1
|
Ohki Y, Mochizuki M. Fundamental theory of current-induced motion of magnetic skyrmions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023003. [PMID: 39393399 DOI: 10.1088/1361-648x/ad861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
Magnetic skyrmions are topological spin textures that appear in magnets with broken spatial inversion symmetry as a consequence of competition between the (anti)ferromagnetic exchange interactions and the Dzyaloshinskii-Moriya interactions in a magnetic field. In the research of spintronics, the current-driven dynamics of skyrmions has been extensively studied aiming at their applications to next-generation spintronic devices. However, current-induced skyrmion motion exhibits diverse behaviors depending on various factors and conditions such as the type of skyrmion, driving mechanism, system geometry, direction of applied current, and type of the magnet. While this variety attracts enormous research interest of fundamental science and enriches their possibilities of technical applications, it is, at the same time, a source of difficulty and complexity that hinders their comprehensive understandings. In this article, we discuss fundamental and systematic theoretical descriptions of current-induced motion of skyrmions driven by the spin-transfer torque and the spin-orbit torque. Specifically, we theoretically describe the behaviors of current-driven skyrmions depending on the factors and conditions mentioned above by means of analyses using the Thiele equation. Furthermore, the results of the analytical theory are visually demonstrated and quantitatively confirmed by micromagnetic simulations using the Landau-Lifshitz-Gilbert-Slonczewski equation. In particular, we discuss dependence of the direction and velocity of motion on the type of skyrmion (Bloch type and Néel type) and its helicity, the system geometry (thin plate and nanotrack), the direction of applied current (length and width direction of the nanotrack) and its spin-polarization orientation, and the type of magnet (ferromagnet and antiferromagnet). The comprehensive theory provided by this article is expected to contribute significantly to research on the manipulation and control of magnetic skyrmions by electric currents for future spintronics applications.
Collapse
Affiliation(s)
- Yuto Ohki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Jin H, Chen J, van der Laan G, Hesjedal T, Liu Y, Zhang S. Rolling Motion of Rigid Skyrmion Crystallites Induced by Chiral Lattice Torque. NANO LETTERS 2024; 24:12226-12232. [PMID: 39297736 PMCID: PMC11450986 DOI: 10.1021/acs.nanolett.4c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Magnetic skyrmions are topologically protected spin textures with emergent particle-like behaviors. Their dynamics under external stimuli is of great interest and importance for topological physics and spintronics applications alike. So far, skyrmions are only found to move linearly in response to a linear drive, following the conventional model treating them as isolated quasiparticles. Here, by performing time and spatially resolved resonant elastic X-ray scattering of the insulating chiral magnet Cu2OSeO3, we show that for finite-sized skyrmion crystallites, a purely linear temperature gradient not only propels the skyrmions but also induces continuous rotational motion through a chiral lattice torque. Consequently, a skyrmion crystallite undergoes a rolling motion under a small gradient, while both the rolling speed and the rotational sense can be controlled. Our findings offer a new degree of freedom for manipulating these quasiparticles toward device applications and underscore the fundamental phase difference between the condensed skyrmion lattice and isolated skyrmions.
Collapse
Affiliation(s)
- Haonan Jin
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 200031, China
- ShanghaiTech
Laboratory for Topological Physics, ShanghaiTech
University, Shanghai 200031, China
| | - Jingyi Chen
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 200031, China
| | - Gerrit van der Laan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, OX11 0DE, United Kingdom
| | - Thorsten Hesjedal
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
| | - Yizhou Liu
- Anhui
Province Key Laboratory of Low-Energy Quantum Materials and Devices,
High Magnetic Field Laboratory, HFIPS, Chinese
Academy of Sciences, Hefei, Anhui 230031, China
| | - Shilei Zhang
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 200031, China
- ShanghaiTech
Laboratory for Topological Physics, ShanghaiTech
University, Shanghai 200031, China
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 200031, China
| |
Collapse
|
3
|
Marchiori E, Romagnoli G, Schneider L, Gross B, Sahafi P, Jordan A, Budakian R, Baral PR, Magrez A, White JS, Poggio M. Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu 2OSeO 3. COMMUNICATIONS MATERIALS 2024; 5:202. [PMID: 39351280 PMCID: PMC11438600 DOI: 10.1038/s43246-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Surfaces - by breaking bulk symmetries, introducing roughness, or hosting defects - can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along100 . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator.
Collapse
Affiliation(s)
| | | | - Lukas Schneider
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Boris Gross
- Department of Physics, University of Basel, Basel, Switzerland
| | - Pardis Sahafi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
- Present Address: National Research Council, Ottawa, Canada
| | - Andrew Jordan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Priya R. Baral
- Laboratory for Neutron Scattering and Imaging, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo, Tokyo, Japan
| | - Arnaud Magrez
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jonathan S. White
- Laboratory for Neutron Scattering and Imaging, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Martino Poggio
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Guang Y, Zhang X, Liu Y, Peng L, Yasin FS, Karube K, Nakamura D, Nagaosa N, Taguchi Y, Mochizuki M, Tokura Y, Yu X. Confined antiskyrmion motion driven by electric current excitations. Nat Commun 2024; 15:7701. [PMID: 39227610 PMCID: PMC11371833 DOI: 10.1038/s41467-024-52072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Current-driven dynamics of topological spin textures, such as skyrmions and antiskyrmions, have garnered considerable attention in condensed matter physics and spintronics. As compared with skyrmions, the current-driven dynamics of their antiparticles - antiskyrmions - remain less explored due to the increased complexity of antiskyrmions. Here, we design and employ fabricated microdevices of a prototypical antiskyrmion host, (Fe0.63Ni0.3Pd0.07)3P, to allow in situ current application with Lorentz transmission electron microscopy observations. The experimental results and related micromagnetic simulations demonstrate current-driven antiskyrmion dynamics confined within stripe domains. Under nanosecond-long current pulses, antiskyrmions exhibit directional motion along the stripe regardless of the current direction, while the antiskyrmion velocity is linearly proportional to the current density. Significantly, the antiskyrmion mobility could be enhanced when the current flow is perpendicular to the stripe direction. Our findings provide novel and reliable insights on dynamical antiskyrmions and their potential implications on spintronics.
Collapse
Affiliation(s)
- Yao Guang
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
| | - Xichao Zhang
- Department of Applied Physics, Waseda University, Tokyo, Japan
| | - Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - Licong Peng
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako, Japan
| | | | | | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
- Tokyo College, The University of Tokyo, Tokyo, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
| |
Collapse
|
5
|
Zhao L, Hua C, Song C, Yu W, Jiang W. Realization of skyrmion shift register. Sci Bull (Beijing) 2024; 69:2370-2378. [PMID: 38960814 DOI: 10.1016/j.scib.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
The big data explosion demands novel data storage technology. Among many different approaches, solitonic racetrack memory devices hold great promise for accommodating nonvolatile and low-power functionalities. As representative topological solitons, magnetic skyrmions are envisioned as potential information carriers for efficient information processing. While their advantages as memory and logic elements have been vastly exploited from theoretical perspectives, the corresponding experimental efforts are rather limited. These challenges, which are key to versatile skyrmionic devices, will be studied in this work. Through patterning concaved surface topography with designed arrays of indentations on standard Si/SiO2 substrates, we demonstrate that the resultant non-flat energy landscape could lead to the formation of hexagonal and square skyrmion lattices in Ta/CoFeB/MgO multilayers. Based on these films, one-dimensional racetrack devices are subsequently fabricated, in which a long-distance deterministic shifting of skyrmions between neighboring indentations is achieved at room temperature. Through separating the word line and the bit line, a prototype shift register device, which can sequentially generate and precisely shift complex skyrmionic data strings, is presented. The deterministic writing and long-distance shifting of skyrmionic bits can find potential applications in transformative skyrmionic memory, logic as well as the in-memory computing devices.
Collapse
Affiliation(s)
- Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Chensong Hua
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Weichao Yu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Guo Y, Zhuo F, Li H. Influence of the Hall-bar geometry on texture-induced topological spin transport in two-dimensional Rashba spin-orbit ferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:415801. [PMID: 38959901 DOI: 10.1088/1361-648x/ad5eea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
While the recent prediction and observation of magnetic skyrmions bears inspiring promise for next-generation spintronic devices, how to detect and track their position becomes an important issue. In this work, we investigate the spin transport in a two-dimensional magnetic nanoribbon with the Hall-bar geometry in the presence of Rashba spin-orbit coupling and magnetic skyrmions. We employ the Kwant tight-binding code to compute the Hall conductance and local spin-polarized current density. We consider two versions of the model: One with single skyrmion and one with two separate skyrmions. It is found that the size and position of the skyrmions strongly modulate the Hall conductance near the Hall-bar position. The geometry of the Hall bar also has a strong influence on the Hall conductance of the system. With the decreasing of the width of Hall leads, the peak of Hall conductance becomes sharper. We also show the spatial distribution of the spin-polarized current density around a skyrmion located at different positions. We extend this study toward two separate skyrmions, where the Hall conductance also reveals a sizable dependence on the position of the skyrmions and their distance. Our numerical analysis offers the possibility of electrically detecting the skyrmion position, which could have potential applications in ultrahigh-density storage design.
Collapse
Affiliation(s)
- Yufei Guo
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| | - Fengjun Zhuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Hang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
7
|
Zhou Y, Li S, Liang X, Zhou Y. Topological Spin Textures: Basic Physics and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312935. [PMID: 38861696 DOI: 10.1002/adma.202312935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/24/2024] [Indexed: 06/13/2024]
Abstract
In the face of escalating modern data storage demands and the constraints of Moore's Law, exploring spintronic solutions, particularly the devices based on magnetic skyrmions, has emerged as a promising frontier in scientific research. Since the first experimental observation of skyrmions, topological spin textures have been extensively studied for their great potential as efficient information carriers in spintronic devices. However, significant challenges have emerged alongside this progress. This review aims to synthesize recent advances in skyrmion research while addressing the major issues encountered in the field. Additionally, current research on promising topological spin structures in addition to skyrmions is summarized. Beyond 2D structures, exploration also extends to 1D magnetic solitons and 3D spin textures. In addition, a diverse array of emerging magnetic materials is introduced, including antiferromagnets and 2D van der Waals magnets, broadening the scope of potential materials hosting topological spin textures. Through a systematic examination of magnetic principles, topological categorization, and the dynamics of spin textures, a comprehensive overview of experimental and theoretical advances in the research of topological magnetism is provided. Finally, both conventional and unconventional applications are summarized based on spin textures proposed thus far. This review provides an outlook on future development in applied spintronics.
Collapse
Affiliation(s)
- Yuqing Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Shuang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
8
|
Ran K, Tan W, Sun X, Liu Y, Dalgliesh RM, Steinke NJ, van der Laan G, Langridge S, Hesjedal T, Zhang S. Bending skyrmion strings under two-dimensional thermal gradients. Nat Commun 2024; 15:4860. [PMID: 38849412 PMCID: PMC11161597 DOI: 10.1038/s41467-024-49288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Magnetic skyrmions are topologically protected magnetization vortices that form three-dimensional strings in chiral magnets. With the manipulation of skyrmions being key to their application in devices, the focus has been on their dynamics within the vortex plane, while the dynamical control of skyrmion strings remained uncharted territory. Here, we report the effective bending of three-dimensional skyrmion strings in the chiral magnet MnSi in orthogonal thermal gradients using small angle neutron scattering. This dynamical behavior is achieved by exploiting the temperature-dependent skyrmion Hall effect, which is unexpected in the framework of skyrmion dynamics. We thus provide experimental evidence for the existence of magnon friction, which was recently proposed to be a key ingredient for capturing skyrmion dynamics, requiring a modification of Thiele's equation. Our work therefore suggests the existence of an extra degree of freedom for the manipulation of three-dimensional skyrmions.
Collapse
Affiliation(s)
- Kejing Ran
- School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China
- College of Physics & Center of Quantum Materials and Devices, Chongqing University, Chongqing, China
| | - Wancong Tan
- School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China
| | - Xinyu Sun
- School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China
| | - Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | | | | | | | - Thorsten Hesjedal
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Shilei Zhang
- School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Littlehales MT, Moody SH, Turnbull LA, Huddart BM, Brereton BA, Balakrishnan G, Fan R, Steadman P, Hatton PD, Wilson MN. Demonstration of Controlled Skyrmion Injection Across a Thickness Step. NANO LETTERS 2024; 24:6813-6820. [PMID: 38781191 PMCID: PMC11157652 DOI: 10.1021/acs.nanolett.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Spintronic devices incorporating magnetic skyrmions have attracted significant interest recently. Such devices traditionally focus on controlling magnetic textures in 2D thin films. However, enhanced performance of spintronic properties through the exploitation of higher dimensionalities motivates the investigation of variable-thickness skyrmion devices. We report the demonstration of a skyrmion injection mechanism that utilizes charge currents to drive skyrmions across a thickness step and, consequently, a metastability barrier. Our measurements show that under certain temperature and field conditions skyrmions can be reversibly injected from a thin region of an FeGe lamella, where they exist as an equilibrium state, into a thicker region, where they can only persist as a metastable state. This injection is achieved with a current density of 3 × 108 A m-2, nearly 3 orders of magnitude lower than required to move magnetic domain walls. This highlights the possibility to use such an element as a skyrmion source/drain within future spintronic devices.
Collapse
Affiliation(s)
- Matthew T. Littlehales
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Samuel H. Moody
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Luke A. Turnbull
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Max
Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden, Germany
| | - Benjamin M. Huddart
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford, OX1
3PU, United Kingdom
| | - Ben A. Brereton
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
| | - Geetha Balakrishnan
- University
of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
| | - Raymond Fan
- Diamond
Light Source, Didcot, OX11 0DE, United
Kingdom
| | - Paul Steadman
- Diamond
Light Source, Didcot, OX11 0DE, United
Kingdom
| | - Peter D. Hatton
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
| | - Murray N. Wilson
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Memorial
University of Newfoundland, Department of Physics and Physical Oceanography, St John’s, Newfoundland, A1B 3X7, Canada
| |
Collapse
|
10
|
Aramberri H, Íñiguez-González J. Brownian Electric Bubble Quasiparticles. PHYSICAL REVIEW LETTERS 2024; 132:136801. [PMID: 38613274 DOI: 10.1103/physrevlett.132.136801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
Recent works on electric bubbles (including the experimental demonstration of electric skyrmions) constitute a breakthrough akin to the discovery of magnetic skyrmions some 15 years ago. So far research has focused on obtaining and visualizing these objects, which often appear to be immobile (pinned) in experiments. Thus, critical aspects of magnetic skyrmions-e.g., their quasiparticle nature, Brownian motion-remain unexplored (unproven) for electric bubbles. Here we use predictive atomistic simulations to investigate the basic dynamical properties of these objects in pinning-free model systems. We show that it is possible to find regimes where the electric bubbles can present long lifetimes (∼ns) despite being relatively small (diameter <2 nm). Additionally, we find that they can display stochastic dynamics with large and highly tunable diffusion constants. We thus establish the quasiparticle nature of electric bubbles and put them forward for the physical effects and applications (e.g., in token-based probabilistic computing) considered for magnetic skyrmions.
Collapse
Affiliation(s)
- Hugo Aramberri
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
| | - Jorge Íñiguez-González
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Rue du Brill 41, L-4422 Belvaux, Luxembourg
| |
Collapse
|
11
|
Bhukta M, Dohi T, Bharadwaj VK, Zarzuela R, Syskaki MA, Foerster M, Niño MA, Sinova J, Frömter R, Kläui M. Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets. Nat Commun 2024; 15:1641. [PMID: 38409221 PMCID: PMC10897388 DOI: 10.1038/s41467-024-45375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic topological spin textures as information carriers. This shift is primarily owing to their negligible stray fields, leading to higher possible device density and potentially ultrafast dynamics. We realize in this work such chiral in-plane topological antiferromagnetic spin textures namely merons, antimerons, and bimerons in synthetic antiferromagnets by concurrently engineering the effective perpendicular magnetic anisotropy, the interlayer exchange coupling, and the magnetic compensation ratio. We demonstrate multimodal vector imaging of the three-dimensional Néel order parameter, revealing the topology of those spin textures and a globally well-defined chirality, which is a crucial requirement for controlled current-induced dynamics. Our analysis reveals that the interplay between interlayer exchange and interlayer magnetic dipolar interactions plays a key role to significantly reduce the critical strength of the Dzyaloshinskii-Moriya interaction required to stabilize topological spin textures, such as antiferromagnetic merons, in synthetic antiferromagnets, making them a promising platform for next-generation spintronics applications.
Collapse
Affiliation(s)
- Mona Bhukta
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Takaaki Dohi
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.
| | | | - Ricardo Zarzuela
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Maria-Andromachi Syskaki
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
- Singulus Technologies AG, Hanauer Landstrasse 107, 63796, Kahl am Main, Germany
| | - Michael Foerster
- ALBA Synchrotron Light Facility, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Miguel Angel Niño
- ALBA Synchrotron Light Facility, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Jairo Sinova
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Robert Frömter
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
12
|
Yang Y, Zhao L, Yi D, Xu T, Chai Y, Zhang C, Jiang D, Ji Y, Hou D, Jiang W, Tang J, Yu P, Wu H, Nan T. Acoustic-driven magnetic skyrmion motion. Nat Commun 2024; 15:1018. [PMID: 38310112 PMCID: PMC10838300 DOI: 10.1038/s41467-024-45316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Magnetic skyrmions have great potential for developing novel spintronic devices. The electrical manipulation of skyrmions has mainly relied on current-induced spin-orbit torques. Recently, it was suggested that the skyrmions could be more efficiently manipulated by surface acoustic waves (SAWs), an elastic wave that can couple with magnetic moment via the magnetoelastic effect. Here, by designing on-chip piezoelectric transducers that produce propagating SAW pulses, we experimentally demonstrate the directional motion of Néel-type skyrmions in Ta/CoFeB/MgO/Ta multilayers. We find that the shear horizontal wave effectively drives the motion of skyrmions, whereas the elastic wave with longitudinal and shear vertical displacements (Rayleigh wave) cannot produce the motion of skyrmions. A longitudinal motion along the SAW propagation direction and a transverse motion due to topological charge are simultaneously observed and further confirmed by our micromagnetic simulations. This work demonstrates that acoustic waves could be another promising approach for manipulating skyrmions, which could offer new opportunities for ultra-low power skyrmionics.
Collapse
Affiliation(s)
- Yang Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Le Zhao
- Department of Physics, Tsinghua University, Beijing, China
| | - Di Yi
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Teng Xu
- Department of Physics, Tsinghua University, Beijing, China
| | - Yahong Chai
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Chenye Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Dingsong Jiang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yahui Ji
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Dazhi Hou
- ICQD, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanjun Jiang
- Department of Physics, Tsinghua University, Beijing, China.
| | - Jianshi Tang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Pu Yu
- Department of Physics, Tsinghua University, Beijing, China
| | - Huaqiang Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Tianxiang Nan
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Lee O, Wei T, Stenning KD, Gartside JC, Prestwood D, Seki S, Aqeel A, Karube K, Kanazawa N, Taguchi Y, Back C, Tokura Y, Branford WR, Kurebayashi H. Task-adaptive physical reservoir computing. NATURE MATERIALS 2024; 23:79-87. [PMID: 37957266 PMCID: PMC10769874 DOI: 10.1038/s41563-023-01698-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/19/2023] [Indexed: 11/15/2023]
Abstract
Reservoir computing is a neuromorphic architecture that may offer viable solutions to the growing energy costs of machine learning. In software-based machine learning, computing performance can be readily reconfigured to suit different computational tasks by tuning hyperparameters. This critical functionality is missing in 'physical' reservoir computing schemes that exploit nonlinear and history-dependent responses of physical systems for data processing. Here we overcome this issue with a 'task-adaptive' approach to physical reservoir computing. By leveraging a thermodynamical phase space to reconfigure key reservoir properties, we optimize computational performance across a diverse task set. We use the spin-wave spectra of the chiral magnet Cu2OSeO3 that hosts skyrmion, conical and helical magnetic phases, providing on-demand access to different computational reservoir responses. The task-adaptive approach is applicable to a wide variety of physical systems, which we show in other chiral magnets via above (and near) room-temperature demonstrations in Co8.5Zn8.5Mn3 (and FeGe).
Collapse
Affiliation(s)
- Oscar Lee
- London Centre for Nanotechnology, University College London, London, UK.
| | - Tianyi Wei
- London Centre for Nanotechnology, University College London, London, UK
| | | | | | - Dan Prestwood
- London Centre for Nanotechnology, University College London, London, UK
| | - Shinichiro Seki
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
| | - Aisha Aqeel
- Physik-Department, Technische Universität München, Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Munich, Germany
| | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - Naoya Kanazawa
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
| | | | - Christian Back
- Physik-Department, Technische Universität München, Garching, Germany
| | - Yoshinori Tokura
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Tokyo College, University of Tokyo, Tokyo, Japan
| | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Electronic and Electrical Engineering, University College London, London, UK.
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.
| |
Collapse
|
14
|
Xu M, Chen X, Guo Y, Wang Y, Qiu D, Du X, Cui Y, Wang X, Xiong J. Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301063. [PMID: 37285592 DOI: 10.1002/adma.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Neuromorphic computing has been attracting ever-increasing attention due to superior energy efficiency, with great promise to promote the next wave of artificial general intelligence in the post-Moore era. Current approaches are, however, broadly designed for stationary and unitary assignments, thus encountering reluctant interconnections, power consumption, and data-intensive computing in that domain. Reconfigurable neuromorphic computing, an on-demand paradigm inspired by the inherent programmability of brain, can maximally reallocate finite resources to perform the proliferation of reproducibly brain-inspired functions, highlighting a disruptive framework for bridging the gap between different primitives. Although relevant research has flourished in diverse materials and devices with novel mechanisms and architectures, a precise overview remains blank and urgently desirable. Herein, the recent strides along this pursuit are systematically reviewed from material, device, and integration perspectives. At the material and device level, one comprehensively conclude the dominant mechanisms for reconfigurability, categorized into ion migration, carrier migration, phase transition, spintronics, and photonics. Integration-level developments for reconfigurable neuromorphic computing are also exhibited. Finally, a perspective on the future challenges for reconfigurable neuromorphic computing is discussed, definitely expanding its horizon for scientific communities.
Collapse
Affiliation(s)
- Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinrui Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinchuan Du
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Cui
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
15
|
He B, Tomasello R, Luo X, Zhang R, Nie Z, Carpentieri M, Han X, Finocchio G, Yu G. All-Electrical 9-Bit Skyrmion-Based Racetrack Memory Designed with Laser Irradiation. NANO LETTERS 2023; 23:9482-9490. [PMID: 37818857 DOI: 10.1021/acs.nanolett.3c02978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.
Collapse
Affiliation(s)
- Bin He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Riccardo Tomasello
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xuming Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ran Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuyang Nie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mario Carpentieri
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina 98166, Italy
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
16
|
Yun C, Liang Z, Hrabec A, Liu Z, Huang M, Wang L, Xiao Y, Fang Y, Li W, Yang W, Hou Y, Yang J, Heyderman LJ, Gambardella P, Luo Z. Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating. Nat Commun 2023; 14:6367. [PMID: 37821464 PMCID: PMC10567909 DOI: 10.1038/s41467-023-41830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behavior and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of the magnetic anisotropy in a nanosized region where the symmetric exchange interaction favors parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favors antiparallel alignment of the nanomagnet magnetizations. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers.
Collapse
Affiliation(s)
- Chao Yun
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Zhongyu Liang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Aleš Hrabec
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Laboratory for Magnetism and Interface Physics, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Zhentao Liu
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Mantao Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leran Wang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Yifei Xiao
- Division of Functional Materials, Central Iron and Steel Research Institute Group, 100081, Beijing, China
| | - Yikun Fang
- Division of Functional Materials, Central Iron and Steel Research Institute Group, 100081, Beijing, China
| | - Wei Li
- Division of Functional Materials, Central Iron and Steel Research Institute Group, 100081, Beijing, China
| | - Wenyun Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Jinbo Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| | - Pietro Gambardella
- Laboratory for Magnetism and Interface Physics, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
| | - Zhaochu Luo
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China.
| |
Collapse
|
17
|
Castell-Queralt J, Abad-López G, González-Gómez L, Del-Valle N, Navau C. Survival of skyrmions along granular racetracks at room temperature. NANOSCALE ADVANCES 2023; 5:4728-4734. [PMID: 37705781 PMCID: PMC10496888 DOI: 10.1039/d3na00464c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023]
Abstract
Skyrmions can be envisioned as bits of information that can be transported along nanoracetracks. However, temperature, defects, and/or granularity can produce diffusion, pinning, and, in general, modification in their dynamics. These effects may cause undesired errors in information transport. We present simulations of a realistic system where both the (room) temperature and sample granularity are taken into account. Key feasibility magnitudes, such as the success probability of a skyrmion traveling a given distance along the racetrack, are calculated. The results are evaluated in terms of the eventual loss of skyrmions by pinning, destruction at the edges, or excessive delay due to granularity. The model proposed is based on the Fokker-Planck equation resulting from Thiele's rigid model for skyrmions. The results could serve to establish error detection criteria and, in general, to discern the dynamics of skyrmions in realistic situations.
Collapse
Affiliation(s)
- Josep Castell-Queralt
- Departament de Física, Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Catalonia Spain
| | - Guillermo Abad-López
- Departament de Física, Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Catalonia Spain
| | - Leonardo González-Gómez
- Departament de Física, Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Catalonia Spain
| | - Nuria Del-Valle
- Departament de Física, Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Catalonia Spain
| | - Carles Navau
- Departament de Física, Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Catalonia Spain
| |
Collapse
|
18
|
Dohi T, Weißenhofer M, Kerber N, Kammerbauer F, Ge Y, Raab K, Zázvorka J, Syskaki MA, Shahee A, Ruhwedel M, Böttcher T, Pirro P, Jakob G, Nowak U, Kläui M. Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force. Nat Commun 2023; 14:5424. [PMID: 37696785 PMCID: PMC10495465 DOI: 10.1038/s41467-023-40720-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.
Collapse
Affiliation(s)
- Takaaki Dohi
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany.
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan.
| | - Markus Weißenhofer
- Fachbereich Physik, Universität Konstanz, DE-78457, Konstanz, Germany.
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S-751 20, Uppsala, Sweden.
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany.
| | - Nico Kerber
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Fabian Kammerbauer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Yuqing Ge
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Klaus Raab
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Jakub Zázvorka
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague, 12116, Czech Republic
| | - Maria-Andromachi Syskaki
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
- Singulus Technologies AG, 63796, Kahl am Main, Germany
| | - Aga Shahee
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Moritz Ruhwedel
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 46, 67663, Kaiserslautern, Germany
| | - Tobias Böttcher
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 46, 67663, Kaiserslautern, Germany
| | - Philipp Pirro
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 46, 67663, Kaiserslautern, Germany
| | - Gerhard Jakob
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Ulrich Nowak
- Fachbereich Physik, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Mathias Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany.
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Okumura S, Kravchuk VP, Garst M. Instability of Magnetic Skyrmion Strings Induced by Longitudinal Spin Currents. PHYSICAL REVIEW LETTERS 2023; 131:066702. [PMID: 37625063 DOI: 10.1103/physrevlett.131.066702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
It is well established that spin-transfer torques exerted by in-plane spin currents give rise to a motion of magnetic skyrmions resulting in a skyrmion Hall effect. In films of finite thickness or in three-dimensional bulk samples the skyrmions extend in the third direction forming a string. We demonstrate that a spin current flowing longitudinally along the skyrmion string instead induces a Goldstone spin wave instability. Our analytical results are confirmed by micromagnetic simulations of both a single string as well as string lattices, suggesting that the instability eventually breaks the strings. A longitudinal current is thus able to melt the skyrmion string lattice via a nonequilibrium phase transition. For films of finite thickness or in the presence of disorder a threshold current will be required, and we estimate the latter assuming weak collective pinning.
Collapse
Affiliation(s)
- Shun Okumura
- Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan
| | - Volodymyr P Kravchuk
- Institut für Theoretische Festkörperphysik, Karlsruher Institut für Technologie, D-76131 Karlsruhe, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Markus Garst
- Institut für Theoretische Festkörperphysik, Karlsruher Institut für Technologie, D-76131 Karlsruhe, Germany
- Institute for Quantum Materials and Technology, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| |
Collapse
|
20
|
Meisenheimer P, Zhang H, Raftrey D, Chen X, Shao YT, Chan YT, Yalisove R, Chen R, Yao J, Scott MC, Wu W, Muller DA, Fischer P, Birgeneau RJ, Ramesh R. Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet. Nat Commun 2023; 14:3744. [PMID: 37353526 DOI: 10.1038/s41467-023-39442-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the μm scale, showing control over this order-disorder transition on scales relevant for device applications.
Collapse
Affiliation(s)
- Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - David Raftrey
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Santa Cruz, CA, USA
| | - Xiang Chen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Yu-Tsun Shao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Ying-Ting Chan
- Department of Physics, Rutgers University, New Brunswick, NJ, USA
| | - Reed Yalisove
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Rui Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jie Yao
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Mary C Scott
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Weida Wu
- Department of Physics, Rutgers University, New Brunswick, NJ, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Peter Fischer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Santa Cruz, CA, USA
| | - Robert J Birgeneau
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Sun Y, Lin T, Lei N, Chen X, Kang W, Zhao Z, Wei D, Chen C, Pang S, Hu L, Yang L, Dong E, Zhao L, Liu L, Yuan Z, Ullrich A, Back CH, Zhang J, Pan D, Zhao J, Feng M, Fert A, Zhao W. Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system. Nat Commun 2023; 14:3434. [PMID: 37301906 PMCID: PMC10257712 DOI: 10.1038/s41467-023-39207-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Physical reservoirs holding intrinsic nonlinearity, high dimensionality, and memory effects have attracted considerable interest regarding solving complex tasks efficiently. Particularly, spintronic and strain-mediated electronic physical reservoirs are appealing due to their high speed, multi-parameter fusion and low power consumption. Here, we experimentally realize a skyrmion-enhanced strain-mediated physical reservoir in a multiferroic heterostructure of Pt/Co/Gd multilayers on (001)-oriented 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 (PMN-PT). The enhancement is coming from the fusion of magnetic skyrmions and electro resistivity tuned by strain simultaneously. The functionality of the strain-mediated RC system is successfully achieved via a sequential waveform classification task with the recognition rate of 99.3% for the last waveform, and a Mackey-Glass time series prediction task with normalized root mean square error (NRMSE) of 0.2 for a 20-step prediction. Our work lays the foundations for low-power neuromorphic computing systems with magneto-electro-ferroelastic tunability, representing a further step towards developing future strain-mediated spintronic applications.
Collapse
Affiliation(s)
- Yiming Sun
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Tao Lin
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Na Lei
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Xing Chen
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wang Kang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiyuan Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Dahai Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Chao Chen
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Simin Pang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linglong Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Liu Yang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Enxuan Dong
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li Zhao
- The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Lei Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhe Yuan
- The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Aladin Ullrich
- Institute of Physics, University of Augsburg, Augsburg, 86159, Germany
| | - Christian H Back
- Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Munich, 80799, Germany
- Centre for Quantum Engineering (ZQE), Technical University of Munich, 85748, Garching, Germany
| | - Jun Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Pan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jianhua Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| | - Albert Fert
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, 91767, France
| | - Weisheng Zhao
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
22
|
Ameziane M, Huhtasalo J, Flajšman L, Mansell R, van Dijken S. Solid-State Lithium Ion Supercapacitor for Voltage Control of Skyrmions. NANO LETTERS 2023; 23:3167-3173. [PMID: 37053030 PMCID: PMC10141402 DOI: 10.1021/acs.nanolett.2c04731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Ionic control of magnetism gives rise to high magnetoelectric coupling efficiencies at low voltages, which is essential for low-power magnetism-based nonconventional computing technologies. However, for on-chip applications, magnetoionic devices typically suffer from slow kinetics, poor cyclability, impractical liquid architectures, or strong ambient effects. As a route to overcoming these problems, we demonstrate a LiPON-based solid-state ionic supercapacitor with a magnetic Pt/Co40Fe40B20/Pt thin-film electrode which enables voltage control of a magnetic skyrmion state. Skyrmion nucleation and annihilation are caused by Li ion accumulation and depletion at the magnetic interface under an applied voltage. The skyrmion density can be controlled through dc applied voltages or through voltage pulses. The skyrmions are nucleated by single 60 μs voltage pulses, and devices are cycled 750000 times without loss of electrical performance. Our results demonstrate a simple and robust approach to ionic control of magnetism in spin-based devices.
Collapse
|
23
|
Gruber R, Brems MA, Rothörl J, Sparmann T, Schmitt M, Kononenko I, Kammerbauer F, Syskaki MA, Farago O, Virnau P, Kläui M. 300-Times-Increased Diffusive Skyrmion Dynamics and Effective Pinning Reduction by Periodic Field Excitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208922. [PMID: 36739114 DOI: 10.1002/adma.202208922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/30/2023] [Indexed: 05/17/2023]
Abstract
Thermally induced skyrmion dynamics, as well as skyrmion pinning effects, in thin films have attracted significant interest. While pinning poses challenges in deterministic skyrmion devices and slows down skyrmion diffusion, for applications in non-conventional computing, both pinning of an appropriate strength and skyrmion diffusion speed are key. Here, periodic field excitations are employed to realize an increase of the skyrmion diffusion by more than two orders of magnitude. Amplifying the excitation, a drastic reduction of the effective skyrmion pinning, is reported, and a transition from pinning-dominated diffusive hopping to dynamics approaching free diffusion is observed. By tailoring the field oscillation frequency and amplitude, a continuous tuning of the effective pinning and skyrmion dynamics is demonstrated, which is a key asset and enabler for non-conventional computing applications. It is found that the periodic excitations additionally allow stabilization of skyrmions at different sizes for field values that are inaccessible in static systems, opening up new approaches to ultrafast skyrmion motion by transiently exciting moving skyrmions.
Collapse
Affiliation(s)
- Raphael Gruber
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Maarten A Brems
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Jan Rothörl
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Tobias Sparmann
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Maurice Schmitt
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Iryna Kononenko
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
- National Academy of Sciences of Ukraine, Institute of Applied Physics, 58 Petropavlivska St., Sumy, 40000, Ukraine
| | - Fabian Kammerbauer
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Maria-Andromachi Syskaki
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
- Singulus Technologies AG, Hanauer Landstraße 103, 63796, Kahl am Main, Germany
| | - Oded Farago
- Biomedical Engineering Department, Ben Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Peter Virnau
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Mathias Kläui
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| |
Collapse
|
24
|
Rosales HD, Albarracín FAG, Pujol P, Jaubert LDC. Skyrmion Fluid and Bimeron Glass Protected by a Chiral Spin Liquid on a Kagome Lattice. PHYSICAL REVIEW LETTERS 2023; 130:106703. [PMID: 36962046 DOI: 10.1103/physrevlett.130.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Skyrmions are of interest both from a fundamental and technological point of view, due to their potential to act as information carriers. But one challenge concerns their manipulation, especially at high temperature where thermal fluctuations eventually disintegrate them. Here we study the competition between skyrmions and a chiral spin liquid, using the latter as an entropic buffer to impose a quasivacuum of skyrmions. As a result, the temperature becomes a knob to tune the skyrmion density from a dense liquid to a diluted gas, protecting the integrity of each skyrmion from paramagnetic disintegration. With this additional knob in hand, we find at high field a topological spin glass made of zero- and one-dimensional topological defects (respectively skyrmions and bimerons).
Collapse
Affiliation(s)
- H Diego Rosales
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
- Departamento de Física, FCE, UNLP, 1900 La Plata, Argentina
- Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP, 1900 La Plata, Argentina
| | - Flavia A Gómez Albarracín
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
- Departamento de Física, FCE, UNLP, 1900 La Plata, Argentina
- Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP, 1900 La Plata, Argentina
| | - Pierre Pujol
- Laboratoire de Physique Théorique, CNRS and Université de Toulouse, UPS, Toulouse, F-31062, France
| | | |
Collapse
|
25
|
Yang S, Son JW, Ju TS, Tran DM, Han HS, Park S, Park BH, Moon KW, Hwang C. Magnetic Skyrmion Transistor Gated with Voltage-Controlled Magnetic Anisotropy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208881. [PMID: 36511234 DOI: 10.1002/adma.202208881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The paradigm shift of information carriers from charge to spin has long been awaited in modern electronics. The invention of the spin-information transistor is expected to be an essential building block for the future development of spintronics. Here, a proof-of-concept experiment of a magnetic skyrmion transistor working at room temperature, which has never been demonstrated experimentally, is introduced. With the spatially uniform control of magnetic anisotropy, the shape and topology of a skyrmion when passing the controlled area can be maintained. The findings will open a new route toward the design and realization of skyrmion-based spintronic devices in the near future.
Collapse
Affiliation(s)
- Seungmo Yang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Jong Wan Son
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Physics, Pusan National University, Busan, 46241, Republic of Korea
| | - Duc Minh Tran
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee-Sung Han
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, Republic of Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyoung-Woong Moon
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| |
Collapse
|
26
|
Zhang Z, Lin K, Zhang Y, Bournel A, Xia K, Kläui M, Zhao W. Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning. SCIENCE ADVANCES 2023; 9:eade7439. [PMID: 36753538 PMCID: PMC9908019 DOI: 10.1126/sciadv.ade7439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Neuromorphic computing is expected to achieve human-brain performance by reproducing the structure of biological neural systems. However, previous neuromorphic designs based on synapse devices are all unsatisfying for their hardwired network structure and limited connection density, far from their biological counterpart, which has high connection density and the ability of meta-learning. Here, we propose a neural network based on magnon scattering modulated by an omnidirectional mobile hopfion in antiferromagnets. The states of neurons are encoded in the frequency distribution of magnons, and the connections between them are related to the frequency dependence of magnon scattering. Last, by controlling the hopfion's state, we can modulate hyperparameters in our network and realize the first meta-learning device that is verified to be well functioning. It not only breaks the connection density bottleneck but also provides a guideline for future designs of neuromorphic devices.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Kelian Lin
- Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yue Zhang
- Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Nanoelectronics Science and Technology Center, Hefei Innovation Research Institute, Beihang University, Hefei 230012, P. R. China
| | - Arnaud Bournel
- Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Ke Xia
- School of Physics, Southeast University, Nanjing 211189, P. R. China
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Weisheng Zhao
- Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Nanoelectronics Science and Technology Center, Hefei Innovation Research Institute, Beihang University, Hefei 230012, P. R. China
| |
Collapse
|
27
|
Correa J, Mehrjoo M, Battistelli R, Lehmkühler F, Marras A, Wunderer CB, Hirono T, Felk V, Krivan F, Lange S, Shevyakov I, Vardanyan V, Zimmer M, Hoesch M, Bagschik K, Guerrini N, Marsh B, Sedgwick I, Cautero G, Stebel L, Giuressi D, Menk RH, Greer A, Nicholls T, Nichols W, Pedersen U, Shikhaliev P, Tartoni N, Hyun HJ, Kim SH, Park SY, Kim KS, Orsini F, Iguaz FJ, Büttner F, Pfau B, Plönjes E, Kharitonov K, Ruiz-Lopez M, Pan R, Gang S, Keitel B, Graafsma H. The PERCIVAL detector: first user experiments. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:242-250. [PMID: 36601943 PMCID: PMC9814071 DOI: 10.1107/s1600577522010347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.
Collapse
Affiliation(s)
- J. Correa
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M. Mehrjoo
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Battistelli
- Helmholtz Zentrum Berlin HZB, Hahn-Meitner-Platz 1, Berlin, Germany
| | - F. Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A. Marras
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - C. B. Wunderer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - T. Hirono
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - V. Felk
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - F. Krivan
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - S. Lange
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - I. Shevyakov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - V. Vardanyan
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M. Zimmer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M. Hoesch
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - K. Bagschik
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - N. Guerrini
- Science and Technology Faculties STFC, Rutherford Appleton Laboratory RAL, Didcot, United Kingdom
| | - B. Marsh
- Science and Technology Faculties STFC, Rutherford Appleton Laboratory RAL, Didcot, United Kingdom
| | - I. Sedgwick
- Science and Technology Faculties STFC, Rutherford Appleton Laboratory RAL, Didcot, United Kingdom
| | - G. Cautero
- Elettra Sincrotrone Trieste, Trieste, Italy
| | - L. Stebel
- Elettra Sincrotrone Trieste, Trieste, Italy
| | | | - R. H. Menk
- Elettra Sincrotrone Trieste, Trieste, Italy
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A2
| | - A. Greer
- Observatory Sciences Ltd, Cambridge, United Kingdom
| | - T. Nicholls
- Science and Technology Faculties STFC, Rutherford Appleton Laboratory RAL, Didcot, United Kingdom
| | - W. Nichols
- Diamond Light Source, Didcot, United Kingdom
| | - U. Pedersen
- Diamond Light Source, Didcot, United Kingdom
| | | | - N. Tartoni
- Diamond Light Source, Didcot, United Kingdom
| | - H. J. Hyun
- Pohang Accelerator Laboratory PAL, Pohang, Gyeongbuk 37673, Republic of Korea
| | - S. H. Kim
- Pohang Accelerator Laboratory PAL, Pohang, Gyeongbuk 37673, Republic of Korea
| | - S. Y. Park
- Pohang Accelerator Laboratory PAL, Pohang, Gyeongbuk 37673, Republic of Korea
| | - K. S. Kim
- Pohang Accelerator Laboratory PAL, Pohang, Gyeongbuk 37673, Republic of Korea
| | - F. Orsini
- Synchrotron SOLEIL, Saint Aubin, France
| | | | - F. Büttner
- Helmholtz Zentrum Berlin HZB, Hahn-Meitner-Platz 1, Berlin, Germany
| | - B. Pfau
- Max-Born-Institute MBI, Max-Born-Straße 2A, Berlin, Germany
| | - E. Plönjes
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - K. Kharitonov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M. Ruiz-Lopez
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Pan
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - S. Gang
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - B. Keitel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - H. Graafsma
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Mid Sweden University, Sundsvall, Sweden
| |
Collapse
|
28
|
Coherent correlation imaging for resolving fluctuating states of matter. Nature 2023; 614:256-261. [PMID: 36653456 PMCID: PMC9908557 DOI: 10.1038/s41586-022-05537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5-8 and topology9-12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.
Collapse
|
29
|
Song C, Zhao L, Liu J, Jiang W. Experimental Realization of a Skyrmion Circulator. NANO LETTERS 2022; 22:9638-9644. [PMID: 36411254 DOI: 10.1021/acs.nanolett.2c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic skyrmions are mobile topological spin textures that can be manipulated by different means. Their applications have been frequently discussed in the context of information carriers for racetrack memory devices, which on the other hand, exhibit a skyrmion Hall effect as a result of the nontrivial real-space topology. While the skyrmion Hall effect is believed to be detrimental for constructing racetrack devices, we show here that it can be implemented for realizing a three-terminal skyrmion circulator. In analogy to the microwave circulator, nonreciprocal transportation and circulation of skyrmions are studied both numerically and experimentally. In particular, successful control of the circulating direction of being either clockwise or counterclockwise is demonstrated, simply by changing the sign of the topological charge. Our studies suggest that the topological property of skyrmions can be incorporated for enabling novel spintronic functionalities; the skyrmion circulator is just one example.
Collapse
Affiliation(s)
- Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
| | - Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
| | - Jiahao Liu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
- Institute for Quantum Information & State Key Laboratory of High-Performance Computing, College of Computer, National University of Defense Technology, Changsha410073, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
| |
Collapse
|
30
|
One RA, Mican S, CimpoesȖu AG, Joldos M, Tetean R, Tiușan CV. Micromagnetic Design of Skyrmionic Materials and Chiral Magnetic Configurations in Patterned Nanostructures for Neuromorphic and Qubit Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4411. [PMID: 36558263 PMCID: PMC9782460 DOI: 10.3390/nano12244411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Our study addresses the problematics of magnetic skyrmions, nanometer-size vortex-like swirling topological defects, broadly studied today for applications in classic, neuromorphic and quantum information technologies. We tackle some challenging issues of material properties versus skyrmion stability and manipulation within a multiple-scale modeling framework, involving complementary ab-initio and micromagnetic frameworks. Ab-initio calculations provide insight into the anatomy of the magnetic anisotropy, the Dzyaloshinskii-Moriya asymmetric exchange interaction (DMI) and their response to a gating electric field. Various multi-layered heterostructures were specially designed to provide electric field tunable perpendicular magnetization and sizeable DMI, which are required for skyrmion occurrence. Landau-Lifshitz-Gilbert micromagnetic calculations in nanometric disks allowed the extraction of material parameter phase diagrams in which magnetic textures were classified according to their topological charge. We identified suitable ranges of magnetic anisotropy, DMI and saturation magnetization for stabilizing skyrmionic ground states or writing/manipulating them using either a spin-transfer torque of a perpendicular current or the electric field. From analyzing the different contributions to the total magnetic free energy, we point out some critical properties influencing the skyrmions' stability. Finally, we discuss some experimental issues related to the choice of materials or the design of novel magnetic materials compatible with skyrmionic applications.
Collapse
Affiliation(s)
- Roxana-Alina One
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Sever Mican
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Angela-Georgiana CimpoesȖu
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Marius Joldos
- Computer Science Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania
| | - Romulus Tetean
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Coriolan Viorel Tiușan
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
- National Center of Scientific Research, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
Raab K, Brems MA, Beneke G, Dohi T, Rothörl J, Kammerbauer F, Mentink JH, Kläui M. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat Commun 2022; 13:6982. [DOI: 10.1038/s41467-022-34309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractReservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated and thermal skyrmion motion, we find that already a single skyrmion in a confined geometry suffices to realize nonlinearly separable functions, which we demonstrate for the XOR gate along with all other Boolean logic gate operations. Besides this universality, the reservoir computing concept ensures low training costs and ultra-low power operation with current densities orders of magnitude smaller than those used in existing spintronic reservoir computing demonstrations. Our proposed concept is robust against device imperfections and can be readily extended by linking multiple confined geometries and/or by including more skyrmions in the reservoir, suggesting high potential for scalable and low-energy reservoir computing.
Collapse
|
32
|
Criado JC, Schenk S, Spannowsky M, Hatton PD, Turnbull LA. Simulating anti-skyrmions on a lattice. Sci Rep 2022; 12:19179. [DOI: 10.1038/s41598-022-22043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractMagnetic skyrmions are meta-stable spin structures that naturally emerge in magnetic materials. While a vast amount of effort has gone into the study of their properties, their counterpart of opposite topological charge, the anti-skyrmion, has not received as much attention. We aim to close this gap by deploying Monte Carlo simulations of spin-lattice systems in order to investigate which interactions support anti-skyrmions, as well as skyrmions of Bloch and Néel type. We find that the combination of ferromagnetic exchange and Dzyaloshinskii–Moriya (DM) interactions is able to stabilize each of the three types, depending on the specific structure of the DM interactions. Considering a three-dimensional spin lattice model, we provide a finite-temperature phase diagram featuring a stable anti-skyrmion lattice phase for a large range of temperatures. In addition, we also shed light on the creation and annihilation processes of these anti-skyrmion tubes and study the effects of the DM interaction strength on their typical size.
Collapse
|
33
|
Yang S, Ju TS, Kim C, Kim HJ, An K, Moon KW, Park S, Hwang C. Magnetic Field Magnitudes Needed for Skyrmion Generation in a General Perpendicularly Magnetized Film. NANO LETTERS 2022; 22:8430-8436. [PMID: 36282733 PMCID: PMC9650724 DOI: 10.1021/acs.nanolett.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Due to its topological protection, the magnetic skyrmion has been intensively studied for both fundamental aspects and spintronics applications. However, despite recent advancements in skyrmion research, the deterministic creation of isolated skyrmions in a generic perpendicularly magnetized film is still one of the most essential and challenging techniques. Here, we present a method to create magnetic skyrmions in typical perpendicular magnetic anisotropy (PMA) films by applying a magnetic field pulse and a method to determine the magnitude of the required external magnetic fields. Furthermore, to demonstrate the usefulness of this result for future skyrmion research, we also experimentally study the PMA dependence on the minimum size of skyrmions. Although field-driven skyrmion generation is unsuitable for device application, this result can provide an easier approach for obtaining isolated skyrmions, making skyrmion-based research more accessible.
Collapse
Affiliation(s)
- Seungmo Yang
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
- Department
of Physics, Pusan National University, Busan46241, Republic of Korea
| | - Changsoo Kim
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Hyun-Joong Kim
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Kyongmo An
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Kyoung-Woong Moon
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Sungkyun Park
- Department
of Physics, Pusan National University, Busan46241, Republic of Korea
| | - Chanyong Hwang
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| |
Collapse
|
34
|
Qin G, Zhang R, Yang C, Lv X, Pei K, Yang L, Liu X, Zhang X, Che R. Magnetic-Field-Assisted Diffusion Motion of Magnetic Skyrmions. ACS NANO 2022; 16:15927-15934. [PMID: 36166823 DOI: 10.1021/acsnano.2c03046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies of the diffusion dynamics of magnetic skyrmions have generated widespread interest in both fundamental physics and spintronics applications. Here we report the magnetic-field-assisted diffusion motion of skyrmions in a microstructured chiral FeGe magnet. We demonstrate the enhancement of diffusion motion of magnetic skyrmions that is manipulated and driven by an oscillatory magnetic field. Further, the directed diffusion of skyrmions is observed when an in-plane field was introduced to break the symmetry of the system. Finally, we demonstrate the application of a magnetic field can induce an arrangements transition of skyrmions assemble in microstructure, that is, from a stiff hexagonal lattice to a weak interactional isotropic state. By using a step-ascended magnetic field we finished the observation of a particle-like diffusive motion for magnetic skyrmions that transport from high-concentration regions to low-concentration regions and the diffusion flux is proportional to the concentration gradient followed Fick's law.
Collapse
Affiliation(s)
- Gang Qin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Chendi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Liting Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xianhu Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xuefeng Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
35
|
Song M, You M, Yang S, Ju TS, Moon KW, Hwang C, Kim KW, Park AMG, Kim KJ. Universal Hopping Motion Protected by Structural Topology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203275. [PMID: 35985670 DOI: 10.1002/adma.202203275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A scaling law elucidates the universality in nature, presiding over many physical phenomena which seem unrelated. Thus, exploring the universality class of scaling law in a particular system enlightens its physical nature in relevance to other systems and sometimes unearths an unprecedented new dynamic phase. Here, the dynamics of weakly driven magnetic skyrmions are investigated, and its scaling law is compared with the motion of a magnetic domain wall (DW) creep. This study finds that the skyrmion does not follow the scaling law of the DW creep in 2D space but instead shows a hopping behavior similar to that of the particle-like DW in 1D confinement. In addition, the hopping law satisfies even when a topological charge of the skyrmion is removed. Therefore, the distinct scaling behavior between the magnetic skyrmion and the DW stems from a general principle beyond the topological charge. This study demonstrates that the hopping behavior of skyrmions originates from the bottleneck process induced by DW segments with diverging collective lengths, which is inevitable in any closed-shape spin structure in 2D. This work reveals that the structural topology of magnetic texture determines the universality class of its weakly driven motion, which is distinguished from the universality class of magnetic DW creep.
Collapse
Affiliation(s)
- Moojune Song
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Mujin You
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seungmo Yang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Kyoung-Woong Moon
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Kyoung-Whan Kim
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Albert Min Gyu Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kab-Jin Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
36
|
Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Shiomi Y, Kasai S, Otani Y. Pattern recognition with neuromorphic computing using magnetic field-induced dynamics of skyrmions. SCIENCE ADVANCES 2022; 8:eabq5652. [PMID: 36179033 PMCID: PMC9524829 DOI: 10.1126/sciadv.abq5652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/15/2022] [Indexed: 06/12/2023]
Abstract
Nonlinear phenomena in physical systems can be used for brain-inspired computing with low energy consumption. Response from the dynamics of a topological spin structure called skyrmion is one of the candidates for such a neuromorphic computing. However, its ability has not been well explored experimentally. Here, we experimentally demonstrate neuromorphic computing using nonlinear response originating from magnetic field-induced dynamics of skyrmions. We designed a simple-structured skyrmion-based neuromorphic device and succeeded in handwritten digit recognition with the accuracy as large as 94.7% and waveform recognition. Notably, there exists a positive correlation between the recognition accuracy and the number of skyrmions in the devices. The large degrees of freedom of skyrmion systems, such as the position and the size, originate from the more complex nonlinear mapping, the larger output dimension, and, thus, high accuracy. Our results provide a guideline for developing energy-saving and high-performance skyrmion neuromorphic computing devices.
Collapse
Affiliation(s)
- Tomoyuki Yokouchi
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Department of Basic Science, The University of Tokyo, Tokyo 152-8902, Japan
| | - Satoshi Sugimoto
- National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Bivas Rana
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poznań, Uniwersytetu Poznanskiego 2, Poznań 61-614, Poland
| | - Shinichiro Seki
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
| | - Naoki Ogawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuki Shiomi
- Department of Basic Science, The University of Tokyo, Tokyo 152-8902, Japan
| | - Shinya Kasai
- National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yoshichika Otani
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8561, Japan
- Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Twitchett-Harrison AC, Loudon JC, Pepper RA, Birch MT, Fangohr H, Midgley PA, Balakrishnan G, Hatton PD. Confinement of Skyrmions in Nanoscale FeGe Device-like Structures. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:4427-4437. [PMID: 36185075 PMCID: PMC9520970 DOI: 10.1021/acsaelm.2c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Skyrmion-based devices have been proposed as a promising solution for low-energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine skyrmions in FeGe device shapes using Lorentz transmission electron microscopy to reveal the consequences of skyrmion confinement in a device-like structure. Dumbbell-shaped elements were created by focused ion beam milling to provide regions where single skyrmions are confined adjacent to areas containing a skyrmion lattice. Simple block shapes of equivalent dimensions were also prepared to allow a direct comparison with skyrmion formation in a less complex, yet still confined, device geometry. The impact of applying a magnetic field and varying the temperature on the formation of skyrmions within the shapes was examined. This revealed that it is not just confinement within a small device structure that controls the position and number of skyrmions but that a complex device geometry changes the skyrmion behavior, including allowing skyrmions to form at lower applied magnetic fields than in simple shapes. The impact of edges in complex shapes is observed to be significant in changing the behavior of the magnetic textures formed. This could allow methods to be developed to control both the position and number of skyrmions within device structures.
Collapse
Affiliation(s)
- Alison C. Twitchett-Harrison
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - James C. Loudon
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Ryan A. Pepper
- Faculty
of Engineering and Physical Sciences, University
of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Max T. Birch
- Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department
of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Hans Fangohr
- Faculty
of Engineering and Physical Sciences, University
of Southampton, Southampton SO17 1BJ, United Kingdom
- Max
Planck Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Paul A. Midgley
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Geetha Balakrishnan
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Peter D. Hatton
- Department
of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
38
|
Wang XG, Guo GH, Dyrdał A, Barnaś J, Dugaev VK, Parkin SSP, Ernst A, Chotorlishvili L. Skyrmion Echo in a System of Interacting Skyrmions. PHYSICAL REVIEW LETTERS 2022; 129:126101. [PMID: 36179192 DOI: 10.1103/physrevlett.129.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
We consider helical rotation of skyrmions confined in the potentials formed by nanodisks. Based on numerical and analytical calculations we propose the skyrmion echo phenomenon. The physical mechanism of the skyrmion echo formation is also proposed. Because of the distortion of the lattice, impurities, or pinning effect, confined skyrmions experience slightly different local fields, which leads to dephasing of the initial signal. The interaction between skyrmions also can contribute to the dephasing process. However, switching the magnetization direction in the nanodiscs (e.g., by spin transfer torque) also switches the helical rotation of the skyrmions from clockwise to anticlockwise (or vice versa), and this restores the initial signal (which is the essence of skyrmion echo).
Collapse
Affiliation(s)
- X-G Wang
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Guang-Hua Guo
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - A Dyrdał
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - J Barnaś
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - V K Dugaev
- Department of Physics and Medical Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| | - S S P Parkin
- Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - A Ernst
- Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
- Institute for Theoretical Physics, Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - L Chotorlishvili
- Department of Physics and Medical Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| |
Collapse
|
39
|
Spanning Fermi arcs in a two-dimensional magnet. Nat Commun 2022; 13:5309. [PMID: 36085323 PMCID: PMC9463448 DOI: 10.1038/s41467-022-32948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The discovery of topological states of matter has led to a revolution in materials research. When external or intrinsic parameters break symmetries, global properties of topological materials change drastically. A paramount example is the emergence of Weyl nodes under broken inversion symmetry. While a rich variety of non-trivial quantum phases could in principle also originate from broken time-reversal symmetry, realizing systems that combine magnetism with complex topological properties is remarkably elusive. Here, we demonstrate that giant open Fermi arcs are created at the surface of ultrathin hybrid magnets where the Fermi-surface topology is substantially modified by hybridization with a heavy-metal substrate. The interplay between magnetism and topology allows us to control the shape and the location of the Fermi arcs by tuning the magnetization direction. The hybridization points in the Fermi surface can be attributed to a non-trivial mixed topology and induce hot-spots in the Berry curvature, dominating spin and charge transport as well as magneto-electric coupling effects. It has been predicted that elemental Iron, with low dimensionality, will be a topological metal hosting Weyl nodes. Here, Chen et al. grow iron on tungsten, a heavy metal with a strong spin-orbit interaction, and using momentum microscopy, show the emergence of giant open Fermi arcs which can be shaped by varying the magnetization of the iron.
Collapse
|
40
|
Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle MS, Welter P, Jacot BJ, Degen CL, Trassin M, Fiebig M, Gambardella P. Current-driven dynamics and ratchet effect of skyrmion bubbles in a ferrimagnetic insulator. NATURE NANOTECHNOLOGY 2022; 17:834-841. [PMID: 35788187 DOI: 10.1038/s41565-022-01144-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Magnetic skyrmions are compact chiral spin textures that exhibit a rich variety of topological phenomena and hold potential for the development of high-density memory devices and novel computing schemes driven by spin currents. Here, we demonstrate the room-temperature interfacial stabilization and current-driven control of skyrmion bubbles in the ferrimagnetic insulator Tm3Fe5O12 coupled to Pt, showing the current-induced motion of individual skyrmion bubbles. The ferrimagnetic order of the crystal together with the interplay of spin-orbit torques and pinning determine the skyrmion dynamics in Tm3Fe5O12 and result in a strong skyrmion Hall effect characterized by a negative deflection angle and hopping motion. Further, we show that the velocity and depinning threshold of the skyrmion bubbles can be modified by exchange coupling Tm3Fe5O12 to an in-plane magnetized Y3Fe5O12 layer, which distorts the spin texture of the skyrmions and leads to directional-dependent rectification of their dynamics. This effect, which is equivalent to a magnetic ratchet, is exploited to control the skyrmion flow in a racetrack-like device.
Collapse
Affiliation(s)
- Saül Vélez
- Department of Materials, ETH Zurich, Zurich, Switzerland.
- Condensed Matter Physics Center, Instituto Nicolás Cabrera, and Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Sandra Ruiz-Gómez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid, Spain
- Alba Synchrotron Light Facility, Barcelona, Spain
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Jakob Schaab
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | | | | | - Pol Welter
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | | | | | - Morgan Trassin
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Manfred Fiebig
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
41
|
Bhukta M, Singh BB, Mallick S, Rohart S, Bedanta S. Degenerate skyrmionic states in synthetic antiferromagnets. NANOTECHNOLOGY 2022; 33:385702. [PMID: 35636246 DOI: 10.1088/1361-6528/ac7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Topological magnetic textures, characterized by integer topological chargeS, are potential candidates in future magnetic logic and memory devices, due to their smaller size and expected low threshold current density for their motion. An essential requirement to stabilize them is the Dzyaloshinskii-Moriya interaction (DMI) which promotes a particular chirality, leading to a unique value ofSin a given material. However, recently coexistence of skyrmions and antiskyrmions, with opposite topological charge, in frustrated ferromagnets has been predicted usingJ1-J2-J3classical Heisenberg model, which opens new perspectives, to use the topological charge as an additional degree of freedom. In this work, we propose another approach of using a synthetic antiferromagnetic system, where one of the ferromagnetic (FM) layer has isotropic and the other FM layer has anisotropic DMI to promote the existence of skyrmions and antiskyrmions, respectively. A frustrated interaction arises due to the coupling between the magnetic textures in the FM layers, which enables the stabilization and coexistence of 6 novel elliptical topological textures.
Collapse
Affiliation(s)
- Mona Bhukta
- Laboratory for Nanomagnetism and Magnetic Materials, School of Physical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Jatni 752050, India
| | - Braj Bhusan Singh
- Laboratory for Nanomagnetism and Magnetic Materials, School of Physical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Jatni 752050, India
| | - Sougata Mallick
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS UMR 8502, F-91405 Orsay Cedex, France
| | - Stanislas Rohart
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS UMR 8502, F-91405 Orsay Cedex, France
| | - Subhankar Bedanta
- Laboratory for Nanomagnetism and Magnetic Materials, School of Physical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Jatni 752050, India
| |
Collapse
|
42
|
Al Saidi W, Sbiaa R. Stabilizing magnetic skyrmions in constricted nanowires. Sci Rep 2022; 12:10141. [PMID: 35710866 PMCID: PMC9203817 DOI: 10.1038/s41598-022-14345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic skyrmions are topologically-protected chiral nano-scale spin structures that offer low power and high-density functionalities for spintronic devices. They behave as particles that can be moved, created and annihilated. These characteristics make them promising information-carrying bits, hence a precise control of the skyrmion motion is essential. This study shows that stabilizing skyrmion is possible using a stepped nanowire geometry. The nanoconstriction dimension and materials properties are found to strongly affect the pinning, depinning and annihilation of the skyrmion. It is also observed that near the stepped region, the skyrmion slows down and its velocity changes direction before its stability. Moreover, a reduction of skyrmion size as it squeezes through the stepped region is observed. Our results will open a new strategy for the design and development of skyrmion-based devices.
Collapse
Affiliation(s)
- Warda Al Saidi
- Department of Physics, Sultan Qaboos University, PC 123, P.O. Box 36, Muscat, Oman
| | - Rachid Sbiaa
- Department of Physics, Sultan Qaboos University, PC 123, P.O. Box 36, Muscat, Oman.
| |
Collapse
|
43
|
Abstract
A key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigations, for large skyrmions the pinning originates at the skyrmion boundary and not at its core. The boundary pinning is strongly influenced by the very complex pinning energy landscape that goes beyond the conventional effective rigid quasi-particle description. This gives rise to complex skyrmion shape distortions and allows for dynamic switching of pinning sites and flexible tuning of the pinning. Skyrmions, topological spin textures, can be pinned by defects present in the material that hosts them, influencing their motion. Here, Gruber et al show that the skyrmions are pinned at their boundary where the finite size of the skyrmions governs their pinning, and they demonstrate that certain pinning sites can switched on and off in-situ.
Collapse
|
44
|
Kern LM, Pfau B, Deinhart V, Schneider M, Klose C, Gerlinger K, Wittrock S, Engel D, Will I, Günther CM, Liefferink R, Mentink JH, Wintz S, Weigand M, Huang MJ, Battistelli R, Metternich D, Büttner F, Höflich K, Eisebitt S. Deterministic Generation and Guided Motion of Magnetic Skyrmions by Focused He +-Ion Irradiation. NANO LETTERS 2022; 22:4028-4035. [PMID: 35577328 PMCID: PMC9137908 DOI: 10.1021/acs.nanolett.2c00670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Indexed: 05/18/2023]
Abstract
Magnetic skyrmions are quasiparticles with nontrivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond time scale. Both methods, however, produce randomly arranged skyrmions, which inherently limits the precision on the location at which the skyrmions are nucleated. Here, we show that nanopatterning of the anisotropy landscape with a He+-ion beam creates well-defined skyrmion nucleation sites, thereby transforming the skyrmion localization into a deterministic process. This approach allows control of individual skyrmion nucleation as well as guided skyrmion motion with nanometer-scale precision, which is pivotal for both future fundamental studies of skyrmion dynamics and applications.
Collapse
Affiliation(s)
- Lisa-Marie Kern
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Bastian Pfau
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- E-mail:
| | - Victor Deinhart
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Ferdinand-Braun-Institut
gGmbH, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Michael Schneider
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Christopher Klose
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Kathinka Gerlinger
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Steffen Wittrock
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Dieter Engel
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Ingo Will
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Christian M. Günther
- Technische
Universität Berlin, Zentraleinrichtung Elektronenmikroskopie (ZELMI), 10623 Berlin, Germany
| | - Rein Liefferink
- Radboud
University, Institute for
Molecules and Materials (IMM), 6525 AJ Nijmegen, Netherlands
| | - Johan H. Mentink
- Radboud
University, Institute for
Molecules and Materials (IMM), 6525 AJ Nijmegen, Netherlands
| | - Sebastian Wintz
- Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Markus Weigand
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Meng-Jie Huang
- Deutsches
Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | | | - Daniel Metternich
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Felix Büttner
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Katja Höflich
- Ferdinand-Braun-Institut
gGmbH, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Stefan Eisebitt
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Technische
Universität Berlin, Institut für
Optik und Atomare Physik, 10623 Berlin, Germany
| |
Collapse
|
45
|
Topology dependence of skyrmion Seebeck and skyrmion Nernst effect. Sci Rep 2022; 12:6801. [PMID: 35473940 PMCID: PMC9042842 DOI: 10.1038/s41598-022-10550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
We explore the dynamics of skyrmions with various topological charges induced by a temperature gradient in an ultra-thin insulating magnetic film. Combining atomistic spin simulations and analytical calculations we find a topology-dependent skyrmion Seebeck effect: while skyrmions and antiskyrmions move to the hot regime, a topologically trivial localized spin structure moves to the cold regime. We further reveal the emergence of a skyrmion Nernst effect, i.e. finite, topology-dependent velocities transverse to the direction of the temperature gradient. These findings are in agreement with accompanying simulations of skyrmionic motion induced by monochromatic magnon currents, allowing us to demonstrate that the magnonic spin Seebeck effect is responsible for both, skyrmion Seebeck and Nernst effect. Furthermore we employ scattering theory together with Thiele's equation to identify linear momentum transfer from the magnons to the skyrmion as the dominant contribution and to demonstrate that the direction of motion depends on the topological magnon Hall effect and the topological charge of the skyrmion.
Collapse
|
46
|
Hou Z, Wang Y, Lan X, Li S, Wan X, Meng F, Hu Y, Fan Z, Feng C, Qin M, Zeng M, Zhang X, Liu X, Fu X, Yu G, Zhou G, Zhou Y, Zhao W, Gao X, Liu JM. Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107908. [PMID: 34969153 DOI: 10.1002/adma.202107908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Magnetic skyrmions are topological swirling spin configurations that hold promise for building future magnetic memories and logic circuits. Skyrmionic devices typically rely on the electrical manipulation of a single skyrmion, but controllably manipulating a group of skyrmions can lead to more compact and memory-efficient devices. Here, an electric-field-driven cascading transition of skyrmion clusters in a nanostructured ferromagnetic/ferroelectric multiferroic heterostructure is reported, which allows a continuous multilevel transition of the number of skyrmions in a one-by-one manner. Most notably, the transition is non-volatile and reversible, which is crucial for multi-bit memory applications. Combined experiments and theoretical simulations reveal that the switching of skyrmion clusters is induced by the strain-mediated modification of both the interfacial Dzyaloshinskii-Moriya interaction and effective uniaxial anisotropy. The results not only open up a new direction for constructing low-power-consuming, non-volatile, and multi-bit skyrmionic devices, but also offer valuable insights into the fundamental physics underlying the voltage manipulation of skyrmion clusters.
Collapse
Affiliation(s)
- Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaoming Lan
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Sai Li
- Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xuejin Wan
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fei Meng
- Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yangfan Hu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Zhen Fan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chun Feng
- Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Minghui Qin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xichao Zhang
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, School of Physics, Nankai University, Tianjin, 300071, P. R. China
| | - Guanghua Yu
- Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Weisheng Zhao
- Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jun-Ming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 211102, P. R. China
| |
Collapse
|
47
|
Chen X, Araujo FA, Riou M, Torrejon J, Ravelosona D, Kang W, Zhao W, Grollier J, Querlioz D. Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations. Nat Commun 2022; 13:1016. [PMID: 35197449 PMCID: PMC8866480 DOI: 10.1038/s41467-022-28571-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Deep learning has an increasing impact to assist research, allowing, for example, the discovery of novel materials. Until now, however, these artificial intelligence techniques have fallen short of discovering the full differential equation of an experimental physical system. Here we show that a dynamical neural network, trained on a minimal amount of data, can predict the behavior of spintronic devices with high accuracy and an extremely efficient simulation time, compared to the micromagnetic simulations that are usually employed to model them. For this purpose, we re-frame the formalism of Neural Ordinary Differential Equations to the constraints of spintronics: few measured outputs, multiple inputs and internal parameters. We demonstrate with Neural Ordinary Differential Equations an acceleration factor over 200 compared to micromagnetic simulations for a complex problem - the simulation of a reservoir computer made of magnetic skyrmions (20 minutes compared to three days). In a second realization, we show that we can predict the noisy response of experimental spintronic nano-oscillators to varying inputs after training Neural Ordinary Differential Equations on five milliseconds of their measured response to a different set of inputs. Neural Ordinary Differential Equations can therefore constitute a disruptive tool for developing spintronic applications in complement to micromagnetic simulations, which are time-consuming and cannot fit experiments when noise or imperfections are present. Our approach can also be generalized to other electronic devices involving dynamics.
Collapse
Affiliation(s)
- Xing Chen
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, 100191, Beijing, China
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Flavio Abreu Araujo
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Croix du Sud 1, Louvain-la-Neuve, 1348, Belgium
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Mathieu Riou
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Jacob Torrejon
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Dafiné Ravelosona
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Wang Kang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, 100191, Beijing, China
| | - Weisheng Zhao
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, 100191, Beijing, China
| | - Julie Grollier
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Damien Querlioz
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
| |
Collapse
|
48
|
Wang K, Zhang Y, Bheemarasetty V, Zhou S, Ying SC, Xiao G. Single skyrmion true random number generator using local dynamics and interaction between skyrmions. Nat Commun 2022; 13:722. [PMID: 35132085 PMCID: PMC8821635 DOI: 10.1038/s41467-022-28334-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Magnetic skyrmions are of great interest to both fundamental research and applications in post-von-Neumann computing devices. The successful implementation of skyrmionic devices requires functionalities of skyrmions with effective controls. Here we show that the local dynamics of skyrmions, in contrast to the global dynamics of a skyrmion as a whole, can be introduced to provide effective functionalities for versatile computing. A single skyrmion interacting with local pinning centres under thermal effects can fluctuate in time and switch between a small-skyrmion and a large-skyrmion state, thereby serving as a robust true random number generator for probabilistic computing. Moreover, neighbouring skyrmions exhibit an anti-correlated coupling in their fluctuation dynamics. Both the switching probability and the dynamic coupling strength can be tuned by modifying the applied magnetic field and spin current. Our results could lead to progress in developing magnetic skyrmionic devices with high tunability and efficient controls.
Collapse
Affiliation(s)
- Kang Wang
- Department of Physics, Brown University, Providence, RI, 02912, USA.
| | - Yiou Zhang
- Department of Physics, Brown University, Providence, RI, 02912, USA
| | | | - Shiyu Zhou
- Department of Physics, Brown University, Providence, RI, 02912, USA
| | - See-Chen Ying
- Department of Physics, Brown University, Providence, RI, 02912, USA
| | - Gang Xiao
- Department of Physics, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
49
|
Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Sci Bull (Beijing) 2022; 67:691-699. [DOI: 10.1016/j.scib.2022.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
|
50
|
Wu Y, Wen H, Chen W, Zheng Y. Microdynamic Study of Spin-Lattice Coupling Effects on Skyrmion Transport. PHYSICAL REVIEW LETTERS 2021; 127:097201. [PMID: 34506159 DOI: 10.1103/physrevlett.127.097201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Skyrmion transport fundamentally determines the speed, energy consumption, and functionality of skyrmion-based spintronic devices, attracting considerable attention. Recent experimental studies found there is a migration barrier for the thermal activated transport of a skyrmion, which is speculated to be induced by the pinning effects of crystalline defects. In this Letter, we propose an alternative source of migration barrier for skyrmion transport, i.e., a local lattice distortion field due to spin-lattice coupling, which can lead to the same Arrhenius diffusion behavior in defect-free skyrmion materials. By performing spin-lattice dynamics simulations, we study the microdynamic insight into the influence of local lattice distortion field, which refreshes the mechanistic understanding on skyrmion transport.
Collapse
Affiliation(s)
- Yifeng Wu
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Haohua Wen
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Weijin Chen
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zheng
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|