1
|
Felix Oghenemaro E, Uthirapathy S, Nathiya D, Kaur P, Ravi Kumar M, Verma A. Role of glutaminyl-peptide cyclo-transferase-like protein (QPCTL) in cancer: From molecular mechanisms to immunotherapy. Gene 2025; 937:149153. [PMID: 39653089 DOI: 10.1016/j.gene.2024.149153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Glutaminyl-peptide cyclotransferase-like protein (QPCTL) is a newly discovered enzyme that has sparked interest owing to its possible role in cancer genesis and progression. Initially discovered as a post-translational modification regulator of protein maturation, QPCTL has emerged as a key participant in cancer biology. Recent research has linked QPCTL to numerous essential cancer-related processes, including cell proliferation, migration, invasion, and apoptosis. Furthermore, QPCTL expression changes have been seen in a variety of cancer types, underlining its potential as a diagnostic and prognostic marker. The molecular mechanisms behind QPCTL's participation in cancer will be examined in this review. We investigate its involvement in the control of signaling pathways and the modification of cellular activities that are important in cancer. We also examine the clinical importance of QPCTL, including as its relationship with tumor development, metastasis, and response to treatment. We also discuss the possible therapeutic implications of targeting QPCTL in cancer therapy. QPCTL is a prospective target for the development of innovative anticancer treatments due to its participation in several cancer-associated pathways.
Collapse
Affiliation(s)
- Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ashish Verma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman LT, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. Nat Commun 2025; 16:32. [PMID: 39746954 PMCID: PMC11696112 DOI: 10.1038/s41467-024-55140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from seven patients with metastatic cancer. High CTC yields (mean 10,057 CTCs per patient; range 100 to 58,125) reveal considerable intra-patient heterogeneity. CTC size varies within patients, with 67% overlapping in diameter with WBCs. Paired single-cell DNA and RNA sequencing identifies subclonal patterns of aneuploidy and distinct signaling pathways within CTCs. In prostate cancers, a subpopulation of small aneuploid cells lacking epithelial markers is enriched for neuroendocrine signatures. Pooling of CNV-confirmed CTCs enables whole exome sequencing with high mutant allele fractions. High-throughput CTC enrichment thus enables cell-based liquid biopsy for comprehensive monitoring of cancer.
Collapse
Affiliation(s)
- Avanish Mishra
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shih-Bo Huang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jon F Edd
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ben S Wittner
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Quinn E Cunneely
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor R Putaturo
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Akansha Deshpande
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ezgi Antmen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kaustav A Gopinathan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Keisuke Otani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoshiyuki Miyazawa
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ji Eun Kwak
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sara Y Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Justin Kelly
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Walsh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Isabella Galler
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - PuiYee Chan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ryan J Sullivan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Aditya Bardia
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
- Hematology/Oncology, University of California, Los Angeles, USA
| | - Douglas S Micalizzi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Lecia V Sequist
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Richard J Lee
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Joseph W Franses
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - David T Ting
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Patricia A R Brunker
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - David T Miyamoto
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA.
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's Boston, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Yu L, Sun Y, Xie L, Tan X, Wang P, Xu S. Targeting QPCTL: An Emerging Therapeutic Opportunity. J Med Chem 2025. [PMID: 39746038 DOI: 10.1021/acs.jmedchem.4c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glutaminyl cyclases, including glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like protein (QPCTL), primarily catalyze the cyclization of N-terminal glutamine or glutamate to pyroglutamate (pGlu). QPCTL, in particular, modifies the N-terminus of CD47, thereby regulating its interaction with signal-regulatory protein alpha (SIRPα) and modulating phagocytosis of tumor cells by immune cells. Additionally, QPCTL cyclizes the N-termini of CCL2, CCL7, and CX3CL1, influencing the tumor microenvironment and inflammatory responses in cancer and other disorders. Consequently, QPCTL is considered a valuable therapeutic target for several human diseases. However, the development of QPCTL inhibitors remains in its early stages. This perspective summarizes the structural features, catalytic mechanisms, and biological functions of QPCTL, along with its recent advances in small-molecule inhibitors. It provides valuable insights into the development of novel QPCTL inhibitors.
Collapse
Affiliation(s)
- Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Longyan Xie
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Molinski JH, Parwal S, Zhang JXJ. Laser-Patterning of Micromagnets for Immuno-Magnetophoretic Exosome Capture. SMALL METHODS 2024; 8:e2400388. [PMID: 39003624 DOI: 10.1002/smtd.202400388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/23/2024] [Indexed: 07/15/2024]
Abstract
Efficient isolation and patterning of biomolecules is a vital step within sample preparation for biomolecular analysis, with numerous diagnostic and therapeutic applications. For exosomes, nanoscale lipid-bound biomolecules, efficient isolation is challenging due to their minute size and resultant behavior within biofluids. This study presents a method for the rapid isolation and patterning of magnetically tagged exosomes via rationally designed micromagnets. Micromagnet fabrication utilizes a novel, scalable, and high-throughput laser-based fabrication approach that enables patterning at microscale lateral resolution (<50 µm) without lithographic processing and is agnostic to micromagnet geometry. Laser-based processing allows for flexible and tunable device configurations, and herein magnetophoretic capture within both an open-air microwell and an enclosed microfluidic system is demonstrated. Patterned micromagnets enhance localized gradient fields throughout the fluid medium, resulting in rapid and high efficiency magnetophoretic separation, with capture efficiencies nearing 70% after just 1s within open-air microwells, and throughputs upward of 3 mL h-1 within enclosed microfluidic systems. Using this microchip architecture, immunomagnetic exosome isolation and patterning directly from undiluted plasma samples is further achieved. Lastly, a FEA-based modeling workflow is introduced to characterize and optimize micromagnet unit cells, simulating magnetophoretic capture zones for a given micromagnet geometry.
Collapse
Affiliation(s)
- John H Molinski
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
| | - Siddhant Parwal
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03766, USA
| |
Collapse
|
5
|
Abdrabou AM, Ahmed SU, Fan MJ, Duong BTV, Chen K, Lo PY, Mayes JM, Esmaeili F, GhavamiNejad A, Zargartalebi H, Atwal RS, Lin S, Angers S, Kelley SO. Identification of VISTA regulators in macrophages mediating cancer cell survival. SCIENCE ADVANCES 2024; 10:eadq8122. [PMID: 39602545 PMCID: PMC11601207 DOI: 10.1126/sciadv.adq8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Numerous human cancers have exhibited the ability to elude immune checkpoint blockade (ICB) therapies. This type of resistance can be mediated by immune-suppressive macrophages that limit antitumor immunity in the tumor microenvironment (TME). Here, we elucidate a strategy to shift macrophages into a proinflammatory state that down-regulates V domain immunoglobulin suppressor of T cell activation (VISTA) via inhibiting AhR and IRAK1. We used a high-throughput microfluidic platform combined with a genome-wide CRISPR knockout screen to identify regulators of VISTA levels. Functional characterization showed that the knockdown of these hits diminished VISTA surface levels on macrophages and sustained an antitumor phenotype. Furthermore, targeting of both AhR and IRAK1 in mouse models overcame resistance to ICB treatment. Tumor immunophenotyping indicated that infiltration of cytotoxic CD8+ cells, natural killer cells, and antitumor macrophages was substantially increased in treated mice. Collectively, AhR and IRAK1 are implicated as regulators of VISTA that coordinate a multifaceted barrier to antitumor immune responses.
Collapse
Affiliation(s)
- Abdalla M. Abdrabou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Sharif U. Ahmed
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Bill T. V. Duong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kangfu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Pei-Ying Lo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Julia M. Mayes
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Fatemeh Esmaeili
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Amin GhavamiNejad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hossein Zargartalebi
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Randy Singh Atwal
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sichun Lin
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Mikolajewicz N, Tatari N, Wei J, Savage N, Granda Farias A, Dimitrov V, Chen D, Zador Z, Dasgupta K, Aguilera-Uribe M, Xiao YX, Lee SY, Mero P, McKenna D, Venugopal C, Brown KR, Han H, Singh S, Moffat J. Functional profiling of murine glioma models highlights targetable immune evasion phenotypes. Acta Neuropathol 2024; 148:74. [PMID: 39592459 PMCID: PMC11599368 DOI: 10.1007/s00401-024-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches. Through CRISPR genome-wide co-culture killing screens with various immune cells (cytotoxic T cells, natural killer cells, and macrophages), we identified three key cancer-intrinsic evasion mechanisms: NFκB signaling, autophagy/endosome machinery, and chromatin remodeling. Additional fitness screens identified dependencies in murine gliomas that partially recapitulated those seen in human GBM (e.g., UFMylation). Our single-cell analyses showed that different glioma models exhibited distinct immune infiltration patterns and recapitulated key immune gene programs observed in human GBM, including hypoxia, interferon, and TNF signaling. Moreover, in vivo orthotopic tumor engraftment was associated with phenotypic shifts and changes in proliferative capacity, with murine tumors recapitulating the intratumoral heterogeneity observed in human GBM, exhibiting propensities for developmental- and mesenchymal-like phenotypes. Notably, we observed common transcription factors and cofactors shared with human GBM, including developmental (Nfia and Tcf4), mesenchymal (Prrx1 and Wwtr1), as well as cycling-associated genes (Bub3, Cenpa, Bard1, Brca1, and Mis18bp1). Perturbation of these genes led to reciprocal phenotypic shifts suggesting intrinsic feedback mechanisms that balance in vivo cellular states. Finally, we used a machine-learning approach to identify two distinct immune evasion gene programs, one of which represents a clinically-relevant phenotype and delineates a subpopulation of stem-like glioma cells that predict response to immune checkpoint inhibition in human patients. This comprehensive characterization helps bridge the gap between murine glioma models and human GBM, providing valuable insights for future therapeutic development.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vassil Dimitrov
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - David Chen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Zsolt Zador
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Kuheli Dasgupta
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Hong Han
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
| | - Sheila Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Feng X, Yang C, Huang Y, Su D, Wang C, Wilson LL, Yin L, Tang M, Li S, Chen Z, Zhu D, Wang S, Zhang S, Zhang J, Zhang H, Nie L, Huang M, Park JI, Hart T, Jiang D, Jiang K, Chen J. In vivo CRISPR screens identify Mga as an immunotherapy target in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2406325121. [PMID: 39298484 PMCID: PMC11441491 DOI: 10.1073/pnas.2406325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Immune evasion is not only critical for tumor initiation and progression, but also determines the efficacy of immunotherapies. Through iterative in vivo CRISPR screens with seven syngeneic tumor models, we identified core and context-dependent immune evasion pathways across cancer types. This valuable high-confidence dataset is available for the further understanding of tumor intrinsic immunomodulators, which may lead to the discovery of effective anticancer therapeutic targets. With a focus on triple-negative breast cancer (TNBC), we found that Mga knock-out significantly enhances antitumor immunity and inhibits tumor growth. Transcriptomics and single-cell RNA sequencing analyses revealed that Mga influences various immune-related pathways in the tumor microenvironment. Our findings suggest that Mga may play a role in modulating the tumor immune landscape, though the precise mechanisms require further investigation. Interestingly, we observed that low MGA expression in breast cancer patients correlates with a favorable prognosis, particularly in those with active interferon-γ signaling. These observations provide insights into tumor immune escape mechanisms and suggest that further exploration of MGA's function could potentially lead to effective therapeutic strategies in TNBC.
Collapse
Affiliation(s)
- Xu Feng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Pancreas Institute, Nanjing Medical University, Nanjing210000, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin150086, China
| | - Yuanjian Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Lori Lyn Wilson
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Shimin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Pancreas Institute, Nanjing Medical University, Nanjing210000, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
8
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Wang Z, Wang H, Lin S, Angers S, Sargent EH, Kelley SO. Phenotypic targeting using magnetic nanoparticles for rapid characterization of cellular proliferation regulators. SCIENCE ADVANCES 2024; 10:eadj1468. [PMID: 38718125 PMCID: PMC11078187 DOI: 10.1126/sciadv.adj1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024]
Abstract
Genome-wide CRISPR screens have provided a systematic way to identify essential genetic regulators of a phenotype of interest with single-cell resolution. However, most screens use live/dead readout of viability to identify factors of interest. Here, we describe an approach that converts cell proliferation into the degree of magnetization, enabling downstream microfluidic magnetic sorting to be performed. We performed a head-to-head comparison and verified that the magnetic workflow can identify the same hits from a traditional screen while reducing the screening period from 4 weeks to 1 week. Taking advantage of parallelization and performance, we screened multiple mesenchymal cancer cell lines for their dependency on cell proliferation. We found and validated pan- and cell-specific potential therapeutic targets. The method presented provides a nanoparticle-enabled approach means to increase the breadth of data collected in CRISPR screens, enabling the rapid discovery of drug targets for treatment.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H. Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Chemistry, Weinberg College of Arts and Science, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Shana O. Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Chemistry, Weinberg College of Arts and Science, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Kim TH, Park JY, Jung J, Sung JS, Kwon S, Bae HE, Shin HJ, Kang MJ, Jose J, Pyun JC. A one-step immunoassay based on switching peptides for diagnosis of porcine epidemic diarrhea virus (PEDV) using screened Fv-antibodies. J Mater Chem B 2024; 12:3751-3763. [PMID: 38532694 DOI: 10.1039/d4tb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, a one-step immunoassay for porcine epidemic diarrhea virus (PEDV) based on Fv-antibodies and switching peptides was developed, and the assay results of PEDV were obtained by just mixing samples without any further reaction or washing steps. The Fv-antibodies with binding affinity to the spike protein of PEDV were screened from the Fv-antibody library using the receptor-binding domain (RBD) of the spike protein as a screening probe. Screened Fv-antibodies with binding affinities to the RBD antigen were expressed, and the binding constants (KD) were calculated to be 83-142 nM. The one-step immunoassay for the detection of PEDV was configured as a displacement immunoassay using a fluorescence-labeled switching peptide. The one-step immunoassay based on switching peptides was performed using PEDV, and the limit of detection (LOD) values for PEDV detection were estimated to be Ct = 39.7-36.4. Compared with the LOD value for a conventional lateral flow immunoassay (Ct = 33.0), the one-step immunoassay showed a remarkably improved LOD for the detection of PEDV. Finally, the interaction between the screened Fv-antibodies and the PEDV RBD was investigated using docking simulations and compared with the amino acid sequences of the receptors on host cells, such as aminopeptidase N (APN) and angiotensin-converting enzyme-2 (ACE-2).
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
11
|
Labib M, Wang Z, Kim Y, Lin S, Abdrabou A, Yousefi H, Lo PY, Angers S, Sargent EH, Kelley SO. Identification of druggable regulators of cell secretion via a kinome-wide screen and high-throughput immunomagnetic cell sorting. Nat Biomed Eng 2024; 8:263-277. [PMID: 38012306 DOI: 10.1038/s41551-023-01135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The identification of genetic regulators of cell secretions is challenging because it requires the sorting of a large number of cells according to their secretion patterns. Here we report the development and applicability of a high-throughput microfluidic method for the analysis of the secretion levels of large populations of immune cells. The method is linked with a kinome-wide loss-of-function CRISPR screen, immunomagnetically sorting the cells according to their secretion levels, and the sequencing of their genomes to identify key genetic modifiers of cell secretion. We used the method, which we validated against flow cytometry for cytokines secreted from primary mouse CD4+ (cluster of differentiation 4-positive) T cells, to discover a subgroup of highly co-expressed kinase-coding genes that regulate interferon-gamma secretion by these cells. We validated the function of the kinases identified using RNA interference, CRISPR knockouts and kinase inhibitors and confirmed the druggability of selected kinases via the administration of a kinase inhibitor in an animal model of colitis. The technique may facilitate the discovery of regulatory mechanisms for immune-cell activation and of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Labib
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Yunhye Kim
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Abdrabou
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Hanie Yousefi
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Pei-Ying Lo
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Edward H Sargent
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Abstract
Assigning functions to genes and learning how to control their expression are part of the foundation of cell biology and therapeutic development. An efficient and unbiased method to accomplish this is genetic screening, which historically required laborious clone generation and phenotyping and is still limited by scale today. The rapid technological progress on modulating gene function with CRISPR-Cas and measuring it in individual cells has now relaxed the major experimental constraints and enabled pooled screening with complex readouts from single cells. Here, we review the principles and practical considerations for pooled single-cell CRISPR screening. We discuss perturbation strategies, experimental model systems, matching the perturbation to the individual cells, reading out cell phenotypes, and data analysis. Our focus is on single-cell RNA sequencing and cell sorting-based readouts, including image-enabled cell sorting. We expect this transformative approach to fuel biomedical research for the next several decades.
Collapse
Affiliation(s)
- Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany;
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany;
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA;
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, USA
| | | |
Collapse
|
13
|
Zhao L, Liu P, Mao M, Zhang S, Bigenwald C, Dutertre CA, Lehmann CHK, Pan H, Paulhan N, Amon L, Buqué A, Yamazaki T, Galluzzi L, Kloeckner B, Silvin A, Pan Y, Chen H, Tian AL, Ly P, Dudziak D, Zitvogel L, Kepp O, Kroemer G. BCL2 Inhibition Reveals a Dendritic Cell-Specific Immune Checkpoint That Controls Tumor Immunosurveillance. Cancer Discov 2023; 13:2448-2469. [PMID: 37623817 PMCID: PMC7615270 DOI: 10.1158/2159-8290.cd-22-1338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
We developed a phenotypic screening platform for the functional exploration of dendritic cells (DC). Here, we report a genome-wide CRISPR screen that revealed BCL2 as an endogenous inhibitor of DC function. Knockout of BCL2 enhanced DC antigen presentation and activation as well as the capacity of DCs to control tumors and to synergize with PD-1 blockade. The pharmacologic BCL2 inhibitors venetoclax and navitoclax phenocopied these effects and caused a cDC1-dependent regression of orthotopic lung cancers and fibrosarcomas. Thus, solid tumors failed to respond to BCL2 inhibition in mice constitutively devoid of cDC1, and this was reversed by the infusion of DCs. Moreover, cDC1 depletion reduced the therapeutic efficacy of BCL2 inhibitors alone or in combination with PD-1 blockade and treatment with venetoclax caused cDC1 activation, both in mice and in patients. In conclusion, genetic and pharmacologic BCL2 inhibition unveils a DC-specific immune checkpoint that restrains tumor immunosurveillance. SIGNIFICANCE BCL2 inhibition improves the capacity of DCs to stimulate anticancer immunity and restrain cancer growth in an immunocompetent context but not in mice lacking cDC1 or mature T cells. This study indicates that BCL2 blockade can be used to sensitize solid cancers to PD-1/PD-L1-targeting immunotherapy. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
- Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
- Surgical Oncology Department, Sir Run Run Shaw Hospital, Zhejiang University
| | - Shuai Zhang
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
- Department of Respiratory and Critical care Medicine, Union Hospital,Wuhan
| | - Camille Bigenwald
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Charles-Antoine Dutertre
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Christian H. K. Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen - European Metropolitan Area of Nuremberg, Erlangen, Germany
| | - Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Nicolas Paulhan
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen - European Metropolitan Area of Nuremberg, Erlangen, Germany
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Benoit Kloeckner
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Aymeric Silvin
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Ai-Ling Tian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Pierre Ly
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen - European Metropolitan Area of Nuremberg, Erlangen, Germany
| | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
14
|
Ahn G, Riley NM, Kamber RA, Wisnovsky S, Moncayo von Hase S, Bassik MC, Banik SM, Bertozzi CR. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 2023; 382:eadf6249. [PMID: 37856615 PMCID: PMC10766146 DOI: 10.1126/science.adf6249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Targeted protein degradation can provide advantages over inhibition approaches in the development of therapeutic strategies. Lysosome-targeting chimeras (LYTACs) harness receptors, such as the cation-independent mannose 6-phosphate receptor (CI-M6PR), to direct extracellular proteins to lysosomes. In this work, we used a genome-wide CRISPR knockout approach to identify modulators of LYTAC-mediated membrane protein degradation in human cells. We found that disrupting retromer genes improved target degradation by reducing LYTAC recycling to the plasma membrane. Neddylated cullin-3 facilitated LYTAC-complex lysosomal maturation and was a predictive marker for LYTAC efficacy. A substantial fraction of cell surface CI-M6PR remains occupied by endogenous M6P-modified glycoproteins. Thus, inhibition of M6P biosynthesis increased the internalization of LYTAC-target complexes. Our findings inform design strategies for next-generation LYTACs and elucidate aspects of cell surface receptor occupancy and trafficking.
Collapse
Affiliation(s)
- Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M. Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Roarke A. Kamber
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Simon Wisnovsky
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Salvador Moncayo von Hase
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael C. Bassik
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Steven M. Banik
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Chen K, Duong BTV, Ahmed SU, Dhavarasa P, Wang Z, Labib M, Flynn C, Xu J, Zhang YY, Wang H, Yang X, Das J, Zargartalebi H, Ma Y, Kelley SO. A magneto-activated nanoscale cytometry platform for molecular profiling of small extracellular vesicles. Nat Commun 2023; 14:5576. [PMID: 37696888 PMCID: PMC10495366 DOI: 10.1038/s41467-023-41285-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Exosomal PD-L1 (exoPD-L1) has recently received significant attention as a biomarker predicting immunotherapeutic responses involving the PD1/PD-L1 pathway. However, current technologies for exosomal analysis rely primarily on bulk measurements that do not consider the heterogeneity found within exosomal subpopulations. Here, we present a nanoscale cytometry platform NanoEPIC, enabling phenotypic sorting and exoPD-L1 profiling from blood plasma. We highlight the efficacy of NanoEPIC in monitoring anti-PD-1 immunotherapy through the interrogation of exoPD-L1. NanoEPIC generates signature exoPD-L1 patterns in responders and non-responders. In mice treated with PD1-targeted immunotherapy, exoPD-L1 is correlated with tumor growth, PD-L1 burden in tumors, and the immune suppression of CD8+ tumor-infiltrating lymphocytes. Small extracellular vesicles (sEVs) with different PD-L1 expression levels display distinctive inhibitory effects on CD8 + T cells. NanoEPIC offers robust, high-throughput profiling of exosomal markers, enabling sEV subpopulation analysis. This platform holds the potential for enhanced cancer screening, personalized treatment, and therapeutic response monitoring.
Collapse
Affiliation(s)
- Kangfu Chen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Bill T V Duong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Zongjie Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Connor Flynn
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jingya Xu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Yi Y Zhang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Xiaolong Yang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hossein Zargartalebi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Monserrat Lopez D, Rottmann P, Puebla-Hellmann G, Drechsler U, Mayor M, Panke S, Fussenegger M, Lörtscher E. Direct electrification of silicon microfluidics for electric field applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:81. [PMID: 37342556 PMCID: PMC10277806 DOI: 10.1038/s41378-023-00552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Microfluidic systems are widely used in fundamental research and industrial applications due to their unique behavior, enhanced control, and manipulation opportunities of liquids in constrained geometries. In micrometer-sized channels, electric fields are efficient mechanisms for manipulating liquids, leading to deflection, injection, poration or electrochemical modification of cells and droplets. While PDMS-based microfluidic devices are used due to their inexpensive fabrication, they are limited in terms of electrode integration. Using silicon as the channel material, microfabrication techniques can be used to create nearby electrodes. Despite the advantages that silicon provides, its opacity has prevented its usage in most important microfluidic applications that need optical access. To overcome this barrier, silicon-on-insulator technology in microfluidics is introduced to create optical viewports and channel-interfacing electrodes. More specifically, the microfluidic channel walls are directly electrified via selective, nanoscale etching to introduce insulation segments inside the silicon device layer, thereby achieving the most homogeneous electric field distributions and lowest operation voltages feasible across microfluidic channels. These ideal electrostatic conditions enable a drastic energy reduction, as effectively shown via picoinjection and fluorescence-activated droplet sorting applications at voltages below 6 and 15 V, respectively, facilitating low-voltage electric field applications in next-generation microfluidics.
Collapse
Affiliation(s)
- Diego Monserrat Lopez
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Philipp Rottmann
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gabriel Puebla-Hellmann
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Ute Drechsler
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Marcel Mayor
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
| | - Sven Panke
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
17
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
18
|
Huang S, Baskin JM. Adding a Chemical Biology Twist to CRISPR Screening. Isr J Chem 2023; 63:e202200056. [PMID: 37588264 PMCID: PMC10427134 DOI: 10.1002/ijch.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 11/09/2022]
Abstract
In less than a decade, CRISPR screening has revolutionized forward genetics and cell and molecular biology. Advances in screening technologies, including sgRNA libraries, Cas9-expressing cell lines, and streamlined sequencing pipelines, have democratized pooled CRISPR screens at genome-wide scale. Initially, many such screens were survival-based, identifying essential genes in physiological or perturbed processes. With the application of new chemical biology tools to CRISPR screening, the phenotypic space is no longer limited to live/dead selection or screening for levels of conventional fluorescent protein reporters. Further, the resolution has been increased from cell populations to single cells or even the subcellular level. We highlight advances in pooled CRISPR screening, powered by chemical biology, that have expanded phenotypic space, resolution, scope, and scalability as well as strengthened the CRISPR/Cas enzyme toolkit to enable biological hypothesis generation and discovery.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
19
|
Abdrabou A, Duong BTV, Chen K, Atwal RS, Labib M, Lin S, Angers S, Kelley SO. nuPRISM: Microfluidic Genome-Wide Phenotypic Screening Platform for Cellular Nuclei. ACS CENTRAL SCIENCE 2022; 8:1618-1626. [PMID: 36589880 PMCID: PMC9801500 DOI: 10.1021/acscentsci.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 06/17/2023]
Abstract
Genome-wide loss-of-function screens are critical tools to identify novel genetic regulators of intracellular proteins. However, studying the changes in the organelle-specific expression profile of intracellular proteins can be challenging due to protein localization differences across the whole cell, hindering context-dependent protein expression and activity analyses. Here, we describe nuPRISM, a microfluidics chip specifically designed for large-scale isolated nuclei sorting. The new device enables rapid genome-wide loss-of-function phenotypic CRISPR-Cas9 screens directed at intranuclear targets. We deployed this technology to identify novel genetic regulators of β-catenin nuclear accumulation, a phenotypic hallmark of APC-mutated colorectal cancer. nuPRISM expands our ability to capture aberrant nuclear morphological and functional traits associated with distinctive signal transduction and subcellular localization-driven functional processes with substantial resolution and high throughput.
Collapse
Affiliation(s)
- Abdalla
M. Abdrabou
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bill T. V. Duong
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Kangfu Chen
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Singh Atwal
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Mahmoud Labib
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60611, United States
| | - Sichun Lin
- Terrence
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department
of Biochemistry, Faculty of Medicine, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Terrence
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60611, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60611, United States
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
20
|
Philpott DN, Chen K, Atwal RS, Li D, Christie J, Sargent EH, Kelley SO. Ultrathroughput immunomagnetic cell sorting platform. LAB ON A CHIP 2022; 22:4822-4830. [PMID: 36382608 DOI: 10.1039/d2lc00798c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-throughput phenotypic cell sorting is critical to the development of cell-based therapies and cell screening discovery platforms. However, current cytometry platforms are limited by throughput, number of fractionated populations that can be isolated, cell viability, and cost. We present an ultrathroughput microfluidic cell sorter capable of processing hundreds of millions of live cells per hour per device based on protein expression. This device, a next-generation microfluidic cell sorter (NG-MICS), combines multiple technologies, including 3D printing, reversible clamp sealing, and superhydrophobic treatments to create a reusable and user-friendly platform ready for deployment. The utility of such a platform is demonstrated through the rapid isolation of mature natural killer cells from peripheral blood mononuclear cells, for use in CAR-NK therapies at clinically-relevant scale.
Collapse
Affiliation(s)
- David N Philpott
- Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Randy S Atwal
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA.
| | - Derek Li
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jessie Christie
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA.
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
21
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2022; 13:7506. [PMID: 36473869 PMCID: PMC9726987 DOI: 10.1038/s41467-022-35118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.
Collapse
Affiliation(s)
- Michelle M. Kameda-Smith
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Helen Zhu
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428University Health Network, Toronto, ON Canada ,grid.494618.6Vector Institute Toronto, Toronto, ON Canada
| | - En-Ching Luo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Yujin Suk
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Agata Xella
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Brian Yee
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Chirayu Chokshi
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Sansi Xing
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Frederick Tan
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Raymond G. Fox
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Ashley A. Adile
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - David Bakhshinyan
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Kevin Brown
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William D. Gwynne
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Minomi Subapanditha
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada
| | - Petar Miletic
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Daniel Picard
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ian Burns
- grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jason Moffat
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kamil Paruch
- grid.10267.320000 0001 2194 0956Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ,grid.483343.bInternational Clinical Research Center, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Adam Fleming
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Pediatrics, Hematology and Oncology Division, Hamilton, Canada
| | - Kristin Hope
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - John P. Provias
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Neuropathology, Hamilton, Canada
| | - Marc Remke
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yu Lu
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Tannishtha Reya
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Chitra Venugopal
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Jüri Reimand
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J. Wechsler-Reya
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Gene W. Yeo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Sheila K. Singh
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227McMaster University, Department of Pediatrics, Hamilton, Canada
| |
Collapse
|
22
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Wang J, Koo KM, Trau M. Tetraplex Immunophenotyping of Cell Surface Proteomes via Synthesized Plasmonic Nanotags and Portable Raman Spectroscopy. Anal Chem 2022; 94:14906-14916. [PMID: 36256869 DOI: 10.1021/acs.analchem.2c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiplex immunophenotyping of cell surface proteomes is useful for cell characterization as well as providing valuable information on a patient's physiological or pathological state. Current methods for multiplex immunophenotyping of cell surface proteomes still have associated technical pitfalls in terms of limited multiplexing capability, challenging result interpretation, and large equipment footprint limited to use in a laboratory setting. Herein, we presented a portable surface-enhanced Raman spectroscopy (SERS) assay for multiplex cell surface immunophenotyping. We synthesized and functionalized customizable SERS nanotags for cell labeling and subsequent signal measurement using a portable Raman spectrometer. We extensively evaluated and validated the analytical assay performance of the portable SERS immunophenotyping assay in two different cellular models (red blood cells and breast cancer cells). In terms of analytical specificity, the cell surface immunophenotyping of both red blood cells and breast cancer cells correlated well with flow cytometry. The portable SERS immunophenotyping assay also has comparable analytical repeatability to flow cytometry, with coefficient of variation values of 21.89-23.33% and 6.88-17.32% for detecting red blood cells and breast cancer cells, respectively. The analytical detection limits were 77 cells/mL for red blood cells and 1-17 cells/mL for breast cancer cells. As an alternative to flow cytometry, the portable SERS immunophenotyping assay demonstrated excellent analytical assay performance and possessed advantages such as quick sample-to-result turnaround time, multiplexing capability, and small equipment footprint.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China.,Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kevin M Koo
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty Ltd, Sinnamon Park, QLD 4073, Australia.,The University of Queensland Centre for Clinical Research (UQCCR), Herston, QLD 4029, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Xia F, Ma Y, Chen K, Duong B, Ahmed S, Atwal R, Philpott D, Ketela T, Pantea J, Lin S, Angers S, Kelley SO. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. SCIENCE ADVANCES 2022; 8:eabo7792. [PMID: 36054348 PMCID: PMC10848953 DOI: 10.1126/sciadv.abo7792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Bill Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - David Philpott
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
25
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
26
|
van Duijn A, Van der Burg SH, Scheeren FA. CD47/SIRPα axis: bridging innate and adaptive immunity. J Immunother Cancer 2022; 10:jitc-2022-004589. [PMID: 35831032 PMCID: PMC9280883 DOI: 10.1136/jitc-2022-004589] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloid immune cells are frequently present in the tumor environment, and although they can positively contribute to tumor control they often negatively impact anticancer immune responses. One way of inhibiting the positive contributions of myeloid cells is by signaling through the cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) axis. The SIRPα receptor is expressed on myeloid cells and is an inhibitory immune receptor that, upon binding to CD47 protein, delivers a ‘don’t eat me’ signal. As CD47 is often overexpressed on cancer cells, treatments targeting CD47/SIRPα have been under active investigation and are currently being tested in clinical settings. Interestingly, the CD47/SIRPα axis is also involved in T cell-mediated antitumor responses. In this perspective we provide an overview of recent studies showing how therapeutic blockade of the CD47/SIRPα axis improves the adaptive immune response. Furthermore, we discuss the interconnection between the myeloid CD47/SIRPα axis and adaptive T cell responses as well as the potential therapeutic role of the CD47/SIRPα axis in tumors with acquired resistance to the classic immunotherapy through major histocompatibility complex downregulation. Altogether this review provides a profound insight for the optimal exploitation of CD47/SIRPα immune checkpoint therapy.
Collapse
Affiliation(s)
- Anneloes van Duijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H Van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Wang Z, Wang H, Lin S, Ahmed S, Angers S, Sargent EH, Kelley SO. Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. NANO LETTERS 2022; 22:4774-4783. [PMID: 35639489 DOI: 10.1021/acs.nanolett.2c01018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic cell sorting is an enabling tool for the isolation of specific cellular subpopulations for downstream applications and requires the cells to be labeled by a sufficient number of magnetic nanoparticles to leverage magnetophoresis for efficient separation. This requirement makes it challenging to target weakly expressed biomarkers. Here, we developed a new approach that selectively and efficiently amplifies the magnetic labeling on cells through sequentially connected antibodies and nanoparticles delivered to the surface or interior of the cell. Using this approach, we achieved amplification up to 100-fold for surface and intracellular markers. We also demonstrated the utility of this assay for enabling high-performance magnetic cell sorting when it is applied to the analysis of rare tumor cells for cancer diagnosis and the purification of transfected CAR T cells for immunotherapy. The data presented demonstrate a useful tool for the stratification of rare cell subpopulations.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| | - Shana O Kelley
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
28
|
Bresser K, Logtenberg MEW, Toebes M, Proost N, Sprengers J, Siteur B, Boeije M, Kroese LJ, Schumacher TN. QPCTL regulates macrophage and monocyte abundance and inflammatory signatures in the tumor microenvironment. Oncoimmunology 2022; 11:2049486. [PMID: 35309731 PMCID: PMC8932921 DOI: 10.1080/2162402x.2022.2049486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enzyme glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the formation of pyroglutamate residues at the NH2-terminus of proteins, thereby influencing their biological properties. A number of studies have implicated QPCTL in the regulation of chemokine stability. Furthermore, QPCTL activity has recently been shown to be critical for the formation of the high-affinity SIRPα binding site of the CD47 “don’t-eat-me” protein. Based on the latter data, interference with QPCTL activity —and hence CD47 maturation—may be proposed as a means to promote anti-tumor immunity. However, the pleiotropic activity of QPCTL makes it difficult to predict the effects of QPCTL inhibition on the tumor microenvironment (TME). Using a syngeneic mouse melanoma model, we demonstrate that QPCTL deficiency alters the intra-tumoral monocyte-to-macrophage ratio, results in a profound increase in the presence of pro-inflammatory cancer-associated fibroblasts (CAFs) relative to immunosuppressive TGF-β1-driven CAFs, and leads to an increased IFN and decreased TGF-β transcriptional response signature in tumor cells. Importantly, the functional relevance of the observed TME remodeling is demonstrated by the synergy between QPCTL deletion and anti PD-L1 therapy, sensitizing an otherwise refractory melanoma model to anti-checkpoint therapy. Collectively, these data provide support for the development of strategies to interfere with QPCTL activity as a means to promote tumor-specific immunity.
Collapse
Affiliation(s)
- Kaspar Bresser
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meike E. W. Logtenberg
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Justin Sprengers
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bjorn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Manon Boeije
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lona J. Kroese
- Transgenic Facility, Mouse Clinic for Cancer and Aging Research, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Afsaneh H, Mohammadi R. Microfluidic platforms for the manipulation of cells and particles. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Wang Z, Ahmed S, Labib M, Wang H, Hu X, Wei J, Yao Y, Moffat J, Sargent EH, Kelley SO. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat Biomed Eng 2022; 6:108-117. [PMID: 35087171 DOI: 10.1038/s41551-021-00820-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Adoptive cell therapies require the recovery and expansion of highly potent tumour-infiltrating lymphocytes (TILs). However, TILs in tumours are rare and difficult to isolate efficiently, which hinders the optimization of therapeutic potency and dose. Here we show that a configurable microfluidic device can efficiently recover potent TILs from solid tumours by leveraging specific expression levels of target cell-surface markers. The device, which is sandwiched by permanent magnets, balances magnetic forces and fluidic drag forces to sort cells labelled with magnetic nanoparticles conjugated with antibodies for the target markers. Compared with conventional cell sorting, immunomagnetic cell sorting recovered up to 30-fold higher numbers of TILs, and the higher levels and diversity of the recovered TILs accelerated TIL expansion and enhanced their therapeutic potency. Immunomagnetic cell sorting also allowed us to identify and isolate potent TIL subpopulations, in particular TILs with moderate levels of CD39 (a marker of T-cell reactivity to tumours and T-cell exhaustion), which we found are tumour-specific, self-renewable and essential for the long-term success of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiyue Hu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiarun Wei
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuxi Yao
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
31
|
Philpott D, Gomis S, Wang H, Atwal R, Kelil A, Sack T, Morningstar B, Burnie C, Sargent EH, Angers S, Sidhu S, Kelley SO. Rapid On-Cell Selection of High-Performance Human Antibodies. ACS CENTRAL SCIENCE 2022; 8:102-109. [PMID: 35106377 PMCID: PMC8796304 DOI: 10.1021/acscentsci.1c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Phage display is a critical tool for developing antibodies. However, existing approaches require many time-consuming rounds of biopanning and screening of potential candidates due to a high rate of failure during validation. Herein, we present a rapid on-cell phage display platform which recapitulates the complex in vivo binding environment to produce high-performance human antibodies in a short amount of time. Selection is performed in a highly stringent heterogeneous mixture of cells to quickly remove nonspecific binders. A microfluidic platform then separates antigen-presenting cells with high throughput and specificity. An unsupervised machine learning algorithm analyzes sequences of phage from all pools to identify the structural trends that contribute to affinity and proposes ideal candidates for validation. In a proof-of-concept screen against human Frizzled-7, a key ligand in the Wnt signaling pathway, antibodies with picomolar affinity were discovered in two rounds of selection that outperformed current gold-standard reagents. This approach, termed μCellect, is low cost, high throughput, and compatible with a wide variety of cell types, enabling widespread adoption for antibody development.
Collapse
Affiliation(s)
- David
N. Philpott
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Surath Gomis
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Hansen Wang
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Abdellali Kelil
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Tanja Sack
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Brandon Morningstar
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Chris Burnie
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Edward H. Sargent
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sachdev Sidhu
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
32
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
33
|
Ma Y, Chen K, Xia F, Atwal R, Wang H, Ahmed SU, Cardarelli L, Lui I, Duong B, Wang Z, Wells JA, Sidhu SS, Kelley SO. Phage-Based Profiling of Rare Single Cells Using Nanoparticle-Directed Capture. ACS NANO 2021; 15:19202-19210. [PMID: 34813293 DOI: 10.1021/acsnano.1c03935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advances in single-cell level profiling of the proteome require quantitative and versatile platforms, especially for rare cell analyses such as circulating tumor cell (CTC) profiling. Here we demonstrate an integrated microfluidic chip that uses magnetic nanoparticles to capture single tumor cells with high efficiency, permits on-chip incubation, and facilitates in situ cell-surface protein expression analysis. Combined with phage-based barcoding and next-generation sequencing technology, we were able to monitor changes in the expression of multiple surface markers stimulated in response to CTC adherence. Interestingly, we found fluctuations in the expression of Frizzled2 (FZD2) that reflected the microenvironment of the single cells. This platform has a high potential for in-depth screening of multiple surface antigens simultaneously in rare cells with single-cell resolution, which will provide further insights regarding biological heterogeneity and human disease.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Lia Cardarelli
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Bill Duong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Zongjie Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Sachdev S Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
34
|
Abstract
In the past few years, the CRISPR (clustered regularly interspaced short palindromic repeats) applications in medicine and molecular biology have broadened. CRISPR has also been integrated with microfluidic-based biosensors to enhance the sensitivity and selectivity of medical diagnosis due to its great potentials. The CRISPR-powered microfluidics can help quantify DNAs and RNAs for different diseases such as cancer, and viral or bacterial diseases among others. Here in this review, we discussed the main applications of such tools along with their advantages and limitations.
Collapse
|
35
|
Common computational tools for analyzing CRISPR screens. Emerg Top Life Sci 2021; 5:779-788. [PMID: 34881774 PMCID: PMC8786280 DOI: 10.1042/etls20210222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
CRISPR–Cas technology offers a versatile toolbox for genome editing, with applications in various cancer-related fields such as functional genomics, immunotherapy, synthetic lethality and drug resistance, metastasis, genome regulation, chromatic accessibility and RNA-targeting. The variety of screening platforms and questions in which they are used have caused the development of a wide array of analytical methods for CRISPR analysis. In this review, we focus on the algorithms and frameworks used in the computational analysis of pooled CRISPR knockout (KO) screens and highlight some of the most significant target discoveries made using these methods. Lastly, we offer perspectives on the design and analysis of state-of-art multiplex screening for genetic interactions.
Collapse
|
36
|
Kang B, Han S, Son HY, Mun B, Shin MK, Choi Y, Park J, Min JK, Park D, Lim EK, Huh YM, Haam S. Immunomagnetic microfluidic integrated system for potency-based multiple separation of heterogeneous stem cells with high throughput capabilities. Biosens Bioelectron 2021; 194:113576. [PMID: 34454345 DOI: 10.1016/j.bios.2021.113576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Multipotent adult stem cells (MASCs) derived from Pluripotent stem cells (PSCs) have found widespread use in various applications, including regenerative therapy and drug screening. For these applications, highly pluripotent PSCs need to be selectively separated from those that show low pluripotency for reusage of PSCs, and MASCs need to be collected for further application. Herein, we developed immunomagnetic microfluidic integrated system (IM-MIS) for separation of stem cells depending on potency level. In this system, each stem cell was multiple-separated in microfluidics chip by magnetophoretic mobility of magnetic-activated cells based on the combination of two sizes of magnetic nanoparticles and two different antibodies. Magnetic particles had a difference in the degree of magnetization, and antibodies recognized potency-related surface markers. IM-MIS showed superior cell separation performance than FACS with high throughput (49.5%) in a short time (<15 min) isolate 1 × 107 cells, and higher purity (92.1%) than MACS. IM-MIS had a cell viability of 89.1%, suggesting that IM-MIS had no effect on cell viability during isolation. Furthermore, IM-MIS did not affect the key characteristics of stem cells including its differentiation potency, phenotype, genotype, and karyotype. IM-MIS may offer a new platform for the development of multi-separation systems for diverse stem cell applications.
Collapse
Affiliation(s)
- Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seungmin Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Division of Cardio-Thoracic Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daewon Park
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
37
|
Coles BLK, Labib M, Poudineh M, Innes BT, Belair-Hickey J, Gomis S, Wang Z, Bader GD, Sargent EH, Kelley SO, van der Kooy D. A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. LAB ON A CHIP 2021; 21:4464-4476. [PMID: 34651637 PMCID: PMC8578462 DOI: 10.1039/d1lc00790d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of untreatable visual impairment and blindness. Cell replacement therapy, using retinal stem cell (RSC)-derived photoreceptors, holds promise for reconstituting damaged cell populations in the retina. One major obstacle preventing translation to the clinic is the lack of validated markers or strategies to prospectively identify these rare cells in the retina and subsequently enrich them. Here, we introduce a microfluidic platform that combines nickel micromagnets, herringbone structures, and a design enabling varying flow velocities among three compartments to facilitate a highly efficient enrichment of RSCs. In addition, we developed an affinity enrichment strategy based on cell-surface markers that was utilized to isolate RSCs from the adult ciliary epithelium. We showed that targeting a panel of three cell surface markers simultaneously facilitates the enrichment of RSCs to 1 : 3 relative to unsorted cells. Combining the microfluidic platform with single-cell whole-transcriptome profiling, we successfully identified four differentially expressed cell surface markers that can be targeted simultaneously to yield an unprecedented 1 : 2 enrichment of RSCs relative to unsorted cells. We also identified transcription factors (TFs) that play functional roles in maintenance, quiescence, and proliferation of RSCs. This level of analysis for the first time identified a spectrum of molecular and functional properties of RSCs.
Collapse
Affiliation(s)
- Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Mahla Poudineh
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Brendan T Innes
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Justin Belair-Hickey
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Surath Gomis
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Zongjie Wang
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Edward H Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
38
|
Chen YC, Shi W, Shi JJ, Lu JJ. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective. J Cancer Res Clin Oncol 2021; 148:1-14. [PMID: 34609596 DOI: 10.1007/s00432-021-03815-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023]
Abstract
CD47, a transmembrane protein, acts as a "do not eat me" signal that is overexpressed in many tumor cell types, thereby forming a signaling axis with its ligand signal regulatory protein alpha (SIRPα) and enabling the tumor cells to escape from macrophage-mediated phagocytosis. Several clinical trials with CD47 targeting agents are underway and have achieved impressive results preliminarily. However, hematotoxicity (particularly anemia) has emerged as the most common side effect that cannot be neglected. In the development of CD47 targeting agents, various methods have been used to mitigate this toxicity. In this review, we summarized five strategies used to alleviate CD47 blockade-induced hematotoxicity, as follows: change in the mode of administration; dual targeting bispecific antibodies of CD47; CD47 antibodies/SIRPα fusion proteins with negligible red blood cell binding; anti-SIRPα antibodies; and glutaminyl-peptide cyclotransferase like inhibitors. With these strategies, the development of CD47 targeting agents can be improved.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
| |
Collapse
|
39
|
Aregger M, Xing K, Gonatopoulos-Pournatzis T. Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nat Protoc 2021; 16:4722-4765. [PMID: 34508260 DOI: 10.1038/s41596-021-00595-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
CRISPR-based forward genetic screening represents a powerful approach for the systematic characterization of gene function. Recent efforts have been directed toward establishing CRISPR-based tools for the programmable delivery of combinatorial genetic perturbations, most of which are mediated by a single nuclease and the expression of structurally identical guide backbones from two promoters. In contrast, we have developed CHyMErA (Cas hybrid for multiplexed editing and screening applications), which is based on the co-expression of Cas9 and Cas12a nucleases in conjunction with a hybrid guide RNA (hgRNA) engineered by the fusion of Cas9 and Cas12a guides and expressed from a single U6 promoter. CHyMErA is suitable for the high-throughput deletion of genetic segments including the excision of individual exons. Furthermore, CHyMErA enables the concomitant targeting of two or more genes and can thus be used for the systematic mapping of genetic interactions in mammalian cells. CHyMErA can also be applied for the perturbation of paralogous gene pairs, thereby allowing the capturing of phenotypic roles that would otherwise be masked because of genetic redundancy. Here, we provide instructions for the cloning of hgRNA screening libraries and individual hgRNA constructs and offer guidelines for designing and performing combinatorial pooled genetic screens using CHyMErA. Starting with the generation of Cas9- and Cas12a-expressing cell lines, CHyMErA screening can be implemented within 15-20 weeks.
Collapse
Affiliation(s)
- Michael Aregger
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Kun Xing
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- Gungun Lin
- Institute for Biomedical Materials and Devices Faculty of Science University of Technology Sydney Ultimo New South Wales Australia
- ARC Research Hub for Integrated Device for End‐User Analysis at Low Levels Faculty of Science University of Technology Sydney Sydney New South Wales Australia
| |
Collapse
|
41
|
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z, Liu R, Li X, Wu J, Liu Y, Guo S, Jia S, Zhang X, Wang M. Identification of Key Genes Associated With the Process of Hepatitis B Inflammation and Cancer Transformation by Integrated Bioinformatics Analysis. Front Genet 2021; 12:654517. [PMID: 34539726 PMCID: PMC8440810 DOI: 10.3389/fgene.2021.654517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer. Methods Two groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes. Results We identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate. Conclusion The findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Miaomiao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Paraskevopoulos M, McGuigan AP. Application of CRISPR screens to investigate mammalian cell competition. Brief Funct Genomics 2021; 20:135-147. [PMID: 33782689 DOI: 10.1093/bfgp/elab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.
Collapse
|
43
|
τ-SGA: synthetic genetic array analysis for systematically screening and quantifying trigenic interactions in yeast. Nat Protoc 2021; 16:1219-1250. [PMID: 33462440 PMCID: PMC9127509 DOI: 10.1038/s41596-020-00456-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/28/2020] [Indexed: 01/29/2023]
Abstract
Systematic complex genetic interaction studies have provided insight into high-order functional redundancies and genetic network wiring of the cell. Here, we describe a method for screening and quantifying trigenic interactions from ordered arrays of yeast strains grown on agar plates as individual colonies. The protocol instructs users on the trigenic synthetic genetic array analysis technique, τ-SGA, for high-throughput screens. The steps describe construction of the double-mutant query strains and the corresponding single-mutant control query strains, which are screened in parallel in two replicates. The screening experimental set-up consists of sequential replica-pinning steps that enable automated mating, meiotic recombination and successive haploid selection steps for the generation of triple mutants, which are scored for colony size as a proxy for fitness, which enables the calculation of trigenic interactions. The procedure described here was used to conduct 422 trigenic interaction screens, which generated ~460,000 yeast triple mutants for trigenic interaction analysis. Users should be familiar with robotic equipment required for high-throughput genetic interaction screens and be proficient at the command line to execute the scoring pipeline. Large-scale screen computational analysis is achieved by using MATLAB pipelines that score raw colony size data to produce τ-SGA interaction scores. Additional recommendations are included for optimizing experimental design and analysis of smaller-scale trigenic interaction screens by using a web-based analysis system, SGAtools. This protocol provides a resource for those who would like to gain a deeper, more practical understanding of trigenic interaction screening and quantification methodology.
Collapse
|
44
|
Schirle M, Jenkins JL. Contemporary Techniques for Target Deconvolution and Mode of Action Elucidation. PHENOTYPIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781839160721-00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elucidation of the cellular efficacy target and mechanism of action of a screening hit remain key steps in phenotypic drug discovery. A large number of experimental and in silico approaches have been introduced to address these questions and are being discussed in this chapter with a focus on recent developments. In addition to practical considerations such as throughput and technological requirements, these approaches differ conceptually in the specific compound characteristic that they are focusing on, including physical and functional interactions, cellular response patterns as well as structural features. As a result, different approaches often provide complementary information and we describe a multipronged strategy that is frequently key to successful identification of the efficacy target but also other epistatic nodes and off-targets that together shape the overall cellular effect of a bioactive compound.
Collapse
Affiliation(s)
- Markus Schirle
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| | - Jeremy L. Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| |
Collapse
|
45
|
Lamanna J, Scott EY, Edwards HS, Chamberlain MD, Dryden MDM, Peng J, Mair B, Lee A, Chan C, Sklavounos AA, Heffernan A, Abbas F, Lam C, Olson ME, Moffat J, Wheeler AR. Digital microfluidic isolation of single cells for -Omics. Nat Commun 2020; 11:5632. [PMID: 33177493 PMCID: PMC7658233 DOI: 10.1038/s41467-020-19394-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022] Open
Abstract
We introduce Digital microfluidic Isolation of Single Cells for -Omics (DISCO), a platform that allows users to select particular cells of interest from a limited initial sample size and connects single-cell sequencing data to their immunofluorescence-based phenotypes. Specifically, DISCO combines digital microfluidics, laser cell lysis, and artificial intelligence-driven image processing to collect the contents of single cells from heterogeneous populations, followed by analysis of single-cell genomes and transcriptomes by next-generation sequencing, and proteomes by nanoflow liquid chromatography and tandem mass spectrometry. The results described herein confirm the utility of DISCO for sequencing at levels that are equivalent to or enhanced relative to the state of the art, capable of identifying features at the level of single nucleotide variations. The unique levels of selectivity, context, and accountability of DISCO suggest potential utility for deep analysis of any rare cell population with contextual dependencies. Multi-Omic approaches are a powerful way for obtaining in-depth understanding of a cell’s state. Here the authors present DISCO, combining digital microfluidics, laser cell lysis, and artificial intelligence-driven image processing to analyze single-cell genomes, transcriptomes and proteomes in a mixed population.
Collapse
Affiliation(s)
- Julian Lamanna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Erica Y Scott
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Harrison S Edwards
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - M Dean Chamberlain
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Michael D M Dryden
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Barbara Mair
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Adam Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Austin Heffernan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Farhana Abbas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Charis Lam
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Maxwell E Olson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
46
|
Duong BTV, Wu L, Green BJ, Bavaghar-Zaeimi F, Wang Z, Labib M, Zhou Y, Cantu FJP, Jeganathan T, Popescu S, Pantea J, de Perrot M, Kelley SO. A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine 2020; 61:103031. [PMID: 33045471 PMCID: PMC7553233 DOI: 10.1016/j.ebiom.2020.103031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive cancer related to asbestos exposure. Early diagnosis is challenging due to generic symptoms and a lack of biomarkers. We previously demonstrated that mesothelial precursor cells (MPC) characterized by mesothelin (MSLN)+CD90+CD34+ could be implicated in the development of mesothelioma after asbestos exposure. Here, we aimed to determine the clinical significance of detecting MPC in blood for early-stage diagnosis and prognosis of mesothelioma. METHODS Due to the rarity of MPC in blood, it is challenging to identify this cell population using conventional techniques. Hence, we have developed a microfluidic liquid biopsy platform called MesoFind that utilizes an immunomagnetic, mesothelin capture strategy coupled with immunofluorescence to identify rare populations of cells at high sensitivity and precision. To validate our technique, we compared this approach to flow cytometry for the detection of MPC in murine blood and lavage samples. Upon successful validation of the murine samples, we then proceeded to examine circulating MPC in 23 patients with MPM, 23 asbestos-exposed individuals (ASB), and 10 healthy donors (HD) to evaluate their prognostic and diagnostic value. FINDING MPC were successfully detected in the blood of murine samples using MesoFind but were undetectable with flow cytometry. Circulating MPC were significantly higher in patients with epithelioid MPM compared to HD and ASB. The MPC subpopulation, MSLN+ and CD90+, were upregulated in ASB compared to HD suggesting an early role in pleural damage from asbestos. The MPC subpopulation, MSLN+ and CD34+, in contrast, were detected in advanced MPM and associated with markers of poor prognosis, suggesting a predominant role during cancer progression. INTERPRETATION The identification of circulating MPC presents an attractive solution for screening and early diagnosis of epithelioid mesothelioma. The presence of different subtypes of MPC have a prognostic value that could be of assistance with clinical decisions in patients with MPM. FUNDING Princess Margaret Hospital Foundation Mesothelioma Research Fund, Toronto General & Western Hospital Foundation.
Collapse
Affiliation(s)
- Bill T V Duong
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario M5S 3H6, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada
| | - Brenda J Green
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Yuxiao Zhou
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Fernando J P Cantu
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Thurgaa Jeganathan
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Sandra Popescu
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario M5S 3H6, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
47
|
Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, Zhu J, Zhang S, Oklu R, Sengupta S, Sun W, Khademhosseini A. Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001447. [PMID: 33042756 PMCID: PMC7539186 DOI: 10.1002/advs.202001447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy is a class of promising anticancer treatments that has recently gained attention due to surging numbers of FDA approvals and extensive preclinical studies demonstrating efficacy. Nevertheless, further clinical implementation has been limited by high variability in patient response to different immunotherapeutic agents. These treatments currently do not have reliable predictors of efficacy and may lead to side effects. The future development of additional immunotherapy options and the prediction of patient-specific response to treatment require advanced screening platforms associated with accurate and rapid data interpretation. Advanced engineering approaches ranging from sequencing and gene editing, to tumor organoids engineering, bioprinted tissues, and organs-on-a-chip systems facilitate the screening of cancer immunotherapies by recreating the intrinsic and extrinsic features of a tumor and its microenvironment. High-throughput platform development and progress in artificial intelligence can also improve the efficiency and accuracy of screening methods. Here, these engineering approaches in screening cancer immunotherapies are highlighted, and a discussion of the future perspectives and challenges associated with these emerging fields to further advance the clinical use of state-of-the-art cancer immunotherapies are provided.
Collapse
Affiliation(s)
- Xingwu Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Moyuan Qu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Peyton Tebon
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xing Jiang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- School of NursingNanjing University of Chinese MedicineNanjing210023China
| | - Canran Wang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yumeng Xue
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Jixiang Zhu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shiming Zhang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Rahmi Oklu
- Minimally Invasive Therapeutics LaboratoryDivision of Vascular and Interventional RadiologyMayo ClinicPhoenixAZ85054USA
| | - Shiladitya Sengupta
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and TechnologyHarvard Medical SchoolBostonMA02115USA
| | - Wujin Sun
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of RadiologyDavid Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCA90095USA
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| |
Collapse
|
48
|
Labib M, Philpott DN, Wang Z, Nemr C, Chen JB, Sargent EH, Kelley SO. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Acc Chem Res 2020; 53:1445-1457. [PMID: 32662263 DOI: 10.1021/acs.accounts.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular heterogeneity in biological systems presents major challenges in the diagnosis and treatment of disease and also complicates the deconvolution of complex cellular phenomena. Single-cell analysis methods provide information that is not masked by the intrinsic heterogeneity of the bulk population and can therefore be applied to gain insights into heterogeneity among different cell subpopulations with fine resolution. Over the last 5 years, an explosion in the number of single-cell measurement methods has occurred. However, most of these methods are applicable to pure populations of cultured cells and are not able to handle high levels of phenotypic heterogeneity or a large background of nontarget cells. Microfluidics is an attractive tool for single cell manipulation as it enables individual encasing of single cells, allowing for high-throughput analysis with precise control of the local environment. Our laboratory has developed a new microfluidics-based analytical strategy to meet this unmet need referred to as magnetic ranking cytometry (MagRC). Cells expressing a biomarker of interest are labeled with receptor-coated magnetic nanoparticles and isolated from nontarget cells using a microfluidic device. The device ranks the cells according to the level of bound magnetic nanoparticles, which corresponds to the expression level of a target biomarker. Over the last several years, two generations of MagRC devices have been developed for different applications. The first-generation MagRC devices are powerful tools for the quantitation and analysis of rare cells present in heterogeneous samples, such as circulating tumor cells, stem cells, and pathogenic bacteria. The second-generation MagRC devices are compatible with the efficient recovery of cells sorted on the basis of protein expression and can be used to analyze large populations of cells and perform phenotypic CRISPR screens. To improve analytical precision, newer iterations of the first-generation and second-generation MagRC devices have been integrated with electrochemical sensors and Hall effect sensors, respectively. Both generations of MagRC devices permit the isolation of viable cells, which sets the stage for a wide range of applications, such as generating cell lines from rare cells and in vitro screening for effective therapeutic interventions in cancer patients to realize the promise of personalized medicine. This Account summarizes the development and application of the MagRC and describes a suite of advances that have enabled single-cell tumor cell analysis and monitoring tumor response to therapy, stem cell analysis, and detection of pathogens.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - David N. Philpott
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Carine Nemr
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B. Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Edward H. Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
49
|
Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc Natl Acad Sci U S A 2020; 117:16839-16847. [PMID: 32641515 PMCID: PMC7382214 DOI: 10.1073/pnas.2006388117] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Isolation of sufficient numbers of circulating tumor cells (CTCs) in cancer patients could provide an alternative to invasive tumor biopsies, providing multianalyte cell-based biomarkers that are not available from current plasma circulating tumor DNA sequencing. Given the average prevalence at one CTC per billion blood cells, very large blood volumes must be screened to provide enough CTCs for reliable clinical applications. By creating an ultrahigh-throughput magnetic sorter, we demonstrate the efficient removal of leukocytes from near whole blood volume equivalents. Combined with leukapheresis to initially concentrate blood mononuclear cells, this LPCTC-iChip platform will enable noninvasive sampling of cancer cells in sufficient numbers for clinical applications, ranging from real-time pharmacokinetic monitoring of drug response to tissue-of-origin determination in early-stage cancer screening. Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, LPCTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 105 enrichment). Using soft iron-filled channels to act as magnetic microlenses, we intensify the field gradient within sorting channels. Increasing magnetic fields applied to inertially focused streams of cells effectively deplete massive numbers of magnetically labeled leukocytes within microfluidic channels. The negative depletion of antibody-tagged leukocytes enables isolation of potentially viable CTCs without bias for expression of specific tumor epitopes, making this platform applicable to all solid tumors. Thus, the initial enrichment by routine leukapheresis of mononuclear cells from very large blood volumes, followed by rapid flow, high-gradient magnetic sorting of untagged CTCs, provides a technology for noninvasive isolation of cancer cells in sufficient numbers for multiple clinical and experimental applications.
Collapse
|
50
|
Arens R, Scheeren FA. Genetic Screening for Novel Regulators of Immune Checkpoint Molecules. Trends Immunol 2020; 41:692-705. [PMID: 32605801 DOI: 10.1016/j.it.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
Inhibitory and stimulatory immune checkpoint molecules play important roles in regulating immune responses. An increasing number of these immune regulators are currently being evaluated as targets in putative anti-cancer therapies. Recently, sophisticated genetic screens have been performed to increase our understanding of immune checkpoint pathways and their immunomodulatory regulators. Here, we summarize novel insights obtained by these screens and discuss new directions to advance possible strategies to treat malignancies.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|