1
|
Chour M, Porteu F, Depil S, Alcazer V. Endogenous retroelements in hematological malignancies: From epigenetic dysregulation to therapeutic targeting. Am J Hematol 2025; 100:116-130. [PMID: 39387681 PMCID: PMC11625990 DOI: 10.1002/ajh.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies. Challenging the perception of noncoding DNA as "junk," EREs are underestimated contributors to cancer driver mechanisms as well as antitumoral immunity by providing innate immune ligands and tumor antigens. This review highlights recent progress in understanding ERE co-option events in cancer and focuses on the controversial debate surrounding their causal role in shaping malignant phenotype. We provide insights into the rapidly evolving landscape of ERE research in hematological malignancies and their clinical implications in these cancers.
Collapse
Affiliation(s)
- Mohamed Chour
- Département de Biologie, Master Biosciences‐SantéÉcole Normale Supérieure de LyonLyonFrance
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
| | - Françoise Porteu
- Institut Gustave RoussyINSERM U1287 Université Paris SaclayVillejuifFrance
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de LyonUMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1 Centre Léon BérardLyonFrance
- ErVimmuneLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Vincent Alcazer
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
- Université Claude Bernard Lyon 1LyonFrance
- Service d'hématologie CliniqueCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre‐BéniteFrance
| |
Collapse
|
2
|
Hidaoui D, Porquet A, Chelbi R, Bohm M, Polyzou A, Alcazer V, Depil S, Imanci A, Morabito M, Renneville A, Selimoglu-Buet D, Thépot S, Itzykson R, Laplane L, Droin N, Trompouki E, Elvira-Matelot E, Solary E, Porteu F. Targeting heterochromatin eliminates chronic myelomonocytic leukemia malignant stem cells through reactivation of retroelements and immune pathways. Commun Biol 2024; 7:1555. [PMID: 39578583 PMCID: PMC11584673 DOI: 10.1038/s42003-024-07214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3. These repressive marks together with DNA methylation are essential for suppressing transposable elements (TEs). In solid cancers, the antitumor efficacy of HMAs involves the derepression of TEs, mimicking a state of viral infection. In this study, we demonstrate a significant disorganization of heterochromatin in CMML HSCs and progenitors (HSPCs) characterized by an increase in the repressive mark H3K9me2, mainly at the level of TEs, and a repression of immune and age-associated transcripts. Combining HMAs with G9A/GLP H3K9me2 methyltransferase inhibitors reactivates these pathways, selectively targeting mutated cells while preserving wild-type HSCs, thus offering new therapeutic avenues for this severe myeloid malignancy.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/immunology
- Leukemia, Myelomonocytic, Chronic/pathology
- Heterochromatin/metabolism
- Heterochromatin/genetics
- Humans
- Neoplastic Stem Cells/metabolism
- Retroelements/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Hematopoietic Stem Cells/metabolism
- DNA Methylation
- Animals
- Mice
- Male
- Histones/metabolism
Collapse
Affiliation(s)
- Donia Hidaoui
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Audrey Porquet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Mathieu Bohm
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Aikaterini Polyzou
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
- Service d'hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Aygun Imanci
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Margot Morabito
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Aline Renneville
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Dorothée Selimoglu-Buet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Sylvain Thépot
- Clinical Hematology Department, University Hospital, Angers, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lucie Laplane
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nathalie Droin
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Eric Solary
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Clinical Hematology Department, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
3
|
Traveset L, Cerdán Porqueras V, Huerga Encabo H, Avalle S, Esteve-Codina A, Fornas O, Aramburu J, Lopez-Rodriguez C. NFAT5 counters long-term IFN-1 responses in hematopoietic stem cells to preserve reconstitution potential. Blood Adv 2024; 8:5510-5526. [PMID: 39208369 PMCID: PMC11538617 DOI: 10.1182/bloodadvances.2023011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) readily recover from acute stress, but persistent stress can reduce their viability and long-term potential. Here, we show that the nuclear factor of activated T cells 5 (NFAT5), a transcription modulator of inflammatory responses, protects the HSC pool under stress. NFAT5 restrains HSC differentiation to multipotent progenitors after bone marrow transplantation and bone marrow ablation with ionizing radiation or chemotherapy. Correspondingly, NFAT5-deficient HSCs fail to support long-term reconstitution of hematopoietic progenitors and mature blood cells after serial transplant. Evidence from competitive transplant assays shows that these defects are HSC intrinsic. NFAT5-deficient HSCs exhibit enhanced expression of type 1 interferon (IFN-1) response genes after transplant, and suppressing IFN-1 receptor prevents their exacerbated differentiation and cell death after reconstitution and improves long-term regeneration potential. Blockade of IFN-1 receptor also prevented the overdifferentiation of NFAT5-deficient HSCs after bone marrow ablation. These findings show that long-term IFN-1 responses to different hematopoietic stressors drive HSCs toward more differentiated progenitors, and that NFAT5 has an HSC-intrinsic role, limiting IFN-1 responses to preserve reconstitution potential. Our identification of cell-intrinsic mechanisms that strengthen the resistance of HSCs to stress could help to devise approaches to protect long-term stemness during the treatment of hematopoietic malignancies.
Collapse
Affiliation(s)
- Laia Traveset
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Víctor Cerdán Porqueras
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Hector Huerga Encabo
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Silvia Avalle
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Esteve-Codina
- Bioinformatics unit, Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Fornas
- Department of Medicine and Life Sciences, Flow Cytometry Unit, Universitat Pompeu Fabra, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jose Aramburu
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Lopez-Rodriguez
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Phan J, Chen B, Zhao Z, Allies G, Iannaccone A, Paul A, Cansiz F, Spina A, Leven AS, Gellhaus A, Schadendorf D, Kimmig R, Mettlen M, Tasdogan A, Morrison SJ. Retrotransposons are co-opted to activate hematopoietic stem cells and erythropoiesis. Science 2024; 386:eado6836. [PMID: 39446896 DOI: 10.1126/science.ado6836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024]
Abstract
Hematopoietic stem cells (HSCs) and erythropoiesis are activated during pregnancy and after bleeding by the derepression of retrotransposons, including endogenous retroviruses and long interspersed nuclear elements. Retrotransposon transcription activates the innate immune sensors cyclic guanosine 3',5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and stimulator of interferon (IFN) genes (STING), which induce IFN and IFN-regulated genes in HSCs, increasing HSC division and erythropoiesis. Inhibition of reverse transcriptase or deficiency for cGAS or STING had little or no effect on hematopoiesis in nonpregnant mice but depleted HSCs and erythroid progenitors in pregnant mice, reducing red blood cell counts. Retrotransposons and IFN-regulated genes were also induced in mouse HSCs after serial bleeding and, in human HSCs, during pregnancy. Reverse transcriptase inhibitor use was associated with anemia in pregnant but not in nonpregnant people, suggesting conservation of these mechanisms from mice to humans.
Collapse
Affiliation(s)
- Julia Phan
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Chen
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Animesh Paul
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alberto Spina
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Anna-Sophia Leven
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Xiao M, Hong S, Peng P, Cai S, Huang Y, Liang J, Bai X, Bao Q, Li W, Cheng G, Xiong Y, Gu M, Mu C. Co-delivery of protopanaxatriol/icariin into niche cells restores bone marrow niches to rejuvenate HSCs for chemotherapy-induced myelosuppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155978. [PMID: 39186857 DOI: 10.1016/j.phymed.2024.155978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Up to 80 % of chemotherapeutic drugs induce myelosuppression in patients. Chemotherapy not only impairs of hematopoietic stem cells (HSCs) but also damages bone marrow niches (vascular and endosteal). Current treatments for myelosuppression overlook these chemotherapy-induced damages to bone marrow niches and the critical role of niche restoration on hematopoietic regeneration. Ginsenoside protopanaxatriol (PPT) protects vascular endothelium from injury, while icariin (ICA) promotes osteogenic differentiation. The combination of PPT and ICA aims to restore damaged vascular and endosteal niches, thus rejuvenating HSCs for treating myelosuppression. PURPOSE This study aims to develop effective, bone marrow niche-directed PPT/ICA therapies for treating chemotherapy-induced myelosuppression. METHODS 3D cell spheroids were used to investigate the effects of PPT/ICA on cell-cell interactions in vascular niches, osteogenesis, and extracellular matrix (ECM) secretion in endosteal niches. In vitro mimic niche models were designed to access the drug combination's efficacy in rejuvenating and mobilizing in HSCs within bone marrow niches. The delivery capability of PPT/ICA to key niche cell types (mesenchymal stromal cells (MSCs), endothelial cells (ECs), and osteoblasts (OBs)) via nanocarriers has been determined. DSS6 peptide-modified nanoparticles (DSS6-NPs) were prepared for specific co-delivery of PPT/ICA into key niche cell populations in vivo. RESULTS PPT can prevent vascular niche injury by restoring vascular EC cell-cell adhesion and the intercellular interactions between ECs and MSCs in 5-fluorouracil (5-FU)-damaged cell spheroids. ICA repaired 5-FU-damaged endosteal niches by promoting osteogenesis and ECM secretion. The combination of PPT and ICA restores key HSC niche factor gene expressions, normalizing HSC differentiation and mobilization. The in vitro cellular uptake efficiency of nanocarriers in a mimic niche is positively correlated with their in vivo delivery into bone marrow niche cells. DSS6-NPs greatly enhance the delivery of PPT/ICA into MSCs and OBs within bone marrow niches. Co-loading of PPT/ICA into DSS6-NPs effectively repairs damaged bone marrow niches and promotes HSC rejuvenation in vivo. CONCLUSION The combination of PPT and ICA effectively prevents injury to the vascular and endosteal niches, thereby promoting hematopoietic regeneration in the bone marrow. This study provides novel niche-directed PPT/ICA therapies for managing chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Mengdi Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiyi Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pei Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siying Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yutian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liang
- Center for Synthetic Biochemistry, Chinese Academy of Sciences, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Xue Bai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiying Bao
- Pharmacy Department, Hangzhou Fuyang Hospital of TCM Orthopedics, Hangzhou 311400, China
| | - Wei Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guilin Cheng
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mancang Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Wang F, Li K, Wang W, Hui J, He J, Cai J, Ren W, Zhao Y, Song Q, He Y, Ma Y, Feng X, Liu Y, Yu J, Siriporn J, Ma D, Cai Z. Sensing of endogenous retroviruses-derived RNA by ZBP1 triggers PANoptosis in DNA damage and contributes to toxic side effects of chemotherapy. Cell Death Dis 2024; 15:779. [PMID: 39465258 PMCID: PMC11514216 DOI: 10.1038/s41419-024-07175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Excessive DNA damage triggers various types of programmed cell death (PCD), yet the regulatory mechanism of DNA damage-induced cell death is not fully understood. Here, we report that PANoptosis, a coordinated PCD pathway, including pyroptosis, apoptosis and necroptosis, is activated by DNA damage. The Z-DNA binding protein 1 (ZBP1) is the apical sensor of PANoptosis and essential for PANoptosome assembly in response to DNA damage. We find endogenous retroviruses (ERVs) are activated by DNA damage and act as ligands for ZBP1 to trigger PANoptosis. By using ZBP1 knock-out and knock-in mice disrupting ZBP1 nucleic acid-binding activity, we demonstrate that ZBP1-mediated PANoptosis contributes to the toxic effects of chemotherapeutic drugs, which is dependent on ZBP1 nucleic acid-binding activity. We found that ZBP1 expression is downregulated in tumor tissue. Furthermore, in colorectal cancer patients, dsRNA is induced by chemotherapy and sensed by ZBP1 in normal colonic tissues, suggesting ZBP1-mediated PANoptosis is activated by chemotherapy in normal tissues. Our findings indicate that ZBP1-mediated PANoptosis is activated by DNA damage and contributes to the toxic side effects of DNA-damage-based chemotherapy. These data suggest that ZBP1 could be a promising therapeutic target to alleviate chemotherapy-related side effects.
Collapse
Affiliation(s)
- Fang Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Kaiying Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China
| | - Jiang Hui
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Jiangping He
- Guangzhou National Laboratory, 510005, Guangzhou, China
| | - Jin Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
| | - Xiaona Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jitkaew Siriporn
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dan Ma
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China.
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
7
|
Zhu C, Stiehl T. Modelling post-chemotherapy stem cell dynamics in the bone marrow niche of AML patients. Sci Rep 2024; 14:25060. [PMID: 39443599 PMCID: PMC11500015 DOI: 10.1038/s41598-024-75429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is a stem cell-driven malignancy of the blood forming (hematopoietic) system. Despite of high dose chemotherapy with toxic side effects, many patients eventually relapse. The "7+3 regimen", which consists of 7 days of cytarabine in combination with daunorubicin during the first 3 days, is a widely used therapy protocol. Since peripheral blood cells are easily accessible to longitudinal sampling, significant research efforts have been undertaken to characterize and reduce adverse effects on circulating blood cells. However, much less is known about the impact of the 7+3 regimen on human hematopoietic stem cells and their physiological micro-environments, the so-called stem cell niches. One reason for this is the technical inability to observe human stem cells in vivo and the discomfort related to bone marrow biopsies. To better understand the treatment effects on human stem cells, we consider a mechanistic mathematical model of the stem cell niche before, during and after chemotherapy. The model accounts for different maturation stages of leukemic and hematopoietic cells and considers key processes such as cell proliferation, self-renewal, differentiation and therapy-induced cell death. In the model, hematopoietic (HSCs) and leukemic stem cells (LSCs) compete for a joint niche and respond to both systemic and niche-derived signals. We relate the model to clinical trial data from literature which longitudinally quantifies the counts of hematopoietic stem like (CD34+CD38-ALDH+) cells at diagnosis and after therapy. The proposed model can capture the clinically observed interindividual heterogeneity and reproduce the non-monotonous dynamics of the hematopoietic stem like cells observed in relapsing patients. Our model allows to simulate different scenarios proposed in literature such as therapy-related impairment of the stem cell niche or niche-mediated resistance. Model simulations suggest that during the post-therapy phase a more than 10-fold increase of hematopoietic stem-like cell proliferation rates is required to recapitulate the measured cell dynamics in patients achieving complete remission. We fit the model to data of 7 individual patients and simulate variations of the treatment protocol. These simulations are in line with the clinical finding that G-CSF priming can improve the treatment outcome. Furthermore, our model suggests that a decline of HSC counts during remission might serve as an indication for salvage therapy in patients lacking MRD (minimal residual disease) markers.
Collapse
Affiliation(s)
- Chenxu Zhu
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany.
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
- Centre for Mathematical Modeling-Human Health and Disease, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
8
|
Boumpas A, Papaioannou AS, Bousounis P, Grigoriou M, Bergo V, Papafragkos I, Tasis A, Iskas M, Boon L, Makridakis M, Vlachou A, Gavriilaki E, Hatzioannou A, Mitroulis I, Trompouki E, Verginis P. PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis. Front Immunol 2024; 15:1386838. [PMID: 39464894 PMCID: PMC11502414 DOI: 10.3389/fimmu.2024.1386838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit. Methods In this study, we treated tumour-bearing mice with PD-L1 blockage antibody (aPD-L1) immunotherapy, to investigate its effects on cancer-induced emergency myelopoiesis, focusing on bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). We examined the impact of aPD-L1 treatment on HSPC quiescence, proliferation, transcriptomic profile, and functionality. Results Herein, we reveal that aPD-L1 in tumour-bearing mice targets the HSPCs in the BM, mediating their exit from quiescence and promoting their proliferation. Notably, disruption of the PDL1/PD1 axis induces transcriptomic reprogramming in HSPCs, observed in both individuals with Hodgkin lymphoma (HL) and tumour-bearing mice, shifting towards an inflammatory state. Furthermore, HSPCs from aPDL1-treated mice demonstrated resistance to cancer-induced emergency myelopoiesis, evidenced by a lower generation of MDSCs compared to control-treated mice. Discussion Our findings shed light on unrecognized mechanisms of action of ICB immunotherapy in cancer, which involves targeting of BM-driven HSPCs and reprogramming of cancer-induced emergency myelopoiesis.
Collapse
Affiliation(s)
- Athina Boumpas
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Antonis S. Papaioannou
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Pavlos Bousounis
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Grigoriou
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronica Bergo
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Cellular and Molecular Immunology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Athanasios Tasis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Iskas
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlachou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Côte, Nice, France
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
9
|
Krętowska-Grunwald A, Sawicka-Żukowska M, Starosz A, Krawczuk-Rybak M, Moniuszko M, Grubczak K. Selected stem cell populations in pediatric acute lymphoblastic leukemia. Front Immunol 2024; 15:1446687. [PMID: 39386216 PMCID: PMC11461207 DOI: 10.3389/fimmu.2024.1446687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Acute lymphoblastic leukemia is characterized by a disturbed maturation of hematopoietic stem cells (HSCs) resulting in development of a malignant clone. Despite relatively positive outcome, there are still instances of disease relapse occurring due to ineffective disease eradication or primary leukemic clone alterations. Unclear significance of stem cells in the course of ALL led us to investigate and establish crucial changes in two stem cell populations - very small embryonic-like stem cells (VSELs) and HSCs during the induction phase of treatment. Methods In a retrospective study selected stem cells in peripheral blood and bone marrow of 60 pediatric ALL subjects and 48 healthy controls were subjected to flow cytometric analysis at 4 different time points. Results Both VSELs and HSCs were elevated at the moment of ALL diagnosis compared to healthy controls, but profoundly decline until day 15. Further observations revealed an increase in HSCs with a concomitant depletion of VSELs until week 12. ALL patients with high HSCs showed positive correlation with bone marrow blasts at diagnosis. Patients with lower VSELs or HSCs at diagnosis had slightly improved response to applied therapy. We observed higher initial bone marrow lymphoblast values in patients with lower VSELs or higher HSCs in the high-risk group. The significance of VSELs in predicting treatment outcome can be illustrated by lower day 15 MRD level of patients with lower VSELs at diagnosis. Discussion We found HSCs and VSELs to be valid participants in pediatric ALL with possible contribution in the neoplastic process and prediction of initial treatment outcome.
Collapse
Affiliation(s)
- Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Clinical Department of Allergic and Internal Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Pessoa Rodrigues C, Collins JM, Yang S, Martinez C, Kim JW, Lama C, Nam AS, Alt C, Lin C, Zon LI. Transcripts of repetitive DNA elements signal to block phagocytosis of hematopoietic stem cells. Science 2024; 385:eadn1629. [PMID: 39264994 DOI: 10.1126/science.adn1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024]
Abstract
Macrophages maintain hematopoietic stem cell (HSC) quality by assessing cell surface Calreticulin (Calr), an "eat-me" signal induced by reactive oxygen species (ROS). Using zebrafish genetics, we identified Beta-2-microglobulin (B2m) as a crucial "don't eat-me" signal on blood stem cells. A chemical screen revealed inducers of surface Calr that promoted HSC proliferation without triggering ROS or macrophage clearance. Whole-genome CRISPR-Cas9 screening showed that Toll-like receptor 3 (Tlr3) signaling regulated b2m expression. Targeting b2m or tlr3 reduced the HSC clonality. Elevated B2m levels correlated with high expression of repetitive element (RE) transcripts. Overall, our data suggest that RE-associated double-stranded RNA could interact with TLR3 to stimulate surface expression of B2m on hematopoietic stem and progenitor cells. These findings suggest that the balance of Calr and B2m regulates macrophage-HSC interactions and defines hematopoietic clonality.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Joseph M Collins
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Song Yang
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
| | - Catherine Martinez
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Ji Wook Kim
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Chhiring Lama
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Alt
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
| | - Charles Lin
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Zhang R, Wu M, Xiang D, Zhu J, Zhang Q, Zhong H, Peng Y, Wang Z, Ma G, Li G, Liu F, Ye W, Shi R, Zhou X, Babarinde IA, Su H, Chen J, Zhang X, Qin D, Hutchins AP, Pei D, Li D. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024; 31:1298-1314.e8. [PMID: 39146934 DOI: 10.1016/j.stem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Hui Zhong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Fengping Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Weipeng Ye
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemeng Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
12
|
Chen F, Lu Y, Xu Y, Chen N, Yang L, Zhong X, Zeng H, Liu Y, Chen Z, Zhang Q, Chen S, Cao J, Zhao J, Wang S, Hu M, Wang J. Trim47 prevents hematopoietic stem cell exhaustion during stress by regulating MAVS-mediated innate immune pathway. Nat Commun 2024; 15:6787. [PMID: 39117713 PMCID: PMC11310205 DOI: 10.1038/s41467-024-51199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The maintenance of hematopoietic stem cell (HSC) functional integrity is essential for effective hematopoietic regeneration when suffering from injuries. Studies have shown that the innate immune pathways play crucial roles in the stress response of HSCs, whereas how to precisely modulate these pathways is not well characterized. Here, we identify the E3 ubiquitin ligase tripartite motif-containing 47 (Trim47) as a negative regulator of the mitochondrial antiviral-signaling protein (MAVS)-mediated innate immune pathway in HSCs. We find that Trim47 is predominantly enriched in HSCs, and its deficiency impairs the function and survival of HSCs after exposure to 5-flurouracil (5-FU) and irradiation (IR). Mechanistically, Trim47 impedes the excessive activation of the innate immune signaling and inflammatory response via K48-linked ubiquitination and degradation of MAVS. Collectively, our findings demonstrate a role of Trim47 in preventing stress-induced hematopoietic failure and thus provide a promising avenue for treatment of related diseases in the clinic.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yukai Lu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Naicheng Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lijing Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaoyi Zhong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yanying Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zijin Chen
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Zhang
- National Key Laboratory of Immunology and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
13
|
Zuo H, Wu A, Wang M, Hong L, Wang H. tRNA m 1A modification regulate HSC maintenance and self-renewal via mTORC1 signaling. Nat Commun 2024; 15:5706. [PMID: 38977676 PMCID: PMC11231335 DOI: 10.1038/s41467-024-50110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Haematopoietic stem cells (HSCs) possess unique physiological adaptations to sustain blood cell production and cope with stress responses throughout life. To maintain these adaptations, HSCs rely on maintaining a tightly controlled protein translation rate. However, the mechanism of how HSCs regulate protein translation remains to be fully elucidated. In this study, we investigate the role of transfer RNA (tRNA) m1A58 'writer' proteins TRMT6 and TRMT61A in regulating HSCs function. Trmt6 deletion promoted HSC proliferation through aberrant activation of mTORC1 signaling. TRMT6-deficient HSCs exhibited an impaired self-renewal ability in competitive transplantation assay. Mechanistically, single cell RNA-seq analysis reveals that the mTORC1 signaling pathway is highly upregulated in HSC-enriched cell populations after Trmt6 deletion. m1A-tRNA-seq and Western blot analysis suggest that TRMT6 promotes methylation modification of specific tRNA and expression of TSC1, fine-tuning mTORC1 signaling levels. Furthermore, Pharmacological inhibition of the mTORC1 pathway rescued functional defect in TRMT6-deficient HSCs. To our knowledge, this study is the first to elucidate a mechanism by which TRMT6-TRMT61A complex-mediated tRNA-m1A58 modification regulates HSC homeostasis.
Collapse
Affiliation(s)
- Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
14
|
Feng C, Tie R, Xin S, Chen Y, Li S, Chen Y, Hu X, Zhou Y, Liu Y, Hu Y, Hu Y, Pan H, Wu Z, Chao H, Zhang S, Ni Q, Huang J, Luo W, Huang H, Chen M. Systematic single-cell analysis reveals dynamic control of transposable element activity orchestrating the endothelial-to-hematopoietic transition. BMC Biol 2024; 22:143. [PMID: 38937802 PMCID: PMC11209969 DOI: 10.1186/s12915-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030000, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yincong Zhou
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongjing Liu
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| | - Zexu Wu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shilong Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyan Huang
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Luo
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Hoang PM, Torre D, Jaynes P, Ho J, Mohammed K, Alvstad E, Lam WY, Khanchandani V, Lee JM, Toh CMC, Lee RX, Anbuselvan A, Lee S, Sebra RP, Martin J Walsh, Marazzi I, Kappei D, Guccione E, Jeyasekharan AD. A PRMT5-ZNF326 axis mediates innate immune activation upon replication stress. SCIENCE ADVANCES 2024; 10:eadm9589. [PMID: 38838142 DOI: 10.1126/sciadv.adm9589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jessica Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Alvstad
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wan Yee Lam
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie Min Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Min Clarissa Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Robert P Sebra
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J Walsh
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Nguyen LL, Watson ZL, Ortega R, Woodruff ER, Jordan KR, Iwanaga R, Yamamoto TM, Bailey CA, To F, Jeong AD, Guntupalli SR, Behbakht K, Gibaja V, Arnoult N, Cocozaki A, Chuong EB, Bitler BG. Combining EHMT and PARP Inhibition: A Strategy to Diminish Therapy-Resistant Ovarian Cancer Tumor Growth while Stimulating Immune Activation. Mol Cancer Ther 2024; 23:745206. [PMID: 38714351 PMCID: PMC11543919 DOI: 10.1158/1535-7163.mct-23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Despite the success of Poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers Euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory dsRNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi resistant ovarian tumor growth in vivo, and promotes anti-tumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.
Collapse
Affiliation(s)
- Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Raquel Ortega
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Francis To
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Abigail D. Jeong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Saketh R. Guntupalli
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Nausica Arnoult
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
17
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
19
|
Lee M, Ahmad SF, Xu J. Regulation and function of transposable elements in cancer genomes. Cell Mol Life Sci 2024; 81:157. [PMID: 38556602 PMCID: PMC10982106 DOI: 10.1007/s00018-024-05195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over half of human genomic DNA is composed of repetitive sequences generated throughout evolution by prolific mobile genetic parasites called transposable elements (TEs). Long disregarded as "junk" or "selfish" DNA, TEs are increasingly recognized as formative elements in genome evolution, wired intimately into the structure and function of the human genome. Advances in sequencing technologies and computational methods have ushered in an era of unprecedented insight into how TE activity impacts human biology in health and disease. Here we discuss the current views on how TEs have shaped the regulatory landscape of the human genome, how TE activity is implicated in human cancers, and how recent findings motivate novel strategies to leverage TE activity for improved cancer therapy. Given the crucial role of methodological advances in TE biology, we pair our conceptual discussions with an in-depth review of the inherent technical challenges in studying repeats, specifically related to structural variation, expression analyses, and chromatin regulation. Lastly, we provide a catalog of existing and emerging assays and bioinformatic software that altogether are enabling the most sophisticated and comprehensive investigations yet into the regulation and function of interspersed repeats in cancer genomes.
Collapse
Affiliation(s)
- Michael Lee
- Department of Pediatrics, Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Syed Farhan Ahmad
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA
| | - Jian Xu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA.
| |
Collapse
|
20
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
21
|
Vu GT, Awad V, Norberto MF, Bowman TV, Trompouki E. Nucleic acid-induced inflammation on hematopoietic stem cells. Exp Hematol 2024; 131:104148. [PMID: 38151171 PMCID: PMC11061806 DOI: 10.1016/j.exphem.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow. Inflammatory signaling in the form of interferons, interleukins, tumor necrosis factors, and others is well-established to influence both developmental and adult hematopoiesis. Here we discuss the role of specific inflammatory pathways that are induced by sensing nucleic acids. We discuss the role of RNA-sensing members of the Toll-like, Rig-I-like, nucleotide-binding oligomerization domain (NOD)-like, and AIM2-like protein kinase receptors and the DNA-sensing receptors, DEAD-Box helicase 41 (DDX41) and cGAS. The main downstream pathways of these receptors are discussed, as well as their influence on developmental and adult hematopoiesis, including hematopoietic pathologies.
Collapse
Affiliation(s)
- Giang To Vu
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Valerie Awad
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Maria Feliz Norberto
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
22
|
Perkiö A, Pradhan B, Genc F, Pirttikoski A, Pikkusaari S, Erkan EP, Falco MM, Huhtinen K, Narva S, Hynninen J, Kauppi L, Vähärautio A. Locus-specific LINE-1 expression in clinical ovarian cancer specimens at the single-cell level. Sci Rep 2024; 14:4322. [PMID: 38383551 PMCID: PMC10881972 DOI: 10.1038/s41598-024-54113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Long interspersed nuclear elements (LINE-1s/L1s) are a group of retrotransposons that can copy themselves within a genome. In humans, it is the most successful transposon in nucleotide content. L1 expression is generally mild in normal human tissues, but the activity has been shown to increase significantly in many cancers. Few studies have examined L1 expression at single-cell resolution, thus it is undetermined whether L1 reactivation occurs solely in malignant cells within tumors. One of the cancer types with frequent L1 activity is high-grade serous ovarian carcinoma (HGSOC). Here, we identified locus-specific L1 expression with 3' single-cell RNA sequencing in pre- and post-chemotherapy HGSOC sample pairs from 11 patients, and in fallopian tube samples from five healthy women. Although L1 expression quantification with the chosen technique was challenging due to the repetitive nature of the element, we found evidence of L1 expression primarily in cancer cells, but also in other cell types, e.g. cancer-associated fibroblasts. The expression levels were similar in samples taken before and after neoadjuvant chemotherapy, indicating that L1 transcriptional activity was unaffected by clinical platinum-taxane treatment. Furthermore, L1 activity was negatively associated with the expression of MYC target genes, a finding that supports earlier literature of MYC being an L1 suppressor.
Collapse
Affiliation(s)
- Anna Perkiö
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Barun Pradhan
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Fatih Genc
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anna Pirttikoski
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Sanna Pikkusaari
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matias Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521, Turku, Finland
| | - Sara Narva
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521, Turku, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Foundation for the Finnish Cancer Institute (FCI), Helsinki, Finland.
| |
Collapse
|
23
|
Farahmandnejad M, Mosaddeghi P, Dorvash M, Sakhteman A, Negahdaripour M, Faridi P. Correlation of Myeloid-Derived Suppressor Cell Expansion with Upregulated Transposable Elements in Severe COVID-19 Unveiled in Single-Cell RNA Sequencing Reanalysis. Biomedicines 2024; 12:315. [PMID: 38397917 PMCID: PMC10887269 DOI: 10.3390/biomedicines12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Some studies have investigated the potential role of transposable elements (TEs) in COVID-19 pathogenesis and complications. However, to the best of our knowledge, there is no study to examine the possible association of TE expression in cell functions and its potential role in COVID-19 immune response at the single-cell level. In this study, we reanalyzed single-cell RNA seq data of bronchoalveolar lavage (BAL) samples obtained from six severe COVID-19 patients and three healthy donors to assess the probable correlation of TE expression with the immune responses induced by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in COVID-19 patients. Our findings indicate that the expansion of myeloid-derived suppressor cells (MDSCs) may be a characteristic feature of COVID-19. Additionally, a significant increase in TE expression in MDSCs was observed. This upregulation of TEs in COVID-19 may be linked to the adaptability of these cells in response to their microenvironments. Furthermore, it appears that the identification of overexpressed TEs by pattern recognition receptors (PRRs) in MDSCs may enhance the suppressive capacity of these cells. Thus, this study emphasizes the crucial role of TEs in the functionality of MDSCs during COVID-19.
Collapse
Affiliation(s)
- Mitra Farahmandnejad
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammadreza Dorvash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Amirhossein Sakhteman
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 80333 Munich, Germany;
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Pouya Faridi
- Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
24
|
Niu Y, Liu Y, Ma X, Liu L, Li S, Li R, Wang T, Song H, Niu D. Disrupting endogenous retroelements with a reverse transcriptase inhibitor alleviates DSS-induced colitis in mice. Mucosal Immunol 2023; 17:S1933-0219(23)00082-X. [PMID: 39491093 DOI: 10.1016/j.mucimm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Endogenous retroelements play vital roles in sustaining immune homeostasis. Activation of endogenous retroelements can trigger cGAS/STING pathway and downstream pro-inflammatory cytokine production. M1 macrophages, which can be induced by pro-inflammatory cytokines, are involved in the development of colitis. Here we aimed to determine whether a retrovirus reverse transcriptase inhibitor Azidothymidine (AZT) could influence M1 macrophage polarization and rescue colitis via inhibiting the reverse transcription of murine endogenous retroelements. A dextran sodium sulfate salt (DSS)-induced colitis mouse model (male C57BL/6N) and a lipopolysaccharides (LPS)-treated RAW264.7 cell line were used to evaluate the protective role of AZT in colitis alleviation. An upregulated expression of endogenous retroelements was first detected in both the colons of the mice with colitis and the LPS-stimulated M1 cells, and treatment with AZT significantly decreased the expression. Meanwhile, a downregulation of cGAS/STING/NF-κB pathway and pro-inflammatory cytokines that induce M1 macrophage polarization was also observed in AZT-treated colitis or M1 groups. Moreover, the symptoms of DSS-induced colitis could be significantly alleviated by AZT. In summary, the endogenous retroelement inhibitor AZT could rescue the DSS-induced colitis possibly via blocking M1 macrophage polarization through cGAS/STING/NF-κB pro-inflammatory pathway. Thus, a pharmacological blockade of endogenous retroelements would be a new strategy for clinical therapy of colitis.
Collapse
Affiliation(s)
- Yifan Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Yu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Rui Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
25
|
Du G, Xing Z, Zhou J, Cui C, Liu C, Liu Y, Li Z. Retinoic acid-inducible gene-I like receptor pathway in cancer: modification and treatment. Front Immunol 2023; 14:1227041. [PMID: 37662910 PMCID: PMC10468571 DOI: 10.3389/fimmu.2023.1227041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I) like receptor (RLR) pathway is one of the most significant pathways supervising aberrant RNA in cells. In predominant conditions, the RLR pathway initiates anti-infection function via activating inflammatory effects, while recently it is discovered to be involved in cancer development as well, acting as a virus-mimicry responder. On one hand, the product IFNs induces tumor elimination. On the other hand, the NF-κB pathway is activated which may lead to tumor progression. Emerging evidence demonstrates that a wide range of modifications are involved in regulating RLR pathways in cancer, which either boost tumor suppression effect or prompt tumor development. This review summarized current epigenetic modulations including DNA methylation, histone modification, and ncRNA interference, as well as post-transcriptional modification like m6A and A-to-I editing of the upstream ligand dsRNA in cancer cells. The post-translational modulations like phosphorylation and ubiquitylation of the pathway's key components were also discussed. Ultimately, we provided an overview of the current therapeutic strategies targeting the RLR pathway in cancers.
Collapse
Affiliation(s)
- Guangyuan Du
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xingya School of Medicine of Central South University, Changsha, China
| | - Zherui Xing
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xingya School of Medicine of Central South University, Changsha, China
| | - Jue Zhou
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xingya School of Medicine of Central South University, Changsha, China
| | - Can Cui
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xingya School of Medicine of Central South University, Changsha, China
| | - Chenyuan Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xingya School of Medicine of Central South University, Changsha, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xingya School of Medicine of Central South University, Changsha, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Treichel S, Filippi MD. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev Biol 2023; 11:1231735. [PMID: 37645247 PMCID: PMC10461445 DOI: 10.3389/fcell.2023.1231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into any blood cell lineages. In order to balance the maintenance of the stem cell pool with supporting mature blood cell production, the fate decisions to self-renew or to commit to differentiation must be tightly controlled, as dysregulation of this process can lead to bone marrow failure or leukemogenesis. The contribution of the cell cycle to cell fate decisions has been well established in numerous types of stem cells, including pluripotent stem cells. Cell cycle length is an integral component of hematopoietic stem cell fate. Hematopoietic stem cells must remain quiescent to prevent premature replicative exhaustion. Yet, hematopoietic stem cells must be activated into cycle in order to produce daughter cells that will either retain stem cell properties or commit to differentiation. How the cell cycle contributes to hematopoietic stem cell fate decisions is emerging from recent studies. Hematopoietic stem cell functions can be stratified based on cell cycle kinetics and divisional history, suggesting a link between Hematopoietic stem cells activity and cell cycle length. Hematopoietic stem cell fate decisions are also regulated by asymmetric cell divisions and recent studies have implicated metabolic and organelle activity in regulating hematopoietic stem cell fate. In this review, we discuss the current understanding of the mechanisms underlying hematopoietic stem cell fate decisions and how they are linked to the cell cycle.
Collapse
Affiliation(s)
- Sydney Treichel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Molecular and Development Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
27
|
Verrier L. Focus on the 9th Annual Seminar organized by the Canceropôle Provence-Alpes-Côte-d'Azur: Highlights of the event. Bull Cancer 2023; 110:734-737. [PMID: 37150732 DOI: 10.1016/j.bulcan.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
The 9th Annual Seminar of the Canceropôle Provence-Alpes-Côte-d'Azur took place on July, 5th-6th 2022 in Saint-Raphaël, south of France. Annual meeting of the regional scientific community working in the field of cancer research, this seminar brings together a large and diverse audience, with 285 people attending in 2022: PhD students, postdocs, PIs (Principal Investigators) and senior researchers, clinicians, patient associations, funding partners of the Canceropôle. This document reviews the major scientific results presented and key moments of the event.
Collapse
Affiliation(s)
- Laure Verrier
- Canceropôle Provence-Alpes-Côte-d'Azur, 27, boulevard Jean-Moulin, 13005 Marseille, France.
| |
Collapse
|
28
|
Nguyen LL, Watson ZL, Ortega R, Woodruff ER, Jordan KR, Iwanaga R, Yamamoto TM, Bailey CA, Jeong AD, Guntupalli SR, Behbakht K, Gbaja V, Arnoult N, Chuong EB, Bitler BG. Combinatory EHMT and PARP inhibition induces an interferon response and a CD8 T cell-dependent tumor regression in PARP inhibitor-resistant models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529773. [PMID: 36865165 PMCID: PMC9980116 DOI: 10.1101/2023.02.23.529773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Euchromatic histone lysine methyltransferases 1 and 2 (EHMT1/2), which catalyze demethylation of histone H3 lysine 9 (H3K9me2), contribute to tumorigenesis and therapy resistance through unknown mechanisms of action. In ovarian cancer, EHMT1/2 and H3K9me2 are directly linked to acquired resistance to poly-ADP-ribose polymerase (PARP) inhibitors and are correlated with poor clinical outcomes. Using a combination of experimental and bioinformatic analyses in several PARP inhibitor resistant ovarian cancer models, we demonstrate that combinatory inhibition of EHMT and PARP is effective in treating PARP inhibitor resistant ovarian cancers. Our in vitro studies show that combinatory therapy reactivates transposable elements, increases immunostimulatory dsRNA formation, and elicits several immune signaling pathways. Our in vivo studies show that both single inhibition of EHMT and combinatory inhibition of EHMT and PARP reduces tumor burden, and that this reduction is dependent on CD8 T cells. Together, our results uncover a direct mechanism by which EHMT inhibition helps to overcome PARP inhibitor resistance and shows how an epigenetic therapy can be used to enhance anti-tumor immunity and address therapy resistance.
Collapse
Affiliation(s)
- Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Raquel Ortega
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Abigail D. Jeong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Saketh R. Guntupalli
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Nausica Arnoult
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
29
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Wu J, Li J, Chen K, Liu G, Zhou Y, Chen W, Zhu X, Ni TT, Zhang B, Jin D, Li D, Kang L, Wu Y, Zhu P, Xie P, Zhong TP. Atf7ip and Setdb1 interaction orchestrates the hematopoietic stem and progenitor cell state with diverse lineage differentiation. Proc Natl Acad Sci U S A 2023; 120:e2209062120. [PMID: 36577070 PMCID: PMC9910619 DOI: 10.1073/pnas.2209062120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are a heterogeneous group of cells with expansion, differentiation, and repopulation capacities. How HSPCs orchestrate the stemness state with diverse lineage differentiation at steady condition or acute stress remains largely unknown. Here, we show that zebrafish mutants that are deficient in an epigenetic regulator Atf7ip or Setdb1 methyltransferase undergo excessive myeloid differentiation with impaired HSPC expansion, manifesting a decline in T cells and erythroid lineage. We find that Atf7ip regulates hematopoiesis through Setdb1-mediated H3K9me3 modification and chromatin remodeling. During hematopoiesis, the interaction of Atf7ip and Setdb1 triggers H3K9me3 depositions in hematopoietic regulatory genes including cebpβ and cdkn1a, preventing HSPCs from loss of expansion and premature differentiation into myeloid lineage. Concomitantly, loss of Atf7ip or Setdb1 derepresses retrotransposons that instigate the viral sensor Mda5/Rig-I like receptor (RLR) signaling, leading to stress-driven myelopoiesis and inflammation. We find that ATF7IP or SETDB1 depletion represses human leukemic cell growth and induces myeloid differentiation with retrotransposon-triggered inflammation. These findings establish that Atf7ip/Setdb1-mediated H3K9me3 deposition constitutes a genome-wide checkpoint that impedes the myeloid potential and maintains HSPC stemness for diverse blood cell production, providing unique insights into potential intervention in hematological malignancy.
Collapse
Affiliation(s)
- Jiaxin Wu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Juan Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Kang Chen
- School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Guolong Liu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Wenqi Chen
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Terri T. Ni
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Lan Kang
- School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Yuxuan Wu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong510100, China
| | - Peng Xie
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu210096, China
| | - Tao P. Zhong
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai200241, China
| |
Collapse
|
31
|
Endogenous retroelements as alarms for disruptions to cellular homeostasis. Trends Cancer 2023; 9:55-68. [PMID: 36216729 DOI: 10.1016/j.trecan.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.
Collapse
|
32
|
Dumetier B, Sauter C, Hajmirza A, Pernon B, Aucagne R, Fournier C, Row C, Guidez F, Rossi C, Lepage C, Delva L, Callanan MB. Repeat Element Activation-Driven Inflammation: Role of NFκB and Implications in Normal Development and Cancer? Biomedicines 2022; 10:biomedicines10123101. [PMID: 36551854 PMCID: PMC9775655 DOI: 10.3390/biomedicines10123101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The human genome is composed of unique DNA sequences that encode proteins and unique sequence noncoding RNAs that are essential for normal development and cellular differentiation. The human genome also contains over 50% of genome sequences that are repeat in nature (tandem and interspersed repeats) that are now known to contribute dynamically to genetic diversity in populations, to be transcriptionally active under certain physiological conditions, and to be aberrantly active in disease states including cancer, where consequences are pleiotropic with impact on cancer cell phenotypes and on the tumor immune microenvironment. Repeat element-derived RNAs play unique roles in exogenous and endogenous cell signaling under normal and disease conditions. A key component of repeat element-derived transcript-dependent signaling occurs via triggering of innate immune receptor signaling that then feeds forward to inflammatory responses through interferon and NFκB signaling. It has recently been shown that cancer cells display abnormal transcriptional activity of repeat elements and that this is linked to either aggressive disease and treatment failure or to improved prognosis/treatment response, depending on cell context and the amplitude of the so-called 'viral mimicry' response that is engaged. 'Viral mimicry' refers to a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons and other repeat elements. In this paper, the literature regarding transcriptional activation of repeat elements and engagement of inflammatory signaling in normal (focusing on hematopoiesis) and cancer is reviewed with an emphasis on the role of innate immune receptor signaling, in particular by dsRNA receptors of the RIG-1 like receptor family and interferons/NFκB. How repeat element-derived RNA reprograms cell identity through RNA-guided chromatin state modulation is also discussed.
Collapse
Affiliation(s)
- Baptiste Dumetier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| | - Camille Sauter
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Azadeh Hajmirza
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada
| | - Baptiste Pernon
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Romain Aucagne
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
| | - Cyril Fournier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Céline Row
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Fabien Guidez
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Cédric Rossi
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Côme Lepage
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Laurent Delva
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Mary B. Callanan
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| |
Collapse
|
33
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|
34
|
Schumann T, Ramon SC, Schubert N, Mayo MA, Hega M, Maser KI, Ada SR, Sydow L, Hajikazemi M, Badstübner M, Müller P, Ge Y, Shakeri F, Buness A, Rupf B, Lienenklaus S, Utess B, Muhandes L, Haase M, Rupp L, Schmitz M, Gramberg T, Manel N, Hartmann G, Zillinger T, Kato H, Bauer S, Gerbaulet A, Paeschke K, Roers A, Behrendt R. Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner. J Exp Med 2022; 220:213670. [PMID: 36346347 PMCID: PMC9648672 DOI: 10.1084/jem.20220829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
Collapse
Affiliation(s)
- Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Santiago Costas Ramon
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohamad Aref Mayo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Melanie Hega
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katharina Isabell Maser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Servi-Remzi Ada
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lukas Sydow
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Markus Badstübner
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Rupf
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Barbara Utess
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lina Muhandes
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Michael Haase
- Department of Pediatric Surgery, University Hospital Dresden, Dresden, Germany
| | - Luise Rupp
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany,German Cancer Consortium, Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Manel
- Institut national de la santé et de la recherche médicale U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany,Correspondence to Rayk Behrendt:
| |
Collapse
|
35
|
Pelinski Y, Hidaoui D, Stolz A, Hermetet F, Chelbi R, Diop MK, Chioukh AM, Porteu F, Elvira-Matelot E. NF-κB signaling controls H3K9me3 levels at intronic LINE-1 and hematopoietic stem cell genes in cis. J Exp Med 2022; 219:213343. [PMID: 35802137 PMCID: PMC9274146 DOI: 10.1084/jem.20211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long term, but the mechanisms underlying these effects are still poorly understood. We recently showed that IR induces the derepression of L1Md, the mouse young subfamilies of LINE-1/L1 retroelements. L1 contributes to gene regulatory networks. However, how L1Md are derepressed and impact HSC gene expression are not known. Here, we show that IR triggers genome-wide H3K9me3 decrease that occurs mainly at L1Md. Loss of H3K9me3 at intronic L1Md harboring NF-κB binding sites motifs but not at promoters is associated with the repression of HSC-specific genes. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment rescued all these effects and prevented IR-induced HSC loss of function in vivo. This TNF-α/NF-κB/H3K9me3/L1Md axis might be important to maintain HSCs while allowing expression of immune genes during myeloid regeneration or damage-induced bone marrow ablation.
Collapse
Affiliation(s)
- Yanis Pelinski
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Donia Hidaoui
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne Stolz
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Hermetet
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - M’boyba Khadija Diop
- Université Paris-Saclay, Gif-sur-Yvette, France,Bioinformatics Platform UMS AMMICa INSERM US23/CNRS 3655, Gustave Roussy, Villejuif, France
| | - Amir M. Chioukh
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
36
|
Di Giorgio E, Xodo LE. Endogenous Retroviruses (ERVs): Does RLR (RIG-I-Like Receptors)-MAVS Pathway Directly Control Senescence and Aging as a Consequence of ERV De-Repression? Front Immunol 2022; 13:917998. [PMID: 35757716 PMCID: PMC9218063 DOI: 10.3389/fimmu.2022.917998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bi-directional transcription of Human Endogenous Retroviruses (hERVs) is a common feature of autoimmunity, neurodegeneration and cancer. Higher rates of cancer incidence, neurodegeneration and autoimmunity but a lower prevalence of autoimmune diseases characterize elderly people. Although the re-expression of hERVs is commonly observed in different cellular models of senescence as a result of the loss of their epigenetic transcriptional silencing, the hERVs modulation during aging is more complex, with a peak of activation in the sixties and a decline in the nineties. What is clearly accepted, instead, is the impact of the re-activation of dormant hERV on the maintenance of stemness and tissue self-renewing properties. An innate cellular immunity system, based on the RLR-MAVS circuit, controls the degradation of dsRNAs arising from the transcription of hERV elements, similarly to what happens for the accumulation of cytoplasmic DNA leading to the activation of cGAS/STING pathway. While agonists and inhibitors of the cGAS-STING pathway are considered promising immunomodulatory molecules, the effect of the RLR-MAVS pathway on innate immunity is still largely based on correlations and not on causality. Here we review the most recent evidence regarding the activation of MDA5-RIG1-MAVS pathway as a result of hERV de-repression during aging, immunosenescence, cancer and autoimmunity. We will also deal with the epigenetic mechanisms controlling hERV repression and with the strategies that can be adopted to modulate hERV expression in a therapeutic perspective. Finally, we will discuss if the RLR-MAVS signalling pathway actively modulates physiological and pathological conditions or if it is passively activated by them.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| | - Luigi E Xodo
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
37
|
Grillo G, Lupien M. Cancer-associated chromatin variants uncover the oncogenic role of transposable elements. Curr Opin Genet Dev 2022; 74:101911. [PMID: 35487182 DOI: 10.1016/j.gde.2022.101911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
The vast array of cell states found across human tissue arises from chromatin variants, which correspond to segments of the genome, known as DNA elements, adopting a different chromatin state over cell state transitions. Oncogenesis stems from alterations to the chromatin states over DNA elements that result in cancer-associated chromatin variants. Here, we review how cancer-associated chromatin variants call attention to repetitive DNA elements, and guide the functional characterization of transposable elements to decode their role in oncogenesis. We further discuss prevailing opportunities in the study of repetitive DNA elements to move towards the 'complete cancer genome' goal for precision medicine in oncology.
Collapse
Affiliation(s)
- Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Alagpulinsa DA, Toribio MP, Alhallak I, Shmookler Reis RJ. Advances in understanding the molecular basis of clonal hematopoiesis. Trends Mol Med 2022; 28:360-377. [PMID: 35341686 DOI: 10.1016/j.molmed.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine & Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Mabel P Toribio
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Iad Alhallak
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
39
|
Yamashita M, Iwama A. Aging and Clonal Behavior of Hematopoietic Stem Cells. Int J Mol Sci 2022; 23:1948. [PMID: 35216063 PMCID: PMC8878540 DOI: 10.3390/ijms23041948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the only cell population that possesses both a self-renewing capacity and multipotency, and can give rise to all lineages of blood cells throughout an organism's life. However, the self-renewal capacity of HSCs is not infinite, and cumulative evidence suggests that HSCs alter their function and become less active during organismal aging, leading ultimately to the disruption of hematopoietic homeostasis, such as anemia, perturbed immunity and increased propensity to hematological malignancies. Thus, understanding how HSCs alter their function during aging is a matter of critical importance to prevent or overcome these age-related changes in the blood system. Recent advances in clonal analysis have revealed the functional heterogeneity of murine HSC pools that is established upon development and skewed toward the clonal expansion of functionally poised HSCs during aging. In humans, next-generation sequencing has revealed age-related clonal hematopoiesis that originates from HSC subsets with acquired somatic mutations, and has highlighted it as a significant risk factor for hematological malignancies and cardiovascular diseases. In this review, we summarize the current fate-mapping strategies that are used to track and visualize HSC clonal behavior during development or after stress. We then review the age-related changes in HSCs that can be inherited by daughter cells and act as a cellular memory to form functionally distinct clones. Altogether, we link aging of the hematopoietic system to HSC clonal evolution and discuss how HSC clones with myeloid skewing and low regenerative potential can be expanded during aging.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai Minato-ku, Tokyo 108-8639, Japan;
| | | |
Collapse
|
40
|
Hale BG. Antiviral immunity triggered by infection-induced host transposable elements. Curr Opin Virol 2022; 52:211-216. [PMID: 34959082 DOI: 10.1016/j.coviro.2021.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Host silencing of transposable elements (TEs) is critical to prevent genome damage and inappropriate inflammation. However, new evidence suggests that a virus-infected host may re-activate TEs and co-opt them for antiviral defense. RNA-Seq and specialized bioinformatics have revealed the diversity of virus infections that induce TEs. Furthermore, studies with influenza virus have uncovered how infection-triggered changes to the SUMOylation of TRIM28, an epigenetic co-repressor, lead to TE de-repression. Importantly, there is a growing appreciation of how de-repressed TEs stimulate antiviral gene expression, either via cis-acting enhancer functions or via their recognition as viral mimetics by innate immune nucleic acid sensors (e.g. RIG-I, mda-5 and cGAS). Understanding how viruses trigger, and counteract, TE-based antiviral immunity should provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| |
Collapse
|
41
|
Buttler CA, Chuong EB. Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol Rev 2022; 305:165-178. [PMID: 34816452 PMCID: PMC8766910 DOI: 10.1111/imr.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
In recent years, there has been significant progress toward understanding the transcriptional networks underlying mammalian immune responses, fueled by advances in regulatory genomic technologies. Epigenomic studies profiling immune cells have generated detailed genome-wide maps of regulatory elements that will be key to deciphering the regulatory networks underlying cellular immune responses and autoimmune disorders. Unbiased analyses of these genomic maps have uncovered endogenous retroviruses as an unexpected ally in the regulation of human immune systems. Despite their parasitic origins, studies are finding an increasing number of examples of retroviral sequences having been co-opted for beneficial immune function and regulation by the host cell. Here, we review how endogenous retroviruses have given rise to numerous regulatory elements that shape the epigenetic landscape of host immune responses. We will discuss the implications of these elements on the function, dysfunction, and evolution of innate immunity.
Collapse
|
42
|
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes. Recent Findings Innate immune receptors for nucleic acids like the RIG-I-like family receptors and members of DNA sensing pathways are expressed in HSCs and other stem cells. Even though the “classic” role of these receptors is recognition of foreign DNA or RNA from pathogens, it was recently shown that cellular transposable element (TE) RNA or R-loops activate such receptors, serving as endogenous triggers of inflammatory signaling that can shape HSC formation during development and regeneration. Summary Endogenous TEs and R-loops activate RNA and DNA sensors, which trigger distinct inflammatory signals to fine-tune stem cell decisions. This phenomenon could have broad implications for diverse somatic stem cells, for a variety of diseases and during aging.
Collapse
|
43
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|