1
|
Zuzak R, Dabczynski P, Castro-Esteban J, Martínez JI, Engelund M, Pérez D, Peña D, Godlewski S. Cyclodehydrogenation of molecular nanographene precursors catalyzed by atomic hydrogen. Nat Commun 2025; 16:691. [PMID: 39814730 PMCID: PMC11735845 DOI: 10.1038/s41467-024-54774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025] Open
Abstract
Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type. We demonstrate that, counterintuitively, atomic hydrogen can play the role of a catalyst in the cyclodehydrogenative planarization reaction. The high efficiency of the method is demonstrated by the nanographene synthesis on metallic Au, semiconducting TiO2, Ge:H, as well as on inert and insulating Si/SiO2 and thin NaCl layers. The hydrogen-catalyzed cyclodehydrogenation reaction reported here leads towards the integration of graphene derivatives in optoelectronic devices as well as developing the field of on-surface synthesis by means of catalytic transformations. It also inspires merging of atomically shaped graphene-based nanostructures with low-dimensional inorganic units into functional devices.
Collapse
Grants
- National Science Center, Poland, grant no. 2019/35/B/ST5/02666 Priority Research Area SciMat under the program “Excellence Initiative – Research University” at the Jagiellonian University in Krakow
- NAWA – Polish National Agency for Academic Exchange, grant number BPN/BEK/2023/1/00134
- Ministerio de Ciencia e Innovación, Spain, MCIN/AEI/10.13039/501100011033, grant no.: PID2022-139933NB-I00 (DoP)
- Ministerio de Ciencia e Innovación, Spain, MCIN/AEI/10.13039/501100011033, grant no.: PID2022-140845OB-C62 European Regional Development Fund; Xunta de Galicia (Centro de Investigacion de Galicia accreditation 2019–2022), grant no. ED431G2019/03
Collapse
Affiliation(s)
- Rafal Zuzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, PL 30-348, Krakow, Poland
| | - Pawel Dabczynski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, PL 30-348, Krakow, Poland
| | - Jesús Castro-Esteban
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - José Ignacio Martínez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), 28049, Madrid, Spain
| | - Mads Engelund
- Espeem S.A.R.L. (espeem.com), L-4206, Esch-sur-Alzette, Luxembourg
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Oportunius, Galician Innovation Agency (GAIN), 15702, Santiago de Compostela, Spain.
| | - Szymon Godlewski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, PL 30-348, Krakow, Poland.
| |
Collapse
|
2
|
Pawlak R, Anindya KN, Chahib O, Liu JC, Hiret P, Marot L, Luzet V, Palmino F, Chérioux F, Rochefort A, Meyer E. On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene. ACS NANO 2025. [PMID: 39793973 DOI: 10.1021/acsnano.4c15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations. We utilize the on-surface reaction of tribromotrioxoazatriangulene molecules to synthesize carbonyl-functionalized Kagome graphene on Au(111), thereafter modified in situ by exposure to atomic hydrogen. Atomic force microscopy and tunneling spectroscopy unveil the stepwise chemical transformation of the carbonyl groups into radicals, which creates local magnetic defects of spin state S = 1/2 and zero-energy states as confirmed by density functional theory. The ability to imprint local magnetic moments opens up prospects to study the interplay between topology, magnetism, and electron correlation in Kagome graphene.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Khalid N Anindya
- Engineering Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada
| | - Outhmane Chahib
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Jung-Ching Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Paul Hiret
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Laurent Marot
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Vincent Luzet
- Université de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Frank Palmino
- Université de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Frédéric Chérioux
- Université de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Alain Rochefort
- Engineering Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| |
Collapse
|
3
|
Besteiro-Sáez J, Mateo LM, Salaverría S, Wang T, Angulo-Portugal P, Calupitan JP, Rodríguez-Fernández J, García-Fuente A, Ferrer J, Pérez D, Corso M, de Oteyza DG, Peña D. [19]Starphene: Combined In-Solution and On-Surface Synthesis Towards the Largest Starphene. Angew Chem Int Ed Engl 2024; 63:e202411861. [PMID: 39110601 DOI: 10.1002/anie.202411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 11/10/2024]
Abstract
Starphenes are structurally appealing three-fold symmetric polycyclic aromatic compounds with potential interesting applications in molecular electronics and nanotechnology. This family of star-shaped polyarenes can be regarded as three acenes that are connected through a single benzene ring. In fact, just like acenes, unsubstituted large starphenes are poorly soluble and highly reactive molecules under ambient conditions making their synthesis difficult to achieve. Herein, we report two different synthetic strategies to obtain a starphene formed by 19 cata-fused benzene rings distributed within three hexacene branches. This molecule, which is the largest starphene that has been obtained to date, was prepared by combining solution-phase and on-surface synthesis. [19]Starphene was characterized by high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) showing a remarkable small HOMO-LUMO transport gap (0.9 eV).
Collapse
Affiliation(s)
- Javier Besteiro-Sáez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Luis M Mateo
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sergio Salaverría
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
| | - Tao Wang
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Paula Angulo-Portugal
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Jan Patrick Calupitan
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, F-75005, Paris, France
| | | | | | - Jaime Ferrer
- Physics Department, University of Oviedo, 33007, Oviedo, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018, San Sebastián, Spain
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Oportunius, Galician Innovation Agency (GAIN), 15702, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Han D, Ding H, Xiong J, Qin T, Cheng X, Hu J, Xu Q, Zhu J. Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System. ACS NANO 2024; 18:28946-28955. [PMID: 39385340 DOI: 10.1021/acsnano.4c09375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(para-phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Juanjuan Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Tianchen Qin
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
5
|
Sakaguchi H, Kojima T, Cheng Y, Nobusue S, Fukami K. Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst. Nat Commun 2024; 15:5972. [PMID: 39075056 PMCID: PMC11286955 DOI: 10.1038/s41467-024-50086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
On-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) has attracted much attention. However, producing such GNRs on a large scale through on-surface synthesis under ultra-high vacuum on thermally activated metal surfaces has been challenging. This is mainly due to the decomposition of functional groups at temperatures of 300 to 500 °C and limited monolayer GNR growth based on the metal catalysis. To overcome these obstacles, we developed an on-surface electrochemical technique that utilizes redox reactions of asymmetric precursors at an electric double layer where a strong electric field is confined to the liquid-solid interface. We successfully demonstrate layer-by-layer growth of strong electron-donating GNRs on electrodes at temperatures <80 °C without decomposing functional groups. We show that high-voltage facilitates previously unknown heterochiral di-cationic polymerization. Electrochemically produced GNRs exhibiting one of the strongest electron-donating properties known, enable extraordinary silicon-etching catalytic activity, exceeding those of noble metals, with superior photoconductive properties. Our technique advances the possibility of producing various edge-functional GNRs.
Collapse
Affiliation(s)
- Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan.
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Yingbo Cheng
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: shaping the future landscape of biomedical advances. DISCOVER NANO 2024; 19:79. [PMID: 38695997 PMCID: PMC11065842 DOI: 10.1186/s11671-024-04028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Graphene quantum dots (GQDs) are a newly developed class of material, known as zero-dimensional nanomaterials, with characteristics derived from both carbon dots (CDs) and graphene. GQDs exhibit several ideal properties, including the potential to absorb incident energy, high water solubility, tunable photoluminescence, good stability, high drug-loading capacity, and notable biocompatibility, which make them powerful tools for various applications in the field of biomedicine. Additionally, GQDs can be incorporated with additional materials to develop nanocomposites with exceptional qualities and enriched functionalities. Inspired by the intriguing scientific discoveries and substantial contributions of GQDs to the field of biomedicine, we present a broad overview of recent advancements in GQDs-based nanocomposites for biomedical applications. The review first outlines the latest synthesis and classification of GQDs nanocomposite and enables their use in advanced composite materials for biomedicine. Furthermore, the systematic study of the biomedical applications for GQDs-based nanocomposites of drug delivery, biosensing, photothermal, photodynamic and combination therapies are emphasized. Finally, possibilities, challenges, and paths are highlighted to encourage additional research, which will lead to new therapeutics and global healthcare improvements.
Collapse
Affiliation(s)
- Mohammad Suhaan Dar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Liu K, Zheng W, Osella S, Qiu ZL, Böckmann S, Niu W, Meingast L, Komber H, Obermann S, Gillen R, Bonn M, Hansen MR, Maultzsch J, Wang HI, Ma J, Feng X. Cove-Edged Chiral Graphene Nanoribbons with Chirality-Dependent Bandgap and Carrier Mobility. J Am Chem Soc 2024; 146:1026-1034. [PMID: 38117539 DOI: 10.1021/jacs.3c11975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.
Collapse
Affiliation(s)
- Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Steffen Böckmann
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Laura Meingast
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Roland Gillen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Janina Maultzsch
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| |
Collapse
|
8
|
Berdonces-Layunta A, Matěj A, Jiménez-Martín A, Lawrence J, Mohammed MSG, Wang T, Mallada B, de la Torre B, Martínez A, Vilas-Varela M, Nieman R, Lischka H, Nachtigallová D, Peña D, Jelínek P, de Oteyza DG. The effect of water on gold supported chiral graphene nanoribbons: rupture of conjugation by an alternating hydrogenation pattern. NANOSCALE 2024; 16:734-741. [PMID: 38086686 DOI: 10.1039/d3nr02933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.
Collapse
Affiliation(s)
- Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
- Department of Physical Chemistry, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alejandro Jiménez-Martín
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 1 115 19, Czech Republic
| | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Tao Wang
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Benjamin Mallada
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
- Department of Physical Chemistry, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
| | - Adrián Martínez
- Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 70800, Czech Republic
| | - Diego Peña
- Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain.
| |
Collapse
|
9
|
Borin Barin G, Di Giovannantonio M, Lohr TG, Mishra S, Kinikar A, Perrin ML, Overbeck J, Calame M, Feng X, Fasel R, Ruffieux P. On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. NANOSCALE 2023; 15:16766-16774. [PMID: 37818609 DOI: 10.1039/d3nr03736c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Graphene nanoribbons (GNRs) exhibit a broad range of physicochemical properties that critically depend on their width and edge topology. GNRs with armchair edges (AGNRs) are usually more stable than their counterparts with zigzag edges (ZGNRs) where the low-energy spin-polarized edge states render the ribbons prone to being altered by undesired chemical reactions. On the other hand, such edge-localized states make ZGNRs highly appealing for applications in spintronic and quantum technologies. For GNRs fabricated via on-surface synthesis under ultrahigh vacuum conditions on metal substrates, the expected reactivity of zigzag edges is a serious concern in view of substrate transfer and device integration under ambient conditions, but corresponding investigations are scarce. Using 10-bromo-9,9':10',9''-teranthracene as a precursor, we have thus synthesized hexanthene (HA) and teranthene (TA) as model compounds for ultrashort GNRs with mixed armchair and zigzag edges, characterized their chemical and electronic structure by means of scanning probe methods, and studied their chemical reactivity upon air exposure by Raman spectroscopy. We present a detailed identification of molecular orbitals and vibrational modes, assign their origin to armchair or zigzag edges, and discuss the chemical reactivity of these edges based on characteristic Raman spectral features.
Collapse
Affiliation(s)
- Gabriela Borin Barin
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Marco Di Giovannantonio
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Thorsten G Lohr
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
| | - Shantanu Mishra
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Amogh Kinikar
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Mickael L Perrin
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jan Overbeck
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Michel Calame
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Xinliang Feng
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Roman Fasel
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Pascal Ruffieux
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
10
|
Lawrence J, He Y, Wei H, Su J, Song S, Wania Rodrigues A, Miravet D, Hawrylak P, Zhao J, Wu J, Lu J. Topological Design and Synthesis of High-Spin Aza-triangulenes without Jahn-Teller Distortions. ACS NANO 2023; 17:20237-20245. [PMID: 37791737 DOI: 10.1021/acsnano.3c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The atomic doping of open-shell nanographenes enables precise tuning of their electronic and magnetic states, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that neutral centrally doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of π-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. Our study uncovers the correlation between the dopant position and the radical nature of high-spin nanographenes, providing a strategy for the design and development of these nanographenes for various applications.
Collapse
Affiliation(s)
- James Lawrence
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Yuanyuan He
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, Zhejiang, People's Republic of China
| | - Haipeng Wei
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | | | - Daniel Miravet
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Pawel Hawrylak
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Institute for Functional Intelligent Materials, National University of Singapore, 117544 Singapore
| | - Jianwei Zhao
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, Zhejiang, People's Republic of China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 117543 Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544 Singapore
| |
Collapse
|
11
|
Huang W, Braun O, Indolese DI, Barin GB, Gandus G, Stiefel M, Olziersky A, Müllen K, Luisier M, Passerone D, Ruffieux P, Schönenberger C, Watanabe K, Taniguchi T, Fasel R, Zhang J, Calame M, Perrin ML. Edge Contacts to Atomically Precise Graphene Nanoribbons. ACS NANO 2023; 17:18706-18715. [PMID: 37578964 PMCID: PMC10569104 DOI: 10.1021/acsnano.3c00782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (h-BN), resulting in ultrashort contact lengths. We find that charge transport in our devices occurs via two different mechanisms: at low temperatures (9 K), charges flow through single GNRs, resulting in quantum dot (QD) behavior with well-defined Coulomb diamonds (CDs), with addition energies in the range of 16 to 400 meV. For temperatures above 100 K, a combination of temperature-activated hopping and polaron-assisted tunneling takes over, with charges being able to flow through a network of 9-AGNRs across distances significantly exceeding the length of individual GNRs. At room temperature, our short-channel field-effect transistor devices exhibit on/off ratios as high as 3 × 105 with on-state current up to 50 nA at 0.2 V. Moreover, we find that the contact performance of our edge-contact devices is comparable to that of top/bottom contact geometries but with a significantly reduced footprint. Overall, our work demonstrates that 9-AGNRs can be contacted at their ends in ultra-short-channel FET devices while being encapsulated in h-BN.
Collapse
Affiliation(s)
- Wenhao Huang
- Transport
at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | - Oliver Braun
- Transport
at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | | | - Gabriela Borin Barin
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Guido Gandus
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Stiefel
- Transport
at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Klaus Müllen
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Mathieu Luisier
- Department
of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Daniele Passerone
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Roman Fasel
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, 3012 Bern, Switzerland
| | - Jian Zhang
- Transport
at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Michel Calame
- Transport
at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
- Swiss Nanoscience
Institute, University of Basel, 4056 Basel, Switzerland
| | - Mickael L. Perrin
- Transport
at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Wang Y, Wang Z, Qiu Z, Zhang X, Chen J, Li J, Narita A, Müllen K, Palma CA. Hydrogenation of Hexa- peri-hexabenzocoronene: An Entry to Nanographanes and Nanodiamonds. ACS NANO 2023; 17:18832-18842. [PMID: 37729013 DOI: 10.1021/acsnano.3c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The fabrication of atomically precise nanographanes is a largely unexplored frontier in carbon-sp3 nanomaterials, enabling potential applications in phononics, photonics and electronics. One strategy is the hydrogenation of prototypical nanographene monolayers and multilayers under vacuum conditions. Here, we study the interaction of atomic hydrogen, generated by a hydrogen source and hydrogen plasma, with hexa-peri-hexabenzocoronene on gold using integrated time-of-flight mass spectrometry, scanning tunneling microscopy and Raman spectroscopy. Density functional tight-binding molecular dynamics is employed to rationalize the conversion to sp3 carbon atoms. The resulting hydrogenation of hexa-peri-hexabenzocoronene molecules is demonstrated computationally and experimentally, and the potential for atomically precise hexa-peri-hexabenzocoronene-derived nanodiamond fabrication is proposed.
Collapse
Affiliation(s)
- Yan Wang
- School of Physics, Beijing Institute of Technology, 100081 Beijing, People's Republic of China
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, People's Republic of China
| | - Zishu Wang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoxi Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Jianing Chen
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, People's Republic of China
| | - Juan Li
- School of Physics, Beijing Institute of Technology, 100081 Beijing, People's Republic of China
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 100081 Beijing, People's Republic of China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Carlos-Andres Palma
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, People's Republic of China
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
13
|
Yin R, Wang Z, Tan S, Ma C, Wang B. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS NANO 2023; 17:17610-17623. [PMID: 37666005 DOI: 10.1021/acsnano.3c06128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Graphene nanoribbons (GNRs) are strips of graphene, with widths of a few nanometers, that are promising candidates for future applications in nanodevices and quantum information processing due to their highly tunable structure-dependent electronic, spintronic, topological, and optical properties. Implantation of periodic structural heterogeneities, such as heteroatoms, nanopores, and non-hexagonal rings, has become a powerful manner for tailoring the designer properties of GNRs. The bottom-up synthesis approach, by combining on-surface chemical reactions based on rationally designed molecular precursors and in situ tip-based microscopic and spectroscopic techniques, promotes the construction of atomically precise GNRs with periodic structural modulations. However, there are still obstacles and challenges lying on the way toward the understanding of the intrinsic structure-property relations, such as the strong screening and Fermi level pinning effect of the normally used transition metal substrates and the lack of collective tip-based techniques that can cover multi-internal degrees of freedom of the GNRs. In this Perspective, we briefly review the recent progress in the on-surface synthesis of GNRs with diverse structural heterogeneities and highlight the structure-property relations as characterized by the noncontact atomic force microscopy and scanning tunneling microscopy/spectroscopy. We furthermore motivate to deliver the need for developing strategies to achieve quasi-freestanding GNRs and for exploiting multifunctional tip-based techniques to collectively probe the intrinsic properties.
Collapse
Affiliation(s)
- Ruoting Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
14
|
Néel N, Kröger J. Orbital and Skeletal Structure of a Single Molecule on a Metal Surface Unveiled by Scanning Tunneling Microscopy. J Phys Chem Lett 2023; 14:3946-3952. [PMID: 37078645 DOI: 10.1021/acs.jpclett.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Atomic-scale spatial characteristics of a phthalocyanine orbital and skeleton are obtained on a metal surface with a scanning tunneling microscope and a CO-functionalized tip. Intriguingly, the high spatial resolution of the intramolecular electronic patterns is achieved without resonant tunneling into the orbital and despite the hybridization of the molecule with the reactive Cu substrate. The resolution can be fine-tuned by the tip-molecule distance, which controls the p-wave and s-wave contribution of the molecular probe to the imaging process. The detailed structure is deployed to minutely track the translation of the molecule in a reversible interconversion of rotational variants and to quantify relaxations of the adsorption geometry. Entering into the Pauli repulsion imaging mode, the intramolecular contrast loses its orbital character and reflects the molecular skeleton instead. The assignment of pyrrolic-hydrogen sites becomes possible, which in the orbital patterns remains elusive.
Collapse
Affiliation(s)
- Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
15
|
Wang T, Fan Q, Zhu J. Steering On-Surface Reactions by Kinetic and Thermodynamic Strategies. J Phys Chem Lett 2023; 14:2251-2262. [PMID: 36821589 DOI: 10.1021/acs.jpclett.3c00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
On-surface synthesis has emerged as a powerful tool to fabricate various functional low-dimensional nanostructures with atomic precision, thus becoming a promising platform for the preparation of next-generation semiconductive, magnetic, and topological nanodevices. With the aid of scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy, both the chemical structures and physical properties of the obtained products can be well characterized. A major challenge in this field is how to efficiently steer reaction pathways and improve the yield/quality of products. To address this problem, in recent years various kinetic and thermodynamic strategies have been successfully employed to control on-surface reactions. In this Perspective, we discuss these strategies in view of basic reaction steps on surfaces, including molecular adsorption, diffusion, and reaction. We hope this Perspective will help readers to deepen the understanding of the mechanisms of on-surface reactions and rationally design reaction procedures for the fabrication of high-quality functional nanomaterials on surfaces.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- Donostia International Physics Center, San Sebastián 20018, Spain
| | - Qitang Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|