; however, the validation and translation of such techniques into clinical practise is limited by the lack of representative tissue models. In this paper, we demonstrate the application of an organ perfusion machine as an ex vivo tissue model for optical imaging. Three porcine livers are perfused at stepped blood oxygen saturations. Over the duration of each perfusion, spectral data of the tissue are captured via diffuse optical spectroscopy and multispectral imaging. These data are synchronised with blood oxygen saturation measurements recorded by the perfusion machine. Shifts in the optical properties of the tissue are demonstrated over the duration of the each perfusion, as the tissue becomes reperfused and as the oxygen saturation is varied.
Collapse
|
11
|
de Freitas CF, de Araújo Santos J, Pellosi DS, Caetano W, Batistela VR, Muniz EC. Recent advances of Pluronic-based copolymers functionalization in biomedical applications. BIOMATERIALS ADVANCES 2023; 151:213484. [PMID: 37276691 DOI: 10.1016/j.bioadv.2023.213484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the "magic bullet" and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Federal University of Santa Catarina - UFSC, Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Jailson de Araújo Santos
- PhD Program in Materials Science and Engineering, Federal University of Piauí, Campus Petrônio Portela, Ininga, Teresina CEP 64049-550, Piauí, Brazil
| | - Diogo Silva Pellosi
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Vagner Roberto Batistela
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil; Department of Chemistry, Federal University of Piauí, Campus Petronio Portella, Ininga, Teresina CEP 64049-550, Piauí, Brazil.
| |
Collapse
|
12
|
Niazi A, Parvin P, Jafargholi A, Basam MA, Khodabakhshi Z, Bavali A, Kamyab Hesari K, Sohrabizadeh Z, Hassanzadeh T, Shirafkan Dizaj L, Amiri R, Heidari O, Aghaei M, Atyabi F, Ehtesham A, Moafi A. Discrimination of normal and cancerous human skin tissues based on laser-induced spectral shift fluorescence microscopy. Sci Rep 2022; 12:20927. [PMID: 36463297 PMCID: PMC9719548 DOI: 10.1038/s41598-022-25055-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
A homemade spectral shift fluorescence microscope (SSFM) is coupled with a spectrometer to record the spectral images of specimens based on the emission wavelength. Here a reliable diagnosis of neoplasia is achieved according to the spectral fluorescence properties of ex-vivo skin tissues after rhodamine6G (Rd6G) staining. It is shown that certain spectral shifts occur for nonmelanoma/melanoma lesions against normal/benign nevus, leading to spectral micrographs. In fact, there is a strong correlation between the emission wavelength and the sort of skin lesions, mainly due to the Rd6G interaction with the mitochondria of cancerous cells. The normal tissues generally enjoy a significant red shift regarding the laser line (37 nm). Conversely, plenty of fluorophores are conjugated to unhealthy cells giving rise to a relative blue shift i.e., typically SCC (6 nm), BCC (14 nm), and melanoma (19 nm) against healthy tissues. In other words, the redshift takes place with respect to the excitation wavelength i.e., melanoma (18 nm), BCC (23 nm), and SCC (31 nm) with respect to the laser line. Consequently, three data sets are available in the form of micrographs, addressing pixel-by-pixel signal intensity, emission wavelength, and fluorophore concentration of specimens for prompt diagnosis.
Collapse
Affiliation(s)
- A Niazi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - P Parvin
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - A Jafargholi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
- Department of Electronic and Electrical Engineering, University College London (UCL), London, England, UK
| | - M A Basam
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Z Khodabakhshi
- Faculty of Physics, Shahrood University of Technology, Shahrood, Iran
| | - A Bavali
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - K Kamyab Hesari
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Z Sohrabizadeh
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - T Hassanzadeh
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - L Shirafkan Dizaj
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - R Amiri
- Department of Pathology, Razi Hospital, POX:1199663911, Tehran, Iran
| | - O Heidari
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - M Aghaei
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), 6009, Ålesund, Norway
| | - F Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - A Ehtesham
- Radiation Oncology Department, School of Medicine Washington University, St. Louis, USA
| | - A Moafi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
13
|
Taylor-Williams M, Mead S, Sawyer TW, Hacker L, Williams C, Berks M, Murray A, Bohndiek SE. Multispectral imaging of nailfold capillaries using light-emitting diode illumination. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:126002. [PMID: 36519074 PMCID: PMC9743620 DOI: 10.1117/1.jbo.27.12.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE The capillaries are the smallest blood vessels in the body, typically imaged using video capillaroscopy to aid diagnosis of connective tissue diseases, such as systemic sclerosis. Video capillaroscopy allows visualization of morphological changes in the nailfold capillaries but does not provide any physiological information about the blood contained within the capillary network. Extracting parameters such as hemoglobin oxygenation could increase sensitivity for diagnosis and measurement of microvascular disease progression. AIM To design, construct, and test a low-cost multispectral imaging (MSI) system using light-emitting diode (LED) illumination to assess relative hemoglobin oxygenation in the nailfold capillaries. APPROACH An LED ring light was first designed and modeled. The ring light was fabricated using four commercially available LED colors and a custom-designed printed circuit board. The experimental system was characterized and results compared with the illumination model. A blood phantom with variable oxygenation was used to determine the feasibility of using the illumination-based MSI system for oximetry. Nailfold capillaries were then imaged in a healthy subject. RESULTS The illumination modeling results were in close agreement with the constructed system. Imaging of the blood phantom demonstrated sensitivity to changing hemoglobin oxygenation, which was in line with the spectral modeling of reflection. The morphological properties of the volunteer capillaries were comparable to those measured in current gold standard systems. CONCLUSIONS LED-based illumination could be used as a low-cost approach to enable MSI of the nailfold capillaries to provide insight into the oxygenation of the blood contained within the capillary network.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Stephen Mead
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Travis W. Sawyer
- University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States
| | - Lina Hacker
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Calum Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Michael Berks
- University of Manchester, Division of Cancer Sciences, Quantitative Biomedical Imaging Laboratory, Manchester, United Kingdom
| | - Andrea Murray
- University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
14
|
Wells G, Glasgow JN, Nargan K, Lumamba K, Madansein R, Maharaj K, Perumal LY, Matthew M, Hunter RL, Pacl H, Peabody Lever JE, Stanford DD, Singh SP, Bajpai P, Manne U, Benson PV, Rowe SM, le Roux S, Sigal A, Tshibalanganda M, Wells C, du Plessis A, Msimang M, Naidoo T, Steyn AJC. A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions. EMBO Mol Med 2022; 14:e16283. [PMID: 36285507 PMCID: PMC9641421 DOI: 10.15252/emmm.202216283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
Our current understanding of the spectrum of TB and COVID-19 lesions in the human lung is limited by a reliance on low-resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID-19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin-embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID-19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID-19 lesions within the framework of the entire lung.
Collapse
Affiliation(s)
- Gordon Wells
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Joel N Glasgow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kievershen Nargan
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Kapongo Lumamba
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rajhmun Madansein
- Inkosi Albert Luthuli Central Hospital and University of KwaZulu‐NatalDurbanSouth Africa
| | - Kameel Maharaj
- Inkosi Albert Luthuli Central Hospital and University of KwaZulu‐NatalDurbanSouth Africa
| | - Leon Y Perumal
- Perumal & Partners RadiologistsAhmed Al‐Kadi Private HospitalDurbanSouth Africa
| | - Malcolm Matthew
- Perumal & Partners RadiologistsAhmed Al‐Kadi Private HospitalDurbanSouth Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Hayden Pacl
- Medical Scientist Training ProgramUniversity of Alabama at BirminghamBirminghamALUSA
| | | | - Denise D Stanford
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Satinder P Singh
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Department of RadiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Paul V Benson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Steven M Rowe
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | | | - Alex Sigal
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Muofhe Tshibalanganda
- Research Group 3D Innovation, Physics DepartmentStellenbosch UniversityStellenboschSouth Africa
| | - Carlyn Wells
- CT Scanner Facility, Central Analytical FacilitiesStellenbosch UniversityStellenboschSouth Africa
| | - Anton du Plessis
- Research Group 3D Innovation, Physics DepartmentStellenbosch UniversityStellenboschSouth Africa
- Object Research SystemsMontrealQCCanada
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory ServiceInkosi Albert Luthuli Central HospitalDurbanSouth Africa
| | - Threnesan Naidoo
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of Anatomical Pathology, National Health Laboratory ServiceInkosi Albert Luthuli Central HospitalDurbanSouth Africa
- Department of Laboratory Medicine & PathologyWalter Sisulu UniversityEastern CapeSouth Africa
| | - Adrie J C Steyn
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Centers for AIDS Research and Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
15
|
He J, Zhou L, Huang G, Shen J, Chen W, Wang C, Kim A, Zhang Z, Cheng W, Dai S, Ding F, Chen P. Enhanced Label-Free Nanoplasmonic Cytokine Detection in SARS-CoV-2 Induced Inflammation Using Rationally Designed Peptide Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48464-48475. [PMID: 36281943 PMCID: PMC9627400 DOI: 10.1021/acsami.2c14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 06/12/2023]
Abstract
Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au-S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.
Collapse
Affiliation(s)
- Jiacheng He
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Jialiang Shen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Wu Chen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Albert Kim
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Weiqiang Cheng
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Siyuan Dai
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
16
|
Nazarian S, Gkouzionis I, Kawka M, Jamroziak M, Lloyd J, Darzi A, Patel N, Elson DS, Peters CJ. Real-time Tracking and Classification of Tumor and Nontumor Tissue in Upper Gastrointestinal Cancers Using Diffuse Reflectance Spectroscopy for Resection Margin Assessment. JAMA Surg 2022; 157:e223899. [PMID: 36069888 PMCID: PMC9453631 DOI: 10.1001/jamasurg.2022.3899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance Cancers of the upper gastrointestinal tract remain a major contributor to the global cancer burden. The accurate mapping of tumor margins is of particular importance for curative cancer resection and improvement in overall survival. Current mapping techniques preclude a full resection margin assessment in real time. Objective To evaluate whether diffuse reflectance spectroscopy (DRS) on gastric and esophageal cancer specimens can differentiate tissue types and provide real-time feedback to the operator. Design, Setting, and Participants This was a prospective ex vivo validation study. Patients undergoing esophageal or gastric cancer resection were prospectively recruited into the study between July 2020 and July 2021 at Hammersmith Hospital in London, United Kingdom. Tissue specimens were included for patients undergoing elective surgery for either esophageal carcinoma (adenocarcinoma or squamous cell carcinoma) or gastric adenocarcinoma. Exposures A handheld DRS probe and tracking system was used on freshly resected ex vivo tissue to obtain spectral data. Binary classification, following histopathological validation, was performed using 4 supervised machine learning classifiers. Main Outcomes and Measures Data were divided into training and testing sets using a stratified 5-fold cross-validation method. Machine learning classifiers were evaluated in terms of sensitivity, specificity, overall accuracy, and the area under the curve. Results Of 34 included patients, 22 (65%) were male, and the median (range) age was 68 (35-89) years. A total of 14 097 mean spectra for normal and cancerous tissue were collected. For normal vs cancer tissue, the machine learning classifier achieved a mean (SD) overall diagnostic accuracy of 93.86% (0.66) for stomach tissue and 96.22% (0.50) for esophageal tissue and achieved a mean (SD) sensitivity and specificity of 91.31% (1.5) and 95.13% (0.8), respectively, for stomach tissue and of 94.60% (0.9) and 97.28% (0.6) for esophagus tissue. Real-time tissue tracking and classification was achieved and presented live on screen. Conclusions and Relevance This study provides ex vivo validation of the DRS technology for real-time differentiation of gastric and esophageal cancer from healthy tissue using machine learning with high accuracy. As such, it is a step toward the development of a real-time in vivo tumor mapping tool for esophageal and gastric cancers that can aid decision-making of resection margins intraoperatively.
Collapse
Affiliation(s)
- Scarlet Nazarian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ioannis Gkouzionis
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Michal Kawka
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Marta Jamroziak
- Histopathology Department, Imperial College NHS Trust, London, United Kingdom
| | - Josephine Lloyd
- Histopathology Department, Imperial College NHS Trust, London, United Kingdom
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Nisha Patel
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel S. Elson
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,Hamlyn Centre, Imperial College London, London, United Kingdom
| | | |
Collapse
|
17
|
Non-invasive monitoring of blood oxygenation in human placentas via concurrent diffuse optical spectroscopy and ultrasound imaging. Nat Biomed Eng 2022; 6:1017-1030. [PMID: 35970929 PMCID: PMC9944515 DOI: 10.1038/s41551-022-00913-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.
Collapse
|
18
|
Taylor-Williams M, Spicer G, Bale G, Bohndiek SE. Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220074VR. [PMID: 35922891 PMCID: PMC9346606 DOI: 10.1117/1.jbo.27.8.080901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Measurement and imaging of hemoglobin oxygenation are used extensively in the detection and diagnosis of disease; however, the applied instruments vary widely in their depth of imaging, spatiotemporal resolution, sensitivity, accuracy, complexity, physical size, and cost. The wide variation in available instrumentation can make it challenging for end users to select the appropriate tools for their application and to understand the relative limitations of different methods. AIM We aim to provide a systematic overview of the field of hemoglobin imaging and sensing. APPROACH We reviewed the sensing and imaging methods used to analyze hemoglobin oxygenation, including pulse oximetry, spectral reflectance imaging, diffuse optical imaging, spectroscopic optical coherence tomography, photoacoustic imaging, and diffuse correlation spectroscopy. RESULTS We compared and contrasted the ability of different methods to determine hemoglobin biomarkers such as oxygenation while considering factors that influence their practical application. CONCLUSIONS We highlight key limitations in the current state-of-the-art and make suggestions for routes to advance the clinical use and interpretation of hemoglobin oxygenation information.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Graham Spicer
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Electrical Division, Department of Engineering, Cambridge, United Kingdom, United Kingdom
| | - Sarah E Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| |
Collapse
|
19
|
Hacker L, Wabnitz H, Pifferi A, Pfefer TJ, Pogue BW, Bohndiek SE. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat Biomed Eng 2022; 6:541-558. [PMID: 35624150 DOI: 10.1038/s41551-022-00890-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
Collapse
Affiliation(s)
- Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK. .,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
J Waterhouse D, Stoyanov D. Optimized spectral filter design enables more accurate estimation of oxygen saturation in spectral imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:2156-2173. [PMID: 35519287 PMCID: PMC9045927 DOI: 10.1364/boe.446975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Oxygen saturation (SO2) in tissue is a crucially important physiological parameter with ubiquitous clinical utility in diagnosis, treatment, and monitoring, as well as widespread use as an invaluable preclinical research tool. Multispectral imaging can be used to visualize SO2 non-invasively, non-destructively and without contact in real-time using narrow spectral filter sets, but typically, these spectral filter sets are poorly suited to a specific clinical task, application, or tissue type. In this work, we demonstrate the merit of optimizing spectral filter sets for more accurate estimation of SO2. Using tissue modelling and simulated multispectral imaging, we demonstrate filter optimization reduces the root-mean-square-error (RMSE) in estimating SO2 by up to 37% compared with evenly spaced filters. Moreover, we demonstrate up to a 79% decrease in RMSE for optimized filter sets compared with filter sets chosen to minimize mutual information. Wider adoption of this approach will result in more effective multispectral imaging systems that can address specific clinical needs and consequently, more widespread adoption of multispectral imaging technologies in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Department of Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
21
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Amram D, Cignoni A, Banfi T, Ciuti G. From P4 medicine to P5 medicine: transitional times for a more human-centric approach to AI-based tools for hospitals of tomorrow. OPEN RESEARCH EUROPE 2022; 2:33. [PMID: 37645333 PMCID: PMC10445924 DOI: 10.12688/openreseurope.14524.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 08/31/2023]
Abstract
Within the debate on shaping future clinical services, where different robotics and artificial intelligence (AI) based technologies are integrated to perform tasks, the authors take the chance to provide an interdisciplinary analysis required to validate a tool aiming at supporting the melanoma cancer diagnosis. In particular, they focus on the ethical-legal and technical requirements needed to address the Assessment List on Trustworthy AI (ALTAI), highlighting some pros and cons of the adopted self-assessment checklist. The dialogue stimulates additionally remarks on the EU regulatory initiatives on AI in the healthcare systems.
Collapse
Affiliation(s)
- Denise Amram
- LIDER LAB - DIRPOLIS Institute EMbeDS Department of Excellence, Scuola Superiore Sant'Anna di Studi Universitari e di Perfezionamento, Pisa, Pisa, 56100, Italy
| | - Arianna Cignoni
- The BioRobotics Institute Department of Excellence in Robotics & AI,, Scuola Superiore Sant'Anna di Studi Universitari e di Perfezionamento, Pisa, Pisa, 56100, Italy
| | - Tommaso Banfi
- The BioRobotics Institute Department of Excellence in Robotics & AI,, Scuola Superiore Sant'Anna di Studi Universitari e di Perfezionamento, Pisa, Pisa, 56100, Italy
| | - Gastone Ciuti
- The BioRobotics Institute Department of Excellence in Robotics & AI,, Scuola Superiore Sant'Anna di Studi Universitari e di Perfezionamento, Pisa, Pisa, 56100, Italy
| |
Collapse
|
23
|
Louie DC, Tchvialeva L, Kalia S, Lui H, Lee TK. Polarization memory rate as a metric to differentiate benign and malignant tissues. BIOMEDICAL OPTICS EXPRESS 2022; 13:620-632. [PMID: 35284168 PMCID: PMC8884210 DOI: 10.1364/boe.446094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Non-invasive optical methods for cancer diagnostics, such as microscopy, spectroscopy, and polarimetry, are rapidly advancing. In this respect, finding new and powerful optical metrics is an indispensable task. Here we introduce polarization memory rate (PMR) as a sensitive metric for optical cancer diagnostics. PMR characterizes the preservation of circularly polarized light relative to linearly polarized light as light propagates in a medium. We hypothesize that because of well-known indicators associated with the morphological changes of cancer cells, like an enlarged nucleus size and higher chromatin density, PMR should be greater for cancerous than for the non-cancerous tissues. A thorough literature review reveals how this difference arises from the anomalous depolarization behaviour of many biological tissues. In physical terms, though most biological tissue primarily exhibits Mie scattering, it typically exhibits Rayleigh depolarization. However, in cancerous tissue the Mie depolarization regime becomes more prominent than Rayleigh. Experimental evidence of this metric is found in a preliminary clinical study using a novel Stokes polarimetry probe. We conducted in vivo measurements of 20 benign, 28 malignant and 59 normal skin sites with a 660 nm laser diode. The median PMR values for cancer vs non-cancer are significantly higher for cancer which supports our hypothesis. The reported fundamental differences in depolarization may persist for other types of cancer and create a conceptual basis for further developments in polarimetry applications for cancer detection.
Collapse
Affiliation(s)
- Daniel C. Louie
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Photomedicine Institute, Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Lioudmila Tchvialeva
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Photomedicine Institute, Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z4, Canada
- Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Sunil Kalia
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Photomedicine Institute, Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z4, Canada
- Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Harvey Lui
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Photomedicine Institute, Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z4, Canada
- Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Tim K. Lee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Photomedicine Institute, Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
24
|
Teranikar T, Lim J, Ijaseun T, Lee J. Development of Planar Illumination Strategies for Solving Mysteries in the Sub-Cellular Realm. Int J Mol Sci 2022; 23:1643. [PMID: 35163562 PMCID: PMC8835835 DOI: 10.3390/ijms23031643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Optical microscopy has vastly expanded the frontiers of structural and functional biology, due to the non-invasive probing of dynamic volumes in vivo. However, traditional widefield microscopy illuminating the entire field of view (FOV) is adversely affected by out-of-focus light scatter. Consequently, standard upright or inverted microscopes are inept in sampling diffraction-limited volumes smaller than the optical system's point spread function (PSF). Over the last few decades, several planar and structured (sinusoidal) illumination modalities have offered unprecedented access to sub-cellular organelles and 4D (3D + time) image acquisition. Furthermore, these optical sectioning systems remain unaffected by the size of biological samples, providing high signal-to-noise (SNR) ratios for objective lenses (OLs) with long working distances (WDs). This review aims to guide biologists regarding planar illumination strategies, capable of harnessing sub-micron spatial resolution with a millimeter depth of penetration.
Collapse
Affiliation(s)
| | | | | | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 75022, USA; (T.T.); (J.L.); (T.I.)
| |
Collapse
|
25
|
Abstract
AbstractMeasuring morphological and biochemical features of tissue is crucial for disease diagnosis and surgical guidance, providing clinically significant information related to pathophysiology. Hyperspectral imaging (HSI) techniques obtain both spatial and spectral features of tissue without labeling molecules such as fluorescent dyes, which provides rich information for improved disease diagnosis and treatment. Recent advances in HSI systems have demonstrated its potential for clinical applications, especially in disease diagnosis and image-guided surgery. This review summarizes the basic principle of HSI and optical systems, deep-learning-based image analysis, and clinical applications of HSI to provide insight into this rapidly growing field of research. In addition, the challenges facing the clinical implementation of HSI techniques are discussed.
Collapse
|
26
|
Hacker L, Joseph J, Ivory AM, Saed MO, Zeqiri B, Rajagopal S, Bohndiek SE. A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3593-3603. [PMID: 34152979 DOI: 10.1109/tmi.2021.3090857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photoacoustic imaging (PAI) standardisation demands a stable, highly reproducible physical phantom to enable routine quality control and robust performance evaluation. To address this need, we have optimised a low-cost copolymer-in-oil tissue-mimickingmaterial formulation. The base material consists of mineral oil, copolymer and stabiliser with defined Chemical Abstract Service numbers. Speed of sound c(f) and acoustic attenuation coefficient α (f) were characterised over 2-10 MHz; optical absorption μa ( λ ) and reduced scattering μs '( λ ) coefficients over 450-900 nm. Acoustic properties were optimised by modifying base component ratios and optical properties were adjusted using additives. The temporal, thermomechanical and photo-stabilitywere studied, alongwith intra-laboratory fabrication and field-testing. c(f) could be tuned up to (1516±0.6) [Formula: see text] and α (f) to (17.4±0.3)dB · cm -1 at 5 MHz. The base material exhibited negligible μa ( λ ) and μs '( λ ), which could be independently tuned by addition of Nigrosin or TiO2 respectively. These properties were stable over almost a year and were minimally affected by recasting. The material showed high intra-laboratory reproducibility (coefficient of variation <4% for c ( f ), α ( f ), optical transmittance and reflectance), and good photo- and mechanical-stability in the relevant working range (20-40°C). The optimised copolymer-in-oil material represents an excellent candidate for widespread application in PAI phantoms, with properties suitable for broader use in biophotonics and ultrasound imaging standardisation efforts.
Collapse
|
27
|
Dong F, An J, Zhang J, Yin J, Guo W, Wang D, Feng F, Huang S, Zhang J, Cheng H. Blinking Acoustic Nanodroplets Enable Fast Super-resolution Ultrasound Imaging. ACS NANO 2021; 15:16913-16923. [PMID: 34647449 DOI: 10.1021/acsnano.1c07896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of localization-based super-resolution ultrasound (SRUS) imaging creates a vista for precision vasculature and hemodynamic measurements in brain science, cardiovascular diseases, and cancer. As blinking fluorophores are crucial to super-resolution optical imaging, blinking acoustic contrast agents enabling ultrasound localization microscopy have been highly sought, but only with limited success. Here we report on the discovery and characterization of a type of blinking acoustic nanodroplets (BANDs) ideal for SRUS. BANDs of 200-500 nm diameters comprise a perfluorocarbon-filled core and a shell of DSPC, Pluronic F68, and DSPE-PEG2000. When driven by clinically safe acoustic pulses (MI < 1.9) provided by a diagnostic ultrasound transducer, BANDs underwent reversible vaporization and reliquefaction, manifesting as "blinks", at rates of up to 5 kHz. By sparse activation of perfluorohexane-filled BANDs-C6 at high concentrations, only 100 frames of ultrasound imaging were sufficient to reconstruct super-resolution images of a no-flow tube through either cumulative localization or temporal radiality autocorrelation. Furthermore, the use of high-density BANDs-C6-4 (1 × 108/mL) with a 1:9 admixture of perfluorohexane and perfluorobutane supported the fast SRUS imaging of muscle vasculature in live animals, at 64 μm resolution requiring only 100 frames per layer. We anticipate that the BANDs developed here will greatly boost the application of SRUS in both basic science and clinical settings.
Collapse
Affiliation(s)
- Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211899, China
| |
Collapse
|
28
|
Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials. Cancers (Basel) 2021; 13:cancers13194962. [PMID: 34638446 PMCID: PMC8508238 DOI: 10.3390/cancers13194962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary In patients with advanced hepatocellular carcinoma, systemic therapy is recommended by most treatment guidelines. Sorafenib and lenvatinib are both 1st-line treatments for inoperable advanced HCC. Regorafenib, cabozantinib, and ramucirumab have been approved as 2nd-line targeted therapy in patients who show progression or do not tolerate sorafenib. However, there is a lack of imaging biomarkers for predicting survival outcomes in patients receiving 2nd-line targeted therapy after sorafenib failure. In this paper, we try to predict survival outcomes via early changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted therapy following sorafenib failure, taking data from two different prospective clinical trials. We found that an early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict survival outcomes in these participants. For the further clinical development of anti-angiogenic therapies, optimal participant selection with predictive biomarkers, such as DCE-MRI, is essential in order to improve treatment outcomes. Abstract In this paper, our main objective was to predict survival outcomes using DCE-MRI biomarkers in patients with advanced hepatocellular carcinoma (HCC) after progression from 1st-line sorafenib treatment in two prospective phase II trials. This study included 74 participants (men/women = 64/10, mean age 60 ± 11.8 years) with advanced HCC who received 2nd-line targeted therapy (n = 41 with lenalidomide in one clinical trial; n = 33 with axitinib in another clinical trial) after sorafenib failure from two prospective phase II studies. Among them, all patients underwent DCE-MRI at baseline, and on days 3 and 14 of treatment. The relative changes (Δ) in the DCE-MRI parameters, including ΔPeak, ΔAUC, and ΔKtrans, were derived from the largest hepatic tumor. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). The Cox model was used to investigate the associations of the clinical variables and DCE-MRI biomarkers with progression-free survival (PFS) and overall survival (OS). The objective response rate (ORR) was 10.8% (8/74) and the disease control rate (DCR) was 58.1% (43/74). The median PFS and OS values were 1.9 and 7.8 months, respectively. On day 3 (D3), participants with high reductions in ΔPeak_D3 (hazard ratio (HR) 0.4, 95% confidence interval (CI) 0.17–0.93, p = 0.017) or ΔAUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better PFS. On day 14, participants with high reductions in ΔPeak_D14 (HR 0.51, 95% CI 0.26–1.01, p = 0.032), ΔAUC_D14 (HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ΔKtrans_D14 (HR 0.26, 95% CI 0.12–0.56, p < 0.001) had a higher PFS than those with lower reduction values. In addition, high reductions in ΔAUC_D14 (HR 0.53, 95% CI 0.32–0.9, p = 0.016) or ΔKtrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated with a better OS. Among the clinical variables, ORR was associated with both PFS (p = 0.001) and OS (p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089). Cox multivariable analysis revealed that ΔKtrans_D14 (p = 0.002) remained an independent predictor of PFS after controlling for ORR and DCR. An early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict favorable survival outcomes in participants with HCC receiving 2nd-line targeted therapy after sorafenib failure.
Collapse
|
29
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
30
|
Waterhouse DJ, Bano S, Januszewicz W, Stoyanov D, Fitzgerald RC, di Pietro M, Bohndiek SE. First-in-human pilot study of snapshot multispectral endoscopy for early detection of Barrett's-related neoplasia. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210159R. [PMID: 34628734 PMCID: PMC8501416 DOI: 10.1117/1.jbo.26.10.106002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/02/2021] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE The early detection of dysplasia in patients with Barrett's esophagus could improve outcomes by enabling curative intervention; however, dysplasia is often inconspicuous using conventional white-light endoscopy. AIM We sought to determine whether multispectral imaging (MSI) could be applied in endoscopy to improve detection of dysplasia in the upper gastrointestinal (GI) tract. APPROACH We used a commercial fiberscope to relay imaging data from within the upper GI tract to a snapshot MSI camera capable of collecting data from nine spectral bands. The system was deployed in a pilot clinical study of 20 patients (ClinicalTrials.gov NCT03388047) to capture 727 in vivo image cubes matched with gold-standard diagnosis from histopathology. We compared the performance of seven learning-based methods for data classification, including linear discriminant analysis, k-nearest neighbor classification, and a neural network. RESULTS Validation of our approach using a Macbeth color chart achieved an image-based classification accuracy of 96.5%. Although our patient cohort showed significant intra- and interpatient variance, we were able to resolve disease-specific contributions to the recorded MSI data. In classification, a combined principal component analysis and k-nearest-neighbor approach performed best, achieving accuracies of 95.8%, 90.7%, and 76.1%, respectively, for squamous, non-dysplastic Barrett's esophagus and neoplasia based on majority decisions per-image. CONCLUSIONS MSI shows promise for disease classification in Barrett's esophagus and merits further investigation as a tool in high-definition "chip-on-tip" endoscopes.
Collapse
Affiliation(s)
- Dale J. Waterhouse
- University of Cambridge, Department of Physics and CRUK Cambridge Institute, Cambridge, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Sophia Bano
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Wladyslaw Januszewicz
- Medical Centre for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, Poland
| | - Dan Stoyanov
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Rebecca C. Fitzgerald
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics and CRUK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
31
|
Shi XF, Ji B, Kong Y, Guan Y, Ni R. Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. Front Bioeng Biotechnol 2021; 9:746815. [PMID: 34650961 PMCID: PMC8505530 DOI: 10.3389/fbioe.2021.746815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.
Collapse
Affiliation(s)
- Xue-feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Abstract
Cancer is a multi-step process where normal cells become transformed, grow, and may disseminate to establish new lesions within the body. In recent years, the physical properties of individual cells and the tissue microenvironment have been shown to be potent determinants of cancer progression. Biophysical tools have long been used to examine cell and tissue mechanics, morphology, and migration. However, exciting developments have linked these physical traits to gene expression changes that drive metastatic seeding, organ selectivity, and tumor growth. Here, we present some vignettes to address recent studies to show progress in harnessing biophysical tools and concepts to gain insights into metastasis.
Collapse
Affiliation(s)
- Woong Young So
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Blundo A, Cignoni A, Banfi T, Ciuti G. Comparative Analysis of Diagnostic Techniques for Melanoma Detection: A Systematic Review of Diagnostic Test Accuracy Studies and Meta-Analysis. Front Med (Lausanne) 2021; 8:637069. [PMID: 33968951 PMCID: PMC8103840 DOI: 10.3389/fmed.2021.637069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Melanoma has the highest mortality rate among skin cancers, and early-diagnosis is essential to maximize survival rate. The current procedure for melanoma diagnosis is based on dermoscopy, i.e., a qualitative visual inspection of lesions with intrinsic limited diagnostic reliability and reproducibility. Other non-invasive diagnostic techniques may represent valuable solutions to retrieve additional objective information of a lesion. This review aims to compare the diagnostic performance of non-invasive techniques, alternative to dermoscopy, for melanoma detection in clinical settings. A systematic review of the available literature was performed using PubMed, Scopus and Google scholar databases (2010-September 2020). All human, in-vivo, non-invasive studies using techniques, alternative to dermoscopy, for melanoma diagnosis were included with no restriction on the recruited population. The reference standard was histology but dermoscopy was accepted only in case of benign lesions. Attributes of the analyzed studies were compared, and the quality was evaluated using CASP Checklist. For studies in which the investigated technique was implemented as a diagnostic tool (DTA studies), the QUADAS-2 tool was applied. For DTA studies that implemented a melanoma vs. other skin lesions classification task, a meta-analysis was performed reporting the SROC curves. Sixty-two references were included in the review, of which thirty-eight were analyzed using QUADAS-2. Study designs were: clinical trials (13), retrospective studies (10), prospective studies (8), pilot studies (10), multitiered study (1); the remain studies were proof of concept or had undefined study type. Studies were divided in categories based on the physical principle employed by each diagnostic technique. Twenty-nine out of thirty-eight DTA studies were included in the meta-analysis. Heterogeneity of studies' types, testing strategy, and diagnostic task limited the systematic comparison of the techniques. Based on the SROC curves, spectroscopy achieved the best performance in terms of sensitivity (93%, 95% CI 92.8-93.2%) and specificity (85.2%, 95%CI 84.9-85.5%), even though there was high concern regarding robustness of metrics. Reflectance-confocal-microscopy, instead, demonstrated higher robustness and a good diagnostic performance (sensitivity 88.2%, 80.3-93.1%; specificity 65.2%, 55-74.2%). Best practice recommendations were proposed to reduce bias in future DTA studies. Particular attention should be dedicated to widen the use of alternative techniques to conventional dermoscopy.
Collapse
Affiliation(s)
- Alessia Blundo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Arianna Cignoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tommaso Banfi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
34
|
Guerraty M, Bhargava A, Senarathna J, Mendelson AA, Pathak AP. Advances in translational imaging of the microcirculation. Microcirculation 2021; 28:e12683. [PMID: 33524206 PMCID: PMC8647298 DOI: 10.1111/micc.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution. Collectively, these imaging modalities enable us to characterize the morphological and functional changes in a tissue's microcirculation that are known to accompany the initiation and progression of numerous pathologies. Although there have been significant advances for imaging the microcirculation in preclinical models, this review focuses on developments in the assessment of the microcirculation in patients with optical imaging, NIRS, PET, US, MRI, and CT, to name a few. The goal of this review is to serve as a springboard for exploring the burgeoning role of translational imaging technologies for interrogating the structural and functional status of the microcirculation in humans, and highlight the breadth of current clinical applications. Making the human microcirculation "visible" in vivo to clinicians and researchers alike will facilitate bench-to-bedside discoveries and enhance the diagnosis and management of disease.
Collapse
Affiliation(s)
- Marie Guerraty
- Division of Cardiovascular Medicine, Department of
Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asher A. Mendelson
- Department of Medicine, Section of Critical Care, Rady
Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins
University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Paraboschi I, De Coppi P, Stoyanov D, Anderson J, Giuliani S. Fluorescence imaging in pediatric surgery: State-of-the-art and future perspectives. J Pediatr Surg 2021; 56:655-662. [PMID: 32900510 DOI: 10.1016/j.jpedsurg.2020.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The employment of fluorescence imaging has gained popularity in many fields of adult surgery where it has demonstrated great potentials to improve both surgical and oncological outcomes while minimizing anesthetic time and lowering health-care costs. However, the clinical application of fluorescence-guided surgery (FGS) in pediatrics is just at the initial phase. MATERIAL AND METHODS A systematic review of current clinical uses of FGS in pediatric surgery was performed along with a discussion on its advantages, limitations and future developments. RESULTS 21 studies were included: 9 retrospective and 1 prospective study, 8 case reports, 2 case series and a review article reporting authors' institutional experience. Great emphasis was given to surgical resection of hepatoblastoma and its metastasis (n = 6), real-time imaging of the biliary tree (n = 3) and urogenital system (n = 2). Other current uses concern the assessment of blood perfusion (intestine, n = 3; myocutaneous flap, n = 1; transplanted liver, n = 1) and lymphatic flow imaging (n = 4). CONCLUSION Despite a paucity of clinical studies evaluating its role in pediatric surgery, FGS has shown promising results in helping guide tumor resection and improving the accuracy of anatomical delineation. TYPE OF STUDY Review article. LEVEL OF CONFIDENCE Level IV.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK; Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
36
|
Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021; 48:4152-4170. [PMID: 33594473 PMCID: PMC8566397 DOI: 10.1007/s00259-021-05207-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Collapse
Affiliation(s)
- Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
- Institute for Regenerative Medicine, Uiversity of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Hernandez Vargas S, Lin C, Voss J, Ghosh SC, Halperin DM, AghaAmiri S, Cao HST, Ikoma N, Uselmann AJ, Azhdarinia A. Development of a drug-device combination for fluorescence-guided surgery in neuroendocrine tumors. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200129R. [PMID: 33300316 PMCID: PMC7725236 DOI: 10.1117/1.jbo.25.12.126002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/06/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE The use of cancer-targeted contrast agents in fluorescence-guided surgery (FGS) has the potential to improve intraoperative visualization of tumors and surgical margins. However, evaluation of their translational potential is challenging. AIM We examined the utility of a somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent in combination with a benchtop near-infrared fluorescence (NIRF) imaging system to visualize mouse xenografts under conditions that simulate the clinical FGS workflow for open surgical procedures. APPROACH The dual-labeled somatostatin analog, Ga67-MMC(IR800)-TOC, was injected into mice (n = 24) implanted with SSTR2-expressing tumors and imaged with the customized OnLume NIRF imaging system (Madison, Wisconsin). In vivo and ex vivo imaging were performed under ambient light. The optimal dose (0.2, 0.5, and 2 nmol) and imaging time point (3, 24, 48, and 72 h) were determined using contrast-to-noise ratio (CNR) as the image quality parameter. Video captures of tumor resections were obtained to provide an FGS readout that is representative of clinical utility. Finally, a log-transformed linear regression model was fitted to assess congruence between fluorescence readouts and the underlying drug distribution. RESULTS The drug-device combination provided high in vivo and ex vivo contrast (CNRs > 3, except lung at 3 h) at all time points with the optimal dose of 2 nmol. The optimal imaging time point was 24-h post-injection, where CNRs > 6.5 were achieved in tissues of interest (i.e., pancreas, small intestine, stomach, and lung). Intraoperative FGS showed excellent utility for examination of the tumor cavity pre- and post-resection. The relationship between fluorescence readouts and gamma counts was linear and strongly correlated (n = 334, R2 = 0.71; r = 0.84; P < 0.0001). CONCLUSION The innovative OnLume NIRF imaging system enhanced the evaluation of Ga67-MMC(IR800)-TOC in tumor models. These components comprise a promising drug-device combination for FGS in patients with SSTR2-expressing tumors.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | | | - Julie Voss
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Sukhen C. Ghosh
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Daniel M. Halperin
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, Houston, Texas, United States
| | - Solmaz AghaAmiri
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Hop S. Tran Cao
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | - Naruhiko Ikoma
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | | | - Ali Azhdarinia
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| |
Collapse
|
38
|
Pandey V, Raza MK, Sonowal M, Gupta I. BODIPY based red emitters: Synthesis, computational and biological studies. Bioorg Chem 2020; 106:104467. [PMID: 33223201 DOI: 10.1016/j.bioorg.2020.104467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
Donor-Acceptor type BODIPYs with strong absorption and fluorescence in the red region (550-800 nm) are reported. The aromatic groups like N-butylcarbazole/ N-butylphenothiazine/ benzothiadiazole were attached to the C-8 position of the BODIPY core with furan or thiophene spacers. TD-DFT studies indicated significant charge distribution between C-8 aromatic heterocycles and BODIPY core in all the molecules. The in-vitro studies of the N-butylcarbazole substituted BODIPYs indicated significant localization in the endoplasmic reticulum and lysosomes of the cancer cells. The BODIPYs showed decent cytotoxicity after 48 h incubation period (14.9 to 31.8 μM) in HeLa and A549 cancer cells, indicating their potential application as theranostic agents.
Collapse
Affiliation(s)
- Vijayalakshmi Pandey
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mridupavan Sonowal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
39
|
Jones B, Thomas G, Sprenger J, Nofech-Mozes S, Khorasani M, Vitkin A. Peri-tumoural stroma collagen organization of invasive ductal carcinoma assessed by polarized light microscopy differs between OncotypeDX risk group. JOURNAL OF BIOPHOTONICS 2020; 13:e202000188. [PMID: 32710711 DOI: 10.1002/jbio.202000188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 05/02/2023]
Abstract
A commercially available genomic test, OncotypeDX has emerged as a useful postsurgical treatment guide for early stage breast cancer. Despite widespread clinical adoption, there remain logistical issues with its implementation. Collagenous stromal architecture has been shown to hold prognostic value that may complement OncotypeDX. Polarimetric analysis of breast cancer surgical samples allows for the quantification of collagenous stroma abundance and organization. We examine intratumoural collagen abundance and alignment along the tumor-host interface for 45 human samples of invasive ductal carcinoma categorized as low or higher risk by OncotypeDX. Furthermore, we probe the separatory power of collagen alignment patterns to classify unlabeled samples as low or higher OncotypeDX risk group using a linear discriminant (LD) model. No significant difference in mean collagen abundance was found between the two risk groups. However, collagen alignment along the tumor boundary was found to be significantly lower in higher risk samples. The LD model achieved a 71% total accuracy and 81% sensitivity to higher risk samples. Prognostic information extracted from the stromal morphology has potential to complement OncotypeDX as an easy-to-implement prescreening methodology.
Collapse
Affiliation(s)
- Blake Jones
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Georgia Thomas
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jillian Sprenger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sharon Nofech-Mozes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Clancy NT, Jones G, Maier-Hein L, Elson DS, Stoyanov D. Surgical spectral imaging. Med Image Anal 2020; 63:101699. [PMID: 32375102 PMCID: PMC7903143 DOI: 10.1016/j.media.2020.101699] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
Recent technological developments have resulted in the availability of miniaturised spectral imaging sensors capable of operating in the multi- (MSI) and hyperspectral imaging (HSI) regimes. Simultaneous advances in image-processing techniques and artificial intelligence (AI), especially in machine learning and deep learning, have made these data-rich modalities highly attractive as a means of extracting biological information non-destructively. Surgery in particular is poised to benefit from this, as spectrally-resolved tissue optical properties can offer enhanced contrast as well as diagnostic and guidance information during interventions. This is particularly relevant for procedures where inherent contrast is low under standard white light visualisation. This review summarises recent work in surgical spectral imaging (SSI) techniques, taken from Pubmed, Google Scholar and arXiv searches spanning the period 2013-2019. New hardware, optimised for use in both open and minimally-invasive surgery (MIS), is described, and recent commercial activity is summarised. Computational approaches to extract spectral information from conventional colour images are reviewed, as tip-mounted cameras become more commonplace in MIS. Model-based and machine learning methods of data analysis are discussed in addition to simulation, phantom and clinical validation experiments. A wide variety of surgical pilot studies are reported but it is apparent that further work is needed to quantify the clinical value of MSI/HSI. The current trend toward data-driven analysis emphasises the importance of widely-available, standardised spectral imaging datasets, which will aid understanding of variability across organs and patients, and drive clinical translation.
Collapse
Affiliation(s)
- Neil T Clancy
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom.
| | - Geoffrey Jones
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, United Kingdom
| | | | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, United Kingdom; Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, United Kingdom
| |
Collapse
|
41
|
Ojambati O, Chikkaraddy R, Deacon WM, Huang J, Wright D, Baumberg JJ. Efficient Generation of Two-Photon Excited Phosphorescence from Molecules in Plasmonic Nanocavities. NANO LETTERS 2020; 20:4653-4658. [PMID: 32422048 PMCID: PMC7366501 DOI: 10.1021/acs.nanolett.0c01593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Indexed: 05/26/2023]
Abstract
Nonlinear molecular interactions with optical fields produce intriguing optical phenomena and applications ranging from color generation to biomedical imaging and sensing. The nonlinear cross-section of dielectric materials is low and therefore for effective utilisation, the optical fields need to be amplified. Here, we demonstrate that two-photon absorption can be enhanced by 108 inside individual plasmonic nanocavities containing emitters sandwiched between a gold nanoparticle and a gold film. This enhancement results from the high field strengths confined in the nanogap, thus enhancing nonlinear interactions with the emitters. We further investigate the parameters that determine the enhancement including the cavity spectral position and excitation wavelength. Moreover, the Purcell effect drastically reduces the emission lifetime from 520 ns to <200 ps, turning inefficient phosphorescent emitters into an ultrafast light source. Our results provide an understanding of enhanced two-photon-excited emission, allowing for optimization of efficient nonlinear light-matter interactions at the nanoscale.
Collapse
|
42
|
Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel) 2020; 12:cancers12061387. [PMID: 32481542 PMCID: PMC7352711 DOI: 10.3390/cancers12061387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Radiomics texture analysis offers objective image information that could otherwise not be obtained by radiologists′ subjective radiological interpretation. We investigated radiomics applications in renal tumor assessment and provide a comprehensive review. A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 March 2020 to identify English literature relevant to radiomics applications in renal tumor assessment. In total, 42 articles were included in the analysis and divided into four main categories: renal mass differentiation, nuclear grade prediction, gene expression-based molecular signatures, and patient outcome prediction. The main area of research involves accurately differentiating benign and malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat and oncocytoma. Nuclear grade prediction may enhance proper patient selection for risk-stratified treatment. Radiomics-predicted gene mutations may serve as surrogate biomarkers for high-risk disease, while predicting patients’ responses to targeted therapies and their outcomes will help develop personalized treatment algorithms. Studies generally reported the superiority of radiomics over expert radiological interpretation. Radiomics provides an alternative to subjective image interpretation for improving renal tumor diagnostic accuracy. Further incorporation of clinical and imaging data into radiomics algorithms will augment tumor prediction accuracy and enhance individualized medicine.
Collapse
|
43
|
Gordon GSD, Joseph J, Alcolea MP, Sawyer T, Williams C, Fitzpatrick CRM, Jones PH, di Pietro M, Fitzgerald RC, Wilkinson TD, Bohndiek SE. Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-13. [PMID: 31840442 PMCID: PMC7006047 DOI: 10.1117/1.jbo.24.12.126004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/18/2019] [Indexed: 05/30/2023]
Abstract
Phase and polarization of coherent light are highly perturbed by interaction with microstructural changes in premalignant tissue, holding promise for label-free detection of early tumors in endoscopically accessible tissues such as the gastrointestinal tract. Flexible optical multicore fiber (MCF) bundles used in conventional diagnostic endoscopy and endomicroscopy scramble phase and polarization, restricting clinicians instead to low-contrast amplitude-only imaging. We apply a transmission matrix characterization approach to produce full-field en-face images of amplitude, quantitative phase, and resolved polarimetric properties through an MCF. We first demonstrate imaging and quantification of biologically relevant amounts of optical scattering and birefringence in tissue-mimicking phantoms. We present an entropy metric that enables imaging of phase heterogeneity, indicative of disordered tissue microstructure associated with early tumors. Finally, we demonstrate that the spatial distribution of phase and polarization information enables label-free visualization of early tumors in esophageal mouse tissues, which are not identifiable using conventional amplitude-only information.
Collapse
Affiliation(s)
- George S. D. Gordon
- University of Cambridge, Department of Engineering, Cambridge, United Kingdom
| | - James Joseph
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Maria P. Alcolea
- University of Cambridge, Wellcome Trust MRC Stem Cell Institute, Cambridge, United Kingdom
| | - Travis Sawyer
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Calum Williams
- University of Cambridge, Department of Engineering, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
| | | | - Philip H. Jones
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Rebecca C. Fitzgerald
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | | | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
44
|
Brown E, Brunker J, Bohndiek SE. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis Model Mech 2019; 12:12/7/dmm039636. [PMID: 31337635 PMCID: PMC6679374 DOI: 10.1242/dmm.039636] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal. Summary: This Review details the potential of photoacoustic imaging to visualise features of the tumour microenvironment such as blood vessels, hypoxia, fibrosis and immune infiltrate to provide unprecedented insight into tumour biology.
Collapse
Affiliation(s)
- Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joanna Brunker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK .,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|