1
|
Pojero F, Gervasi F. Polyphenol Treatment of Peripheral Blood Mononuclear Cells from Individuals of Different Ages. Methods Mol Biol 2025; 2857:191-221. [PMID: 39348067 DOI: 10.1007/978-1-0716-4128-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human peripheral blood mononuclear cells (PBMCs) have been largely utilized to assess the cytotoxic, immunomodulatory, and anti-inflammatory properties of both synthetic and natural compounds. Within the latter category, polyphenols from dietary sources have been extensively analyzed. PBMCs represent a feasible in vitro model to study polyphenol hallmarks and activity according to quantitative and qualitative differences in immune responses in individuals of different age. In this chapter, we propose a method for PBMC treatment with polyphenols and analysis designed on age-dependent qualitative and quantitative variability in immune cell performance.
Collapse
Affiliation(s)
- Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Francesco Gervasi
- Specialistic Oncology Laboratory Unit, A.R.N.A.S. Hospitals Civico, Di Cristina e Benfratelli, Palermo, Italy
| |
Collapse
|
2
|
Zhang J, Shang S, Liu W, Cheng Y, Hu F, Cao Z, Yue L, Xiang G, Li T. Effect of aspirin on platelet-rich plasma of diabetes mellitus with lower extremity atherosclerosis. Future Sci OA 2024; 10:2413827. [PMID: 39440536 PMCID: PMC11508953 DOI: 10.1080/20565623.2024.2413827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Aim: Platelet-rich plasma (PRP), enriched with multiple growth factors, is a promising adjunctive therapy for diabetic foot ulcers (DFUs). As a classic anti-platelet drug for diabetic patients, the effects of aspirin on the content of growth factors in PRP remains unclear.Methods: Our study enrolled diabetic patients who were currently taking or not taking aspirin as the research subjects, with healthy volunteers as the control. PRP from these individuals was activated with glucose calcium and thrombin. Growth factors levels in PRP activated supernatant (PRP-AS) and wound healing ability of platelet gel (PG) in the full-thickness skin defect diabetic mouse model were compared.Results: We found the level of growth factors in PRP-AS derived from two groups of diabetic patients were not statistically different, whereas both lower than that from healthy volunteers. Similarly, we found better wound healing ability of PG from healthy volunteers than those from diabetic patients, but no difference between the two groups of diabetic patients in the mouse model.Discussion: Aspirin does not interfere with autologous PRP therapy when using calcium gluconate and thrombin as agonists. However considering the content of growth factors, PRP from healthy volunteers is a preferable option for promoting DFU repair.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Wanbing Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Fan Hu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Zhengwang Cao
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - GuangDa Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Tao Li
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
3
|
Medina-González R, Zaragoza JJ, Hernández-Barajas EM, Correa-de Leon J, Claure-Del Granado R, Vazquez-Rangel A, Pineda-Segura LM, Franco-Garcia MK, Chávez-Alonso G, Gómez-Fregoso JA, Rodríguez-García FG, Navarro-Blackaller G, Alcantar-Vallin L, Gallardo-González AM, Abundis-Mora GJ, García-García G, Chávez-Iñiguez JS. Decrease in platelet count in patients with AKI and its association with major adverse kidney events. Ren Fail 2024; 46:2359643. [PMID: 38869010 DOI: 10.1080/0886022x.2024.2359643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION A reduction in platelet count in critically ill patients is a marker of severity of the clinical condition. However, whether this association holds true in acute kidney injury (AKI) is unknown. We analyzed the association between platelet reduction in patients with AKI and major adverse kidney events (MAKE). METHODS In this retrospective cohort, we included AKI patients at the Hospital Civil of Guadalajara, in Jalisco, Mexico. Patients were divided according to whether their platelet count fell >21% during the first 10 days. Our objectives were to analyze the associations between a platelet reduction >21% and MAKE at 10 days (MAKE10) or at 30-90 days (MAKE30-90) and death. RESULTS From 2017 to 2023, 400 AKI patients were included, 134 of whom had a > 21% reduction in platelet count. The mean age was 54 years, 60% were male, and 44% had sepsis. The mean baseline platelet count was 194 x 103 cells/µL, and 65% of the KDIGO3 patients met these criteria. Those who underwent hemodialysis (HD) had lower platelet counts. After multiple adjustments, a platelet reduction >21% was associated with MAKE10 (OR 4.2, CI 2.1-8.5) but not with MAKE30-90. The mortality risk increased 3-fold (OR 2.9, CI 1.1-7.7, p = 0.02) with a greater decrease in the platelets (<90 x 103 cells/µL). As the platelets decreased, the incidence of MAKE was more likely to increase. These associations lost significance when accounting for starting HD. CONCLUSION In our retrospective cohort of patients with AKI, a > 21% reduction in platelet count was associated with MAKE. Our results are useful for generating hypotheses and motivating us to continue studying this association with a more robust design.
Collapse
Affiliation(s)
- Ramón Medina-González
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | | | - Eduardo M Hernández-Barajas
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Juarez Correa-de Leon
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Rolando Claure-Del Granado
- Division of Nephrology, Hospital Obrero No 2 - CNS. IIBISMED, Facultad de Medicina, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Armando Vazquez-Rangel
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | - Gael Chávez-Alonso
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Juan A Gómez-Fregoso
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | | | - Guillermo Navarro-Blackaller
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Luz Alcantar-Vallin
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Alejandro Martínez Gallardo-González
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Gabriela J Abundis-Mora
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | | | - Jonathan S Chávez-Iñiguez
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Ciaglia E, Montella F, Carrizzo A, Lopardo V, Esposito RM, Basile C, Damato A, De Lucia M, Maciag A, Spinetti G, Milella MS, Maselli D, Vecchione C, Puca AA. The longevity-associated BPIFB4 gene guarantees vascular homeostasis and immune protection through platelets. GeroScience 2024; 46:6347-6359. [PMID: 38884925 PMCID: PMC11493904 DOI: 10.1007/s11357-024-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Beyond their activity in hemostasis and thrombosis, recent advances attribute platelets a pro-youthful role capable to attenuate immune senescence and age-related neuroinflammation. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models has proved strategic to cope with frailty conditions, aging-related events, e.g., cardiovascular ones, and immune dysfunction mainly through a favorable conditioning of the immune system. However, whether platelets participate in LAV-BPIFB4 therapeutic action is currently unknown. Herein, we discovered that platelets were instrumental in boosting the favorable health outcomes of the systemic AAV-LAV-BPIFB4 gene transfer in vivo, as the α-CD42b platelet depletion completely abolished the vascular protective action of LAV-BPIFB4 and suppressed its pro-resolutive CD206 + anti-/CD86 + pro-inflammatory Ly6C + monocyte skewing to LPS stimulation. Of note, this is associated with a huge drop in the protective levels of BPIFB4 in the plasma of AAV-LAV-BPIFB4-injected C57BL/6 mice, indicating that plasma circulating platelets may be a reservoir of the BPIFB4 protein. Indeed, we noticed that BPIFB4 was released by human platelets, a process that is amplified in LAV-allele carrier donors. Accordingly, lentivirus-mediated overexpression of human LAV-BPIFB4 isoform, but not WT-BPIFB4 isoform was able in leading differentiated megakaryocytes to release more platelet-like-particles enriched for BPIFB4. In addition, in vitro, the M2 macrophage polarization increased when releasate from platelets, and even more from LAV pre-stimulated once, was added in monocyte cell culture. Our data suggest that platelet release of BPIFB4 and of yet-to-be-determined unidentified factors mediates the therapeutic efficacy of LAV-BPIFB4 treatment.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy.
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Roberta Maria Esposito
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Cristina Basile
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Antonio Damato
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | | | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy
| | - Gaia Spinetti
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy
| | | | - Davide Maselli
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy.
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy.
| |
Collapse
|
5
|
Wei Y, Cheng Y, Wei H, Wang Y, Zhang X, Miron RJ, Zhang Y, Qing S. Development of a super-hydrophilic anaerobic tube for the optimization of platelet-rich fibrin. Platelets 2024; 35:2316745. [PMID: 38385327 DOI: 10.1080/09537104.2024.2316745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Horizontal platelet-rich fibrin (H-PRF) contains a variety of bioactive growth factors and cytokines that play a key role in the process of tissue healing and regeneration. The blood collection tubes used to produce Solid-PRF (plasmatrix (PM) tubes) have previously been shown to have a great impact on the morphology, strength and composition of the final H-PRF clot. Therefore, modification to PM tubes is an important step toward the future optimization of PRF. To this end, we innovatively modified the inner wall surface of the PM tubes with plasma and adjusted the gas environment inside the PM tubes to prepare super-hydrophilic anaerobic plasmatrix tubes (SHAP tubes). It was made anaerobic for the preparation of H-PRF with the aim of improving mechanical strength and bioactivity. The findings demonstrated that an anaerobic environment stimulated platelet activation within the PRF tubes. After compression, the prepared H-PRF membrane formed a fibrous cross-linked network with high fracture strength, ideal degradation characteristics, in addition to a significant increase in size. Thereafter, the H-PRF membranes prepared by the SHAP tubes significantly promoted collagen synthesis of gingival fibroblast and the mineralization of osteoblasts while maintaining excellent biocompatibility, and advantageous antibacterial properties. In conclusion, the newly modified PRF tubes had better platelet activation properties leading to better mechanical strength, a longer degradation period, and better regenerative properties in oral cell types including gingival fibroblast and alveolar osteoblasts. It also improves the success rate of H-PRF preparation in patients with coagulation dysfunction and expands the clinical application scenario.
Collapse
Affiliation(s)
- Yan Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yihong Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongjiang Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, University of Bern, Bern Switzerland
| | - Xiaoxin Zhang
- Department of Periodontology, University of Bern, Bern Switzerland
| | - Richard J Miron
- Department of Dental Implantology, School and Hospital of Stomatology University of Wuhan, Wuhan, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Dental Implantology, School and Hospital of Stomatology University of Wuhan, Wuhan, China
| | - Shanglan Qing
- Department of Stomatology Chongqing General Hospital, Chongqing, China
| |
Collapse
|
6
|
Oh EB, Shin HJ, Yu H, Jang J, Park JW, Chang TS. NADPH oxidase 1/4 dual inhibitor setanaxib suppresses platelet activation and thrombus formation. Life Sci 2024; 357:123061. [PMID: 39293714 DOI: 10.1016/j.lfs.2024.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
AIMS The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) is able to induce platelet activation, making NOX a promising target for antiplatelet therapy. In this study, we examined the effects of setanaxib, a dual NOX1/4 inhibitor, on human platelet function and ROS-related signaling pathways. MATERIALS AND METHODS In collagen-stimulated human platelets, aggregometry, assessment of ROS and Ca2+, immunoblotting, ELISA, flow cytometry, platelet adhesion assay, and assessment of mouse arterial thrombosis were performed in this study. KEY FINDINGS Setanaxib inhibited both intracellular and extracellular ROS production in collagen-activated platelets. Additionally, setanaxib significantly inhibited collagen-induced platelet aggregation, P-selectin exposure from α-granule release, and ATP release from dense granules. Setanaxib blocked the specific tyrosine phosphorylation-mediated activation of Syk, LAT, Vav1, and Btk within collagen receptor signaling pathways, leading to reduced activation of PLCγ2, PKC, and Ca2+ mobilization. Setanaxib also inhibited collagen-induced activation of integrin αIIbβ3, which is linked to increased cGMP levels and VASP phosphorylation. Furthermore, setanaxib suppressed collagen-induced p38 MAPK activation, resulting in decreased phosphorylation of cytosolic PLA2 and reduced TXA2 generation. Setanaxib also inhibited ERK5 activation, affecting the exposure of procoagulant phosphatidylserine. Setanaxib reduced thrombus formation under shear conditions by preventing platelet adhesion to collagen. Finally, in vivo administration of setanaxib in animal models led to the inhibition of arterial thrombosis. SIGNIFICANCE This study is the first to show that setanaxib suppresses ROS generation, platelet activation, and collagen-induced thrombus formation, suggesting its potential use in treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye Ji Shin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Joara Jang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Gantseva AR, Gantseva ER, Sveshnikova AN, Panteleev MA, Kovalenko TA. Kinetic analysis of prothrombinase assembly and substrate delivery mechanisms. J Theor Biol 2024; 594:111925. [PMID: 39142600 DOI: 10.1016/j.jtbi.2024.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Prothrombinase complex, composed of coagulation factors Xa (FXa) and Va (FVa) is a major enzyme of the blood coagulation network that produces thrombin via activation of its inactive precursor prothrombin (FII) on the surface of phospholipid membranes. However, pathways and mechanisms of prothrombinase formation and substrate delivery are still discussed. Here we designed a novel mathematical model that considered different potential pathways of FXa or FII binding (from the membrane or from solution) and analyzed the kinetics of thrombin formation in the presence of a wide range of reactants concentrations. We observed the inhibitory effect of large FVa concentrations and this effect was phospholipid concentration-dependent. We predicted that efficient FII activation occurred via formation of the ternary complex, in which FVa, FXa and FII were in the membrane-bound state. Prothrombin delivery was mostly membrane-dependent, but delivery from solution was predominant under conditions of phospholipid deficiency or FXa/FVa excess. Likewise, FXa delivery from solution was predominant in the case of FVa excess, but high FII did not switch the FXa delivery to the solution-dependent one. Additionally, the FXa delivery pathway did not depend on the phospholipid concentration, being the membrane-dependent one even in case of the phospholipid deficiency. These results suggest a flexible mechanism of prothrombinase functioning which utilizes different complex formation and even inhibitory mechanisms depending on conditions.
Collapse
Affiliation(s)
- A R Gantseva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Oblast 141701, Russia
| | - E R Gantseva
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia
| | - T A Kovalenko
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia.
| |
Collapse
|
8
|
Kumar Beura S, Yadav P, Ramachandra Panigrahi A, Sahoo G, Kumar Singh S. Impact of 6-hydroxydopamine on agonist-induced human platelet functional parameters: An explanation for platelet impairment in Parkinson's disease. Neuroscience 2024; 559:237-248. [PMID: 39260561 DOI: 10.1016/j.neuroscience.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease worldwide, which worsens with advancing age. It is a common movement disorder and is often associated with several vascular diseases with decreased stroke frequency. Circulating platelets substantially regulate vascular complications, including stroke, and share striking similarities with PD neurons. Although structural alterations in platelets are well-documented in PD, their functional parameters remain unclear. This study aimed to investigate the functional abnormalities in platelets associated with PD by evaluating key functional aspects such as adhesion, activation, secretion, aggregation, and clot retraction. To achieve this, we treated human blood platelets with 6-hydroxydopamine or 6-OHDA, that selectively destroys dopaminergic neurons, thereby creating an in vitro experimental model that closely resembles the pathogenic environment in PD, and examine its impact on platelet functions. In our study, platelet adhesion was assessed and further evaluated by a microplate reader, activation and secretion by a flow cytometer, aggregation by aggregometer, and clot retraction by Sonoclot. Phase-contrast and confocal microscopic studies further verified the results from the above experiments. Our findings showed that 6-OHDA treatment significantly inhibited thrombin (a platelet agonist)-induced functions, including adhesion, activation, aggregation, secretion, and clot retraction in human-washed platelets. In summary, this research provides pioneering evidence that 6-OHDA induces abnormal platelet functions, shedding light on the previously unexplored processes by which 6-OHDA affects platelet activity.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | | | - Gaurahari Sahoo
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
9
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2024:10.1007/s12035-024-04589-4. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
10
|
Zhan M, Sun LJ, Zhang YH, Gao JM, Liu JX. Correlation and predictive value of platelet biological indicators and recurrence of large-artery atherosclerosis type of ischemic stroke. Biotechnol Genet Eng Rev 2024; 40:1836-1854. [PMID: 37038758 DOI: 10.1080/02648725.2023.2196879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Large-artery atherosclerosis type of ischemic stroke happens when a blood clot forms in a major artery that carries blood to the brain. This causes a blockage and a decrease in blood flow to the brain tissue making up approximately 15-20% of all cases. This type of stroke is more prevalent in older adults and those with risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a family history of stroke. To investigate the correlation and predictive value of platelet-related biological indicators with recurrence of large-artery atherosclerosis type of ischemic stroke (LAA-IS)2. The patients were divided into a relapse group (R, n = 40) and non-relapse group (NR, n = 45). Platelet-related biological indicators were collected from both groups to analyze their correlation with neurological impairment score (NIHSS score). Risk factors were analyzed using binary logistic regression and a survival curve (ROC) was drawn to evaluate the predictive effect of clinical platelet-related biological indicators on LAA-IS recurrence. This study confirmed that PAg-ADP, PAg-COL, and FIB are closely related to the formation of LAA-IS due to carotid atherosclerosis, and the combined PAg-ADP, PAg-COL, and FIB index levels are the most promising for assessing the prognostic development of recurrence in patients with LAA-IS. Combined monitoring of platelet aggregation rate and FIB index is of important evaluation value in judging the recurrence prognosis of LAA-IS patients.
Collapse
Affiliation(s)
- Min Zhan
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin-Juan Sun
- Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye-Hao Zhang
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Ming Gao
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Xun Liu
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Huang Z, Zhang D, Tong L, Gao F, Zhang S, Wang X, Xie Y, Chen F, Liu C. Protonated-chitosan sponge with procoagulation activity for hemostasis in coagulopathy. Bioact Mater 2024; 41:174-192. [PMID: 39131629 PMCID: PMC11314896 DOI: 10.1016/j.bioactmat.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Hemostatic materials are essential for managing acute bleeding in medical settings. Chitosan (CS) shows promise in hemostasis but its underlying mechanism remains incompletely understood. We unexpectedly discovered that certain protonated-chitosan (PCS) rapidly assembled plasma proteins to form protein membrane (PM) upon contact with platelet-poor plasma (PPP). We hypothesized that the novel observation was intricately related to the procoagulant effect of chitosan. Herein, the study aimed to elucidate the conditions necessary and mechanism for PM formation, identify the proteins within the PM and PCS's procoagulant action at the molecule levels. We confirmed that the amount of -NH3 + groups (>4.9 mmol/g) on PCS molecules played a crucial role in promoting coagulation. The -NH3 + group interacted with blood's multiple active components to exert hemostatic effects: assembling plasma proteins including coagulation factors such as FII, FV, FX, activating blood cells and promoting the secretion of coagulation-related substances (FV, ADP, etc) by platelets. Notably, the hemostatic mechanism can be extended to protonated-chitosan derivatives like quaternized, alkylated, and catechol-chitosan. In the blood clotting index (BCI) experiment, compared to other groups, PCS95 achieved the lowest BCI value (∼6 %) within 30 s. Protonated-chitosan exhibited excellent biocompatibility and antibacterial properties, with PCS95 demonstrating inhibition effectiveness of over 95 % against Escherichia coli (E.coil) and Staphylococcus aureus (S. aureus). Moreover, PCS performed enhanced hemostatic effectiveness over chitosan-based commercially agents (Celox™ and ChitoGauze®XR) in diverse bleeding models. In particular, PCS95 reduced bleeding time by 70 % in rabbit models of coagulopathy. Overall, this study investigated the coagulation mechanism of materials at the molecular level, paving the way for innovative approaches in designing new hemostatic materials.
Collapse
Affiliation(s)
- Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shaozan Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xinqing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yina Xie
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
12
|
Jiang H, Guo Y, Wang Q, Wang Y, Peng D, Fang Y, Yan L, Ruan Z, Zhang S, Zhao Y, Zhang W, Shang W, Feng Z. The dysfunction of complement and coagulation in diseases: the implications for the therapeutic interventions. MedComm (Beijing) 2024; 5:e785. [PMID: 39445002 PMCID: PMC11496570 DOI: 10.1002/mco2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
The complement system, comprising over 30 proteins, is integral to the immune system, and the coagulation system is critical for vascular homeostasis. The activation of the complement and coagulation systems involves an organized proteolytic cascade, and the overactivation of these systems is a central pathogenic mechanism in several diseases. This review describes the role of complement and coagulation system activation in critical illness, particularly sepsis. The complexities of sepsis reveal significant knowledge gaps that can be compared to a profound abyss, highlighting the urgent need for further investigation and exploration. It is well recognized that the inflammatory network, coagulation, and complement systems are integral mechanisms through which multiple factors contribute to increased susceptibility to infection and may result in a disordered immune response during septic events in patients. Given the overlapping pathogenic mechanisms in sepsis, immunomodulatory therapies currently under development may be particularly beneficial for patients with sepsis who have concurrent infections. Herein, we present recent findings regarding the molecular relationships between the coagulation and complement pathways in the advancement of sepsis, and propose potential intervention targets related to the crosstalk between coagulation and complement, aiming to provide more valuable treatment of sepsis.
Collapse
Affiliation(s)
- Honghong Jiang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Yiming Guo
- Department of Biological Science, The Dietrich School of Arts and SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qihang Wang
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yiran Wang
- Department of Obstetrics and GynecologyThe sixth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Dingchuan Peng
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yigong Fang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Lei Yan
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Zhuolin Ruan
- Department of Obstetrics and Gynecology,Chinese PLA General HospitalBeijingChina
| | - Sheng Zhang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Yong Zhao
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wendan Zhang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Wei Shang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhichun Feng
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| |
Collapse
|
13
|
Ge D, An R, Xue L, Qiu M, Zhu Y, Wen G, Shi Y, Ren H, Li W, Wang J. Developing Cell-Membrane-Associated Liposomes for Liver Diseases. ACS NANO 2024; 18:29421-29438. [PMID: 39404084 DOI: 10.1021/acsnano.4c12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Over the past decade, a marked escalation in the prevalence of hepatic pathologies has been observed, adversely impacting the quality of life for many. The predominant therapeutic strategy for liver diseases has been pharmacological intervention; however, its efficacy is often constrained. Currently, liposomes are tiny structures that can deliver drugs directly to targeted areas, enhancing their effectiveness. Specifically, cell membrane-associated liposomes have gained significant attention. Despite this, there is still much to learn about the binding mechanism of this type of liposome. Thus, this review comprehensively summarizes relevant information on cell membrane-associated liposomes, including their clinical applications and future development directions. First, we will briefly introduce the composition and types of cell membrane-associated liposomes. We will provide an overview of their structure and discuss the various types of liposomes associated with cell membranes. Second, we will thoroughly discuss various strategies of drug delivery using these liposomes. Lastly, we will discuss the application and clinical challenges associated with using cell membrane-associated liposomes in treating liver diseases. We will explore their potential benefits while also addressing the obstacles that need to be overcome. Furthermore, we will provide prospects for future development in this field. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization.
Collapse
Affiliation(s)
- Dongxue Ge
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ran An
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yawen Zhu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| |
Collapse
|
14
|
Feng Y, Liu C, Cui W, Yang L, Wu D, Zhang H, Wang X, Sun Y, He B, Dai W, Zhang Q. Engineering supramolecular peptide nanofibers for in vivo platelet-hitchhiking beyond ligand-receptor recognition. SCIENCE ADVANCES 2024; 10:eadq2072. [PMID: 39441939 PMCID: PMC11498226 DOI: 10.1126/sciadv.adq2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Ex vivo or in vivo cell-hitchhiking has emerged as a potential means for efficient drug delivery and various disease therapies. However, many challenges remain, such as the complicated engineering process and dependence on ligand-receptor interaction. Here, we present a simple in vivo platelet-hitchhiking strategy based on self-assembling peptides without ligand modification. The engineered peptide nanofibers can hitchhike ultrafast (<5 s) and efficiently on both resting and activated platelets in a receptor-independent and species-independent manner. Mechanistic studies showed that unique secondary structure of nanofibers, which lead to surface exposure of hydrophobic and hydrogen bond-forming groups, might primarily contribute to the selective and efficient platelet-hitchhiking behavior. After intravenous injection, these peptide nanofibers hitchhiked in situ on circulating platelets and achieved almost 20-fold lung accumulation. Our study provides not only a different paradigm of in vivo platelet-hitchhiking beyond ligand-receptor recognition but also a potential strategy for lung-targeted drug delivery and pulmonary disease therapy.
Collapse
Affiliation(s)
- Yan Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Chenyang Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Weiping Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, (China)
| | - Liuqing Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Di Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Yuqian Sun
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing 100044, (China)
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| |
Collapse
|
15
|
Zhang J, Hu F, Zhang J, Xie J, Wang Z, Lv L, Liang H, Liu Q, Chen R, Li H, Su W, Yan R, Chen Z, Wang Z, Tang H, Chang YN, Li J, Chen J, Shen M, Xing G, Chen K. Physical-Matched Nanoplatelets Boost Heterogeneous Thrombi Targeting Through Self-Adaptive Deformation for Thrombolysis and Endothelial Repairing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406262. [PMID: 39428893 DOI: 10.1002/smll.202406262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Indexed: 10/22/2024]
Abstract
The heterogeneity of thrombi in terms of composition, structure, and blood rheology parameters presents a challenge for effective thrombus-targeting drug delivery. To address this, a self-adaptive nano-delivery system, termed D-PLT, is developed. It consists of platelet membrane-cloaked deformable mesoporous organic silicon dioxide nanocomposite, enabling it to respond to the challenge of the heterogeneity of thrombi in arteries and veins. The system exhibits progressive targeting, with the ability to target arterial and venous thrombosis and damaged blood vessels. D-PLT physically matches the pore structure of the thrombus by undergoing varied deformation, leading to advanced targeting and enrichment of arterial and venous thrombus. When co-loaded with the thrombolytic drug urokinase (UK) and the endothelium-protecting agent atorvastatin calcium (AT), the system improves rapid vascular opening of arterial and venous thrombosis in 90 min and provides up to 7 days of durable thrombolysis and recovery from endothelial dysfunction in vivo. This self-adaptive delivery system offers a promising strategy to overcome thrombus heterogeneity.
Collapse
Affiliation(s)
- Junhui Zhang
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, Jilin, 133002, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xie
- State Key Laboratory of Explosion Science and Safety Protection, Institute of Technology Beijing, Beijing, 100081, P. R. China
| | - Zhiyu Wang
- State Key Laboratory of Explosion Science and Safety Protection, Institute of Technology Beijing, Beijing, 100081, P. R. China
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Haojun Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Ranran Chen
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, Jilin, 133002, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxi Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyu Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghua Shen
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, Jilin, 133002, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Spallation Neutron Source Science Center, Dongguan, 523803, China
| |
Collapse
|
16
|
Salavati M, Arabshomali A, Nouranian S, Shariat-Madar Z. Overview of Venous Thromboembolism and Emerging Therapeutic Technologies Based on Nanocarriers-Mediated Drug Delivery Systems. Molecules 2024; 29:4883. [PMID: 39459251 PMCID: PMC11510185 DOI: 10.3390/molecules29204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Venous thromboembolism (VTE) is a serious health condition and represents an important cause of morbidity and, in some cases, mortality due to the lack of effective treatment options. According to the Centers for Disease Control and Prevention, 3 out of 10 people with VTE will have recurrence of a clotting event within ten years, presenting a significant unmet medical need. For some VTE patients, symptoms can last longer and have a higher than average risk of serious complications; in contrast, others may experience complications arising from insufficient therapies. People with VTE are initially treated with anticoagulants to prevent conditions such as stroke and to reduce the recurrence of VTE. However, thrombolytic therapy is used for people with pulmonary embolism (PE) experiencing low blood pressure or in severe cases of DVT. New drugs are under development, with the aim to ensure they are safe and effective, and may provide an additional option for the treatment of VTE. In this review, we summarize all ongoing trials evaluating anticoagulant interventions in VTE listed in clinicaltrials.gov, clarifying their underlying mechanisms and evaluating whether they prevent the progression of DVT to PE and recurrence of thrombosis. Moreover, this review summarizes the available evidence that supports the use of antiplatelet therapy for VTE. Since thrombolytic agents would cause off-target effects, targeted drug delivery platforms are used to develop various therapeutics for thrombotic diseases. We discuss the recent advances achieved with thrombus-targeting nanocarriers as well as the major challenges associated with the use of nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Masoud Salavati
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Arman Arabshomali
- Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
17
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024:10.1007/s12012-024-09924-8. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
18
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Zhao M, Feng L, Li W. Network Pharmacology and Experimental Verification: SanQi-DanShen Treats Coronary Heart Disease by Inhibiting the PI3K/AKT Signaling Pathway. Drug Des Devel Ther 2024; 18:4529-4550. [PMID: 39399124 PMCID: PMC11471080 DOI: 10.2147/dddt.s480248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Objective To employee network pharmacology to predict the components and pathways of SanQi-DanShen (SQDS) in treating coronary heart disease, followed by in vitro experiments to validate the molecular mechanism of SQDS in treating coronary heart disease. Methods We sourced the active ingredients and targets of Panax notoginseng and Danshen from the Traditional Chinese Medicine Systems Pharmacology database. Coronary heart disease related genes were retrieved from the OMIM, Genecards, and Therapeutic Target databases. Using Cytoscape 3.7.2 software, we constructed a network diagram illustrating the components and targets of SQDS. The associated targets were then imported into the STRING database to build a protein-protein interaction network. The Metascape database and WeChat software were utilized for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Lastly, we performed molecular docking between the key components and related targets using AutoDock Vina. To validate the potential mechanism of SQDS in treating coronary heart disease, we established an acute coronary heart disease rat model via tail vein injection of pituitrin. Results Network pharmacology analysis revealed that 65 active ingredients and 167 targets of SQDS are implicated in the treatment of coronary heart disease. The key targets identified include AKT1, TNF, TP53, IL6, and VEGFA. Notably, the PI3K/AKT signaling pathway emerged as the primary pathway. Furthermore, animal experiments showed that, compared to the model group, SQDS significantly reduced levels of TNF-α, IL-6, Bax, and cardiac troponin I, while increasing Bcl-2 content. It also notably suppressed the expression of p-PI3K and p-AKT, thereby offering protection to myocardial tissue. Conclusion Through the integrated approach of network pharmacology and molecular docking, we have established that SQDS exerts a multi-component, multi-target, and multi-pathway synergistic therapeutic effect on coronary heart disease. Its mechanism may involve the inhibition of the PI3K/AKT signaling pathway and the reduction of inflammatory factor expression.
Collapse
Affiliation(s)
- Min Zhao
- School of Medicine, Lijiang University of Culture and Tourism, Lijiang, Yunnan, 674100, People’s Republic of China
| | - Liuxiang Feng
- People’s Hospital of Yulong Naxi Autonomous County of Lijiang City, Lijiang, Yunnan, 674112, People’s Republic of China
| | - Wenhua Li
- School of Medicine, Xizang Minzu University, Xianyang Shaanxi, 712082, People’s Republic of China
| |
Collapse
|
20
|
Tang L, Wang D, Chang H, Liu Z, Zhang X, Feng X, Han L. Treating ischemic stroke by improving vascular structure and promoting angiogenesis using Taohong Siwu Decoction: An integrative pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118372. [PMID: 38777084 DOI: 10.1016/j.jep.2024.118372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neovessels represent a crucial therapeutic target and strategy for repairing ischemic tissue. Taohong Siwu Decoction (THSWD) exhibits potential in promoting angiogenesis to address ischemic stroke (IS). However, its impact on neovessel structure and function, alongside the underlying molecular mechanisms, remains elusive. AIM OF THE STUDY Our aim is to investigate the protective effects of THSWD on neovessel structure and function, as well as the associated molecular mechanisms, utilizing an integrative pharmacological approach. MATERIALS AND METHODS We initially employed behavioral tests, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Haematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), Laser Doppler flowmetry (LDF), Evans blue staining, and immunofluorescence to evaluate the protective effects of THSWD on neovascular structure and function in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. Subsequently, we utilized network pharmacology, metabolomics, and experimental validation to elucidate the underlying molecular mechanisms of THSWD in enhancing neovascular structure and function. RESULT In addition to significantly reducing neurological deficits and cerebral infarct volume, THSWD mitigated pathological damage, blood-brain barrier (BBB) leakage, and cerebral blood flow disruption. Moreover, it preserved neovascular structure and stimulated angiogenesis. THSWD demonstrated potential in ameliorating cerebral microvascular metabolic disturbances including lipoic acid metabolism, fructose and mannose metabolism, purine metabolism, and ether lipid metabolism. Consequently, it exhibited multifaceted therapeutic effects, encompassing anti-inflammatory, antioxidant, energy metabolism modulation, and antiplatelet aggregation properties. CONCLUSION THSWD exhibited protective effects on cerebral vascular structure and function and facilitated angiogenesis by rectifying cerebral microvascular metabolic disturbances in MCAO/R rats. Furthermore, integrated pharmacology offers a promising approach for studying the intricate traditional Chinese medicine (TCM) system in IS treatment.
Collapse
Affiliation(s)
- Linfeng Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Dandan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hao Chang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Zhuqing Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Xueting Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Xuefeng Feng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Lan Han
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| |
Collapse
|
21
|
Dutsch A, Graesser C, Novacek S, Krefting J, Schories V, Niedermeier B, Voll F, Kufner S, Xhepa E, Joner M, Cassese S, Schunkert H, Ndrepepa G, Kastrati A, Kessler T, Sager HB. Baseline Platelet Count Predicts Infarct Size and Mortality after Acute Myocardial Infarction. Hamostaseologie 2024. [PMID: 39366427 DOI: 10.1055/a-2299-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
INTRODUCTION Platelets greatly contribute to cardiovascular diseases. We sought to explore the association of platelet counts with infarct size and outcome in patients presenting with acute ST-segment elevation MI (STEMI) treated with primary percutaneous coronary intervention (PPCI). METHODS AND RESULTS In this retrospective study, we grouped 1,198 STEMI patients into tertiles (T) based on platelet count on admission: T1 = 102-206 [109 platelets/L] (n = 402), T2 = 207-259 [109 platelets/L] (n = 396), and T3 = 260-921 [109 platelets/L] (n = 400). Primary endpoint was 1-year all-cause mortality. Patients with highest platelet counts on admission showed the greatest area at risk and infarct size: area at risk (median) was 22.0% (interquartile range [IQR]: 12.0-39.8%) in T1, 21.0% (IQR: 11.0-37.1%) in T2, and 26.0% (IQR: 14.9-45.0%) of the left ventricle in T3 (p = 0.003); final infarct sizes after 7 to 14 days were as follows: 10.0% (IQR: 2.0-21.0%) in T1, 9.0% (IQR: 2.0-20.7%) in T2, and 12.0% (IQR: 3.0-27.3%) of the left ventricle in T3 (p = 0.015) as serial imaging revealed. At 1 year, 16 all-cause deaths occurred in T1, 5 in T2, and 22 in T3 (log-rank test, p = 0.006). After adjustment, T1 and T3 were associated with all-cause 1-year mortality (T1: hazard ratio [HR] = 3.40, 95% confidence interval [CI] = 1.23-9.54, p = 0.02; T3: HR = 3.55, 95% CI = 1.23-9.78, p = 0.01) compared with T2. At 5 years, all-cause mortality remained numerically higher in the T1 and T3. CONCLUSIONS In patients with STEMI undergoing PPCI, low and high blood platelet levels on admission were associated with increased long-term mortality (Fig. 1).
Collapse
Affiliation(s)
- Alexander Dutsch
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Christian Graesser
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Sophie Novacek
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Johannes Krefting
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Viktoria Schories
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Benedikt Niedermeier
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Felix Voll
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Sebastian Kufner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Erion Xhepa
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Salvatore Cassese
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Gjin Ndrepepa
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Adnan Kastrati
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| |
Collapse
|
22
|
Liu G, Mu KL, Ran F, Liu JM, Zhou LL, Peng LQ, Feng G, Liu YC, Wei FD, Zhu LL, Zhang XY, Zhang YP, Sun QW. The hemostatic activity and Mechanistic roles of glucosyloxybenzyl 2-isobutylmalate extract (BSCE) from Bletilla striata (Thunb.) Rchb.f. in Inhibiting pulmonary hemorrhage. Heliyon 2024; 10:e38203. [PMID: 39381249 PMCID: PMC11459001 DOI: 10.1016/j.heliyon.2024.e38203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Background Hemorrhagic events cause numerous deaths annually worldwide, highlighting the urgent need for effective hemostatic drugs. The glucosyloxybenzyl 2-isobutylmalates Control Extract (BSCE) from the orchid plant Bletilla striata (Thunb.) Rchb.f. has demonstrated significant hemostatic activity in both in vitro and in vivo studies. However, the effect and mechanism of BSCE on non-traumatic bleeding remain unclear. Methods Pulmonary hemorrhage was induced in 40 Sprague-Dawley rats by administering Zingiber officinale Roscoe. for 14 days. These rats were then randomly divided into five groups: model (Mod), positive control (YNBY), and BSCE low, medium, and high-dose groups. An additional 8 rats served as the control group (Con). The BSCE groups received different doses of BSCE for 10 days, while the YNBY group received Yunnan Baiyao suspension. The effects on body weight, food and water intake, red blood cell count (RBC), hemoglobin concentration (HGB), lung tissue pathology, platelet count, coagulation parameters, and fibrinolytic system markers were evaluated. Network pharmacology and molecular docking analyses were also conducted to identify potential targets and pathways involved in BSCE's effects. Results BSCE treatment significantly improved body weight, food intake, and water consumption in rats with pulmonary hemorrhage. RBC and HGB levels increased significantly in the BSCE medium and high-dose groups compared to the Mod group (P < 0.05). Pathological examination revealed that BSCE reduced lung tissue hemorrhage and inflammation, with improvements in alveolar structure. BSCE also positively affected platelet count, thrombin time (TT), activated partial thromboplastin time (APTT), fibrinogen (FIB) levels, and fibrinolytic markers (D-dimer, PAI-1, and t-PA). Network pharmacology and molecular docking identified key targets such as MMPs, CASPs, and pathways including IL-17 and TNF signaling, suggesting BSCE's involvement in hemostasis and anti-inflammatory processes. Conclusions BSCE exhibits significant hemostatic and protective effects on Z.officinale-induced pulmonary hemorrhage in rats by improving hematological parameters, reducing lung tissue damage, and modulating the coagulation and fibrinolytic systems. The study provides evidence supporting the potential of BSCE as a therapeutic agent for hemorrhagic diseases, with its efficacy linked to multi-target and multi-pathway interactions.
Collapse
Affiliation(s)
| | | | - Fei Ran
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Jin-mei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Ling-li Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Le-qiang Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Guo Feng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yu-chen Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Fu-dao Wei
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Ling-li Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xin-yue Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yong-ping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Qing-wen Sun
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| |
Collapse
|
23
|
Wu S, Xia Z, Wei L, Ji J, Zhang Y, Huang D. Secreted protein TNA: a promising biomarker for understanding the adipose-bone axis and its impact on bone metabolism. J Orthop Surg Res 2024; 19:610. [PMID: 39342371 PMCID: PMC11437659 DOI: 10.1186/s13018-024-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone disease characterized by reduced bone mass and deterioration of bone microstructure, leading to increased bone fragility. Platelets can take up and release cytokines, and a high platelet count has been associated with low bone density. Obesity is strongly associated with OP, and adipose tissue can influence platelet function by secreting adipokines. However, the biological relationship between these factors remains unclear. METHODS We conducted differential analysis to identify OP platelet-related plasma proteins. And, making comprehensive analysis, including functional enrichment, protein-protein interaction network analysis, and Friends analysis. The key protein, Tetranectin (TNA/CLEC3B), was identified through screening. Then, we analyzed TNA's potential roles in osteogenic and adipogenic differentiation using multiple RNA-seq data sets and validated its effect on osteoclast differentiation and bone resorption function through in vitro experiments. RESULTS Six OP-platelet-related proteins were identified via differential analysis. Then, we screened the key protein TNA, which was found to be highly expressed in adipose tissue. RNA-seq data suggested that TNA may promote early osteoblast differentiation. In vitro experiments showed that knockdown of TNA expression significantly increased the expression of osteoclast markers, thereby promoting osteoclast differentiation and bone resorption. CONCLUSIONS We identified TNA as a secreted protein that inhibits osteoclast differentiation and bone resorption. While, it potentially promoted early osteoblast differentiation from bioinformatic results. TNA may play a role in bone metabolism through the adipose-bone axis.
Collapse
Affiliation(s)
- Shaobo Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhihao Xia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Liangliang Wei
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiajia Ji
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
24
|
Guo Z, Bao S, Shi Z, Li X, Li P, Zhong B, Zhang M, Wu Q. USP15-Mediated Deubiquitination of FKBP 5 and Activation of the αIIbβ3 Signaling Pathway Regulate Thrombosis in Mice. FRONT BIOSCI-LANDMRK 2024; 29:325. [PMID: 39344328 DOI: 10.31083/j.fbl2909325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Platelets have the hemostatic function, and their aberrant activation is associated with occlusive thrombus formation. Plasma exosomes are rich in platelets containing ubiquitin-specific peptidase 15 (USP15). Herein, we aim to explore the effect of USP15 on thrombosis, as well as expounding whether USP15 acts as an upstream target of FK506 binding protein 5 (FKBP5) to regulate occlusive thrombus formation. METHODS Washed human platelets were treated with thrombin for measurement of USP15 and FKBP5 expressions. USP15 loss/gain-of-function variant in HEK293 cells was performed by cell transfection, and the interaction between USP15 and FKBP5 was examined using immunoprecipitation and ubiquitination assays. Mice with USP15-knockout platelets (Plt USP15-/-) were modeled, and subjected to calculation of bleeding time, artery thrombosis imaging and clot retraction assay. FKBP5 expression and the inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE)/phosphatidylinositol 3-kinase (PI3K)/Rap1 pathway in wild-type and Plt USP15-/- mice-derived platelets were detected using Western blot. The activation of αIIbβ3 in washed platelets was analyzed using flow cytometry. RESULTS USP15 and FKBP5 expressions were upregulated in platelets after thrombin treatment. Following transfection of USP15 knockdown and USP15 overexpression plasmids into HEK293 cells, FKBP5 protein expression was downregulated by USP15 knockdown while being upregulated by USP15 overexpression. USP15 bound to FKBP5 and protected FKBP5 against ubiquitination. Knockdown of platelet USP15 prolonged bleeding time, inhibited arterial thrombosis and delayed clot retraction in mice. Knockdown of platelet USP15 also decreased protein expressions of FKBP5, IKBKE and Rap1, p-PI3K/PI3K ratio, and activation of αIIbβ3 in mice. CONCLUSION USP15 knockdown in platelets affects thrombosis in mice by promoting the instability of FKBP5 to repress the activation of IKBKE/PI3K/Rap1 pathway-mediated αIIbβ3.
Collapse
Affiliation(s)
- Ziwei Guo
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Sixu Bao
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
- The Graduate School, Nanjing Medical University, 211166 Nanjing, Jinagsu, China
| | - Zehui Shi
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Xuejiao Li
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Peijin Li
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
- The Graduate School, Nanjing Medical University, 211166 Nanjing, Jinagsu, China
| | - Bin Zhong
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Ming Zhang
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Qiyong Wu
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
25
|
Zhang H, Song X, Ge S, Song W, Wang F, Yin Q, Zhang M, Zhuang P, Zhang Y. Zixue Powder attenuates septic thrombosis via reducing neutrophil extracellular trap through blocking platelet STING activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118337. [PMID: 38740110 DOI: 10.1016/j.jep.2024.118337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microthrombosis is commonly seen in sepsis and COVID-19. Zixue Powder (ZXP) is a traditional Chinese herbal formula with the potential to treat microvascular and infectious diseases. However, the role and mechanism of ZXP in sepsis-associated thrombosis remain unclear. AIM OF THE STUDY Investigating the therapeutic effectiveness and underlying mechanisms of ZXP in septic thrombosis. MATERIALS AND METHODS ZXP's compositions were examined with UPLC-QTOF-MS. The efficacy of ZXP on sepsis-induced thrombosis was assessed through various methods: liver tissue pathology was examined using hematoxylin-eosin staining, platelet count was determined by a blood cell analyzer, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum tissue factor (TF), thromboxane B2 (TXB2), D-Dimer, and plasminogen activator inhibitor-1 (PAI-1). Neutrophil extracellular traps (NETs) were localized and expressed in liver tissues by immunofluorescence, and the number of NETs in peripheral blood was evaluated by ELISA, which measured the quantity of cf-DNA and MPO-DNA in serum. Platelet P-selectin expression and platelet-neutrophil aggregation were measured by flow cytometry, and plasma P-selectin expression was measured by ELISA. Furthermore, the mechanism of the stimulator of interferon genes (STING) signaling pathway in ZXP's anti-sepsis thrombosis effect was investigated using the STING agonist, Western blot experiments, and immunoprecipitation experiments. RESULTS UPLC-QTOF-MS identified 40 chemical compositions of ZXP. Administration of ZXP resulted in significant improvements in liver thrombosis, platelet counts, and levels of TXB2, TF, PAI-1, and D-Dimer in septic rats. Moreover, ZXP inhibited NETs formation in both liver tissue and peripheral blood. Additionally, ZXP decreased the levels of P-selectin in both platelets and plasma, as well as the formation of platelet-neutrophil aggregates, thereby suppressing P-selectin-mediated NETs release. Immunoprecipitation and immunofluorescence staining experiments revealed that ZXP attenuated P-selectin secretion by inhibiting STING-mediated assembly of platelet soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complex, ultimately preventing inhibition of NETs formation. CONCLUSION Our study showed that ZXP effectively mitigates platelet granule secretion primarily through modulation of the STING pathway, consequently impeding NET-associated thrombosis in sepsis. These findings offer valuable insights for future research on the development and application of ZXP.
Collapse
Affiliation(s)
- Hanyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xuejiao Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Shining Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wen Song
- Tianjin Hongrentang Pharmaceutical Co., Ltd, Tianjin, 300193, China
| | - Fan Wang
- Tianjin Hongrentang Pharmaceutical Co., Ltd, Tianjin, 300193, China
| | - Qingsheng Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Mixia Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
26
|
Phelp PG, van Wonderen SF, Vlaar APJ, Kapur R, Klanderman RB. Developments in Transfusion Medicine: Pulmonary Transfusion Reactions and Novel Blood Cell Labeling Techniques. Anesth Analg 2024:00000539-990000000-00947. [PMID: 39270303 DOI: 10.1213/ane.0000000000007136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Staying updated on advancements in transfusion medicine is crucial, especially in critical care and perioperative setting, where timely and accurate transfusions can be lifesaving therapeutic interventions. This narrative review explores the landscape of transfusion-related adverse events, focusing on pulmonary transfusion reactions such as transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI). TACO and TRALI are the leading causes of transfusion-related morbidity and mortality; however, specific treatments are lacking. Understanding the current incidence, diagnostic criteria, pathogenesis, treatment, and prevention strategies can equip clinicians to help reduce the incidence of these life-threatening complications. The review discusses emerging pathogenic mechanisms, including the possible role of inflammation in TACO and the mechanisms of reverse TRALI and therapeutic targets for TACO and TRALI, emphasizing the need for further research to uncover preventive and treatment modalities. Despite advancements, significant gaps remain in our understanding of what occurs during transfusions, highlighting the necessity for improved monitoring methods. To address this, the review also presents novel blood cell labeling techniques in transfusion medicine used for improving monitoring, quality assessment, and as a consequence, potentially reducing transfusion-related complications. This article aims to provide an update for anesthesiologists, critical care specialists, and transfusion medicine professionals regarding recent advancements and developments in the field of transfusion medicine.
Collapse
Affiliation(s)
- Philippa G Phelp
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stefan F van Wonderen
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert B Klanderman
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
28
|
Weng Y, Zhu J, Li S, Wang Y, Lin S, Xie W, Chen S, Chen S, Chen X, Wang Y, Wang L, Zhang X, Yang D. Dynamic changes of peripheral inflammatory markers link with disease severity and predict short-term poor outcome of myasthenia gravis. J Neurochem 2024; 168:2751-2761. [PMID: 38822659 DOI: 10.1111/jnc.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
The relationship between peripheral inflammatory markers, their dynamic changes, and the disease severity of myasthenia gravis (MG) is still not fully understood. Besides, the possibility of using it to predict the short-term poor outcome of MG patients have not been demonstrated. This study aims to investigate the relationship between peripheral inflammatory markers and their dynamic changes with Myasthenia Gravis Foundation of America (MGFA) classification (primary outcome) and predict the short-term poor outcome (secondary outcome) in MG patients. The study retrospectively enrolled 154 MG patients from June 2016 to December 2021. The logistic regression was used to investigate the relationship of inflammatory markers with MGFA classification and determine the factors for model construction presented in a nomogram. Finally, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were utilized to evaluate the incremental capacity. Logistic regression revealed significant associations between neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), aggregate index of systemic inflammation (AISI) and MGFA classification (p = 0.013, p = 0.032, p = 0.017, respectively). Incorporating dynamic changes of inflammatory markers into multivariable models improved their discriminatory capacity of disease severity, with significant improvements observed for NLR, systemic immune-inflammation index (SII) and AISI in NRI and IDI. Additionally, AISI was statistically associated with short-term poor outcome and a prediction model incorporating dynamic changes of inflammatory markers was constructed with the area under curve (AUC) of 0.953, presented in a nomograph. The inflammatory markers demonstrate significant associations with disease severity and AISI could be regarded as a possible and easily available predictive biomarker for short-term poor outcome in MG patients.
Collapse
Affiliation(s)
- Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinrong Zhu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shengqi Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yanchu Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shenyi Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Wei Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siqi Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Siyao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xuanyang Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yukai Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lingsheng Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Chen J, Liu S, Ruan Z, Wang K, Xi X, Mao J. Thrombotic events associated with immune checkpoint inhibitors and novel antithrombotic strategies to mitigate bleeding risk. Blood Rev 2024; 67:101220. [PMID: 38876840 DOI: 10.1016/j.blre.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Although immunotherapy is expanding treatment options for cancer patients, the prognosis of advanced cancer remains poor, and these patients must contend with both cancers and cancer-related thrombotic events. In particular, immune checkpoint inhibitors are associated with an increased risk of atherosclerotic thrombotic events. Given the fundamental role of platelets in atherothrombosis, co-administration of antiplatelet agents is always indicated. Platelets are also involved in all steps of cancer progression. Classical antithrombotic drugs can cause inevitable hemorrhagic side effects due to blocking integrin β3 bidirectional signaling, which regulates simultaneously thrombosis and hemostasis. Meanwhile, many promising new targets are emerging with minimal bleeding risk and desirable anti-tumor effects. This review will focus on the issue of thrombosis during immune checkpoint inhibitor treatment and the role of platelet activation in cancer progression as well as explore the mechanisms by which novel antiplatelet therapies may exert both antithrombotic and antitumor effects without excessive bleeding risk.
Collapse
Affiliation(s)
- Jiayi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianhua Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
30
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Role of Platelets and Their Interaction with Immune Cells in Venous Thromboembolism. Semin Thromb Hemost 2024. [PMID: 39214148 DOI: 10.1055/s-0044-1789022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Venous thromboembolism (VTE) represents a significant global health challenge, ranking as the third leading cause of cardiovascular-related mortality. VTE pervades diverse clinical specialties, posing substantial risks to patient well-being and imposing considerable economic strains on health care systems. While platelets have long been recognized as pivotal players in hemostasis, emerging evidence underscores their multifaceted immune functions and their capacity to engage in crosstalk with other immune cells, such as neutrophils, thereby fostering immune-related thrombosis. Notably, investigations have elucidated the pivotal role of platelets in the pathogenesis of VTE. This review provides a comprehensive overview of platelet physiology, encompassing their activation, secretion dynamics, and implications in VTE. Moreover, it delineates the impact of platelet interactions with various immune cells on the initiation and progression of VTE, explores the correlation between platelet-related laboratory markers and VTE, and elucidates the role of platelets in thrombosis regression.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xianghui Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xin Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Zhipeng Cheng
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Yu Hu
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| |
Collapse
|
31
|
Jung HM, Ha JH, dela Cerna MVC, Burlison JA, Choi J, Kim BR, Bang JK, Ryu KS, Lee D. An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation. Pharmaceutics 2024; 16:1148. [PMID: 39339186 PMCID: PMC11435328 DOI: 10.3390/pharmaceutics16091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Biliverdin IXβ reductase (BLVRB) has emerged as a promising therapeutic target for thrombocytopenia due to its involvement in reactive oxygen species (ROS) mechanisms. During the pursuit of inhibitors targeting BLVRB, olsalazine (OSA) became apparent as one of the most potent candidates. However, the direct application of OSA as a BLVRB inhibitor faces challenges, as it is prone to degradation into 5-aminosalicylic acid through cleavage of the diazenyl bond by abundant azoreductase (AzoR) enzymes in gut microbiota and eukaryotic cells. To overcome this obstacle, we devised olsalkene (OSK), an inhibitor where the diazenyl bond in OSA has been substituted with an alkene bond. OSK not only matches the efficacy of OSA but also demonstrates improved stability against degradation by AzoR, presenting a promising solution to this limitation. Furthermore, we have found that both OSK and OSA inhibit BLVRB, regardless of the presence of nicotinamide adenine dinucleotide phosphate, unlike other known inhibitors. This discovery opens new avenues for investigating the roles of BLVRB in blood disorders, including thrombocytopenia.
Collapse
Affiliation(s)
- Hoe-Myung Jung
- Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea; (H.-M.J.); (J.C.); (B.-R.K.); (J.K.B.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejoen 34113, Republic of Korea
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea;
| | - Mark Vincent C. dela Cerna
- Department of Biochemistry, Chemistry and Physics, Georgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA;
| | - Joseph A. Burlison
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA;
| | - Joonhyeok Choi
- Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea; (H.-M.J.); (J.C.); (B.-R.K.); (J.K.B.)
| | - Bo-Ram Kim
- Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea; (H.-M.J.); (J.C.); (B.-R.K.); (J.K.B.)
| | - Jeong Kyu Bang
- Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea; (H.-M.J.); (J.C.); (B.-R.K.); (J.K.B.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejoen 34113, Republic of Korea
- Dandicure Inc., Ochang-Eup, Cheongju-Si 28119, Republic of Korea
| | - Kyoung-Seok Ryu
- Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea; (H.-M.J.); (J.C.); (B.-R.K.); (J.K.B.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejoen 34113, Republic of Korea
| | - Donghan Lee
- Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea; (H.-M.J.); (J.C.); (B.-R.K.); (J.K.B.)
| |
Collapse
|
32
|
Guo X, Ye S, Cheng X, Huang Y, Sun G, An Y, Du J, Dong Z, Nie G, Zhang Y. Engineered P2Y 12-Overexpressing Cell-Membrane-Wrapped Nanoparticles for the Functional Reversal of Ticagrelor and Clopidogrel. NANO LETTERS 2024; 24:10482-10489. [PMID: 39140872 DOI: 10.1021/acs.nanolett.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antiplatelet agents, particularly P2Y12 receptor inhibitors, are critical medicines in the prevention and treatment of thrombotic diseases in the clinic. However, their long-term use introduces a significant risk of bleeding in patients with cardiovascular diseases. Whether the bleeding is caused by the drug itself or due to surgical procedures or trauma, the need to rapidly reverse the effects of antiplatelet agents in the circulation is essential; however, no such agents are currently available. To address this need, here we describe a strategy that uses cell-membrane-wrapped nanoparticles (CM-NPs) for the rapid reversal of P2Y12 inhibitors. CM-NPs are fabricated with membranes derived from 293T cells genetically engineered to overexpress the P2Y12 receptor. Our findings support the potential of CM-NPs as a strategy for managing bleeding complications associated with P2Y12 receptor inhibitors, offering an approach to improve the safety in the use of these drugs in clinical settings.
Collapse
Affiliation(s)
- Xiao Guo
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Siping Ye
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Xiaoyu Cheng
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Yubiao Huang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Ge Sun
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Yang An
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jiarui Du
- College of Pharmacy, Shandong First Medical University, Shandong 250012, PR China
| | - Zhenzhen Dong
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Guangjun Nie
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Yinlong Zhang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| |
Collapse
|
33
|
Zhang XQ, Tian XK, Wang L, Tang W. Effect of platelet indices on mortality and comorbidity in peritoneal dialysis: a cohort study. BMC Nephrol 2024; 25:278. [PMID: 39198738 PMCID: PMC11360337 DOI: 10.1186/s12882-024-03697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND There were limited data investigating platelet indices in predicting peritoneal dialysis (PD) outcomes on comorbidities. The aim of this study was to evaluate the association between platelet indices and new-onset comorbidity and all-cause mortality in PD patients. METHODS A single-center, retrospective observational cohort study was conducted in incident PD patients from 28 December 2011 to 24 January 2018, and followed up until 31 December 2022. Time to the first new-onset cardiovascular disease (CVD) and time to the first new-onset infection event after PD were identified as the primary outcomes. All-cause mortality was identified as the secondary endpoint. The correlation between platelet indices and comorbidities and all-cause mortality were assessed by Cox model. Data of liver disease status was not collected and analyzed. Survival curves were performed by Kaplan-Meier method with log-rank tests. RESULTS A total of 250 incident PD patients with a median follow-up of 6.79 (inter-quarter range 4.05, 8.89) years was included. A total of 81 and 139 patients experienced the first new-onset CVD and infection event respectively during the follow-up period. High mean platelet volume (MPV) was independently associated with high risk of time to the first new-onset CVD (HR 1.895, 95% CI 1.174-3.058, p = 0.009) and all-cause mortality (HR 1.710, 95% CI 1.155-2.531, p = 0.007). Patients with low mean platelet volume to platelet count ratio (MPV/PC) were prone to occur the new-onset infection events (log rank 5.693, p = 0.017). Low MPV/PC (HR 0.652, 95% CI 0.459-0.924, p = 0.016) was significantly associated with the time to the first new-onset infection event on PD. CONCLUSIONS Platelet indices were associated with the new-onset CVD, infectious comorbidities and all-cause mortality on PD. Low MPV/PC was associated with time to the first new-onset infection event in PD patients. Moreover, high MPV was associated with new-onset CVD and all-cause mortality in the incident PD patients.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Division of Nephrology, Peking University Third Hospital, Beijing, 100191, China
| | - Xin-Kui Tian
- Division of Nephrology, Peking University Third Hospital, Beijing, 100191, China
| | - Ling Wang
- Department of Nephrology, Xuzhou First People's Hospital, Xuzhou, 221000, Jiangsu, China
| | - Wen Tang
- Division of Nephrology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
34
|
Liu P, Hu Q. Engineering Cells for Cancer Therapy. Acc Chem Res 2024; 57:2358-2371. [PMID: 39093824 DOI: 10.1021/acs.accounts.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
ConspectusCells, particularly living cells, serve as natural carriers of bioactive substances. Their inherent low immunogenicity and multifunctionality have garnered significant attention in the realm of disease treatment applications, specifically within the domains of cancer immunotherapy and regenerative tissue repair. Nevertheless, several prominent challenges impede their swift translation into clinical applications, including obstacles related to large-scale production feasibility and high utilization costs. To address these issues comprehensively, researchers have proposed the notion of bionic cells that are synthetically generated through chemical or biosynthetic means to emulate cellular functions and behaviors. However, artificial cell strategies encounter difficulties in fully replicating the intricate functionalities exhibited by living cells while also grappling with the complexities associated with design implementation for clinical translation purposes. The convergence of disciplines has facilitated the reform of living cells through a range of approaches, including chemical-, biological-, genetic-, and materials-based methods. These techniques can be employed to impart specific functions to cells or enhance the efficacy of therapy. For example, cells are engineered through gene transduction, surface modifications, endocytosis of drugs as delivery systems, and membrane fusion. The concept of engineered cells presents a promising avenue for enhancing control over living cells, thereby enhancing therapeutic efficacy while concurrently mitigating toxic side effects and ultimately facilitating the realization of precision medicine.In this Account, we present a comprehensive overview of our recent research advancements in the field of engineered cells. Our work involves the application of biological or chemical engineering techniques to manipulate endogenous cells for therapeutics or drug delivery purposes. For instance, to avoid the laborious process of isolating, modifying, and expanding engineered cells in vitro, we proposed the concept of in situ engineered cells. By applying a hydrogel loaded with nanoparticles carrying edited chimeric antigen receptor (CAR) plasmids within the postoperative cavity of glioma, we successfully targeted tumor-associated macrophages for gene editing, leading to effective tumor recurrence inhibition. Furthermore, leveraging platelet's ability to release microparticles upon activation at injury sites, we modified antiprogrammed death 1 (PD-1) antibodies on their surface to suppress postoperative tumor recurrence and provide immunotherapy for inoperable tumors. Similarly, by exploiting bacteria's active tropism toward sites of inflammation and hypoxia, we delivered protein drugs by engineered bacteria to induce cancer cell death through pyroptosis initiation and immunotherapy strategies. In the final section, we summarize our aforementioned research progress while providing an outlook on cancer therapy and the hurdles for clinical translation with potential solutions or future directions based on the concept of engineered cells.
Collapse
Affiliation(s)
- Peixin Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Menezes AC, Brito ML, Almeida PP, Da Cruz BO, da Silva Costa N, D'Avila Pereira A, Castañon C, Nunes Degani VA, Medeiros de França Cardozo LF, Magliano DC, Stockler-Pinto MB. Brazil nuts potential: effects on lipid peroxidation and heart health in nephrectomized rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0123. [PMID: 39146527 DOI: 10.1515/jcim-2024-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES To investigate the effects of a Brazil nut-enriched diet on the wall thickness and the left ventricular chamber diameter of the heart, and lipid peroxidation in a CKD-induced model. METHODS Male Wistar rats at 12 weeks of age were divided into two groups (n=16/group): the Nx group, which underwent 5/6 nephrectomy, and the Sham group, as a control. After 5 weeks, the groups were subdivided according to diet (n=8/group): the Nx and Sham groups received a control diet; the Nx5% and Sham5% groups received a diet enriched with 5 % Brazil nuts for 8 weeks. The left ventricular thickening and chamber diameter were determined. Plasma biochemical parameters were evaluated. Analysis of thiobarbituric acid reactive substances (TBARS) and antioxidant enzyme activity was performed in the plasma and the left ventricle (LV). LV mRNA expression of nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) was evaluated by reverse transcription-polymerase chain reaction. RESULTS The Nx5% group showed a remodeled LV wall with decreased thickness compared to the Nx group (p=0.016). Furthermore, LV TBARS concentration was reduced in the Nx5% group (p=0.0064). In addition, the Nx5% group showed an increase in plasma GPx activity (p=0.0431). No significant results were found concerning the LV mRNA expression of NF-κB and Nrf2 genes. CONCLUSIONS A Brazil nut-enriched diet decreased LV thickness and LV TBARS concentration and increased GPx activity in a 5/6 nephrectomy experimental model, making it a promising adjuvant therapy to improve antioxidant status and cardiovascular outcomes in chronic kidney disease.
Collapse
Affiliation(s)
- Agatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecilia Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | | | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
36
|
Liu S, Guo F, Zhang T, Zhu Y, Lu M, Wu X, He F, Yu R, Yan D, Ming Z, Shu D. Iron deficiency anemia and platelet dysfunction: A comprehensive analysis of the underlying mechanisms. Life Sci 2024; 351:122848. [PMID: 38885879 DOI: 10.1016/j.lfs.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
AIMS This research aimed to study the changes in platelet function and their underlying mechanisms in iron deficiency anemia. MAIN METHODS Initially, we evaluated platelet function in an IDA mice model. Due to the inability to accurately reduce intracellular Fe2+ concentrations, we investigated the impact of Fe2+ on platelet function by introducing varying concentrations of Fe2+. To probe the underlying mechanism, we simultaneously examined the dynamics of calcium in the cytosol, and integrin αIIbβ3 activation in Fe2+-treated platelets. Ferroptosis inhibitors Lip-1 and Fer-1 were applied to determine whether ferroptosis was involved in this process. KEY FINDINGS Our study revealed that platelet function was suppressed in IDA mice. Fe2+ concentration-dependently facilitated platelet activation and function in vitro. Mechanistically, Fe2+ promoted calcium mobilization, integrin αIIbβ3 activation, and its downstream outside-in signaling. Additionally, we also demonstrated that ferroptosis might play a role in this process. SIGNIFICANCE Our data suggest an association between iron and platelet activation, with iron deficiency resulting in impaired platelet function, while high concentrations of Fe2+ contribute to platelet activation and function by promoting calcium mobilization, αIIbβ3 activation, and ferroptosis.
Collapse
Affiliation(s)
- Sijia Liu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fang Guo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tianli Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhu
- Wuhan No.1 Hospital, Wuhan 430071, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiayu Wu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fuqin He
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruiying Yu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dan Yan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zhangyin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Dan Shu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
37
|
Arauna D, Araya-Maturana R, Urra FA, García Á, Palomo I, Fuentes E. Altered dynamics of calcium fluxes and mitochondrial metabolism in platelet activation-related disease and aging. Life Sci 2024; 351:122846. [PMID: 38880165 DOI: 10.1016/j.lfs.2024.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms controlling platelet function is crucial for exploring potential therapeutic targets related to atherothrombotic pathologies and primary hemostasis disorders. Our research, which focuses on the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis, has significant implications for the development of new therapeutic strategies. Traditionally, Ca2+-dependent cellular signaling has been recognized as a determinant process throughout the platelet activation, controlled primarily by store-operated Ca2+ entry and the PLC-PKC signaling pathway. However, despite the accumulated knowledge of these regulatory mechanisms, the effectiveness of therapy based on various commonly used antiplatelet drugs (such as acetylsalicylic acid and clopidogrel, among others) has faced challenges due to bleeding risks and reduced efficacy associated with the phenomenon of high platelet reactivity. Recent evidence suggests that platelet mitochondria could play a fundamental role in these aspects through Ca2+-dependent mechanisms linked to apoptosis and forming a procoagulant phenotype. In this context, the present review describes the latest advances regarding the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Santiago, Chile
| | - Ángel García
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
38
|
Boesen CV, Christensen VS, Jensen KR, Hansen AR, Hviid CVB. An automated method for thrombocyte counting in capillary microsamples. Int J Lab Hematol 2024. [PMID: 39140397 DOI: 10.1111/ijlh.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION We aimed to develop an automated, low-volume method for thrombocyte counting in capillary blood using the Sysmex predilution (PD) mode. METHODS Microsamples were prepared by resuspension of 50 μL blood in 300 μL DCL CellPack. Thrombocyte counting was done in the impedance (PLT-I) and fluorescence (PLT-F) channels. The imprecision and bias was evaluated in >394 microsamples from adult blood. Preanalytical factors (skin-piercing, storage, and transportation in our pneumatic tube system) was assessed, and studies on pediatric microsamples were made for comparison. The improvement in analytical quality and turnaround time was examined. RESULTS For PLT-F, the imprecision was 1.1%-3.7%, and the bias was 10.1% (95% CI: 8.8-11.3). After skin-piercing, the bias was 8.1% (95% CI: 5.6-10.6) and the imprecision 1.9% (95% CI: 1.3-2.5). Thrombocyte counts kept stable after 4 h at room temperature (94.8% [95% CI: 93.2-96.4]) and after pneumatic tube transportation [6.7% (95% CI: 4.8-8.6)]. The bias of the PD mode for pediatric microsamples was 13.0% (95% CI: -8.4-34.4) in the PLT-F channel. The automated method had a considerably lower imprecision than the existing manual thrombocyte counting method and reduced turnaround times. CONCLUSION The automated microsample method offers a low-volume alternative for measurement of thrombocytes. The method appears useful also in pediatric samples.
Collapse
Affiliation(s)
| | | | | | - Anja Reinert Hansen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Wei C, Ai H, Mo D, Wang P, Wei L, Liu Z, Li P, Huang T, Liu M. A nomogram based on inflammation and nutritional biomarkers for predicting the survival of breast cancer patients. Front Endocrinol (Lausanne) 2024; 15:1388861. [PMID: 39170737 PMCID: PMC11335604 DOI: 10.3389/fendo.2024.1388861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background We aim to develop a new prognostic model that incorporates inflammation, nutritional parameters and clinical-pathological features to predict overall survival (OS) and disease free survival (DFS) of breast cancer (BC) patients. Methods The study included clinicopathological and follow-up data from a total of 2857 BC patients between 2013 and 2021. Data were randomly divided into two cohorts: training (n=2001) and validation (n=856) cohorts. A nomogram was established based on the results of a multivariate Cox regression analysis from the training cohorts. The predictive accuracy and discriminative ability of the nomogram were evaluated by the concordance index (C-index) and calibration curve. Furthermore, decision curve analysis (DCA) was performed to assess the clinical value of the nomogram. Results A nomogram was developed for BC, incorporating lymphocyte, platelet count, hemoglobin levels, albumin-to-globulin ratio, prealbumin level and other key variables: subtype and TNM staging. In the prediction of OS and DFS, the concordance index (C-index) of the nomogram is statistically greater than the C-index values obtained using TNM staging alone. Moreover, the time-dependent AUC, exceeding the threshold of 0.7, demonstrated the nomogram's satisfactory discriminative performance over different periods. DCA revealed that the nomogram offered a greater overall net benefit than the TNM staging system. Conclusion The nomogram incorporating inflammation, nutritional and clinicopathological variables exhibited excellent discrimination. This nomogram is a promising instrument for predicting outcomes and defining personalized treatment strategies for patients with BC.
Collapse
Affiliation(s)
- Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huaying Ai
- Department of Injection Room, The People’s Hospital of Yingtan, Yingtan, Jiangxi, China
| | - Dan Mo
- Department of Breast, Guangxi Zhuang Autonomous Region Maternal and Child Health Care Hospital, Nanning, China
| | - Peidong Wang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liling Wei
- Department of Anesthesiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Peizhang Li
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Taijun Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Miaofeng Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
40
|
Carminita E, Becker IC, Italiano JE. What It Takes To Be a Platelet: Evolving Concepts in Platelet Production. Circ Res 2024; 135:540-549. [PMID: 39088641 DOI: 10.1161/circresaha.124.323579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Platelets are among the most abundant cells within the circulation. Given that the platelet lifespan is 7 to 10 days in humans, a constant production of around 100 billion platelets per day is required. Platelet production from precursor cells called megakaryocytes is one of the most enigmatic processes in human biology. Although it has been studied for over a century, there is still controversy about the exact mechanisms leading to platelet release into circulation. The formation of proplatelet extensions from megakaryocytes into bone marrow sinusoids is the best-described mechanism explaining the origin of blood platelets. However, using powerful imaging techniques, several emerging studies have recently raised challenging questions in the field, suggesting that small platelet-sized structures called buds might also contribute to the circulating platelet pool. How and whether these structures differ from microvesicles or membrane blebs, which have previously been described to be released from megakaryocytes, is still a matter of discussion. In this review, we will summarize what the past and present have revealed about platelet production and whether mature blood platelets might emerge via different mechanisms.
Collapse
Affiliation(s)
- Estelle Carminita
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
- Harvard Medical School, Boston, MA (E.C., I.C.B.)
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
- Harvard Medical School, Boston, MA (E.C., I.C.B.)
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
| |
Collapse
|
41
|
Gebetsberger J, Prüller F. Classic Light Transmission Platelet Aggregometry: Do We Still Need it? Hamostaseologie 2024; 44:304-315. [PMID: 38065556 DOI: 10.1055/a-2117-4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
For more than 50 years, light transmission aggregometry has been accepted as the gold standard test for diagnosing inherited platelet disorders in platelet-rich plasma, although there are other functional approaches performed in whole blood. In this article, several advantages and disadvantages of this technique over other laboratory approaches are discussed in the view of recent guidelines, and the necessity of functional assays, such as light transmission aggregometry in the era of molecular genetic testing, is highlighted.
Collapse
Affiliation(s)
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
42
|
Cui Z, Zhang L, Hu G, Zhang F. Extracellular Vesicles in Cardiovascular Pathophysiology: Communications, Biomarkers, and Therapeutic Potential. Cardiovasc Toxicol 2024; 24:711-726. [PMID: 38844744 DOI: 10.1007/s12012-024-09875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/25/2024] [Indexed: 08/07/2024]
Abstract
Extracellular vesicles (EVs) are diverse, membrane-bound vesicles released from cells into the extracellular environment. They originate from either endosomes or the cell membrane and typically include exosomes and microvesicles. These EVs serve as crucial mediators of intercellular communication, carrying a variety of contents such as nucleic acids, proteins, and lipids, which regulate the physiological and pathological processes of target cells. Moreover, the molecular cargo of EVs can reflect critical information about the originating cells, making them potential biomarkers for the diagnosis and prognosis of diseases. Over the past decade, the role of EVs as key communicators between cell types in cardiovascular physiology and pathology has gained increasing recognition. EVs from different cellular sources, or from the same source under different cellular conditions, can have distinct impacts on the management, diagnosis, and prognosis of cardiovascular diseases. Furthermore, it is essential to consider the influence of cardiovascular-derived EVs on the metabolism of peripheral organs. This review aims to summarize recent advancements in the field of cardiovascular research with respect to the roles and implications of EVs. Our goal is to provide new insights and directions for the early prevention and treatment of cardiovascular diseases, with an emphasis on the therapeutic potential and diagnostic value of EVs.
Collapse
Affiliation(s)
- Zhe Cui
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Guangyu Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
43
|
Liu J, Wang P, Shang L, Ye F, Liu L, He Z. Adverse Associations of Long-Term Exposure to PM 2.5 and Its Components with Platelet Traits among Subway Shift-Workers without Air Purifier Use. TOXICS 2024; 12:529. [PMID: 39195631 PMCID: PMC11359941 DOI: 10.3390/toxics12080529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
Air purifier use, shift work, and long-term exposure to fine particulate matter (PM2.5) are linked to platelet abnormality. However, the role of air purifier use and shift work in the individual or joint associations of PM2.5 and its components with platelet indices are largely unknown. A total of 8772 participants were recruited from a population of subway workers in China. PM2.5 and its component data were obtained from the Tracking Air Pollution in China dataset. The role of air purifier use and shift work in the association between PM2.5 and its components and platelet indices were analyzed. Among shift workers without air purifier use, positive associations of PM2.5 and each component in PM2.5 with the mean platelet volume (MPV) or platelet counts (PLT) were observed, whereas negative associations of PM2.5 and each component in PM2.5 with the platelet distribution width (PDW) were observed. Furthermore, estimated changes (95%CIs) in PLT, MPV, and PDW in response to each 10th percentile increment in the mixture of PM2.5 and its components were 0.8657 (0.2496, 1.4819), 0.0192 (0.0054, 0.0329), and -0.0648 (-0.0945, -0.0351), respectively, and sulfate in PM2.5 was the major contributor to those associations. Long-term exposure to PM2.5 and its components was related to increased platelet disorders among shift workers without air purifier use, and those associations were mainly attributed to sulfate in PM2.5.
Collapse
Affiliation(s)
- Junling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Pei Wang
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Lv Shang
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Fang Ye
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Y.); (L.L.)
| | - Li Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Y.); (L.L.)
| | - Zhenyu He
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| |
Collapse
|
44
|
Nong Y, Wei X, Lu J, Yu D. The prognostic value of postoperative platelet levels in elderly patients after valve replacement surgery: a retrospective cohort study. BMC Cardiovasc Disord 2024; 24:379. [PMID: 39034415 PMCID: PMC11264968 DOI: 10.1186/s12872-024-04041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Further research is needed to assess the risk and prognosis after valve replacement surgery in elderly patients. This study aims to assess the prognostic value of platelet levels following valve replacement in elderly patients. METHODS A retrospective analysis was conducted on 3814 elderly individuals who underwent valve replacement surgery, categorized into quartiles based on postoperative platelet levels. Univariate and multiple regression analysis were used to assess the risk factors associated with postoperative platelet levels and in-hospital death.The Receiver Operating Characteristic (ROC) curve was utilized to establish the postoperative platelet level threshold indicative of in-hospital mortality risk, while the Kaplan-Meier curve compared the one-year postoperative survival among patients with differing postoperative platelet levels. RESULTS The low postoperative platelet levels group had a higher incidence of massive bleeding (> 400 ml), necessitating platelet transfusion and prolonged cardiopulmonary bypass during surgery (P < 0.001). However, postoperative occurrences of heart failure and stroke did not achieve statistical significance (P > 0.05). Multivariate regression analysis disclosed an association between postoperative platelet levels and in-hospital death (OR: 2.040, 95% CI: 1.372-3.034, P < 0.001). Over the one-year follow-up, patients with low platelet levels postoperatively had poorer overall survival than patients with higher platelet levels (P < 0.001) CONCLUSION: Postoperative platelets can serve as a prognostic indicator after valve surgery in elderly patients as a simple and easily available biochemical indicator. Enhanced monitoring and management postoperative platelet level in the elderly may be beneficial to improve the survival outcome of patients.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Junquan Lu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
45
|
Arribas Arranz J, Villacorta A, Rubio L, García-Rodríguez A, Sánchez G, Llorca M, Farre M, Ferrer JF, Marcos R, Hernández A. Kinetics and toxicity of nanoplastics in ex vivo exposed human whole blood as a model to understand their impact on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174725. [PMID: 39009158 DOI: 10.1016/j.scitotenv.2024.174725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
The ubiquitous presence of nanoplastics (NPLs) in the environment is considered of great health concern. Due to their size, NPLs can cross both the intestinal and pulmonary barriers and, consequently, their presence in the blood compartment is expected. Understanding the interactions between NPLs and human blood components is required. In this study, to simulate more adequate real exposure conditions, the whole blood of healthy donors was exposed to five different NPLs: three polystyrene NPLs of approximately 50 nm (aminated PS-NH2, carboxylated PS-COOH, and pristine PS- forms), together with two true-to-life NPLs from polyethylene terephthalate (PET) and polylactic acid (PLA) of about 150 nm. Internalization was determined in white blood cells (WBCs) by confocal microscopy, once the different main cell subtypes (monocytes, polymorphonucleated cells, and lymphocytes) were sorted by flow cytometry. Intracellular reactive oxygen species (iROS) induction was determined in WBCs and cytokine release in plasma. In addition, hemolysis, coagulation, and platelet activation were also determined. Results showed a differential uptake between WBC subtypes, with monocytes showing a higher internalization. Regarding iROS, lymphocytes were those with higher levels, which was observed for different NPLs. Changes in cytokine release were also detected, with higher effects observed after PLA- and PS-NH2-NPL exposure. Hemolysis induction was observed after PS- and PS-COOH-NPL exposure, but no effects on platelet functionality were observed after any of the treatments. To our knowledge, this is the first study comprehensively evaluating the bloodstream kinetics and toxicity of NPL from different polymeric types on human whole blood, considering the role played by the cell subtype and the NPLs physicochemical characteristics in the effects observed after the exposures.
Collapse
Affiliation(s)
- J Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - L Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - G Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - M Llorca
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - M Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - J F Ferrer
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, 46980 Paterna, Spain
| | - R Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - A Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
46
|
Hou L, Zhao J, He T, Su K, Li Y. Machine Learning-Based Prediction of In-Stent Restenosis Risk Using Systemic Inflammation Aggregation Index Following Coronary Stent Placement. Risk Manag Healthc Policy 2024; 17:1779-1786. [PMID: 38989249 PMCID: PMC11235080 DOI: 10.2147/rmhp.s468235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Coronary artery disease (CAD) remains a significant global health challenge, with percutaneous coronary intervention (PCI) being a primary revascularization method. In-stent restenosis (ISR) post-PCI, although reduced, continues to impact patient outcomes. Inflammation and platelet activation play key roles in ISR development, emphasizing the need for accurate risk assessment tools. The systemic inflammation aggregation index (AISI) has shown promise in predicting adverse outcomes in various conditions but has not been studied in relation to ISR. Methods A retrospective observational study included 1712 patients post-drug-eluting stent (DES) implantation. Data collected encompassed demographics, medical history, medication use, laboratory parameters, and angiographic details. AISI, calculated from specific blood cell counts, was evaluated alongside other variables using machine learning models, including random forest, Xgboost, elastic networks, logistic regression, and multilayer perceptron. The optimal model was selected based on performance metrics and further interpreted using variable importance analysis and the SHAP method. Results Our study revealed that ISR occurred in 25.8% of patients, with a range of demographic and clinical factors influencing the risk of its development. The random forest model emerged as the most adept in predicting ISR, and AISI featured prominently among the top variables affecting ISR prediction. Notably, higher AISI values were positively correlated with an elevated probability of ISR occurrence. Comparative evaluation and visual analysis of model performance, the random forest model demonstrates high reliability in predicting ISR, with specific metrics including an AUC of 0.9569, accuracy of 0.911, sensitivity of 0.855, PPV of 0.81, and NPV of 0.948. Conclusion AISI demonstrated itself as a significant independent risk factor for ISR following DES implantation, with an escalation in AISI levels indicating a heightened risk of ISR occurrence.
Collapse
Affiliation(s)
- Ling Hou
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Jinbo Zhao
- Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Enshi, Hubei Province, People's Republic of China
| | - Ting He
- Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Enshi, Hubei Province, People's Republic of China
| | - Ke Su
- Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Enshi, Hubei Province, People's Republic of China
| | - Yuanhong Li
- Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Enshi, Hubei Province, People's Republic of China
| |
Collapse
|
47
|
Chen S, Looney MR. Understanding megakaryocyte phenotypes and the impact on platelet biogenesis. Transfusion 2024; 64:1372-1380. [PMID: 38923572 PMCID: PMC11251837 DOI: 10.1111/trf.17927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Shiyu Chen
- Departments of Medicine and Laboratory Medicine, University
of California, San Francisco, San Francisco, CA, U.SA
| | - Mark R. Looney
- Departments of Medicine and Laboratory Medicine, University
of California, San Francisco, San Francisco, CA, U.SA
| |
Collapse
|
48
|
Shen B, Yang L, Jia X, Kong D, Jing L, Gao Y, Gao S, Chen R, Chen F, Zhao C, Li Y, Tan R, Zhao X. Contribution of platelets to disruption of the blood-brain barrier during arterial baroreflex dysfunction. Microvasc Res 2024; 154:104681. [PMID: 38493885 DOI: 10.1016/j.mvr.2024.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.
Collapse
Affiliation(s)
- Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaoli Jia
- Department of Pharmacy, Liaocheng People's Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Liao'cheng 252000, China
| | - Deping Kong
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Lei Jing
- Department of Pharmacy, Dongping People's Hospital, Tai'an 271500, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Shan Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Chunyu Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yue Li
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| |
Collapse
|
49
|
Gaertner F, Ishikawa-Ankerhold H, Stutte S, Fu W, Weitz J, Dueck A, Nelakuditi B, Fumagalli V, van den Heuvel D, Belz L, Sobirova G, Zhang Z, Titova A, Navarro AM, Pekayvaz K, Lorenz M, von Baumgarten L, Kranich J, Straub T, Popper B, Zheden V, Kaufmann WA, Guo C, Piontek G, von Stillfried S, Boor P, Colonna M, Clauß S, Schulz C, Brocker T, Walzog B, Scheiermann C, Aird WC, Nerlov C, Stark K, Petzold T, Engelhardt S, Sixt M, Hauschild R, Rudelius M, Oostendorp RAJ, Iannacone M, Heinig M, Massberg S. Plasmacytoid dendritic cells control homeostasis of megakaryopoiesis. Nature 2024; 631:645-653. [PMID: 38987596 PMCID: PMC11254756 DOI: 10.1038/s41586-024-07671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| | | | - Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wenwen Fu
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jutta Weitz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Bhavishya Nelakuditi
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Larissa Belz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Gulnoza Sobirova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Zhe Zhang
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatic Core facility, LMU Munich, Planegg-Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU Munich, Planegg-Martinsried, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Chenglong Guo
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St Louis, MO, USA
| | - Sebastian Clauß
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert A J Oostendorp
- Laboratory of Stem Cell Physiology, Department of Internal Medicine III-Hematology and Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
50
|
Guo CY, Mo R, Kim H. Surface topography modulates initial platelet adhesion to titanium substrata. J Oral Biol Craniofac Res 2024; 14:471-477. [PMID: 38962718 PMCID: PMC11220530 DOI: 10.1016/j.jobcr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 07/05/2024] Open
Abstract
The clinical success of implanted biomaterials such as dental implants is largely determined by the molecular signaling that occurs at the tissue-implant interface. The modification of surface topography is a widely-employed strategy for optimizing tissue integration with dental implants. However, little is known regarding the direct, cellular-level effects of substratum topography on platelet signaling and adhesion, despite these cells being the first to encounter the implant surface during surgical placement. Here we compared platelet adhesion and secretion on four (4) different titanium surfaces, notably, the modifications applied to commercially available dental implants: smooth (S) titanium; acid-etched (AE), sandblasted (SB) and a combined acid-etching/sandblasting procedure (SLA). Platelets were isolated from human blood, washed, and seeded on to the 4 test surfaces; platelet adhesion was quantified by microscopy. In addition, the secretion of critical molecules stored in platelet granules (platelet factor 4, PF4; soluble P-selectin, sCD62P; transforming growth factor-beta1, TGF-β1; platelet-derived growth factor-AB, PDGF-AB) was measured by enzyme-linked immunosorbent assay (ELISA) analysis of the supernatants. There was greater platelet adhesion to the rougher AE and SB surfaces, however, the concentration of the secreted growth factors was comparable on all surfaces. We conclude that while surface topography can be engineered to modulate initial platelet adhesion, granule secretion is likely regulated as a separate and independent process.
Collapse
Affiliation(s)
- Cecilia Yan Guo
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Raymond Mo
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|