1
|
Wan Z, Qian Q, Huang Y, Duan X. Layered hybrid superlattices as designable quantum solids. Nature 2024; 635:49-60. [PMID: 39506149 DOI: 10.1038/s41586-024-07858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
Crystalline solids typically show robust long-range structural ordering, vital for their remarkable electronic properties and use in functional electronics, albeit with limited customization space. By contrast, synthetic molecular systems provide highly tunable structural topologies and versatile functionalities but are often too delicate for scalable electronic integration. Combining these two systems could harness the strengths of both, yet realizing this integration is challenging owing to distinct chemical bonding structures and processing conditions. Two-dimensional atomic crystals comprise crystalline atomic layers separated by non-bonding van der Waals gaps, allowing diverse atomic or molecular intercalants to be inserted without disrupting existing covalent bonds. This enables the creation of a diverse set of layered hybrid superlattices (LHSLs) composed of alternating crystalline atomic layers of variable electronic properties and self-assembled atomic or molecular interlayers featuring customizable chemical compositions and structural motifs. Here we outline strategies to prepare LHSLs and discuss emergent properties. With the versatile molecular design strategies and modular assembly processes, LHSLs offer vast flexibility for weaving distinct chemical constituents and quantum properties into monolithic artificial solids with a designable three-dimensional potential landscape. This opens unprecedented opportunities to tailor charge correlations, quantum properties and topological phases, thereby defining a rich material platform for advancing quantum information science.
Collapse
Affiliation(s)
- Zhong Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qi Qian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Li J, Yang X, Zhang Z, Yang W, Duan X, Duan X. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. NATURE MATERIALS 2024; 23:1326-1338. [PMID: 39227467 DOI: 10.1038/s41563-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Two-dimensional transition metal dichalcogenides, which feature atomically thin geometry and dangling-bond-free surfaces, have attracted intense interest for diverse technology applications, including ultra-miniaturized transistors towards the subnanometre scale. A straightforward exfoliation-and-restacking approach has been widely used for nearly arbitrary assembly of diverse two-dimensional (2D) heterostructures, superlattices and moiré superlattices, providing a versatile materials platform for fundamental investigations of exotic physical phenomena and proof-of-concept device demonstrations. While this approach has contributed importantly to the recent flourishing of 2D materials research, it is clearly unsuitable for practical technologies. Capturing the full potential of 2D transition metal dichalcogenides requires robust and scalable synthesis of these atomically thin materials and their heterostructures with designable spatial modulation of chemical compositions and electronic structures. The extreme aspect ratio, lack of intrinsic substrate and highly delicate nature of the atomically thin crystals present fundamental difficulties in material synthesis. Here we summarize the key challenges, highlight current advances and outline opportunities in the scalable synthesis of transition metal dichalcogenide-based heterostructures, superlattices and moiré superlattices.
Collapse
Affiliation(s)
- Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Zhengwei Zhang
- School of Physics and Electronics, Central South University, Changsha, China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
4
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Park OK, Kim NH, Lee JH. A facile and scalable fabrication method of scrolled graphene/boron nitride-based van der Waals superlattice heterostructure materials for highly stable supercapacitor electrode application. NANOSCALE 2024; 16:14448-14458. [PMID: 39012377 DOI: 10.1039/d4nr01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Due to the increasing demand for the development of efficient renewable energy supply systems to reduce the mismatch between energy demand and utilization, supercapacitors have attracted increasing attention in the energy industry. However, the development of energy storage electrode materials to be applied at the industrial level is still challenging due to the unsatisfactory durability and scalable production issues. This study suggested a facile and scalable one-pot fabrication method of using graphene/hexagonal boron nitride (G/BN)-based one-dimensional (1D) van der Waals superlattice heterostructures (vdWSLs) as highly stable electrode materials to enhance the energy storage performance by improving the mesopore volume content, specific surface area, electrical properties, and interfacial interaction between the stacked G/BN layers. The G/BN-based vdWSLs were fabricated by a simple scrolling process through the electromagnetic interaction between the attached magnetic iron oxide nanoparticles (Fe3O4 NPs) on the surface of a G/BN vdW heterostructure (vdWH) and the applied magnetic field. The investigation results demonstrate that the changed morphology of the fabricated G/Fe/BN(NS) strongly affects the fine pore distribution, electrochemical performance, and electrical properties. Consequently, as a synergistic effect of an increased mesopore volume content, specific surface area, and C-B-N heterojunction interfacial area, the fabricated G/Fe/BN(NS) electrode showed a 100% enhancement of specific capacitance (207 F g-1 at 0.5 A g-1) and almost 7 times enhancement of electrical conductivity (800 S cm-1) with a nearly 2.3 times increase of carrier mobility (716 cm2 V-1 s-1) compared to that of the G/Fe/BN electrode. Furthermore, it exhibited outstanding long-term cycling stability with almost 119% capacitance retention even after 100 000 charge-discharge cycles. These results suggest that G/Fe/BN(NS) has tremendous potential as an electrode to fabricate high-performance supercapacitors with excellent cycling stability.
Collapse
Affiliation(s)
- Ok-Kyung Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
6
|
He Q, Si K, Xu Z, Wang X, Jin C, Yang Y, Wei J, Meng L, Zhai P, Zhang P, Tang P, Gong Y. Direct synthesis of controllable ultrathin heteroatoms-intercalated 2D layered materials. Nat Commun 2024; 15:6320. [PMID: 39060322 PMCID: PMC11282301 DOI: 10.1038/s41467-024-50694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Two-dimensional (2D) layered materials have been studied in depth during the past two decades due to their unique structure and properties. Transition metal (TM) intercalation of layered materials have been proven as an effective way to introduce new physical properties, such as tunable 2D magnetism, but the direct growth of atomically thin heteroatoms-intercalated layered materials remains untapped. Herein, we directly synthesize various ultrathin heteroatoms-intercalated 2D layered materials (UHI-2DMs) through flux-assisted growth (FAG) approach. Eight UHI-2DMs (V1/3NbS2, Cr1/3NbS2, Mn1/3NbS2, Fe1/3NbS2, Co1/3NbS2, Co1/3NbSe2, Fe1/3TaS2, Fe1/4TaS2) were successfully synthesized. Their thickness can be reduced to the thinnest limit (bilayer 2D material with monolayer intercalated TM), and magnetic ordering can be induced in the synthesized structures. Interestingly, due to the possible anisotropy-stabilized long-range ferromagnetism in Fe1/3TaS2 with weak interlayer coupling, the layer-independent magnetic ordering temperature of Fe1/3TaS2 was revealed by magneto-transport properties. This work establishes a general method for direct synthesis of heteroatom-intercalated ultrathin 2D materials with tunable chemical and physical properties.
Collapse
Affiliation(s)
- Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- The Analysis & Testing Center, Beihang University, Beijing, PR China
| | - Kunpeng Si
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China
| | - Zian Xu
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
| | - Chunqiao Jin
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, PR China
| | - Yahan Yang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China
| | - Juntian Wei
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China
| | - Lingjia Meng
- Faculty of Science, Beijing University of Technology, Beijing, PR China
| | - Pengbo Zhai
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, PR China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, PR China.
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China.
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, PR China.
| |
Collapse
|
7
|
Jin G, Multunas CD, Hart JL, Kiani MT, Duong NK, Sam QP, Wang H, Cheon Y, Hynek DJ, Han HJ, Sundararaman R, Cha JJ. Diameter-dependent phase selectivity in 1D-confined tungsten phosphides. Nat Commun 2024; 15:5889. [PMID: 39003297 PMCID: PMC11246448 DOI: 10.1038/s41467-024-50323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Topological materials confined in 1D can transform computing technologies, such as 1D topological semimetals for nanoscale interconnects and 1D topological superconductors for fault-tolerant quantum computing. As such, understanding crystallization of 1D-confined topological materials is critical. Here, we demonstrate 1D template-assisted nanowire synthesis where we observe diameter-dependent phase selectivity for tungsten phosphides. A phase bifurcation occurs to produce tungsten monophosphide and tungsten diphosphide at the cross-over nanowire diameter regime of 35-70 nm. Four-dimensional scanning transmission electron microscopy is used to identify the two phases and to map crystallographic orientations of grains at a few nm resolution. The 1D-confined phase selectivity is attributed to the minimization of the total surface energy, which depends on the nanowire diameter and chemical potentials of precursors. Theoretical calculations are carried out to construct the diameter-dependent phase diagram, which agrees with experimental observations. Our findings suggest a crystallization route to stabilize topological materials confined in 1D.
Collapse
Affiliation(s)
- Gangtae Jin
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Christian D Multunas
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - James L Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Mehrdad T Kiani
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | - Quynh P Sam
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Han Wang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yeryun Cheon
- Department of Physics, Cornell University, Ithaca, NY, 14850, USA
| | - David J Hynek
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Hyeuk Jin Han
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul, 01133, South Korea.
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Judy J Cha
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
8
|
Ahn H, Moon G, Jung HG, Deng B, Yang DH, Yang S, Han C, Cho H, Yeo Y, Kim CJ, Yang CH, Kim J, Choi SY, Park H, Jeon J, Park JH, Jo MH. Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS 2 field-effect transistors. NATURE NANOTECHNOLOGY 2024; 19:955-961. [PMID: 38961247 DOI: 10.1038/s41565-024-01706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs-that are immune to high gate capacitance-towards ultimate scaling.
Collapse
Affiliation(s)
- Heonsu Ahn
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Gunho Moon
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Hang-Gyo Jung
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, Korea
| | - Bingchen Deng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Dong-Hwan Yang
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Sera Yang
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Cheolhee Han
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Hyunje Cho
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Youngki Yeo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Cheol-Joo Kim
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Chan-Ho Yang
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jonghwan Kim
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Si-Young Choi
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jongwook Jeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jin-Hong Park
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Moon-Ho Jo
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea.
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea.
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
9
|
Kim S, Lee W, Ko K, Cho H, Cho H, Jeon S, Jeong C, Kim S, Ding F, Suh J. Phase-Centric MOCVD Enabled Synthetic Approaches for Wafer-Scale 2D Tin Selenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400800. [PMID: 38593471 DOI: 10.1002/adma.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post-synthetic modifications are required, or even a combination of both, to ensure large-area, pure-phase, and low-temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer-scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D-SnSe2 films with tuneable thicknesses are directly grown via metal-organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal-organic precursors and decoupled dual-temperature regimes for high-temperature ligand cracking and low-temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as-grown 2D-SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n-type to p-type crossover at the wafer scale. These tailor-made synthetic routes will accelerate the low-thermal-budget production of multiphase 2D materials in a reliable and scalable fashion.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Wookhee Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Kyungmin Ko
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hanbin Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hoyeon Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seonhwa Jeon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Changwook Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Feng Ding
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
| | - Joonki Suh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| |
Collapse
|
10
|
Huang S, Bai J, Long H, Yang S, Chen W, Wang Q, Sa B, Guo Z, Zheng J, Pei J, Du KZ, Zhan H. Thermally Activated Photoluminescence Induced by Tunable Interlayer Interactions in Naturally Occurring van der Waals Superlattice SnS/TiS 2. NANO LETTERS 2024; 24:6061-6068. [PMID: 38728017 DOI: 10.1021/acs.nanolett.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
van der Waals (vdW) superlattices, comprising different 2D materials aligned alternately by weak interlayer interactions, offer versatile structures for the fabrication of novel semiconductor devices. Despite their potential, the precise control of optoelectronic properties with interlayer interactions remains challenging. Here, we investigate the discrepancies between the SnS/TiS2 superlattice (SnTiS3) and its subsystems by comprehensive characterization and DFT calculations. The disappearance of certain Raman modes suggests that the interactions alter the SnS subsystem structure. Specifically, such structural changes transform the band structure from indirect to direct band gap, causing a strong PL emission (∼2.18 eV) in SnTiS3. In addition, the modulation of the optoelectronic properties ultimately leads to the unique phenomenon of thermally activated photoluminescence. This phenomenon is attributed to the inhibition of charge transfer induced by tunable intralayer strains. Our findings extend the understanding of the mechanism of interlayer interactions in van der Waals superlattices and provide insights into the design of high-temperature optoelectronic devices.
Collapse
Affiliation(s)
- Siting Huang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiahui Bai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| | - Hanyan Long
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shichao Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenwei Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qiuyan Wang
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| | - Baisheng Sa
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jingying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ke-Zhao Du
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
11
|
Altvater M, Muratore C, Snure M, Glavin NR. Two-Step Conversion of Metal and Metal Oxide Precursor Films to 2D Transition Metal Dichalcogenides and Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400463. [PMID: 38733217 DOI: 10.1002/smll.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The widely studied class of two-dimensional (2D) materials known as transition metal dichalcogenides (TMDs) are now well-poised to be employed in real-world applications ranging from electronic logic and memory devices to gas and biological sensors. Several scalable thin film synthesis techniques have demonstrated nanoscale control of TMD material thickness, morphology, structure, and chemistry and correlated these properties with high-performing, application-specific device metrics. In this review, the particularly versatile two-step conversion (2SC) method of TMD film synthesis is highlighted. The 2SC technique relies on deposition of a solid metal or metal oxide precursor material, followed by a reaction with a chalcogen vapor at an elevated temperature, converting the precursor film to a crystalline TMD. Herein, the variables at each step of the 2SC process including the impact of the precursor film material and deposition technique, the influence of gas composition and temperature during conversion, as well as other factors controlling high-quality 2D TMD synthesis are considered. The specific advantages of the 2SC approach including deposition on diverse substrates, low-temperature processing, orientation control, and heterostructure synthesis, among others, are featured. Finally, emergent opportunities that take advantage of the 2SC approach are discussed to include next-generation electronics, sensing, and optoelectronic devices, as well as catalysis for energy-related applications.
Collapse
Affiliation(s)
- Michael Altvater
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Christopher Muratore
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, 45469, OH, USA
| | - Michael Snure
- Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, 45433, USA
| | - Nicholas R Glavin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433, USA
| |
Collapse
|
12
|
Zhang K, Zhang T, You J, Zheng X, Zhao M, Zhang L, Kong J, Luo Z, Huang S. Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307587. [PMID: 38084456 DOI: 10.1002/smll.202307587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Indexed: 05/12/2024]
Abstract
2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
13
|
Yoo MS, Byun KE, Lee H, Lee MH, Kwon J, Kim SW, Jeong U, Seol M. Ultraclean Interface of Metal Chalcogenides with Metal through Confined Interfacial Chalcogenization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310282. [PMID: 38190458 DOI: 10.1002/adma.202310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Acquisition of defect-free transition metal dichalcogenides (TMDs) channels with clean heterojunctions is a critical issue in the production of TMD-based functional electronic devices. Conventional approaches have transferred TMD onto a target substrate, and then apply the typical device fabrication processes. Unfortunately, those processes cause physical and chemical defects in the TMD channels. Here, a novel synthetic process of TMD thin films, named confined interfacial chalcogenization (CIC) is proposed. In the proposed synthesis, a uniform TMDlayer is created at the Au/transition metal (TM) interface by diffusion of chalcogen through the upper Au layer and the reaction of chalcogen with the underlying TM. CIC allows for ultraclean heterojunctions with the metals, synthesis of various homo- and hetero-structured TMDs, and in situ TMD channel formation in the last stage of device fabrication. The mechanism of TMD growth is revealed by the TM-accelerated chalcogen diffusion, epitaxial growth of TMD on Au(111). We demonstrated a wafer-scale TMD-based vertical memristors which exhibit excellent statistical concordance in device performance enabled by the ultraclean heterojunctions and superior uniformity in thickness. CIC proposed in this study represents a breakthrough in in TMD-based electronic device fabrication and marking a substantial step toward practical next-generation integrated electronics.
Collapse
Affiliation(s)
- Min Seok Yoo
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Kyung-Eun Byun
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Hyangsook Lee
- Analytical Science Laboratory, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Min-Hyun Lee
- Thin film Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Junyoung Kwon
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Sang Won Kim
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro Nam-Gu, Pohang, 37673, Republic of Korea
| | - Minsu Seol
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| |
Collapse
|
14
|
Wang H, Zhang J, Shen C, Yang C, Küster K, Deuschle J, Starke U, Zhang H, Isobe M, Huang D, van Aken PA, Takagi H. Direct visualization of stacking-selective self-intercalation in epitaxial Nb 1+xSe 2 films. Nat Commun 2024; 15:2541. [PMID: 38514672 PMCID: PMC10957900 DOI: 10.1038/s41467-024-46934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb1+xSe2. We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation.
Collapse
Affiliation(s)
- Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Jiawei Zhang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Chen Shen
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany.
| | - Chao Yang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Kathrin Küster
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Julia Deuschle
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Ulrich Starke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hongbin Zhang
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Masahiko Isobe
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Dennis Huang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hidenori Takagi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
- Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan
| |
Collapse
|
15
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Wang F, Zhang T, Xie R, Liu A, Dai F, Chen Y, Xu T, Wang H, Wang Z, Liao L, Wang J, Zhou P, Hu W. Next-Generation Photodetectors beyond Van Der Waals Junctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301197. [PMID: 36960667 DOI: 10.1002/adma.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
With the continuous advancement of nanofabrication techniques, development of novel materials, and discovery of useful manipulation mechanisms in high-performance applications, especially photodetectors, the morphology of junction devices and the way junction devices are used are fundamentally revolutionized. Simultaneously, new types of photodetectors that do not rely on any junction, providing a high signal-to-noise ratio and multidimensional modulation, have also emerged. This review outlines a unique category of material systems supporting novel junction devices for high-performance detection, namely, the van der Waals materials, and systematically discusses new trends in the development of various types of devices beyond junctions. This field is far from mature and there are numerous methods to measure and evaluate photodetectors. Therefore, it is also aimed to provide a solution from the perspective of applications in this review. Finally, based on the insight into the unique properties of the material systems and the underlying microscopic mechanisms, emerging trends in junction devices are discussed, a new morphology of photodetectors is proposed, and some potential innovative directions in the subject area are suggested.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Anna Liu
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuxing Dai
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Xu
- School of Microelectronics, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Hailu Wang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Liao
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Jianlu Wang
- School of Microelectronics, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- School of Microelectronics, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Jin G, Kim SH, Han HJ. Synthesis and Future Electronic Applications of Topological Nanomaterials. Int J Mol Sci 2023; 25:400. [PMID: 38203574 PMCID: PMC10779379 DOI: 10.3390/ijms25010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.
Collapse
Affiliation(s)
- Gangtae Jin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Seo-Hyun Kim
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| | - Hyeuk-Jin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| |
Collapse
|
18
|
Xu C, Ding Y, Wang S, Cao S. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123182. [PMID: 37517268 DOI: 10.1016/j.saa.2023.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
van der Waals (vdW) heterojunctions based on two-dimensional (2D) materials, graphene and transition metal dichalcogenides (TMDs), are a research hotspot for future optoelectronic and exciton devices. Bond-free vdW interactions are key to 2D material heterojunction device reliability and stability. However, most of the current research on 2D stacked materials heterostructures mainly focuses on optical properties and electronic structure. Furthermore, vdW interaction in 2D heterostructures is studied and understood on the basis of qualitative description and energy ranges from the literature. There are few studies on the nature of vdW interaction based on practical calculations of the quantitative strength and microscopic mechanism of vdW interaction between 2D stacked materials. Therefore, this paper explores the vdW interaction between 2D material stacked bilayer structures, including bilayer graphene, graphene/MoS2 and graphene/WS2 heterostructures, focusing on quantitative analysis of the energy components of the vdW interaction. We first visually observed the weak interactions in the three stacked bilayer structures through noncovalent interaction (NCI) analysis, and found that the interactions are concentrated in the binding region between the two-layer structures. We mainly decomposed the weak interaction energy in the three 2D material bilayer heterostructures through energy decomposition analysis based on the force field (EDA-FF) method and obtained the energy values and proportions of the three components-electrostatic energy, exchange repulsion energy and dispersion energy of the total binding energy between the 2D stacked bilayer structures. The vdW interaction energy is the sum of the exchange repulsion energy and dispersion energy, and the dispersion energy of the vdW interaction accounts for more than 60% of the binding energy of the weak interaction between the 2D bilayer stacked structures. The vdW strengths in the bilayer structures are on the order of 177.07, 123.85, and 133.93 kJ/mol, approxmately 1-2 orders of magnitude larger than the classically defined vdW energies of 0.1-10 kJ/mol. Furthermore, we calculate the density of states of the three 2D stacked structures, and further obtained HOMO-LOMO information; to further understand the electronic structures of the graphene/MoS2 and graphene/WS2 heterostructures, we calculated their optical absorption spectra and electron circular dichroism (ECD) spectra. According to the calculation results, the two heterostructures have strong absorption peaks in the visible region, and the charge transfer forms at the strong absorption peak can be determined according to the charge transfer diagram. The ECD spectra indicate that the configurations of the graphene/MoS2 and graphene/WS2 heterostructures have large chirality. Our work contributes to a deeper understanding of the nature of the weak interactions and optical properties in 2D stacked materials, which plays a fundamental role in promoting the construction of stable 2D heterostructure configurations and the development of multifunctional 2D devices. The research is conducive to further promoting the basic research and practical development of strong optoelectronic and excitonic 2D heterojunctions devices.
Collapse
Affiliation(s)
- Changcheng Xu
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yong Ding
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Shaofeng Wang
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Shuo Cao
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
19
|
Zhou Z, Hou F, Huang X, Wang G, Fu Z, Liu W, Yuan G, Xi X, Xu J, Lin J, Gao L. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 2023; 621:499-505. [PMID: 37674075 DOI: 10.1038/s41586-023-06404-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted considerable attention in recent years1-5. The most widely used method of fabrication is to stack mechanically exfoliated micrometre-sized flakes6-18, but this process is not scalable for practical applications. Despite thousands of 2D materials being created, using various stacking combinations1-3,19-21, hardly any large 2D superconductors can be stacked intact into vdW heterostructures, greatly restricting the applications for such devices. Here we report a high-to-low temperature strategy for controllably growing stacks of multiple-layered vdW superconductor heterostructure (vdWSH) films at a wafer scale. The number of layers of 2D superconductors in the vdWSHs can be precisely controlled, and we have successfully grown 27 double-block, 15 triple-block, 5 four-block and 3 five-block vdWSH films (where one block represents one 2D material). Morphological, spectroscopic and atomic-scale structural analyses reveal the presence of parallel, clean and atomically sharp vdW interfaces on a large scale, with very little contamination between neighbouring layers. The intact vdW interfaces allow us to achieve proximity-induced superconductivity and superconducting Josephson junctions on a centimetre scale. Our process for making multiple-layered vdWSHs can easily be generalized to other situations involving 2D materials, potentially accelerating the design of next-generation functional devices and applications22-24.
Collapse
Affiliation(s)
- Zhenjia Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Fuchen Hou
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China
| | - Xianlei Huang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Gang Wang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China
| | - Zihao Fu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Weilin Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Guowen Yuan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jie Xu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China.
| | - Libo Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Chavez-Angel E, Tsipas P, Xiao P, Ahmadi MT, Daaoub AHS, Sadeghi H, Sotomayor Torres CM, Dimoulas A, Sachat AE. Engineering Heat Transport Across Epitaxial Lattice-Mismatched van der Waals Heterointerfaces. NANO LETTERS 2023; 23:6883-6891. [PMID: 37467035 PMCID: PMC10416569 DOI: 10.1021/acs.nanolett.3c01280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Artificially engineered 2D materials offer unique physical properties for thermal management, surpassing naturally occurring materials. Here, using van der Waals epitaxy, we demonstrate the ability to engineer extremely insulating thermal metamaterials based on atomically thin lattice-mismatched Bi2Se3/MoSe2 superlattices and graphene/PdSe2 heterostructures with exceptional thermal resistances (70-202 m2 K/GW) and ultralow cross-plane thermal conductivities (0.012-0.07 W/mK) at room temperature, comparable to those of amorphous materials. Experimental data obtained using frequency-domain thermoreflectance and low-frequency Raman spectroscopy, supported by tight-binding phonon calculations, reveal the impact of lattice mismatch, phonon-interface scattering, size effects, temperature, and interface thermal resistance on cross-plane heat dissipation, uncovering different thermal transport regimes and the dominant role of long-wavelength phonons. Our findings provide essential insights into emerging synthesis and thermal characterization methods and valuable guidance for the development of large-area heteroepitaxial van der Waals films of dissimilar materials with tailored thermal transport characteristics.
Collapse
Affiliation(s)
- Emigdio Chavez-Angel
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Polychronis Tsipas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15341, Greece
| | - Peng Xiao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | | | | | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Clivia M Sotomayor Torres
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
- ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
| | - Athanasios Dimoulas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15341, Greece
| | - Alexandros El Sachat
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15341, Greece
| |
Collapse
|
21
|
Mattinen M, Schulpen JJPM, Dawley RA, Gity F, Verheijen MA, Kessels WMM, Bol AA. Toolbox of Advanced Atomic Layer Deposition Processes for Tailoring Large-Area MoS 2 Thin Films at 150 °C. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35565-35579. [PMID: 37459249 PMCID: PMC10375433 DOI: 10.1021/acsami.3c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Two-dimensional MoS2 is a promising material for applications, including electronics and electrocatalysis. However, scalable methods capable of depositing MoS2 at low temperatures are scarce. Herein, we present a toolbox of advanced plasma-enhanced atomic layer deposition (ALD) processes, producing wafer-scale polycrystalline MoS2 films of accurately controlled thickness. Our ALD processes are based on two individually controlled plasma exposures, one optimized for deposition and the other for modification. In this way, film properties can be tailored toward different applications at a very low deposition temperature of 150 °C. For the modification step, either H2 or Ar plasma can be used to combat excess sulfur incorporation and crystallize the films. Using H2 plasma, a higher degree of crystallinity compared with other reported low-temperature processes is achieved. Applying H2 plasma steps periodically instead of every ALD cycle allows for control of the morphology and enables deposition of smooth, polycrystalline MoS2 films. Using an Ar plasma instead, more disordered MoS2 films are deposited, which show promise for the electrochemical hydrogen evolution reaction. For electronics, our processes enable control of the carrier density from 6 × 1016 to 2 × 1021 cm-3 with Hall mobilities up to 0.3 cm2 V-1 s-1. The process toolbox forms a basis for rational design of low-temperature transition metal dichalcogenide deposition processes compatible with a range of substrates and applications.
Collapse
Affiliation(s)
- Miika Mattinen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jeff J P M Schulpen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rebecca A Dawley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Farzan Gity
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
| | - Marcel A Verheijen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Eurofins Materials Science Netherlands, High Tech Campus 11, Eindhoven 5656 AE, The Netherlands
| | - Wilhelmus M M Kessels
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ageeth A Bol
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
22
|
Zhang G, Huang S, Chaves A, Yan H. Black Phosphorus as Tunable Van der Waals Quantum Wells with High Optical Quality. ACS NANO 2023; 17:6073-6080. [PMID: 36912761 DOI: 10.1021/acsnano.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of "forbidden" transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.
Collapse
Affiliation(s)
- Guowei Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Shenyang Huang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Andrey Chaves
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Hugen Yan
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 2023; 614:88-94. [PMID: 36653458 DOI: 10.1038/s41586-022-05524-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023]
Abstract
Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.
Collapse
|
25
|
Park Y, Ahn C, Ahn JG, Kim JH, Jung J, Oh J, Ryu S, Kim S, Kim SC, Kim T, Lim H. Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS 2 Using Inorganic Molecular Precursors. ACS NANO 2023; 17:1196-1205. [PMID: 36633192 DOI: 10.1021/acsnano.2c08983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A highly reproducible route for the epitaxial growth of single-crystalline monolayer MoS2 on a C-plane sapphire substrate was developed using vapor-pressure-controllable inorganic molecular precursors MoOCl4 and H2S. Microscopic, crystallographic, and spectroscopic analyses indicated that the epitaxial MoS2 film possessed outstanding electrical and optical properties, excellent homogeneity, and orientation selectivity. The systematic investigation of the effect of growth temperature on the crystallographic orientations of MoS2 revealed that the surface termination of the sapphire substrate with respect to the growth temperature determines the crystallographic orientation selectivity of MoS2. Our results suggest that controlling the surface to form a half-Al-terminated surface is a prerequisite for the epitaxial growth of MoS2 on a C-plane sapphire substrate. The insights on the growth mechanism, especially the significance of substrate surface termination, obtained through this study will aid in designing efficient epitaxial growth routes for developing single-crystalline monolayer transition metal dichalcogenides.
Collapse
Affiliation(s)
- Younghee Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Chaehyeon Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Jong-Guk Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Jee Hyeon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan44776, Republic of Korea
| | - Juseung Oh
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Soyoung Kim
- Analysis and Assessment Group, Research Institute of Industrial Science and Technology, Pohang37673, Republic of Korea
| | - Seung Cheol Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Taewoong Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Hyunseob Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| |
Collapse
|
26
|
Yang SJ, Choi MY, Kim CJ. Engineering Grain Boundaries in Two-Dimensional Electronic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203425. [PMID: 35777352 DOI: 10.1002/adma.202203425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Engineering the boundary structures in 2D materials provides an unprecedented opportunity to program the physical properties of the materials with extensive tunability and realize innovative devices with advanced functionalities. However, structural engineering technology is still in its infancy, and creating artificial boundary structures with high reproducibility remains difficult. In this review, various emergent properties of 2D materials with different grain boundaries, and the current techniques to control the structures, are introduced. The remaining challenges for scalable and reproducible structure control and the outlook on the future directions of the related techniques are also discussed.
Collapse
Affiliation(s)
- Seong-Jun Yang
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Min-Yeong Choi
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Cheol-Joo Kim
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
27
|
Zhang Z, Liu P, Song Y, Hou Y, Xu B, Liao T, Zhang H, Guo J, Sun Z. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204297. [PMID: 36266983 PMCID: PMC9762311 DOI: 10.1002/advs.202204297] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exploring low-cost and high-efficient electrocatalyst is an exigent task in developing novel sustainable energy conversion systems, such as fuel cells and electrocatalytic fuel generations. 2D materials, specifically 2D superlattice materials focused here, featured highly accessible active areas, high density of active sites, and high compatibility with property-complementary materials to form heterostructures with desired synergetic effects, have demonstrated to be promising electrocatalysts for boosting the performance of sustainable energy conversion and storage devices. Nevertheless, the reaction kinetics, and in particular, the functional mechanisms of the 2D superlattice-based catalysts yet remain ambiguous. In this review, based on the recent progress of 2D superlattice materials in electrocatalysis applications, the rational design and fabrication of 2D superlattices are first summarized and the application of 2D superlattices in electrocatalysis is then specifically discussed. Finally, perspectives on the current challenges and the strategies for the future design of 2D superlattice materials are outlined. This review attempts to establish an intrinsic correlation between the 2D superlattice heterostructures and the catalytic properties, so as to provide some insights into developing high-performance electrocatalysts for next-generation sustainable energy conversion and storage.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Ting Liao
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
28
|
Yoon HH, Fernandez HA, Nigmatulin F, Cai W, Yang Z, Cui H, Ahmed F, Cui X, Uddin MG, Minot ED, Lipsanen H, Kim K, Hakonen P, Hasan T, Sun Z. Miniaturized spectrometers with a tunable van der Waals junction. Science 2022; 378:296-299. [PMID: 36264793 DOI: 10.1126/science.add8544] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Miniaturized computational spectrometers, which can obtain incident spectra using a combination of device spectral responses and reconstruction algorithms, are essential for on-chip and implantable applications. Highly sensitive spectral measurement using a single detector allows the footprints of such spectrometers to be scaled down while achieving spectral resolution approaching that of benchtop systems. We report a high-performance computational spectrometer based on a single van der Waals junction with an electrically tunable transport-mediated spectral response. We achieve high peak wavelength accuracy (∼0.36 nanometers), high spectral resolution (∼3 nanometers), broad operation bandwidth (from ∼405 to 845 nanometers), and proof-of-concept spectral imaging. Our approach provides a route toward ultraminiaturization and offers unprecedented performance in accuracy, resolution, and operation bandwidth for single-detector computational spectrometers.
Collapse
Affiliation(s)
- Hoon Hahn Yoon
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Henry A Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Fedor Nigmatulin
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Weiwei Cai
- Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyin Yang
- College of Information Science and Electronic Engineering and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hanxiao Cui
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Xiaoqi Cui
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Md Gius Uddin
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Ethan D Minot
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Harri Lipsanen
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Pertti Hakonen
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| |
Collapse
|
29
|
Xiong Y, Xu D, Feng Y, Zhang G, Lin P, Chen X. P-Type 2D Semiconductors for Future Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206939. [PMID: 36245325 DOI: 10.1002/adma.202206939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
2D semiconductors represent one of the best candidates to extend Moore's law for their superiorities, such as keeping high carrier mobility and remarkable gate-control capability at atomic thickness. Complementary transistors and van der Waals junctions are critical in realizing 2D semiconductors-based integrated circuits suitable for future electronics. N-type 2D semiconductors have been reported predominantly for the strong electron doping caused by interfacial charge impurities and internal structural defects. By contrast, superior and reliable p-type 2D semiconductors with holes as majority carriers are still scarce. Not only that, but some critical issues have not been adequately addressed, including their controlled synthesis in wafer size and high quality, defect and carrier modulation, optimization of interface and contact, and application in high-speed and low-power integrated devices. Here the material toolkit, synthesis strategies, device basics, and digital electronics closely related to p-type 2D semiconductors are reviewed. Their opportunities, challenges, and prospects for future electronic applications are also discussed, which would be promising or even shining in the post-Moore era.
Collapse
Affiliation(s)
- Yunhai Xiong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Duo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiping Feng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangjie Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pei Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
30
|
Recent Progress in Fabrication and Physical Properties of 2D TMDC-Based Multilayered Vertical Heterostructures. ELECTRONICS 2022. [DOI: 10.3390/electronics11152401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-dimensional (2D) vertical heterojunctions (HSs), which are usually fabricated by vertically stacking two layers of transition metal dichalcogenide (TMDC), have been intensively researched during the past years. However, it is still an enormous challenge to achieve controllable preparation of the TMDC trilayer or multilayered van der Waals (vdWs) HSs, which have important effects on physical properties and device performance. In this review, we will introduce fundamental features and various fabrication methods of diverse TMDC-based multilayered vdWs HSs. This review focuses on four fabrication methods of TMDC-based multilayered vdWs HSs, such as exfoliation, chemical vapor deposition (CVD), metal-organic chemical vapor deposition (MOCVD), and pulsed laser deposition (PLD). The latest progress in vdWs HS-related novel physical phenomena are summarized, including interlayer excitons, long photocarrier lifetimes, upconversion photoluminescence, and improved photoelectrochemical catalysis. At last, current challenges and prospects in this research field are provided.
Collapse
|
31
|
Zou H, Wang X, Zhou K, Li Y, Fu Y, Zhang L. Electronic property modulation in two-dimensional lateral superlattices of monolayer transition metal dichalcogenides. NANOSCALE 2022; 14:10439-10448. [PMID: 35816154 DOI: 10.1039/d2nr02189g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabricating lateral heterostructures (HSs) and superlattices (SLs) provides a unique degree of freedom for modulating the physical properties of two-dimensional (2D) materials by varying the chemical component, geometric size and interface structure in the ultra-thin atomic thickness limit. While a variety of 2D lateral HSs/SLs have been synthesized, especially for transition metal dichalcogenides (TMDs), how such structures affect quantitatively the physical properties of 2D materials has not yet been established. We herein explore electronic property modulation in 2D lateral SLs of monolayer TMDs through first-principles high-throughput calculations. The dependence of the electronic structure, bandgap, carrier effective masses, charge density overlap on chemical components, interface type, and sub-lattice size of lateral TMD-SLs are investigated. We find that by comparison with their random alloy counterparts, the lateral TMD-SLs exhibit generally type-II band alignment, a wider range of bandgap tunability, larger carrier effective masses, and stronger electron-hole charge separation tendency. The bandgap variation with a sub-lattice size shows larger bowing parameters for the SLs with heterogeneous anions, by comparison with the homogeneous anion cases. A similar behavior is observed for the SLs with an armchair-type interface, by comparison with the zigzag-type interface cases. Further analyses reveal that the underlying physical mechanism can be attributed to the synergistic interplay among the band offset of sub-lattices, quantum confinement effect, and existing internal strain.
Collapse
Affiliation(s)
- Hongshuai Zou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xinjiang Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Kun Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yawen Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
32
|
Li N, Okmi A, Jabegu T, Zheng H, Chen K, Lomashvili A, Williams W, Maraba D, Kravchenko I, Xiao K, He K, Lei S. van der Waals Semiconductor Empowered Vertical Color Sensor. ACS NANO 2022; 16:8619-8629. [PMID: 35436098 DOI: 10.1021/acsnano.1c09875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial vision is receiving significant attention nowadays, particularly for the development of neuromorphic electronic devices, artificial intelligence, and microrobotics. Nevertheless, color recognition, the most critical vision function, is missed in the current research due to the difficulty of downscaling of the prevailing color sensing devices. Conventional color sensors typically adopt a lateral color sensing channel layout and consume a large amount of physical space, whereas compact designs suffer from an unsatisfactory color detection accuracy. In this work, we report a van der Waals semiconductor-empowered vertical color sensing structure with the emphasis on compact device profile and precise color recognition capability. More attractive, we endow color sensor hardware with the function of chromatic aberration correction, which can simplify the design of an optical lens system and, in turn, further downscales the artificial vision systems. Also, the dimension of a multiple pixel prototype device in our study confirms the scalability and practical potentials of our developed device architecture toward the above applications.
Collapse
Affiliation(s)
- Ningxin Li
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Aisha Okmi
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Tara Jabegu
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hongkui Zheng
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Alexander Lomashvili
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Westley Williams
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Diren Maraba
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ivan Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kai He
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Material Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sidong Lei
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
33
|
Baidoo JK, Choi SH, Agyapong-Fordjour FOT, Boandoh S, Yun SJ, Adofo LA, Ben-Smith A, Kim YI, Jin JW, Jung MH, Jeong HY, Kim YM, Lee YH, Kim SM, Kim KK. Sequential Growth of Vertical Transition-Metal Dichalcogenide Heterostructures on Rollable Aluminum Foil. ACS NANO 2022; 16:8851-8859. [PMID: 35713417 DOI: 10.1021/acsnano.1c10233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vertical van der Waals heterostructures (vdWhs), which are made by layer-by-layer stacking of two-dimensional (2D) materials, offer great opportunities for the development of extraordinary physics and devices such as topological superconductivity, robust quantum Hall phenomenon, electron-hole pair condensation, Coulomb drag, and tunneling devices. However, the size of vdWhs is still limited to the order of a few micrometers, which restricts the large-scale roll-to-roll processes for industrial applications. Herein, we report the sequential growth of a 14 in. vertical vdWhs on a rollable Al foil via chemical vapor deposition. By supplying chalcogen precursors to liquid transition-metal precursor-coated Al foils, we grew a wide range of individual 2D transition-metal dichalcogenide (TMD) films, including MoS2, VS2, ReS2, WS2, SnS2, WSe2, and vanadium-doped MoS2. Additionally, by repeating the growth process, we successfully achieved the layer-by-layer growth of ReS2/MoS2 and SnS2/ReS2/MoS2 vdWhs. The chemically inert Al native oxide layer inhibits the diffusion of chalcogen and metal atoms into Al foils, allowing for the growth of diverse TMDs and their vdWhs. The conductive Al substrate enables the effective use of vdWhs/Al as a hydrogen evolution reaction electrocatalyst with a transfer-free process. This work provides a robust route for the commercialization of 2D TMDs and their vdWhs at a low cost.
Collapse
Affiliation(s)
- Joseph Kojo Baidoo
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | | | - Stephen Boandoh
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Seok Joon Yun
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Andrew Ben-Smith
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yong In Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeong Won Jin
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Min-Hyoung Jung
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Min Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University, Seoul 14072, Republic of Korea
| | - Ki Kang Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
34
|
Li J, Liang J, Yang X, Li X, Zhao B, Li B, Duan X. Controllable Preparation of 2D Vertical van der Waals Heterostructures and Superlattices for Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107059. [PMID: 35297544 DOI: 10.1002/smll.202107059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
2D van der Waals heterostructures (vdWHs) and superlattices (SLs) with exotic physical properties and applications for new devices have attracted immense interest. Compared to conventionally bonded heterostructures, the dangling-bond-free surface of 2D layered materials allows for the feasible integration of various materials to produce vdWHs without the requirements of lattice matching and processing compatibility. The quality of interfaces in artificially stacked vdWHs/vdWSLs and scalability of production remain among the major challenges in the field of 2D materials. Fortunately, bottom-up methods exhibit relatively high controllability and flexibility. The growth parameters, such as the temperature, precursors, substrate, and carrier gas, can be carefully and comprehensively controlled to produce high-quality interfaces and wafer-scale products of vdWHs/vdWSLs. This review focuses on three types of bottom-up methods for the assembly of vdWHs and vdWSLs with atomically clean and electronically sharp interfaces: chemical/physical vapor deposition, metal-organic chemical vapor deposition, and ultrahigh vacuum growth. These methods can intuitively illustrate the great flexibility and controllability of bottom-up methods for the preparation of vdWHs/vdWSLs. The latest progress in vdWHs and vdWSLs, related physical phenomena, and (opto)electronic devices are summarized. Finally, the authors discuss current challenges and future perspectives in the synthesis and application of vdWHs and vdWSLs.
Collapse
Affiliation(s)
- Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Jingyi Liang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Xiangdong Yang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Xin Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Bei Zhao
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Bo Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| |
Collapse
|
35
|
Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y, Wang X. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022; 605:69-75. [PMID: 35508774 DOI: 10.1038/s41586-022-04523-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics1,2. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors3-5. However, despite advances in the growth of monolayer TMDs6-14, the controlled epitaxial growth of multilayers remains a challenge15. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS2) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS2 domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS2 channels show substantial improvements in mobility (up to 122.6 cm2 V-1 s-1) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27 mA μm-1, which exceeds the 2028 roadmap target for high-performance FETs16.
Collapse
Affiliation(s)
- Lei Liu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Taotao Li
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Liang Ma
- School of Physics, Southeast University, Nanjing, China.
| | - Weisheng Li
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Si Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Wenjie Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Ruikang Dong
- School of Physics, Southeast University, Nanjing, China
| | - Xilu Zou
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Dongxu Fan
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Liangwei Shao
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Chenyi Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Ningxuan Dai
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Zhihao Yu
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiaoqing Chen
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Xuecou Tu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, China.
| | - Yi Shi
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
36
|
Huang S, Duan R, Pramanik N, Boothroyd C, Liu Z, Wong LJ. Enhanced Versatility of Table-Top X-Rays from Van der Waals Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105401. [PMID: 35355443 PMCID: PMC9165495 DOI: 10.1002/advs.202105401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Van der Waals (vdW) materials have attracted much interest for their myriad unique electronic, mechanical, and thermal properties. In particular, they are promising candidates for monochromatic, table-top X-ray sources. This work reveals that the versatility of the table-top vdW X-ray source goes beyond what has been demonstrated so far. By introducing a tilt angle between the vdW structure and the incident electron beam, it is theoretically and experimentally shown that the accessible photon energy range is more than doubled. This allows for greater versatility in real-time tuning of the vdW X-ray source. Furthermore, this work shows that the accessible photon energy range is maximized by simultaneously controlling both the electron energy and the vdW structure tilt. These results will pave the way for highly tunable, compact X-ray sources, with potential applications including hyperspectral X-ray fluoroscopy and X-ray quantum optics.
Collapse
Affiliation(s)
- Sunchao Huang
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Ruihuan Duan
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno PlazaNanyang Technological University50 Nanyang AvenueSingapore637371Singapore
| | - Nikhil Pramanik
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Chris Boothroyd
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Facility for AnalysisCharacterisationTesting, and Simulation (FACTS)Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zheng Liu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Liang Jie Wong
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
37
|
Ren Y, Zhang L, Zhu X, Li H, Dong Q, Liu S. Synthesis of transition metal dichalcogenide van der Waals heterostructures through chemical vapor deposition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:254002. [PMID: 35358958 DOI: 10.1088/1361-648x/ac6309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Transition metal dichalcogenide (TMD) van der Waals (vdW) heterostructures show great potential in the exploration of novel physical phenomena and practical applications. Compared to the traditional mechanical stacking techniques, chemical vapor deposition (CVD) method exhibits more advantages in preparing TMD vdW heterostructures. CVD enables the large-scale production of high-quality materials with clean interfaces in the future. Herein, CVD methods for the synthesis of TMD vdW heterostructures are summarized. These methods are categorized in two major strategies, multi-step process and one-step process. The effects of various factors are demonstrated, including the temperature, nucleation, and precursors. Finally, the remaining challenges are discussed.
Collapse
Affiliation(s)
- Yizhang Ren
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ling Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xukun Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
38
|
Pang R, Wang S. Dipole moment and pressure dependent interlayer excitons in MoSSe/WSSe heterostructures. NANOSCALE 2022; 14:3416-3424. [PMID: 35113117 DOI: 10.1039/d1nr06204b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The broken mirror symmetry of two-dimensional (2D) Janus materials brings novel quantum properties and various application prospects. Particularly, when stacking into heterostructures, their intrinsic dipole moments and large band offsets are very favorable to the photoexcited properties concerning electron-hole pairs, i.e., excitons. However, the effect of the intrinsic dipole moments on the interlayer excitons in the heterostructures composed of 2D Janus materials is still unclear. Here we use the GW/BSE methods to explore the effect of the intrinsic dipole moments on the interlayer excitons via varying the stacking configuration of MoSSe/WSSe heterostructures. Surprisingly, our results reveal that the parallel-arranged intrinsic dipole moments enhance the interlayer coupling in the heterostructures, and hence make the lowest interlayer exciton have an intensity comparable to the bright excitons while accompanied by a large binding energy and a radiative lifetime as long as 10-7 s at 300 K, though it is almost a spin-forbidden process, and with the out-of-plane light polarization, long lifetime interlayer excitons are observed under the effect of selection rules. More intriguingly, we found that the photoexcited properties of the interlayer excitons considering the momentum in the stacking configuration with parallel-arranged intrinsic dipole moments are greatly tunable through hydrostatic pressure. These explorations provide a basic perspective for optoelectronic applications by means of engineering the intrinsic dipole moments in Janus heterostructures.
Collapse
Affiliation(s)
- Rongtian Pang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Shudong Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
39
|
Abstract
Energy storage and conversion in a clean, efficient, and safe way is the core appeal of a modern sustainable society, which is built on the development of multifunctional materials. Superlattice structures can integrate the advantage of their sublayers while new phenomena may arise from the interface, which play key roles in modern semiconductor technology; however, additional concerns such as stability and yield challenge their large-scale applications in industrial products. In this Perspective we focus our interest on a distinctive category of easily available multilayered inorganic materials that have well-defined subunit structures and can be regarded as bulk superlattice analogues. We illustrate several specific combining forms of subunits in bulk superlattice analogues, including soft/rigid sublayers, electron/phonon transport sublayers, quasi-two-dimensional layers, and intercalated metal layers. We hope to provide insights into material design and broaden the application scope in the field of energy conversion by integrating the versatility of subunits into these bulk superlattice analogues.
Collapse
Affiliation(s)
- Wei Bai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Science, Dalian, Liaoning 116023, People's Republic of China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
40
|
Sett S, Parappurath A, Gill NK, Chauhan N, Ghosh A. Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac46b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Exploration of van der Waals heterostructures in the field of optoelectronics has produced photodetectors with very high bandwidth as well as ultra-high sensitivity. Appropriate engineering of these heterostructures allows us to exploit multiple light-to-electricity conversion mechanisms, ranging from photovoltaic, photoconductive to photogating processes. These mechanisms manifest in different sensitivity and speed of photoresponse. In addition, integrating graphene-based hybrid structures with photonic platforms provides a high gain-bandwidth product, with bandwidths ≫1 GHz. In this review, we discuss the progression in the field of photodetection in 2D hybrids. We emphasize the physical mechanisms at play in diverse architectures and discuss the origin of enhanced photoresponse in hybrids. Recent developments in 2D photodetectors based on room temperature detection, photon-counting ability, integration with Si and other pressing issues, that need to be addressed for these materials to be integrated with industrial standards have been discussed.
Collapse
|
41
|
Jiang X, Chen F, Zhao S, Su W. Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides. CrystEngComm 2021. [DOI: 10.1039/d1ce01289d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review summarizes recent advances in the controllable CVD growth of 2D TMDC vertical heterostructures under four different strategies.
Collapse
Affiliation(s)
- Xia Jiang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
- School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| | - Shichao Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| |
Collapse
|