1
|
Riyahi S, Liebermann-Lilie ND, Jacobs A, Korsten P, Mayer U, Schmoll T. Transcriptomic changes in the posterior pallium of male zebra finches associated with social niche conformance. BMC Genomics 2024; 25:694. [PMID: 39009985 PMCID: PMC11251365 DOI: 10.1186/s12864-024-10573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.
Collapse
Affiliation(s)
- Sepand Riyahi
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
| | - Navina D Liebermann-Lilie
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Uwe Mayer
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, TN, 38068, Italy.
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Keagy J, Hofmann HA, Boughman JW. Mate choice in the brain: species differ in how male traits 'turn on' gene expression in female brains. Proc Biol Sci 2024; 291:20240121. [PMID: 39079663 PMCID: PMC11288669 DOI: 10.1098/rspb.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Mate choice plays a fundamental role in speciation, yet we know little about the molecular mechanisms that underpin this crucial decision-making process. Stickleback fish differentially adapted to limnetic and benthic habitats are reproductively isolated and females of each species use different male traits to evaluate prospective partners and reject heterospecific males. Here, we integrate behavioural data from a mate choice experiment with gene expression profiles from the brains of females actively deciding whether to mate. We find substantial gene expression variation between limnetic and benthic females, regardless of behavioural context, suggesting general divergence in constitutive gene expression patterns, corresponding to their genetic differentiation. Intriguingly, female gene co-expression modules covary with male display traits but in opposing directions for sympatric populations of the two species, suggesting male displays elicit a dynamic neurogenomic response that reflects known differences in female preferences. Furthermore, we confirm the role of numerous candidate genes previously implicated in female mate choice in other species, suggesting evolutionary tinkering with these conserved molecular processes to generate divergent mate preferences. Taken together, our study adds important new insights to our understanding of the molecular processes underlying female decision-making critical for generating sexual isolation and speciation.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hans A. Hofmann
- Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Fox JA, Wyatt Toure M, Heckley A, Fan R, Reader SM, Barrett RDH. Insights into adaptive behavioural plasticity from the guppy model system. Proc Biol Sci 2024; 291:20232625. [PMID: 38471561 DOI: 10.1098/rspb.2023.2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Behavioural plasticity allows organisms to respond to environmental challenges on short time scales. But what are the ecological and evolutionary processes that underlie behavioural plasticity? The answer to this question is complex and requires experimental dissection of the physiological, neural and molecular mechanisms contributing to behavioural plasticity as well as an understanding of the ecological and evolutionary contexts under which behavioural plasticity is adaptive. Here, we discuss key insights that research with Trinidadian guppies has provided on the underpinnings of adaptive behavioural plasticity. First, we present evidence that guppies exhibit contextual, developmental and transgenerational behavioural plasticity. Next, we review work on behavioural plasticity in guppies spanning three ecological contexts (predation, parasitism and turbidity) and three underlying mechanisms (endocrinological, neurobiological and genetic). Finally, we provide three outstanding questions that could leverage guppies further as a study system and give suggestions for how this research could be done. Research on behavioural plasticity in guppies has provided, and will continue to provide, a valuable opportunity to improve understanding of the ecological and evolutionary causes and consequences of behavioural plasticity.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - M Wyatt Toure
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York 10027-6902, NY, USA
| | - Alexis Heckley
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - Raina Fan
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - Simon M Reader
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | | |
Collapse
|
4
|
Corral-Lopez A, Bloch NI, van der Bijl W, Cortazar-Chinarro M, Szorkovszky A, Kotrschal A, Darolti I, Buechel SD, Romenskyy M, Kolm N, Mank JE. Functional convergence of genomic and transcriptomic architecture underlies schooling behaviour in a live-bearing fish. Nat Ecol Evol 2024; 8:98-110. [PMID: 37985898 PMCID: PMC10781616 DOI: 10.1038/s41559-023-02249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission-fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.
Collapse
Affiliation(s)
- Alberto Corral-Lopez
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.
- Division of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Natasha I Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria Cortazar-Chinarro
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- MEMEG Department of Biology, Lund University, Lund, Sweden
| | - Alexander Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Alexander Kotrschal
- Behavioural Ecology, Wageningen University and Research, Wageningen, the Netherlands
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Severine D Buechel
- Behavioural Ecology, Wageningen University and Research, Wageningen, the Netherlands
| | - Maksym Romenskyy
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Jing X, Lyu L, Gong Y, Wen H, Li Y, Wang X, Li J, Yao Y, Zuo C, Xie S, Yan S, Qi X. Olfactory receptor OR52N2 for PGE 2 in mediation of guppy courtship behaviors. Int J Biol Macromol 2023; 241:124518. [PMID: 37088189 DOI: 10.1016/j.ijbiomac.2023.124518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Prostaglandins (PGs) are a type of physiologically active unsaturated fatty acids. As an important sex pheromone, PGs play a vital role in regulating the reproductive behaviors of species by mediating nerve and endocrine responses. In this study, guppy (Poecilia reticulate) was used as the model specie to detect the function of PGE2 in inducing the onset of courtship behaviors. Our results showed that adding PGE2 into the water environment could activate the courtship behavior of male guppy, indicating that the peripheral olfactory system mediated the PGE2 function. Thereafter, the open reading frame (ORF) of olfactory receptor or52n2 was cloned, which was 936 bp in length, coding 311 amino acids. As a typical G protein-coupled receptor, OR52N2 had a conservative seven α-helix transmembrane domains. To confirm the regulatory relationship between OR52N2 and PGE2, dual-luciferase reporter assay was employed to verify the activation of downstream CREB signaling pathways. Results showed that PGE2 significantly enhanced CRE promoter activity in or52n2 ORF transient transfected HEK-293 T cells. Finally, localization of or52n2 mRNA were observed in ciliated receptor cells of the olfactory epithelium using in situ hybridization. Our results provide a novel insight into sex pheromone signaling transduction in reproductive behavior.
Collapse
Affiliation(s)
- Xiao Jing
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Rosenthal GG, Ryan MJ. Sexual selection and the ascent of women: Mate choice research since Darwin. Science 2022; 375:eabi6308. [PMID: 35050648 DOI: 10.1126/science.abi6308] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Darwin's theory of sexual selection fundamentally changed how we think about sex and evolution. The struggle over mating and fertilization is a powerful driver of diversification within and among species. Contemporaries dismissed Darwin's conjecture of a "taste for the beautiful" as favoring particular mates over others, but there is now overwhelming evidence for a primary role of both male and female mate choice in sexual selection. Darwin's misogyny precluded much analysis of the "taste"; an increasing focus on mate choice mechanisms before, during, and after mating reveals that these often evolve in response to selection pressures that have little to do with sexual selection on chosen traits. Where traits and preferences do coevolve, they can do so whether fitness effects on choosers are positive, neutral, or negative. The spectrum of selection on traits and preferences, and how traits and preferences respond to social effects, determine how sexual selection and mate choice influence broader-scale processes like reproductive isolation and population responses to environmental change.
Collapse
Affiliation(s)
- Gil G Rosenthal
- Department of Biology, University of Padova, Padova, Italy.,Centro de Investigaciones Científicas de las Huastecas "Aguazarca," Calnali, Hidalgo, Mexico
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas, Austin, TX, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
7
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
8
|
Sung JY, Harris OK, Hensley NM, Chemero AP, Morehouse NI. Beyond cognitive templates: re-examining template metaphors used for animal recognition and navigation. Integr Comp Biol 2021; 61:825-841. [PMID: 33970266 DOI: 10.1093/icb/icab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The term 'cognitive template' originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the 'template' itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
Collapse
Affiliation(s)
- Jenny Y Sung
- Department of Biological Sciences, University of Cincinnati
| | | | | | | | | |
Collapse
|
9
|
Abstract
One hundred fifty years ago Darwin published The Descent of Man, and Selection in Relation to Sex, in which he presented his theory of sexual selection with its emphasis on sexual beauty. However, it was not until 50 y ago that there was a renewed interest in Darwin’s theory in general, and specifically the potency of mate choice. Darwin suggested that in many cases female preferences for elaborately ornamented males derived from a female’s taste for the beautiful, the notion that females were attracted to sexual beauty for its own sake. Initially, female mate choice attracted the interest of behavioral ecologists focusing on the fitness advantages accrued through mate choice. Subsequent studies focused on sensory ecology and signal design, often showing how sensory end organs influenced the types of traits females found attractive. Eventually, investigations of neural circuits, neurogenetics, and neurochemistry uncovered a more complete scaffolding underlying sexual attraction. More recently, research inspired by human studies in psychophysics, behavioral economics, and neuroaesthetics have provided some notion of its higher-order mechanisms. In this paper, I review progress in our understanding of Darwin’s conjecture of “a taste for the beautiful” by considering research from these diverse fields that have conspired to provide unparalleled insight into the chooser’s mate choices.
Collapse
|
10
|
Gallot A, Sauzet S, Desouhant E. Kin recognition: Neurogenomic response to mate choice and sib mating avoidance in a parasitic wasp. PLoS One 2020; 15:e0241128. [PMID: 33104752 PMCID: PMC7588116 DOI: 10.1371/journal.pone.0241128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/08/2020] [Indexed: 12/01/2022] Open
Abstract
Sib mating increases homozygosity, which therefore increases the risk of inbreeding depression. Selective pressures have favoured the evolution of kin recognition and avoidance of sib mating in numerous species, including the parasitoid wasp Venturia canescens. We studied the female neurogenomic response associated with sib mating avoidance after females were exposed to courtship displays by i) unrelated males or ii) related males or iii) no courtship (controls). First, by comparing the transcriptional responses of females exposed to courtship displays to those exposed to controls, we saw a rapid and extensive transcriptional shift consistent with social environment. Second, by comparing the transcriptional responses of females exposed to courtship by related to those exposed to unrelated males, we characterized distinct and repeatable transcriptomic patterns that correlated with the relatedness of the courting male. Network analysis revealed 3 modules of specific ‘sib-responsive’ genes that were distinct from other ‘courtship-responsive’ modules. Therefore, specific neurogenomic states with characteristic brain transcriptomes associated with different behavioural responses affect sib mating avoidance behaviour.
Collapse
Affiliation(s)
- Aurore Gallot
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Université de Lyon, UMR 5558, Villeurbanne, France
- * E-mail:
| | - Sandrine Sauzet
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Université de Lyon, UMR 5558, Villeurbanne, France
- Institut de Génétique Humaine, CNRS–Université de Montpellier, UMR 9002, Biology of Repetitive Sequences, Montpellier, France
| | - Emmanuel Desouhant
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Université de Lyon, UMR 5558, Villeurbanne, France
| |
Collapse
|
11
|
Bloch NI, Corral‐López A, Buechel SD, Kotrschal A, Kolm N, Mank JE. Different mating contexts lead to extensive rewiring of female brain coexpression networks in the guppy. GENES BRAIN AND BEHAVIOR 2020; 20:e12697. [DOI: 10.1111/gbb.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Natasha I. Bloch
- Department of Biomedical Engineering Universidad de Los Andes Bogotá D.C. Colombia
| | - Alberto Corral‐López
- Department of Zoology/Ethology Stockholm University Stockholm Sweden
- Department of Genetics, Evolution and Environment University College London UK
| | | | - Alexander Kotrschal
- Department of Zoology/Ethology Stockholm University Stockholm Sweden
- Wageningen University Behavioral Ecology Group Wageningen Netherlands
| | - Niclas Kolm
- Department of Zoology/Ethology Stockholm University Stockholm Sweden
| | - Judith E. Mank
- University of British Columbia Department of Zoology and Biodiversity Research Centre Vancouver Canada
- Department of Genetics, Evolution and Environment University College London UK
| |
Collapse
|
12
|
Rossi M, Hausmann AE, Thurman TJ, Montgomery SH, Papa R, Jiggins CD, McMillan WO, Merrill RM. Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nat Commun 2020; 11:4763. [PMID: 32958765 PMCID: PMC7506007 DOI: 10.1038/s41467-020-18609-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Many animal species remain separate not because their individuals fail to produce viable hybrids but because they "choose" not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment.
Collapse
Affiliation(s)
- Matteo Rossi
- Division of Evolutionary Biology, LMU, Munich, Germany.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | | | - Timothy J Thurman
- Smithsonian Tropical Research Institute, Panama City, Panama
- Division of Biological Sciences, University of Montana, Montana, USA
| | | | - Riccardo Papa
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Richard M Merrill
- Division of Evolutionary Biology, LMU, Munich, Germany.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
13
|
Burmeister SS, Rodriguez Moncalvo VG, Pfennig KS. Differential encoding of signals and preferences by noradrenaline in the anuran brain. J Exp Biol 2020; 223:jeb214148. [PMID: 32647019 PMCID: PMC7522018 DOI: 10.1242/jeb.214148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
Social preferences enable animals to selectively interact with some individuals over others. One influential idea for the evolution of social preferences is that preferred signals evolve because they elicit greater neural responses from sensory systems. However, in juvenile plains spadefoot toad (Spea bombifrons), a species with condition-dependent mating preferences, responses of the preoptic area, but not of the auditory midbrain, mirror adult social preferences. To examine whether this separation of signal representation from signal valuation generalizes to other anurans, we compared the relative contributions of noradrenergic signalling in the preoptic area and auditory midbrain of S. bombifrons and its close relative Spea multiplicata We manipulated body condition in juvenile toads by controlling diet and used high pressure liquid chromatography to compare call-induced levels of noradrenaline and its metabolite MHPG in the auditory midbrain and preoptic area of the two species. We found that calls from the two species induced different levels of noradrenaline and MHPG in the auditory system, with higher levels measured in both species for the more energetic S. bombifrons call. In contrast, noradrenaline levels in the preoptic area mirrored patterns of social preferences in both S. bombifrons and S. multiplicata That is, noradrenaline levels were higher in response to the preferred calls within each species and were modified by diet in S. bombifrons (with condition-dependent preferences) but not S. multiplicata (with condition-independent preferences). Our results are consistent with a potentially important role for preoptic noradrenaline in the development of social preferences and indicate that it could be a target of selection in the evolution of condition-dependent social preferences.
Collapse
Affiliation(s)
| | | | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
DeAngelis RS, Hofmann HA. Neural and molecular mechanisms underlying female mate choice decisions in vertebrates. ACTA ACUST UNITED AC 2020; 223:223/17/jeb207324. [PMID: 32895328 DOI: 10.1242/jeb.207324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Female mate choice is a dynamic process that allows individuals to selectively mate with those of the opposite sex that display a preferred set of traits. Because in many species males compete with each other for fertilization opportunities, female mate choice can be a powerful agent of sexual selection, often resulting in highly conspicuous traits in males. Although the evolutionary causes and consequences of the ornamentation and behaviors displayed by males to attract mates have been well studied, embarrassingly little is known about the proximate neural mechanisms through which female choice occurs. In vertebrates, female mate choice is inherently a social behavior, and although much remains to be discovered about this process, recent evidence suggests the neural substrates and circuits underlying other fundamental social behaviors (such as pair bonding, aggression and parental care) are likely similarly recruited during mate choice. Notably, female mate choice is not static, as social and ecological environments can shape the brain and, consequently, behavior in specific ways. In this Review, we discuss how social and/or ecological influences mediate female choice and how this occurs within the brain. We then discuss our current understanding of the neural substrates underlying female mate choice, with a specific focus on those that also play a role in regulating other social behaviors. Finally, we propose several promising avenues for future research by highlighting novel model systems and new methodological approaches, which together will transform our understanding of the causes and consequences of female mate choice.
Collapse
Affiliation(s)
- Ross S DeAngelis
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA .,Institute for Neuroscience, The University of Texas, Austin, TX 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
15
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
16
|
Boussard A, Buechel SD, Amcoff M, Kotrschal A, Kolm N. Brain size does not predict learning strategies in a serial reversal learning test. J Exp Biol 2020; 223:jeb224741. [PMID: 32561630 PMCID: PMC7413604 DOI: 10.1242/jeb.224741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
Reversal learning assays are commonly used across a wide range of taxa to investigate associative learning and behavioural flexibility. In serial reversal learning, the reward contingency in a binary discrimination is reversed multiple times. Performance during serial reversal learning varies greatly at the interspecific level, as some animals adopt a rule-based strategy that enables them to switch quickly between reward contingencies. A larger relative brain size, generating enhanced learning ability and increased behavioural flexibility, has been proposed to be an important factor underlying this variation. Here, we experimentally tested this hypothesis at the intraspecific level. We used guppies (Poecilia reticulata) artificially selected for small and large relative brain size, with matching differences in neuron number, in a serial reversal learning assay. We tested 96 individuals over 10 serial reversals and found that learning performance and memory were predicted by brain size, whereas differences in efficient learning strategies were not. We conclude that variation in brain size and neuron number is important for variation in learning performance and memory, but these differences are not great enough to cause the larger differences in efficient learning strategies observed at higher taxonomic levels.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Séverine D Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
- Behaviour Ecology, Wageningen University, De Elst 1, 6708wd Wageningen, The Netherlands
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| |
Collapse
|
17
|
Bell AM. Individual variation and the challenge hypothesis. Horm Behav 2020; 123:104549. [PMID: 31247185 PMCID: PMC6980443 DOI: 10.1016/j.yhbeh.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
In this paper I discuss how the challenge hypothesis (Wingfield et al., 1990) influenced the development of ideas about animal personality, and describe particularly promising areas for future study at the intersection of these two topics. I argue that the challenge hypothesis influenced the study of animal personality in at least three specific ways. First, the challenge hypothesis drew attention to the ways in which the environment experienced by an organism - including the social environment - can influence biological processes internal to the organism, e.g. changes to physiology, gene expression, neuroendocrine state and epigenetic modifications. That is, the challenge hypothesis illustrated the bidirectional, dynamic relationship between hormones and (social) environments, thereby helping us to understand how behavioral variation among individuals can emerge over time. Because the paper was inspired by data collected on free living animals in natural populations, it drew behavioral ecologists' attention to this phenomenon. Second, the challenge hypothesis highlighted what became a paradigmatic example of a hormonal mechanism for a behavioral spillover, i.e. testosterone's pleiotropic effects on both territorial aggression and parental care causes aggression to "spillover" to influence parenting behavior, thereby limiting behavioral plasticity. Third, the challenge hypothesis contributed to what is now a cottage industry examining individual differences in hormone titres and their relationship with behavioral variation. I argue that one particularly promising future research direction in this area is to consider the active role of behavior and behavioral types in eliciting social interactions, including territorial challenges.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Program in Ecology, Evolution and Conservation, Neuroscience Program, University of Illinois, Urbana Champaign, United States of America.
| |
Collapse
|
18
|
Darolti I, Wright AE, Mank JE. Guppy Y Chromosome Integrity Maintained by Incomplete Recombination Suppression. Genome Biol Evol 2020; 12:965-977. [PMID: 32426836 PMCID: PMC7337182 DOI: 10.1093/gbe/evaa099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of recombination triggers divergence between the sex chromosomes and promotes degeneration of the sex-limited chromosome. Several livebearers within the genus Poecilia share a male-heterogametic sex chromosome system that is roughly 20 Myr old, with extreme variation in the degree of Y chromosome divergence. In Poecilia picta, the Y is highly degenerate and associated with complete X chromosome dosage compensation. In contrast, although recombination is restricted across almost the entire length of the sex chromosomes in Poecilia reticulata and Poecilia wingei, divergence between the X chromosome and the Y chromosome is very low. This clade therefore offers a unique opportunity to study the forces that accelerate or hinder sex chromosome divergence. We used RNA-seq data from multiple families of both P. reticulata and P. wingei, the species with low levels of sex chromosome divergence, to differentiate X and Y coding sequences based on sex-limited SNP inheritance. Phylogenetic tree analyses reveal that occasional recombination has persisted between the sex chromosomes for much of their length, as X- and Y-linked sequences cluster by species instead of by gametolog. This incomplete recombination suppression maintains the extensive homomorphy observed in these systems. In addition, we see differences between the previously identified strata in the phylogenetic clustering of X-Y orthologs, with those that cluster by chromosome located in the older stratum, the region previously associated with the sex-determining locus. However, recombination arrest appears to have expanded throughout the sex chromosomes more gradually instead of through a stepwise process associated with inversions.
Collapse
Affiliation(s)
- Iulia Darolti
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Judith E Mank
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
19
|
Delclos PJ, Forero SA, Rosenthal GG. Divergent neurogenomic responses shape social learning of both personality and mate preference. J Exp Biol 2020; 223:jeb220707. [PMID: 32054683 DOI: 10.1242/jeb.220707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Behavior plays a fundamental role in shaping the origin and fate of species. Mating decisions can act to promote or restrict gene flow, as can personality traits that influence dispersal and niche use. Mate choice and personality are often both learned and therefore influenced by an individual's social environment throughout development. Likewise, the molecular pathways that shape these behaviors may also be co-expressed. In this study on swordtail fish (Xiphophorus birchmanni), we show that female mating preferences for species-typical pheromone cues are entirely dependent on social experience with adult males. Experience with adults also shapes development along the shy-bold personality axis, with shy behaviors arising from exposure to risk-averse heterospecifics as a potential stress-coping strategy. In maturing females, conspecific exposure results in a strong upregulation of olfaction and vision genes compared with heterospecific exposure, as well as immune response genes previously linked to anxiety, learning and memory. Conversely, heterospecific exposure involves an increased expression of genes important for neurogenesis, synaptic plasticity and social decision-making. We identify subsets of genes within the social decision-making network and with known stress-coping roles that may be directly coupled to the olfactory processes females rely on for social communication. Based on these results, we conclude that the social environment affects the neurogenomic trajectory through which socially sensitive behaviors are learned, resulting in adult phenotypes adapted for specific social groupings.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A. C., Calnali, Hidalgo 43233, Mexico
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Santiago A Forero
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Gil G Rosenthal
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A. C., Calnali, Hidalgo 43233, Mexico
| |
Collapse
|
20
|
Lim WK, Mathuru AS. Design, challenges, and the potential of transcriptomics to understand social behavior. Curr Zool 2020; 66:321-330. [PMID: 32684913 PMCID: PMC7357267 DOI: 10.1093/cz/zoaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Rapid advances in Ribonucleic Acid sequencing (or RNA-seq) technology for analyzing entire transcriptomes of desired tissue samples, or even of single cells at scale, have revolutionized biology in the past decade. Increasing accessibility and falling costs are making it possible to address many problems in biology that were once considered intractable, including the study of various social behaviors. RNA-seq is opening new avenues to understand long-standing questions on the molecular basis of behavioral plasticity and individual variation in the expression of a behavior. As whole transcriptomes are examined, it has become possible to make unbiased discoveries of underlying mechanisms with little or no necessity to predict genes involved in advance. However, researchers need to be aware of technical limitations and have to make specific decisions when applying RNA-seq to study social behavior. Here, we provide a perspective on the applications of RNA-seq and experimental design considerations for behavioral scientists who are unfamiliar with the technology but are considering using it in their research.
Collapse
Affiliation(s)
- Wen Kin Lim
- Science Division, Yale-NUS College, 12 College Avenue West, Singapore
| | - Ajay S Mathuru
- Science Division, Yale-NUS College, 12 College Avenue West, Singapore.,Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine (YLL), National University of Singapore, Singapore
| |
Collapse
|
21
|
Bentz AB, Rusch DB, Buechlein A, Rosvall KA. The neurogenomic transition from territory establishment to parenting in a territorial female songbird. BMC Genomics 2019; 20:819. [PMID: 31699031 PMCID: PMC6836416 DOI: 10.1186/s12864-019-6202-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The brain plays a critical role in upstream regulation of processes central to mating effort, parental effort, and self-maintenance. For seasonally breeding animals, the brain is likely mediating trade-offs among these processes within a short breeding season, yet research thus far has only explored neurogenomic changes from non-breeding to breeding states or select pathways (e.g., steroids) in male and/or lab-reared animals. Here, we use RNA-seq to explore neural plasticity in three behaviorally relevant neural tissues (ventromedial telencephalon [VmT], hypothalamus [HYPO], and hindbrain [HB]), comparing free-living female tree swallows (Tachycineta bicolor) as they shift from territory establishment to incubation. We additionally highlight changes in aggression-related genes to explore the potential for a neurogenomic shift in the mechanisms regulating aggression, a critical behavior both in establishing and maintaining a territory and in defense of offspring. Results HB had few differentially expressed genes, but VmT and HYPO had hundreds. In particular, VmT had higher expression of genes related to neuroplasticity and processes beneficial for competition during territory establishment, but down-regulated immune processes. HYPO showed signs of high neuroplasticity during incubation, and a decreased potential for glucocorticoid signaling. Expression of aggression-related genes also shifted from steroidal to non-steroidal pathways across the breeding season. Conclusions These patterns suggest trade-offs between enhanced activity and immunity in the VmT and between stress responsiveness and parental care in the HYPO, along with a potential shift in the mechanisms regulating aggression. Collectively, these data highlight important gene regulatory pathways that may underlie behavioral plasticity in females.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Douglas B Rusch
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
22
|
Corral-López A, Romensky M, Kotrschal A, Buechel SD, Kolm N. Brain size affects responsiveness in mating behaviour to variation in predation pressure and sex ratio. J Evol Biol 2019; 33:165-177. [PMID: 31610058 DOI: 10.1111/jeb.13556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022]
Abstract
Despite ongoing advances in sexual selection theory, the evolution of mating decisions remains enigmatic. Cognitive processes often require simultaneous processing of multiple sources of information from environmental and social cues. However, little experimental data exist on how cognitive ability affects such fitness-associated aspects of behaviour. Using advanced tracking techniques, we studied mating behaviours of guppies artificially selected for divergence in relative brain size, with known differences in cognitive ability, when predation threat and sex ratio was varied. In females, we found a general increase in copulation behaviour in when the sex ratio was female biased, but only large-brained females responded with greater willingness to copulate under a low predation threat. In males, we found that small-brained individuals courted more intensively and displayed more aggressive behaviours than large-brained individuals. However, there were no differences in female response to males with different brain size. These results provide further evidence of a role for female brain size in optimal decision-making in a mating context. In addition, our results indicate that brain size may affect mating display skill in male guppies. We suggest that it is important to consider the association between brain size, cognitive ability and sexual behaviour when studying how morphological and behavioural traits evolve in wild populations.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.,Division of Biosciences, Genetics, Evolution & Environment, University College of London, London, UK
| | - Maksym Romensky
- Department of Mathematics, Uppsala University, Uppsala, Sweden.,Department of Life Sciences, Imperial College London, London, UK
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.,Behavioural Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Harrison JW, Palmer JH, Rittschof CC. Altering social cue perception impacts honey bee aggression with minimal impacts on aggression-related brain gene expression. Sci Rep 2019; 9:14642. [PMID: 31601943 PMCID: PMC6787081 DOI: 10.1038/s41598-019-51223-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 02/01/2023] Open
Abstract
Gene expression changes resulting from social interactions may give rise to long term behavioral change, or simply reflect the activity of neural circuitry associated with behavioral expression. In honey bees, social cues broadly modulate aggressive behavior and brain gene expression. Previous studies suggest that expression changes are limited to contexts in which social cues give rise to stable, relatively long-term changes in behavior. Here we use a traditional beekeeping approach that inhibits aggression, smoke exposure, to deprive individuals of aggression-inducing olfactory cues and evaluate whether behavioral changes occur in absence of expression variation in a set of four biomarker genes (drat, cyp6g1/2, GB53860, inos) associated with aggression in previous studies. We also evaluate two markers of a brain hypoxic response (hif1α, hsf) to determine whether smoke induces molecular changes at all. We find that bees with blocked sensory perception as a result of smoke exposure show a strong, temporary inhibition of aggression relative to bees allowed to perceive normal social cues. However, blocking sensory perception had minimal impacts on aggression-relevant gene expression, althought it did induce a hypoxic molecular response in the brain. Results suggest that certain genes differentiate social cue-induced changes in aggression from long-term modulation of this phenotype.
Collapse
Affiliation(s)
- James W Harrison
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA
| | - Joseph H Palmer
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA
- College of Agriculture, Communities, and the Environment, Kentucky State University, 400 E. Main St., Frankfort, KY, 40601, USA
| | - Clare C Rittschof
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA.
| |
Collapse
|
24
|
Marhounová L, Kotrschal A, Kverková K, Kolm N, Němec P. Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 2019; 73:2003-2012. [PMID: 31339177 PMCID: PMC6772110 DOI: 10.1111/evo.13805] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Neurons are the basic computational units of the brain, but brain size is the predominant surrogate measure of brain functional capacity in comparative and cognitive neuroscience. This approach is based on the assumption that larger brains harbor higher numbers of neurons and their connections, and therefore have a higher information-processing capacity. However, recent studies have shown that brain mass may be less strongly correlated with neuron counts than previously thought. Till now, no experimental test has been conducted to examine the relationship between evolutionary changes in brain size and the number of brain neurons. Here, we provide such a test by comparing neuron number in artificial selection lines of female guppies (Poecilia reticulata) with >15% difference in relative brain mass and numerous previously demonstrated cognitive differences. Using the isotropic fractionator, we demonstrate that large-brained females have a higher overall number of neurons than small-brained females, but similar neuronal densities. Importantly, this difference holds also for the telencephalon, a key region for cognition. Our study provides the first direct experimental evidence that selection for brain mass leads to matching changes in number of neurons and shows that brain size evolution is intimately linked to the evolution of neuron number and cognition.
Collapse
Affiliation(s)
- Lucie Marhounová
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| | - Alexander Kotrschal
- Behavioural Ecology GroupDepartment of Animal Sciences6708wdWageningenNetherlands
- Department of Zoology/EthologyStockholm University10691StockholmSweden
| | - Kristina Kverková
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| | - Niclas Kolm
- Department of Zoology/EthologyStockholm University10691StockholmSweden
| | - Pavel Němec
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| |
Collapse
|
25
|
Herczeg G, Urszán TJ, Orf S, Nagy G, Kotrschal A, Kolm N. Brain size predicts behavioural plasticity in guppies (Poecilia reticulata): An experiment. J Evol Biol 2018; 32:218-226. [PMID: 30474900 DOI: 10.1111/jeb.13405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 11/28/2022]
Abstract
Understanding how animal personality (consistent between-individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video-aided motion tracking. We found that individuals differed consistently in activity and risk-taking, as well as in behavioural plasticity. In activity, only the large-brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk-taking, we found sensitization (decreased risk-taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour-specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.
Collapse
Affiliation(s)
- Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | - Tamás J Urszán
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | - Stephanie Orf
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | - Gergely Nagy
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | | | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|