1
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
2
|
Li S, Wang F, Hao L, Zhang P, Song G, Zhang Y, Wang C, Wang Z, Wu Q. Enhancing peroxidase activity of NiCo 2O 4 nanoenzyme by Mn doping for catalysis of CRISPR/Cas13a-mediated non-coding RNA detection. Int J Biol Macromol 2024; 283:137594. [PMID: 39542328 DOI: 10.1016/j.ijbiomac.2024.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
CRISPR/Cas13a with precise and controllable programming of endonuclease activity has been served as powerful tool for RNA sensing. Although with high sensitivity, existing CRISPR/Cas13a-based biosensors need complex amplification procedure or special equipment that limited quantification capability. Here, Mn-doped NiCo2O4 (Mn/NiCo2O4) nanozyme with enhanced peroxidase activity was synthesized and combined with CRISPR/Cas13a-based reaction to develop a simple, sensitive and universal biosensor for RNA detection, which is achieved through target recognition that activates Cas enzymes to cleave RNA reporter for inhibiting Mn/NiCo2O4 nanozyme to assemble on microplate. The Mn/NiCo2O4 nanozyme assembled on microplate can be monitored through colorimetric and fluorometric approaches. On one hand, Mn/NiCo2O4 nanozyme offers ideal peroxidase activity to catalyze colorimetric reaction, and as low as dozens of amol level of RNA target can be sensitively detected by naked eyes without any amplification procedures. On the other hand, Mn/NiCo2O4 can be also served as a signal amplifier to produce large amount of Co2+, Mn2+and Ni2+ to quench the fluorescence of calcein. The fluorescent approach can achieve higher sensitivity (about 40-fold) than colorimetric method. More importantly, the proposed biosensor can work well for multiple RNA detection in real biological samples, showing a great potential for monitoring non-coding RNA-related diseases.
Collapse
Affiliation(s)
- Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Fangfang Wang
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guangyi Song
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yawen Zhang
- College of Basic Medical Science, Hebei University, Baoding 071002, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Chen K, Najer A, Charchar P, Saunders C, Thanapongpibul C, Klöckner A, Chami M, Peeler DJ, Silva I, Panariello L, Karu K, Loynachan CN, Frenette LC, Potter M, Tregoning JS, Parkin IP, Edwards AM, Clarke TB, Yarovsky I, Stevens MM. Non-invasive in vivo sensing of bacterial implant infection using catalytically-optimised gold nanocluster-loaded liposomes for urinary readout. Nat Commun 2024; 15:10321. [PMID: 39609415 PMCID: PMC11605077 DOI: 10.1038/s41467-024-53537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments. We subsequently develop a biosensor by encapsulating these optimised AuNCs in bacterial toxin-responsive liposomes, which is extensively studied by various single-particle techniques. Upon exposure to S. aureus toxins, the liposomes rupture, releasing AuNCs that generate a colourimetric signal after kidney-mimetic filtration. The biosensor is further validated in vitro and in vivo using a hyaluronic acid (HA) hydrogel implant infection model. Urine samples collected from mice with bacteria-infected HA hydrogel implants turn blue upon substrate addition, confirming the suitability of the sensor for non-invasive detection of implant-associated infections. This platform has significant potential as a versatile, cost-effective diagnostic tool.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Klöckner
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel, 4058, Switzerland
| | - David J Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Inês Silva
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Luca Panariello
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Colleen N Loynachan
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael Potter
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
4
|
Capelli L, Pedrini F, Di Pede AC, Chamorro-Garcia A, Bagheri N, Fortunati S, Giannetto M, Mattarozzi M, Corradini R, Porchetta A, Bertucci A. Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a. Anal Chem 2024; 96:18645-18654. [PMID: 39542433 PMCID: PMC11603406 DOI: 10.1021/acs.analchem.4c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 11/17/2024]
Abstract
We present a novel activity-based detection strategy for matrix metalloproteinase 2 (MMP2), a critical cancer protease biomarker, leveraging a mechanism responsive to the proteolytic activity of MMP2 and its integration with CRISPR-Cas12a-assisted signal amplification. We designed a chemical translator comprising two functional units─a peptide and a peptide nucleic acid (PNA), fused together. The peptide presents the substrate of MMP2, while the PNA serves as a nucleic acid output for subsequent processing. This chemical translator was immobilized on micrometer magnetic beads as a physical support for an activity-based assay. We incorporated into our design a single-stranded DNA partially hybridized with the PNA sequence and bearing a region complementary to the RNA guide of CRISPR-Cas12a. The target-induced nuclease activity of Cas12a results in the degradation of FRET-labeled DNA reporters and amplified fluorescence signal, enabling the detection of MMP2 in the low picomolar range, showing a limit of detection of 72 pg/mL. This study provides new design principles for a broader applicability of CRISPR-Cas-based biosensing.
Collapse
Affiliation(s)
- Luca Capelli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Federica Pedrini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea C. Di Pede
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Neda Bagheri
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Fortunati
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Marco Giannetto
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Porchetta
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Bertucci
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
5
|
Sun F, Liu J, Su Z, Wu D, Qu S, Wu Y, Li L, Li G. Encodable DNA Hairpin Probes for Nanopore Multiplexed Target Detection. Anal Chem 2024; 96:17612-17619. [PMID: 39431921 DOI: 10.1021/acs.analchem.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the co-occurrence of hazardous compounds, it is crucial to build multiple highly discriminative probe libraries for simultaneous determination. Drawing inspiration from nucleic acid barcodes, we developed a probe system that is exclusively based on the nucleic acid secondary structure's hairpin structure, which can be directly read by nanopores. The highly distinguishable hairpin probes were constructed, and a detailed explanation of the possible patterns in their design was provided. These probe-representative events measured through the α-hemolysin (α-HL) nanopores were both distinguished, either through visual observation or comparison of the nanopore parameters. Besides, the potential design pattern for probes with unique telegraphic switching between the two levels was also unveiled. Finally, these probes were utilized to realize simultaneous, ultrasensitive mycotoxin multiple-detection, and their prospective applications for the detection of proteins and microRNAs were presented, indicating their suitability for a wide range of sensing applications.
Collapse
Affiliation(s)
- Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Jinde Liu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Sha L, Yao J, Yang S, Hu M, Zhou Q, Zhao J, Bei Y, Cao Y. Collaborative CRISPR-Cas System-Enabled Detection of Circulating Circular RNA for Reliable Monitoring of Acute Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402895. [PMID: 39023080 DOI: 10.1002/smll.202402895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Acute myocardial infarction (AMI) is one of the major causes of death worldwide, posing significant global health challenges. Circular RNA (circRNA) has recently emerged as a potential diagnostic biomarker for AMI, providing valuable information for timely medical care. In this work, a new electrochemical method for circRNA detection by engineering a collaborative CRISPR-Cas system is developed. This system integrates the unique circRNA-targeting ability with cascade trans-cleavage activities of Cas effectors, using an isothermal primer exchange reaction as the bridge. Using cZNF292, a circulating circRNA biomarker for AMI is identified by this group; as a model, the collaborative CRISPR-Cas system-based method exhibits excellent accuracy and sensitivity with a low detection limit of 2.13 × 10-15 m. Moreover, the method demonstrates a good diagnostic performance for AMI when analyzing whole blood samples. Therefore, the method may provide new insight into the detection of circRNA biomarkers and is expected to have great potential in AMI diagnosis in the future.
Collapse
Affiliation(s)
- Lingjun Sha
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shuang Yang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meiyu Hu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Wei L, Wang Z, Dong Y, Yu D, Chen Y. Enhanced CRISPR/Cas12a Fluorimetry via a DNAzyme-Embedded Framework Nucleic Acid Substrate. Anal Chem 2024; 96:16453-16461. [PMID: 39367822 DOI: 10.1021/acs.analchem.4c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
CRISPR/Cas12a fluorimetry has been extensively developed in the biosensing arena, on account of its high selectivity, simplicity, and rapidness. However, typical CRISPR/Cas12a fluorimetry suffers from low sensitivity due to the limited trans-cleavage efficiency of Cas12a, necessitating the integration of other preamplification techniques. Herein, we develop an enhanced CRISPR/Cas12a fluorimetry via a DNAzyme-embedded framework nucleic acid (FNAzyme) substrate, which was designed by embedding four CLICK-17 DNAzymes into a rigid tetrahedral scaffold. FNAzyme can not only enhance the trans-cleavage efficiency of CRISPR/Cas12a by facilitating the exposure of trans-substrate to Cas12a but also result in an exceptionally high signal-to-noise ratio by mediating enzymatic click reaction. Combined with a functional nucleic acid recognition module, this method can profile methicillin-resistant Staphylococcus aureus as low as 18 CFU/mL, whose sensitivity is approximately 54-fold higher than that of TaqMan probe-mediated CRISPR/Cas12a fluorimetry. Meanwhile, the method exhibited satisfactory recoveries in food matrices ranging from 80% to 101%. The DNA extraction- and preamplification-free detection format as well as the potent detection performance highlight its tremendous potential as a next-generation analysis tool.
Collapse
Affiliation(s)
- Luyu Wei
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
8
|
Chang S, Li Z, Liu L, Wang C, Wang J, Nie A, Wen F, Mu C, Zhai K, Xiang J, Wang B, Fan Q, Xue T, Liu Z. Atomic-Level Defect Engineering in GeP Nanoflake Biosensors for Gastric Cancer Diagnosis. ACS NANO 2024; 18:27547-27556. [PMID: 39326008 DOI: 10.1021/acsnano.4c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise in situ growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.
Collapse
Affiliation(s)
- Shaopeng Chang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhehong Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Chong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jing Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Qing Fan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
9
|
Liu S, Liao Y, Shu R, Sun J, Zhang D, Zhang W, Wang J. Evaluation of the Multidimensional Enhanced Lateral Flow Immunoassay in Point-of-Care Nanosensors. ACS NANO 2024; 18:27167-27205. [PMID: 39311085 DOI: 10.1021/acsnano.4c06564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Point-of-care (POC) nanosensors with high screening efficiency show promise for user-friendly manipulation in the ever-increasing on-site analysis demand for illness diagnosis, environmental monitoring, and food safety. Currently, inspired by the merits of integrating advanced nanomaterials, molecular biology, machine learning, and artificial intelligence, lateral flow immunoassay (LFIA)-based POC nanosensors have been devoted to satisfying the commercial demands in terms of sensitivity, specificity, and practicality. Herein, we examine the use of multidimensional enhanced LFIA in various fields over the past two decades, focusing on introducing advanced nanomaterials to improve the acquisition capability of small order of magnitude targets through engineering transformations and emphasizing interdomain fusion to collaboratively address the inherent challenges in current commercial applications, such as multiplexing, development of detectors for quantitative analysis, more practical on-site monitoring, and sensitivity enhancement. Specifically, this comprehensive review encompasses the latest advances in comprehending LFIA with an alternative signal transduction pattern, aiming to achieve rapid, ultrasensitive, and "sample-to-answer" available options with progressive applications for POC nanosensors. In summary, through the cross-collaboration development of disciplines, LFIA has the potential to break the barriers toward commercialization and achieve laboratory-level POC nanosensors, thus leading to the emergence of the next generation of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Chen Y, Zhang L, Wu X, Sun X, Sundah NR, Wong CY, Natalia A, Tam JKC, Lim DWT, Chowbay B, Ang BT, Tang C, Loh TP, Shao H. Magnetic augmentation through multi-gradient coupling enables direct and programmable profiling of circulating biomarkers. Nat Commun 2024; 15:8410. [PMID: 39333499 PMCID: PMC11437193 DOI: 10.1038/s41467-024-52754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Conventional magnetic biosensing technologies have reduced analytical capacity for magnetic field dimensionality and require extensive sample processing. To address these challenges, we spatially engineer 3D magnetic response gradients for direct and programmable molecular detection in native biofluids. Named magnetic augmentation through triple-gradient coupling for high-performance detection (MATCH), the technology comprises gradient-distributed magnetic nanoparticles encapsulated within responsive hydrogel pillars and suspended above a magnetic sensor array. This configuration enables multi-gradient matching to achieve optimal magnetic activation, response and transduction, respectively. Through focused activation by target biomarkers, the platform preferentially releases sensor-proximal nanoparticles, generating response gradients that complement the sensor's intrinsic detection capability. By implementing an upstream module that recognizes different biomarkers and releases universal activation molecules, the technology achieves programmable detection of various circulating biomarkers in native plasma. It bypasses conventional magnetic labeling, completes in <60 minutes and achieves sensitive detection (down to 10 RNA and 1000 protein copies). We apply the MATCH to measure RNAs and proteins directly in patient plasma, achieving accurate cancer classification.
Collapse
Affiliation(s)
- Yuan Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Xuecheng Sun
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
| | - Balram Chowbay
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
- Clinical Pharmacology Laboratory, National Cancer Centre Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Carol Tang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- SG Enable, Innovation, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
11
|
Li H, Wang Z, Li F, Gai P. In situ generated CdTe quantum dot-encapsulated hafnium polymer membrane to boost electrochemiluminescence analysis of tumor biomarkers. Anal Bioanal Chem 2024; 416:4769-4778. [PMID: 38676824 DOI: 10.1007/s00216-024-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Exploring the construction of an interface with bright emission, fabulous stability, and good function to develop high-performance electrochemiluminescence (ECL) biosensors for tumor biomarkers is in high demand but faces a huge challenge. Herein, we report an oriented attachment and in situ self-assembling strategy for one-step fabrication of CdTe QD-encapsulated Hf polymer membrane onto an ITO surface (Hf-CP/CdTe QDs/APS/ITO). Hf-CP/CdTe QDs/APS/ITO is fascinating with excellent stability, high ECL emission, and specific adsorption toward ssDNA against dsDNA and mononucleotides (mNs). These interesting properties make it an ideal interface to rationally develop an immobilization-free ECL biosensor for cancer antigen 125 (CA125), used as a proof-of-concept analyte, based on target-aptamer recognition-promoted exonuclease III (Exo III)-assisted digestion. The recognition of ON by CA125 leads to the formation of CA125@ON, which hybridizes with Fc-ssDNA to switch Exo III-assisted digestion, decreasing the amount of Fc groups anchored onto the electrode's surface and blocking electron transfer. As compared to the case where CA125 was absent, significant ECL emission recovery is determined and relies on CA125 concentration. Thus, highly sensitive analysis of CA125 against other biomarkers was achieved with a limit of detection down to 2.57 pg/mL. We envision this work will provide a new path to develop ECL biosensors with excellent properties, which shows great potential for early and accurate diagnosis of cancer.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, Hebei, People's Republic of China
| | - Zhixin Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
12
|
Lv W, Yang J, Xu Q, Mehrez JAA, Shi J, Quan W, Luo H, Zeng M, Hu N, Wang T, Wei H, Yang Z. Wide-range and high-accuracy wireless sensor with self-humidity compensation for real-time ammonia monitoring. Nat Commun 2024; 15:6936. [PMID: 39138176 PMCID: PMC11322651 DOI: 10.1038/s41467-024-51279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Real-time and accurate biomarker detection is highly desired in point-of-care diagnosis, food freshness monitoring, and hazardous leakage warning. However, achieving such an objective with existing technologies is still challenging. Herein, we demonstrate a wireless inductor-capacitor (LC) chemical sensor based on platinum-doped partially deprotonated-polypyrrole (Pt-PPy+ and PPy0) for real-time and accurate ammonia (NH3) detection. With the chemically wide-range tunability of PPy in conductivity to modulate the impedance, the LC sensor exhibits an up-to-180% improvement in return loss (S11). The Pt-PPy+ and PPy0 shows the p-type semiconductor nature with greatly-manifested adsorption-charge transfer dynamics toward NH3, leading to an unprecedented NH3 sensing range. The S11 and frequency of the Pt-PPy+ and PPy0-based sensor exhibit discriminative response behaviors to humidity and NH3, enabling the without-external-calibration compensation and accurate NH3 detection. A portable system combining the proposed wireless chemical sensor and a handheld instrument is validated, which aids in rationalizing strategies for individuals toward various scenarios.
Collapse
Affiliation(s)
- Wen Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaafar Abdul-Aziz Mehrez
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Shi
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Quan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Luo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Nantao Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
14
|
Zhu Y, Feng P, Jiang P, Li K, Huang K, Chen J, Chen P. Biomolecule-regulation of fluorescent probe signaling: Homogeneous rapid portable protease sensing in serum. Anal Chim Acta 2024; 1316:342824. [PMID: 38969403 DOI: 10.1016/j.aca.2024.342824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND As is well documented, prostate cancer (PCa) being the second most prevalent cancer in men worldwide, emphasizing the importance of early diagnosis for prognosis. However, conventional prostate-specific antigen (PSA) testing lacks sufficient diagnostic efficiency due to its relatively low sensitivity and limited detection range. Mounting evidence suggests that matrix metalloproteinase 9 (MMP-9) expression increases with the aggressive behavior of PCa, highlighting the significance of detecting the serum level of MMP-9 in patients. Developing a non-immune rapid, portable MMP-9 detection strategy and investigating its representativeness of PCa serum markers hold considerable implications. RESULTS Herein, our study developed a simple, homogeneous dual fluorescence and smartphone-assisted red-green-blue (RGB) visualization peptide sensor of MMP-9, utilizing cadmium telluride quantum dots (CdTe QDs) and calcein as signal reporters. The essence of our approach revolves around the proteolytic ability of MMP-9, exploiting the selective recognition of molecule-Cu2+ complexes with different molecular weights by CdTe QDs and calcein. Under optimized conditions, the limits of detection (LODs) for MMP-9 were 0.5 pg/mL and 6 pg/mL using fluorescence and RGB values readouts, respectively. Indeed, this strategy exhibited robust specificity and anti-interference ability. MMP-9 was quantified in 42 clinical serum samples via dual-fluorescence analysis, with 12 samples being visually identified with a smartphone. According to receiver operating characteristic curve (ROC) analysis, its sensitivity and specificity were 90 % and 100 %, respectively, with an area under curve (AUC) value of 0.903. SIGNIFICANCE AND NOVELTY Of note, the results of the aforementioned analysis were highly consistent with the serum level of PSA, clinical color Doppler flow imaging (CDFI), and histopathological results. Therefore, this simple, rapid, homogeneous fluorescence and visualization strategy can reliably measure MMP-9 levels and exhibit promising potential in point-of-care testing (POCT) applications for PCa patients.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pan Feng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Li
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
15
|
Kohaar I, Hodges NA, Srivastava S. Biomarkers in Cancer Screening: Promises and Challenges in Cancer Early Detection. Hematol Oncol Clin North Am 2024; 38:869-888. [PMID: 38782647 PMCID: PMC11222039 DOI: 10.1016/j.hoc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.
Collapse
Affiliation(s)
- Indu Kohaar
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Nicholas A Hodges
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA.
| |
Collapse
|
16
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 PMCID: PMC11585252 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
18
|
Song K, Hwang SJ, Jeon Y, Yoon Y. The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring. Int J Mol Sci 2024; 25:6336. [PMID: 38928042 PMCID: PMC11204277 DOI: 10.3390/ijms25126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cell monitoring is essential for understanding the physiological conditions and cell abnormalities induced by various stimuli, such as stress factors, microbial invasion, and diseases. Currently, various techniques for detecting cell abnormalities and metabolites originating from specific cells are employed to obtain information on cells in terms of human health. Although the states of cells have traditionally been accessed using instrument-based analysis, this has been replaced by various sensor systems equipped with new materials and technologies. Various sensor systems have been developed for monitoring cells by recognizing biological markers such as proteins on cell surfaces, components on plasma membranes, secreted metabolites, and DNA sequences. Sensor systems are classified into subclasses, such as chemical sensors and biosensors, based on the components used to recognize the targets. In this review, we aim to outline the fundamental principles of sensor systems used for monitoring cells, encompassing both biosensors and chemical sensors. Specifically, we focus on biosensing systems in terms of the types of sensing and signal-transducing elements and introduce recent advancements and applications of biosensors. Finally, we address the present challenges in biosensor systems and the prospects that should be considered to enhance biosensor performance. Although this review covers the application of biosensors for monitoring cells, we believe that it can provide valuable insights for researchers and general readers interested in the advancements of biosensing and its further applications in biomedical fields.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (S.-J.H.)
| |
Collapse
|
19
|
Xiang X, Ren X, Wen Q, Xing G, Liu Y, Xu X, Wei Y, Ji Y, Liu T, Song H, Zhang S, Shang Y, Song M. Automatic Microfluidic Harmonized RAA-CRISPR Diagnostic System for Rapid and Accurate Identification of Bacterial Respiratory Tract Infections. Anal Chem 2024; 96:6282-6291. [PMID: 38595038 DOI: 10.1021/acs.analchem.3c05682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Respiratory tract infections (RTIs) pose a grave threat to human health, with bacterial pathogens being the primary culprits behind severe illness and mortality. In response to the pressing issue, we developed a centrifugal microfluidic chip integrated with a recombinase-aided amplification (RAA)-clustered regularly interspaced short palindromic repeats (CRISPR) system to achieve rapid detection of respiratory pathogens. The limitations of conventional two-step CRISPR-mediated systems were effectively addressed by employing the all-in-one RAA-CRISPR detection method, thereby enhancing the accuracy and sensitivity of bacterial detection. Moreover, the integration of a centrifugal microfluidic chip led to reduced sample consumption and significantly improved the detection throughput, enabling the simultaneous detection of multiple respiratory pathogens. Furthermore, the incorporation of Chelex-100 in the sample pretreatment enabled a sample-to-answer capability. This pivotal addition facilitated the deployment of the system in real clinical sample testing, enabling the accurate detection of 12 common respiratory bacteria within a set of 60 clinical samples. The system offers rapid and reliable results that are crucial for clinical diagnosis, enabling healthcare professionals to administer timely and accurate treatment interventions to patients.
Collapse
Affiliation(s)
- Xinran Xiang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaoqing Ren
- Beijing Xiangxin Biotechnology Co., Ltd, Beijing 100084, China
| | - Qianyu Wen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Gaowa Xing
- Xining Urban Vocational & Technical College, Xining 810000, China
| | - Yuting Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaowei Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuhuan Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuhan Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Tingting Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China
| | - Yuting Shang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Minghui Song
- Hainan Hospital of Chinese PLA General Hospital, Sanya 572000, China
| |
Collapse
|
20
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building Synthetic Biosensors Using Red Blood Cell Proteins. ACS Synth Biol 2024; 13:1273-1289. [PMID: 38536408 PMCID: PMC11536268 DOI: 10.1021/acssynbio.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Toward addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC-protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including noninvasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
21
|
Dai C, Xiong H, He R, Zhu C, Li P, Guo M, Gou J, Mei M, Kong D, Li Q, Wee ATS, Fang X, Kong J, Liu Y, Wei D. Electro-Optical Multiclassification Platform for Minimizing Occasional Inaccuracy in Point-of-Care Biomarker Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312540. [PMID: 38288781 DOI: 10.1002/adma.202312540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Huiwen Xiong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Rui He
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 73000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenxin Zhu
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pintao Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Miaomiao Mei
- Yizheng Hospital of Traditional Chinese Medicine, Yangzhou, 211400, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| |
Collapse
|
22
|
Chen S, Wu C, Qian C, Pang Y, Guo K, Wang T, Bai L, Qian F, Ye Z, Liu Z, Qiao Z, Wang Y, Wang R. Ultraspecific One-Pot CRISPR-Based "Green-Yellow-Red" Multiplex Detection Strategy Integrated with Portable Cartridge for Point-of-Care Diagnosis. Anal Chem 2024. [PMID: 38324761 DOI: 10.1021/acs.analchem.3c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Versatile, informative, sensitive, and specific nucleic acid detection plays a crucial role in point-of-care pathogen testing, genotyping, and disease monitoring. In this study, we present a novel one-pot Cas12b-based method coupled with the "Green-Yellow-Red" strategy for multiplex detection. By integrating RT-LAMP amplification and Cas12b cleavage in a single tube, the entire detection process can be completed within 1 h. Our proposed method exhibits high specificity, enabling the discrimination of single-base mutations with detection sensitivity approaching single molecule levels. Additionally, the fluorescent results can be directly observed by the naked eye or automatically analyzed using our custom-designed software Result Analyzer. To realize point-of-care detection, we developed a portable cartridge capable of both heating and fluorescence excitation. In a clinical evaluation involving 20 potentially SARS-CoV-2-infected samples, our method achieved a 100% positive detection rate when compared to standard RT-PCR. Furthermore, the identification of SARS-CoV-2 variants using our method yielded results that were consistent with the sequencing results. Notably, our proposed method demonstrates excellent transferability, allowing for the simultaneous detection of various pathogens and the identification of mutations as low as 0.5% amidst a high background interference. These findings highlight the tremendous potential of our developed method for molecular diagnostics.
Collapse
Affiliation(s)
- Shuaiwei Chen
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
| | - Cui Wu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Chunyan Qian
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
- Clinical Laboratory, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Yanan Pang
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Kaiming Guo
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
| | - Ting Wang
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Linlin Bai
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
| | - Feng Qian
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
| | - Zunzhong Ye
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhenping Liu
- Clinical Laboratory, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yongming Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200438, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of life science, Fudan University, Shanghai 200438, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200438, China
- International Human Phenome Institutes, Shanghai 200438, China
| |
Collapse
|
23
|
Qi L, Liu J, Liu S, Liu Y, Xiao Y, Zhang Z, Zhou W, Jiang Y, Fang X. Ultrasensitive Point-of-Care Detection of Protein Markers Using an Aptamer-CRISPR/Cas12a-Regulated Liquid Crystal Sensor (ALICS). Anal Chem 2024; 96:866-875. [PMID: 38164718 DOI: 10.1021/acs.analchem.3c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.
Collapse
Affiliation(s)
- Lubin Qi
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Jie Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Songlin Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yang Liu
- Department of Orthopedics, Second Affiliated Hospital of Shandong First Medical University, Taian 271000, PR China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
| | - Zhen Zhang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| |
Collapse
|
24
|
Mao K, Zhang H, Ran F, Cao H, Feng R, Du W, Li X, Yang Z. Portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification for antibiotic resistance gene ermB in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132793. [PMID: 37856955 DOI: 10.1016/j.jhazmat.2023.132793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Wastewater is among the main sources of antibiotic resistance genes (ARGs) in the environment, but effective methods to quickly assess ARGs on-site in wastewater are lacking. Here, using the typical ARG ermB as the target, we report a portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification (LAMP) for the detection of ARGs. Six primers of LAMP and the crRNA of CRISPR/Cas12a were first designed to be preamplification with LAMP and lead Cas12a to recognize the ermB via base pairing. Due to the trans-cleavage activity of CRISPR/Cas12a after amplicon recognition, ssDNA probes modified with reporter molecules were used to implement a visual assay with lateral flow test strips and fluorescence. After a simple nucleic acid extraction with magnetic beads, the constructed biosensor possesses excellent sensitivity and selectivity as low as 2.75 × 103 copies/μL using fluorescence and later flow strips in wastewater. We further evaluated the community-wide prevalence of ermB in wastewater influent and found high mass loads of ermB during different months. This user-friendly and low-cost biosensor is applicable for rapid on-site ARG detection, providing a potential point-of-use method for rapid assessments of ARG abundance in wastewater from large city areas with many wastewater treatment plants and in resource-limited rural areas.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Fang Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
25
|
Li Y, Cai M, Zhang W, Liu Y, Yuan X, Han N, Li J, Jin S, Ding C. Cas12a-based direct visualization of nanoparticle-stabilized fluorescence signal for multiplex detection of DNA methylation biomarkers. Biosens Bioelectron 2024; 244:115810. [PMID: 37924654 DOI: 10.1016/j.bios.2023.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The CRISPR-Cas12a RNA-guided complexes hold immense promise for nucleic acid detection. However, limitations arise from their specificity in detecting off-targets and the stability of the signal molecules. Here, we have developed a platform that integrates multiplex amplification and nanomolecular-reporting signals, allowing us to detect various clinically relevant nucleic acid targets with enhanced stability, sensitivity, and visual interpretation. Through the electrostatic co-assembly of the Oligo reporter with oppositely charged nanoparticles, we observed a significant enhancement in its stability in low-pollution environments, reaching up to a threefold increase compared to the original version. Additionally, the fluorescence efficiency was expanded by three orders of magnitude, broadening the detection range considerably. Utilizing a multiplex strategy, this assay can accomplish simultaneous detection of multiple targets and single-point indication detection of nine specific targets. This significant advancement heightened the sensitivity of disease screening and improved the accuracy of diagnosing disease-related changes. We tested this assay in a colorectal cancer model, demonstrating that it can identify DNA methylation features at the aM-level within 40-60 min. Validation using clinical samples yielded consistent results with qPCR and bisulfite sequencing, affirming the assay's reliability and potential for clinical applications.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Miaomiao Cai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqing Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Na Han
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Li
- Yinchuan Hospital of Traditional Chinese Medicine, Ningxia, 750001, China
| | - Shengnan Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunming Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
26
|
Pandit S, Duchow M, Chao W, Capasso A, Samanta D. DNA-Barcoded Plasmonic Nanostructures for Activity-Based Protease Sensing. Angew Chem Int Ed Engl 2024; 63:e202310964. [PMID: 37985161 DOI: 10.1002/anie.202310964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
We report the development of a new class of protease activity sensors called DNA-barcoded plasmonic nanostructures. These probes are comprised of gold nanoparticles functionalized with peptide-DNA conjugates (GPDs), where the peptide is a substrate of the protease of interest. The DNA acts as a barcode identifying the peptide and facilitates signal amplification. Protease-mediated peptide cleavage frees the DNA from the nanoparticle surface, which is subsequently measured via a CRISPR/Cas12a-based assay as a proxy for protease activity. As proof-of-concept, we show activity-based, multiplexed detection of the SARS-CoV-2-associated protease, 3CL, and the apoptosis marker, caspase 3, with high sensitivity and selectivity. GPDs yield >25-fold turn-on signals, 100-fold improved response compared to commercial probes, and detection limits as low as 58 pM at room temperature. Moreover, nanomolar concentrations of proteases can be detected visually by leveraging the aggregation-dependent color change of the gold nanoparticles. We showcase the clinical potential of GPDs by detecting a colorectal cancer-associated protease, cathepsin B, in three different patient-derived cell lines. Taken together, GPDs detect physiologically relevant concentrations of active proteases in challenging biological samples, require minimal sample processing, and offer unmatched multiplexing capabilities (mediated by DNA), making them powerful chemical tools for biosensing and disease diagnostics.
Collapse
Affiliation(s)
- Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA
| | - Mark Duchow
- Department of Oncology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX 78712, USA
| | - Wilson Chao
- Department of Biochemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA
| | - Anna Capasso
- Department of Oncology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX 78712, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA
| |
Collapse
|
27
|
Zhong Q, Tan EKW, Martin-Alonso C, Parisi T, Hao L, Kirkpatrick JD, Fadel T, Fleming HE, Jacks T, Bhatia SN. Inhalable point-of-care urinary diagnostic platform. SCIENCE ADVANCES 2024; 10:eadj9591. [PMID: 38181080 PMCID: PMC10776015 DOI: 10.1126/sciadv.adj9591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Although low-dose computed tomography screening improves lung cancer survival in at-risk groups, inequality remains in lung cancer diagnosis due to limited access to and high costs of medical imaging infrastructure. We designed a needleless and imaging-free platform, termed PATROL (point-of-care aerosolizable nanosensors with tumor-responsive oligonucleotide barcodes), to reduce resource disparities for early detection of lung cancer. PATROL formulates a set of DNA-barcoded, activity-based nanosensors (ABNs) into an inhalable format. Lung cancer-associated proteases selectively cleave the ABNs, releasing synthetic DNA reporters that are eventually excreted via the urine. The urinary signatures of barcoded nanosensors are quantified within 20 min at room temperature using a multiplexable paper-based lateral flow assay. PATROL detects early-stage tumors in an autochthonous lung adenocarcinoma mouse model with high sensitivity and specificity. Tailoring the library of ABNs may enable not only the modular PATROL platform to lower the resource threshold for lung cancer early detection tools but also the rapid detection of chronic pulmonary disorders and infections.
Collapse
Affiliation(s)
- Qian Zhong
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Marble Center of Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward K. W. Tan
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Marble Center of Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmen Martin-Alonso
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Tiziana Parisi
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liangliang Hao
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Marble Center of Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse D. Kirkpatrick
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tarek Fadel
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Marble Center of Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather E. Fleming
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tyler Jacks
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Marble Center of Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division Health Sciences and Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building synthetic biosensors using red blood cell proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571988. [PMID: 38168174 PMCID: PMC10760168 DOI: 10.1101/2023.12.16.571988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Towards addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including non-invasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
29
|
Van Heest AE, Deng F, Zhao RT, Harzallah NS, Fleming HE, Bhatia SN, Hao L. CRISPR-Cas-mediated Multianalyte Synthetic Urine Biomarker Test for Portable Diagnostics. J Vis Exp 2023:10.3791/66189. [PMID: 38145378 PMCID: PMC10840402 DOI: 10.3791/66189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Creating synthetic biomarkers for the development of precision diagnostics has enabled detection of disease through pathways beyond those used for traditional biofluid measurements. Synthetic biomarkers generally make use of reporters that provide readable signals in the biofluid to reflect the biochemical alterations in the local disease microenvironment during disease incidence and progression. The pharmacokinetic concentration of the reporters and biochemical amplification of the disease signal are paramount to achieving high sensitivity and specificity in a diagnostic test. Here, a cancer diagnostic platform is built using one format of synthetic biomarkers: activity-based nanosensors carrying chemically stabilized DNA reporters that can be liberated by aberrant proteolytic signatures in the tumor microenvironment. Synthetic DNA as a disease reporter affords multiplexing capability through its use as a barcode, allowing for the readout of multiple proteolytic signatures at once. DNA reporters released into the urine are detected using CRISPR nucleases via hybridization with CRISPR RNAs, which in turn produce a fluorescent or colorimetric signal upon enzyme activation. In this protocol, DNA-barcoded, activity-based nanosensors are constructed and their application is exemplified in a preclinical mouse model of metastatic colorectal cancer. This system is highly modifiable according to disease biology and generates multiple disease signals simultaneously, affording a comprehensive understanding of the disease characteristics through a minimally invasive process requiring only nanosensor administration, urine collection, and a paper test which enables point-of-care diagnostics.
Collapse
Affiliation(s)
| | - Feiyang Deng
- Department of Biomedical Engineering, Boston University
| | - Renee T Zhao
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology
| | - Nour Saida Harzallah
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Howard Hughes Medical Institute
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Howard Hughes Medical Institute; Broad Institute of Massachusetts Institute of Technology and Harvard; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
| | - Liangliang Hao
- Department of Biomedical Engineering, Boston University; Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology;
| |
Collapse
|
30
|
Yin Y, Xie W, Xiong M, Gao Y, Liu Q, Han D, Ke G, Zhang XB. FINDER: A Fluidly Confined CRISPR-Based DNA Reporter on Living Cell Membranes for Rapid and Sensitive Cancer Cell Identification. Angew Chem Int Ed Engl 2023; 62:e202309837. [PMID: 37710395 DOI: 10.1002/anie.202309837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The accurate, rapid, and sensitive identification of cancer cells in complex physiological environments is significant in biological studies, personalized medicine, and biomedical engineering. Inspired by the naturally confined enzymes on fluid cell membranes, a fluidly confined CRISPR-based DNA reporter (FINDER) was developed on living cell membranes, which was successfully applied for rapid and sensitive cancer cell identification in clinical blood samples. Benefiting from the spatial confinement effect for improved local concentration, and membrane fluidity for higher collision efficiency, the activity of CRISPR-Cas12a was, for the first time, found to be significantly enhanced on living cell membranes. This new phenomenon was then combined with multiple aptamer-based DNA logic gate for cell recognition, thus a FINDER system capable of accurate, rapid and sensitive cancer cell identification was constructed. The FINDER rapidly identified target cells in only 20 min, and achieved over 80 % recognition efficiency with only 0.1 % of target cells presented in clinical blood samples, indicating its potential application in biological studies, personalized medicine, and biomedical engineering.
Collapse
Affiliation(s)
- Yao Yin
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Wei Xie
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Mengyi Xiong
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yingying Gao
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Qin Liu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Da Han
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo / Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|