1
|
Chaba A, Zarbock A, Forni LG, Hästbacka J, Korneva E, Landoni G, Pickkers P, Bellomo R. ANGIOTENSIN II FOR CATECHOLAMINE-RESISTANT VASODILATORY SHOCK IN PATIENTS WITH ACUTE KIDNEY INJURY: A POST HOC ANALYSIS OF THE ATHOS-3 TRIAL. Shock 2025; 63:88-93. [PMID: 39671552 DOI: 10.1097/shk.0000000000002481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
ABSTRACT Objective: The combination of catecholamine-resistant vasodilatory shock and acute kidney injury (AKI) is associated with high morbidity and mortality. The role of angiotensin II (ANGII) in this setting is unclear. Methods: We conducted a post hoc analysis of the Angiotensin II for the Treatment of High-Output Shock (ATHOS) 3 trial which assessed the effect of Intravenous ANG II or placebo in patients with refractory vasodilatory shock in 75 intensive care units across nine countries in North America, Australasia, and Europe. We included patients with all stages AKI at initiation of ANG II or placebo and assessed 28-day mortality as primary outcome. We studied mean arterial pressure (MAP) response and days alive and free from renal replacement therapy (RRT) up to day 7 as secondary outcome. Results: Of 321 ATHOS-3 patients, 203 (63%) had AKI at randomization, with stage 3 AKI being dominant (67%). Median age was 63 years and median APACHE II score was 30. By day 28, overall, 118 (58%) of patients had died (53% with ANGII vs. 63% with placebo, hazard ratio = 0.75, 95% CI [0.52-1.08], P = 0.121). Among AKI stage 3 patients, however, ANGII was associated with significantly lower mortality (48% vs. 67%, hazard ratio = 0.57, 95% CI [0.36-0.91], P = 0.024). Additionally, in this subgroup, compared with placebo, patients receiving ANGII were more likely to achieve a MAP response (P < 0.001) and had more days alive and free from RRT (P < 0.001). Conclusions: Compared with placebo, in patients with catecholamine-resistant vasodilatory shock and stage 3 AKI, ANGII is associated with lower 28-day, greater likelihood of MAP response, and more days alive and free from RRT. These findings support the conduct of future ANGII trials in patients with stage 3 AKI.
Collapse
Affiliation(s)
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lui G Forni
- Department of Critical Care, Royal Surrey Hospital & School of Medicine, University of Surrey, Guildford, United Kingdom
| | - Johanna Hästbacka
- Department of Anesthesia and Intensive Care, Tampere University Hospital and University of Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Elena Korneva
- Development and Regulatory Affairs Department, Paion Deutschland GmbH, Aachen, Germany
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
2
|
Molnár AÁ, Birgés K, Surman A, Merkely B. The Complex Connection Between Myocardial Dysfunction and Cancer Beyond Cardiotoxicity: Shared Risk Factors and Common Molecular Pathways. Int J Mol Sci 2024; 25:13185. [PMID: 39684895 DOI: 10.3390/ijms252313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previously, these two conditions were considered independent, except in terms of cardiotoxicity, which links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that there are further connections between cancer and heart disease beyond cardiotoxicity. It has been revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional common pathophysiological mechanisms might be involved in the relationship between cardiology and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may include shared risk factors and common molecular pathways, such as persistent inflammation and neurohormonal activation. This review explores the connection between myocardial dysfunction and cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors like cardiotoxicity, along with their clinical implications.
Collapse
Affiliation(s)
| | - Kristóf Birgés
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Adrienn Surman
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
3
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024; 47:3397-3408. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Singh KD, Karnik SS. Implications of β-Arrestin biased signaling by angiotensin II type 1 receptor for cardiovascular drug discovery and therapeutics. Cell Signal 2024; 124:111410. [PMID: 39270918 DOI: 10.1016/j.cellsig.2024.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that β-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the β-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current β-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, β-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule β-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, USA.
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, USA.
| |
Collapse
|
5
|
Zhu M, Yi X, Song S, Yang H, Yu J, Xu C. Principle role of the (pro)renin receptor system in cardiovascular and metabolic diseases: An update. Cell Signal 2024; 124:111417. [PMID: 39321906 DOI: 10.1016/j.cellsig.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
(Pro)renin receptor (PRR), along with its soluble form, sPRR, functions not only as a crucial activator of the local renin-angiotensin system but also engages with and activates various angiotensin II-independent signaling pathways, thus playing complex and significant roles in numerous physiological and pathophysiological processes, including cardiovascular and metabolic disorders. This article reviews current knowledge on the intracellular partners of the PRR system and explores its physiological and pathophysiological impacts on cardiovascular diseases as well as conditions related to glucose and lipid metabolism, such as hypertension, heart disease, liver disease, diabetes, and diabetic complications. Targeting the PRR system could emerge as a promising therapeutic strategy for treating these conditions. Elevated levels of circulating sPRR might indicate the severity of these diseases, potentially serving as a biomarker for diagnosis and prognosis in clinical settings. A comprehensive understanding of the functions and regulatory mechanisms of the PRR system could facilitate the development of novel therapeutic approaches for the prevention and management of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Mengzhi Zhu
- College of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
6
|
Liu Q, Cui Z, Deng C, Yang C, Shi T. A real-world pharmacovigilance analysis of adverse events associated with irbesartan using the FAERS and JADER databases. Front Pharmacol 2024; 15:1485190. [PMID: 39635439 PMCID: PMC11614654 DOI: 10.3389/fphar.2024.1485190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Objective Hypertension is a leading global risk factor for disability and death. Irbesartan, a potent angiotensin II receptor blocker, requires continuous safety monitoring. We conducted a disproportionality analysis of irbesartan-related adverse drug events (ADEs) using the FDA's FAERS and Japan's JADER databases. Methods We extracted irbesartan-related ADE reports from FAERS (Q1 2004 to Q1 2024) and JADER (Q2 2008 to Q4 2023). We used Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) for signal detection. Sensitivity analyses were conducted to exclude comorbid medications, and subgroup analyses by age and gender were performed to explore ADE occurrence in specific populations. Th time to onset (TTO) of ADEs was assessed using Weibull distribution test and Kaplan-Meier curves. Results A total of 5,816 (FAERS) and 366 (JADER) reports were analyzed, with irbesartan-related preferred terms (PTs) involving 27 System Organ Classes (SOCs) in FAERS and 22 in JADER. Three SOCs met detection thresholds in both databases: "metabolism and nutrition disorders," "cardiac disorders," and "renal and urinary disorders." We identified 219 positive signals in FAERS and 20 in JADER, including known signals like hyperkalemia, hypotension, and acute kidney injury. Notably, newly identified signals such as acute pancreatitis (n = 50, ROR: 7.76 [5.88-10.25]) and rhabdomyolysis (n = 50, ROR: 7.76 [5.88-10.25]) in FAERS and respiratory failure (n = 7, ROR: 6.76 [3.20-14.26]) in JADER could have significant clinical implications, as they may lead to severe outcomes if not recognized and managed promptly. Subgroup analyses revealed both similarities and differences in signal detection across gender and age groups. Sensitivity analyses, excluding concomitant medications, confirmed the persistence of key positive signals, including hyperkalemia, angioedema, acute pancreatitis, and agranulocytosis. ADEs mainly occurred within 1 month (34.14%) and after 1 year (32.32%) after dosing, with a median onset of 107 days. Conclusion This study provides valuable real-world evidence on the safety profile of irbesartan. The identification of new safety signals underscores the necessity of updating drug labels, particularly for assessing and managing high-risk patients. Additionally, the TTO analysis emphasizes the importance of sustained vigilance for adverse events over time. In conclusion, our findings contribute to a more comprehensive understanding of irbesartan's safety, aiding healthcare professionals in optimizing its use in clinical practice.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chao Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Li MY, Jiang J, Li JG, Niu H, Ying YL, Tian R, Long YT. Nanopore approaches for single-molecule temporal omics: promises and challenges. Nat Methods 2024:10.1038/s41592-024-02492-3. [PMID: 39558099 DOI: 10.1038/s41592-024-02492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/18/2024] [Indexed: 11/20/2024]
Abstract
The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.
Collapse
Affiliation(s)
- Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Jie Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jun-Ge Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongyan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Yang S, Ni J, Xu P. AI4ACEIP: A Computing Tool to Identify Food Peptides with High Inhibitory Activity for ACE by Merged Molecular Representation and Rich Intrinsic Sequence Information Based on an Ensemble Learning Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25340-25356. [PMID: 39495772 DOI: 10.1021/acs.jafc.4c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Hypertension is a common chronic disorder and a major risk factor for cardiovascular diseases. Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II, causing vasoconstriction and raising blood pressure. Pharmacotherapy is the mainstay of traditional hypertension treatment, leading to various negative side effects. Some food-derived peptides can suppress ACE, named ACEIP with fewer undesirable effects. Therefore, it is crucial to seek strong dietary ACEIP to aid in hypertension treatment. In this article, we propose a new model called AI4ACEIP to identify ACEIP. AI4ACEIP uses a novel two-layer stacked ensemble architecture to predict ACEIP relying on integrated view features derived from sequence, large language models, and molecular-based information. The analysis of feature combinations reveals that four selected integrated feature pairs exhibit enhancing performance for identifying ACEIP. For finding meta models with strong abilities to learn information from integrated feature pairs, PowerShap, a feature selection method, is used to select 40 optimal feature and meta model combinations. Compared with seven state-of-the-art methods on the source and clear benchmark data sets, AI4ACEIP significantly outperformed by 8.47 to 20.65% and 5.49 to 14.42% for Matthew's correlation coefficient. In brief, AI4ACEIP is a reliable model for ACEIP prediction and is freely available at https://github.com/abcair/AI4ACEIP.
Collapse
Affiliation(s)
- Sen Yang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Jiaqi Ni
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China
| | - Piao Xu
- College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Barros MC, de Souza JES, Gomes DHF, Pinho CT, Silva CS, Braga-da-Silva C, Cavalcante GC, Magalhães L, Azevedo-Pinheiro J, Quaresma JAS, Falcão LFM, Costa PF, Salgado CG, Carneiro TX, Burbano RR, Dos Santos Vieira JR, Santos S, Soares-Souza GB, de Souza SJ, Ribeiro-Dos-Santos Â. Unraveling the protective genetic architecture of COVID-19 in the Brazilian Amazon. Sci Rep 2024; 14:27332. [PMID: 39521879 PMCID: PMC11550431 DOI: 10.1038/s41598-024-78170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Despite all the efforts acquired in four years of the COVID-19 pandemic, the path to a full understanding of the biological mechanisms involved in this disease remains complex. This is partly due to a combination of factors, including the inherent characteristics of the infection, socio-environmental elements, and the variations observed within both the viral and the human genomes. Thus, this study aimed to investigate the correlation between genetic host factors and the severity of COVID-19. We conducted whole exome sequencing (WES) of 124 patients, categorized into severe and non-severe groups. From the whole exome sequencing (WES) association analysis, four variants (rs1770731 in CRYBG1, rs7221209 in DNAH17, rs3826295 in DGKE, and rs7913626 in CFAP46) were identified as potentially linked to a protective effect against the clinical severity of COVID-19, which may explain the less severe impact of COVID-19 on the Northern Region. Our findings underscore the importance of carrying out more genomic studies in populations living in the Amazon, one of the most diverse from the point of view of the presence of rare and specific alleles. To our knowledge, this is the first WES study of admixed individuals from the Brazilian Amazon to investigate genomic variants associated with the clinical severity of COVID-19.
Collapse
Affiliation(s)
- Maria Clara Barros
- Laboratory of Human and Medical Genetics (LGHM) / Graduate Program Genetics and Molecular Biology (PPGBM), Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
| | - Jorge Estefano Santana de Souza
- Graduate Program Bioinformatics, Federal University of Rio Grande do Norte (UFRN), Natal, 59078-970, RN, Brazil
- Multidisciplinary Bioinformatics Center (BiOMe), Federal University of Rio Grande do Norte (UFRN), Natal, 59078-970, RN, Brazil
| | - Daniel Henrique F Gomes
- Graduate Program Bioinformatics, Federal University of Rio Grande do Norte (UFRN), Natal, 59078-970, RN, Brazil
| | - Catarina Torres Pinho
- Laboratory of Human and Medical Genetics (LGHM) / Graduate Program Genetics and Molecular Biology (PPGBM), Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
| | - Caio S Silva
- Laboratory of Human and Medical Genetics (LGHM) / Graduate Program Genetics and Molecular Biology (PPGBM), Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
| | - Cíntia Braga-da-Silva
- Laboratory of Human and Medical Genetics (LGHM) / Graduate Program Genetics and Molecular Biology (PPGBM), Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
| | - Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics (LGHM) / Graduate Program Genetics and Molecular Biology (PPGBM), Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
| | | | - Jhully Azevedo-Pinheiro
- Laboratory of Human and Medical Genetics (LGHM) / Graduate Program Genetics and Molecular Biology (PPGBM), Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
| | - Juarez Antônio Simões Quaresma
- Laboratory of Infectious Disease, School of Medicine, Federal University of Pará (UFPA), Belém, 66075-110, PA, Brazil
- Department of Infectious Disease, School of Medicine, State University of Pará (UEPA), Belém, 66087-670, PA, Brazil
| | - Luiz Fábio Magno Falcão
- Department of Infectious Disease, School of Medicine, State University of Pará (UEPA), Belém, 66087-670, PA, Brazil
| | - Patrícia Fagundes Costa
- Dermatology and Immunology Laboratory, Federal University of Pará (UFPA), Marituba, 67105-290, PA, Brazil
| | - Cláudio Guedes Salgado
- Dermatology and Immunology Laboratory, Federal University of Pará (UFPA), Marituba, 67105-290, PA, Brazil
| | | | | | | | - Sidney Santos
- Center of Oncology Research, Federal University of Pará (UFPA), Belém, 66073- 005, PA, Brazil
| | | | - Sandro José de Souza
- Graduate Program Bioinformatics, Federal University of Rio Grande do Norte (UFRN), Natal, 59078-970, RN, Brazil.
- Multidisciplinary Bioinformatics Center (BiOMe), Federal University of Rio Grande do Norte (UFRN), Natal, 59078-970, RN, Brazil.
- DNA-GTX Bioinformatics, Natal, RN, Brazil.
| | | |
Collapse
|
10
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Jeon S, Salvo MA, Alia AO, Popovic J, Zagardo M, Chandra S, Nassan M, Gate D, Vassar R, Cuddy LK. Neuronal ACE1 knockout disrupts the hippocampal renin angiotensin system leading to memory impairment and vascular loss in normal aging. Neurobiol Dis 2024; 202:106729. [PMID: 39515529 DOI: 10.1016/j.nbd.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Angiotensin I converting enzyme (ACE1) maintains blood pressure homeostasis by converting angiotensin I into angiotensin II in the renin-angiotensin system (RAS). ACE1 is expressed in the brain, where an intrinsic RAS regulates complex cognitive functions including learning and memory. ACE1 has been implicated in neurodegenerative disorders including Alzheimer's disease and Parkinson's disease, but the mechanisms remain incompletely understood. Here, we performed single-nucleus RNA sequencing to characterize the expression of RAS genes in the hippocampus and discovered that Ace is mostly expressed in CA1 region excitatory neurons. To gain a deeper understanding of the function of neuronal ACE1, we generated ACE1 conditional knockout (cKO) mice lacking ACE1 expression specifically in hippocampal and cortical excitatory neurons. ACE1 cKO mice exhibited hippocampus-dependent memory impairment in the Morris water maze, y-maze, and fear conditioning tests. Total ACE1 level was significantly reduced in the cortex and hippocampus of ACE1 cKO mice showing that excitatory neurons are the predominant cell type expressing ACE1 in the forebrain. Despite similar reductions in total ACE1 level in both the hippocampus and cortex, the RAS pathway was dysregulated in the hippocampus only. Importantly, ACE1 cKO mice exhibited age-related capillary loss selectively in the hippocampus. Here, we show selective vulnerability of the hippocampal microvasculature and RAS pathway to neuronal ACE1 knockout. Our results provide important insights into the function of ACE1 in the brain and demonstrate a connection between neuronal ACE1 and cerebrovascular function in the hippocampus.
Collapse
Affiliation(s)
- Sohee Jeon
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Miranda A Salvo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Alia O Alia
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Jelena Popovic
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Mitchell Zagardo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Sidhanth Chandra
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Malik Nassan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Robert Vassar
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Leah K Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
12
|
Guimarães Júnior OF, Pereira de Oliveira GL, Farias Lelis DD, Faria Baldo TDO, Baldo MP, Sousa Santos SH, Andrade JMO. Expression levels of ACE and ACE2 in the placenta and white adipose tissue of lean and obese pregnant women. Biomarkers 2024; 29:434-441. [PMID: 39348715 DOI: 10.1080/1354750x.2024.2411346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND This study evaluated the expression of ACE and ACE2 in the placenta and white adipose tissue in lean and obese women, and correlated their levels with anthropometric, clinical, and laboratory parameters, and tissue count of inflammatory cells. METHODS A cross-sectional analytical study was performed with 49 pregnant women and their respective newborns. Samples of placenta and adipose tissue were used for measuring mRNA expression for ACE and ACE2 through qRT-PCR. Inflammatory cell counting was performed through conventional microscopy. RESULTS An increase in ACE expression and a decrease in ACE2 were observed in the placenta and adipose tissue of women with obesity. ACE2 levels showed a negative correlation with pre-pregnancy BMI and total cholesterol. CONCLUSION Maternal obesity can modulate the expression of RAS components in the placenta and white adipose tissue, with ACE2 correlated with pre-pregnancy BMI and total cholesterol.
Collapse
Affiliation(s)
- Orcione Ferreira Guimarães Júnior
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Gabriel Ledo Pereira de Oliveira
- Department of Medicine, Santo Agostinho College - Afya Educacional (Faculdade Santo Agostinho), FASA, Vitória da Conquista, Bahia, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | | | - Marcelo Perim Baldo
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
13
|
Salles ACP, Alexandre-Santos B, de Souza Carvalho T, Proença AB, Sepúlveda-Fragoso V, Fernandes T, Oliveira EM, da Nóbrega ACL, Frantz EDC, Magliano DC. ER stress improvement by aerobic training or enalapril differently ameliorates pathological cardiac remodeling in obese mice. Mol Cell Biochem 2024; 479:3167-3179. [PMID: 38308790 DOI: 10.1007/s11010-024-04925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Overactivation of the classic arm of the renin-angiotensin system (RAS) is one of the main mechanisms involved in obesity-related cardiac remodeling, and a possible relationship between RAS and ER stress in the cardiovascular system have been described. Thus, the aim of this study is to evaluate if activating the protective arm of the RAS by ACE inhibition or aerobic exercise training could overturn diet-induced pathological cardiac hypertrophy by attenuating ER stress. Male C57BL/6 mice were fed a control (SC) or a high-fat diet (HF) for 16 weeks. In the 8th week, HF-fed animals were randomly divided into HF, enalapril treatment (HF-En), and aerobic exercise training (HF-Ex) groups. Body mass (BM), food and energy intake, plasma analyzes, systolic blood pressure (SBP), physical conditioning, and plasma ACE and ACE2 activity were evaluated. Cardiac morphology, and protein expression of hypertrophy, cardiac metabolism, RAS, and ER stress markers were assessed. Data presented as mean ± standard deviation and analyzed by one-way ANOVA with Holm-Sidak post-hoc. HF group had increased BM and SBP, and developed pathological concentric cardiac hypertrophy, with overactivation of the classic arm of the RAS, and higher ER stress. Both interventions reverted the increase in BM, and SBP, and favored the protective arm of the RAS. Enalapril treatment improved pathological cardiac hypertrophy with partial reversal of the concentric pattern, and slightly attenuated cardiac ER stress. In contrast, aerobic exercise training induced physiological eccentric cardiac hypertrophy, and fully diminished ER stress.
Collapse
Affiliation(s)
- Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Thais de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
- Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
14
|
Wei L, Bo L, Luo C, Yin N, Jiang W, Qian F, Zhou A, Lu X, Guo H, Mao C. Transplantation of human umbilical cord-derived mesenchymal stem cells improves age-related ovarian functional decline via regulating the local renin-angiotensin system on inflammation and oxidative stress. Stem Cell Res Ther 2024; 15:377. [PMID: 39444026 PMCID: PMC11515572 DOI: 10.1186/s13287-024-03997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Age-related reproductive aging is a natural and irreversible physiological process, and delaying childbearing is increasingly common all over the world. Transplantation of mesenchymal stem cells (MSCs) is considered a new and effective therapy to restore ovarian function, but the relevant mechanisms remain unclear. Recently, it has been found that there is a local Renin-angiotensin system (RAS) in human ovary and it plays a key role. METHODS After collecting follicular fluid from women who received oocyte retrieval for pure male factor infertility, the level of RAS components in it were detected, and the correlation analysis by linear regression. Then, the in vivo experiments on female C57BL/6 mice were designed to measure ovarian function, and the transcription and translation levels of RAS pathway were detected by molecular biology methods. Moreover, the role of RAS in regulating inflammation and oxidative stress in the co-culture system were explored in in vitro experiments on KGN cells. RESULTS First, a total of 139 samples of analyzable follicular fluid were obtained. The local RAS of ovary, which is independent of systemic RAS (P > 0.05), is affected by age (Pearson r < 0, P < 0.05) and related to ovarian function, inflammation, oxidative stress indexes and assisted reproduction laboratory outcomes (P < 0.05). Next, the ovary/body weight of aging mice decreased significantly and serum sex hormones levels changed significantly (P < 0.01). The number of functional follicles decreased, while the atresia follicles increased (P < 0.05). After MSCs transplantation, all the above measures have been partially recovered (P < 0.05). Although several RAS components in aging ovary changed, MSCs only improved the expression level of AT1R (P < 0.05). Furthermore, the secretion ability and mitochondrial membrane potential of aging KGN cells decreased, while the intracellular ROS level and the aging cells ratio increased (P < 0.01). All the above measures have been partially recovered when co-cultured with MSCs (P < 0.05). After Ang(1-7) were added into the co-culture system, the above have been more significantly restored compared with Ang II (P < 0.05). Nevertheless, there was no statistical difference in estradiol level no matter which one was added (P > 0.05). CONCLUSIONS Together, our findings indicate that a novel possible mechanism to explain how stem cells restore age-related ovarian functional decline.
Collapse
Affiliation(s)
- Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Na Yin
- Obstetrics and Gynecology Department, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, 200030, China
| | - Wangtao Jiang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fei Qian
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Anwen Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xuanping Lu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huiping Guo
- Obstetrics and Gynecology Department, Zhangjiagang First People's Hospital Affiliated to Soochow University, Zhangjiagang, 215699, Jiangsu, China.
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
15
|
Ji W, Xie X, Bai G, Fan Y, He Y, Zhang L, Zhou H, Li L, Qiang D, Li H. Type 2 Diabetes Mellitus Aggravates Complement Dysregulation and Affects Cortisol Response in Patients with Post-COVID-19. Diabetes Metab Syndr Obes 2024; 17:3849-3861. [PMID: 39449862 PMCID: PMC11499617 DOI: 10.2147/dmso.s480457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose COVID-19 viral infection results in dysregulation of the complement system and a decrease in cortisol and adrenocorticotropin hormone (ACTH) levels. This study aimed to explore the complement system, as well as cortisol and ACTH responses in patients with post-COVID-19 conditions (PCC) and type 2 diabetes mellitus (T2DM). Patients and Methods This study recruited 31 patients with PCC and T2DM (PCC-T2DM), 19 patients with PCC (PCC), 10 patients with T2DM (T2DM), and 10 healthy participants (control). Cortisol and ACTH in the PCC and PCC-T2DM groups were assessed using the insulin tolerance test. In the fasting state, serum samples were collected for proteomic analyses. Spearman correlation analysis was performed between proteins and cortisol, as well as between proteins and ACTH. Results Cortisol and ACTH levels were consistently decreased in the PCC and PCC-T2DM groups. Proteomic analyses revealed that most of the differentially abundant proteins (DAPs) in the PCC vs control and PCC-T2DM vs T2DM were involved in the coagulation and complement cascade, and the essential complement C3 was significantly upregulated in the PCC and PCC-T2DM groups when compared to their controls. Additionally, complement-related DAPs in the PCC vs control and PCC-T2DM vs T2DM were significantly correlated with cortisol and ACTH levels. In comparing PCC-T2DM samples with PCC samples, we found that upregulated DAPs were linked to the complement system and other immune system, and most DAPs were negatively correlated with cortisol and ACTH. Conclusion Our study revealed that T2DM exacerbated dysregulation of the complement system in patients with PCC, and significant correlations were present between complement protein levels and those of cortisol and ACTH. These results provide novel insights into the dysregulation of complement and endocrine hormones in patients with PCC and T2DM.
Collapse
Affiliation(s)
- Wenrui Ji
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Xiaomin Xie
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Guirong Bai
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Yalei Fan
- The Second Clinical Medical School of Ningxia Medical University, Yinchuan, 750001, People’s Republic of China
| | - Yanting He
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Li Zhang
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Haiyan Zhou
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Dan Qiang
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Huan Li
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| |
Collapse
|
16
|
De Pascalis A, Tomassetti A, Vetrano D, Tringali E, Di Lullo L, Napoli M, La Manna G, Cianciolo G. Hypertension in Cardiovascular and Kidney Disease: Recent Trends - Treating Two Diseases as One. Cardiorenal Med 2024; 14:581-587. [PMID: 39374593 DOI: 10.1159/000541876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Hypertension and chronic kidney disease (CKD) are closely interlinked pathophysiologic states, such that high blood pressure (BP) is an independent risk factor for disease progression in both adult and pediatric patients with kidney disorders and progressive decline in kidney function can conversely lead to worsening BP control. SUMMARY Hypertension in CKD is not only associated with GFR loss, but increases cardiovascular risk, which is the leading source of mortality and morbidity in this population. Given this complex relationship between hypertension, CKD, and CVD, an optimal management of BP in CKD is mandatory to break an established vicious pathophysiological cycle that leads to adverse outcomes. KEY MESSAGES New promising molecules for the treatment of CKD, with interesting mechanisms, particularly regarding their pathophysiological interactions with arterial hypertension, are available or under development and in the very next future they may change the way we treat high BP in CKD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcello Napoli
- Nephrology, Dialysis Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Gaetano La Manna
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Nephrology, Dialysis, Hypertension Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis, Hypertension Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
17
|
Wang S, Zhu C, Zhang S, Ma S, Li B, Zhao S, Zhang W, Sun Z. The Combination of Gastrodin and Gallic Acid Synergistically Attenuates AngII-Induced Apoptosis and Inflammation via Regulation of Sphingolipid Metabolism. J Inflamm Res 2024; 17:6971-6988. [PMID: 39372584 PMCID: PMC11456272 DOI: 10.2147/jir.s477554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Hypertension (HTN) is closely related to endothelial damage. While tianma (TM) and gouqizi (GQZ) have the potential to be effective in the treatment of HTN in traditional Chinese medicine, their main active ingredients and whether its exert synergistic effects and the underlying mechanisms of synergistic effects are still unclear. Objective This study screened the active ingredients of TM and GQZ, investigated the synergistic effects of the active ingredients and explored possible mechanisms. Methods The potential targets and mechanisms of TM and GQZ were screened using network pharmacology, and gastrodin (GAS) and gallic acid (GA) were identified as compounds with significant antihypertensive activity. The synergistic effects of the combination of GAS and GA was assessed by measuring biomarkers of AngII-induced human umbilical vein endothelial cell (HUVECs) dysfunction model. Furthermore, the anti-apoptotic and anti-inflammatory effects were evaluated by measuring inflammatory cytokine secretion, and apoptosis-related markers. Finally, key targets of the sphingolipid signaling pathway were experimentally validated by Western blotting. Results In network pharmacology, the herb-pair exerted a synergetic effect by regulating sphingolipid pathways. The GAS and GA exerted synergistic protective effects in AngII-induced HUVECs injury by improving Nitric Oxide Content (NO) levels, alleviating lactate Endothelin-1 (ET-1), and Thromboxane B2 (TX-B2) release, reducing the secretion of inflammatory factors like interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor Alpha (TNF-α)), decreasing the pro-apoptotic protein BAX, and increasing the anti-apoptotic protein BCL-2. Furthermore, the results showed that the GAS and GA combination could elevate the level of S1PR1 and inhibit the expression of ROCK2 and the phosphorylation of NF-κB, which are key targets involved in sphingolipid pathways. Conclusion Our study revealed that the combination of GAS and GA could suppress inflammation and apoptosis, which are highly correlated with sphingolipid signaling pathways, making it a potential candidate for the treatment of HTN.
Collapse
Affiliation(s)
- Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shurui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Siyu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Baoshan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shengbo Zhao
- Ningqiang Tianma Research Institution Limited Liability Company, Hanzhong, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Ningqiang County Traditional Chinese Medicinal Industry Development Center, Hanzhong, Shaanxi, People’s Republic of China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Pi D, Zheng L, Gao C, Xiao C, Yu Z, Fu Y, Li J, Chen C, Liu C, Zou Z, Xu F. RENIN AND ANGIOTENSIN (1-7) OFFER PREDICTIVE VALUE IN PEDIATRIC SEPSIS: FINDINGS FROM PROSPECTIVE OBSERVATIONAL COHORTS. Shock 2024; 62:488-495. [PMID: 39012767 DOI: 10.1097/shk.0000000000002417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background: Pediatric sepsis is a common and complex syndrome characterized by a dysregulated immune response to infection. Aberrations in the renin-angiotensin system (RAS) are factors in several infections of adults. However, the precise impact of RAS dysregulation in pediatric sepsis remains unclear. Methods: Serum samples were collected from a derivation cohort (58 patients with sepsis, 14 critically ill control subjects, and 37 healthy controls) and validation cohort (50 patients with sepsis, 37 critically ill control subjects, and 46 healthy controls). Serum RAS levels on day of pediatric intensive care unit admission were determined and compared with survival status and organ dysfunction. Results: In the derivation cohort, the serum renin concentration was significantly higher in patients with sepsis (3,678 ± 4,746) than that in healthy controls (635.6 ± 199.8) ( P < 0.0001). Meanwhile, the serum angiotensin (1-7) was significantly lower in patients with sepsis (89.7 ± 59.7) compared to that in healthy controls (131.4 ± 66.4) ( P < 0.01). These trends were confirmed in a validation cohort. Nonsurvivors had higher levels of renin (8,207 ± 7,903) compared to survivors (2,433 ± 3,193) ( P = 0.0001) and lower levels of angiotensin (1-7) (60.9 ± 51.1) compared to survivors (104.0 ± 85.1) ( P < 0.05). A combination of renin, angiotensin (1-7) and procalcitonin achieved a model for diagnosis with an area under the receiver operating curve of 0.87 (95% CI: 0.81-0.92). Conclusion: Circulating renin and angiotensin (1-7) have predictive value in pediatric sepsis.
Collapse
Affiliation(s)
- Dandan Pi
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Caixia Gao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Changxue Xiao
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Zhicai Yu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yueqiang Fu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jing Li
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Chengjun Liu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | | | - Feng Xu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
19
|
Monteiro ALL, Eliezeck M, Scalzo SRA, Silva MM, Sanches B, Ferreira KKS, Poletini MO, Peliciari-Garcia RA, Cau SBA, Souza Santos RA, Guatimosim S. Time of day affects MrgD-dependent modulation of cardiomyocyte contractility. Am J Physiol Cell Physiol 2024; 327:C1143-C1149. [PMID: 39159390 DOI: 10.1152/ajpcell.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. β-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. NG-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.NEW & NOTEWORTHY Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.
Collapse
Affiliation(s)
- André L L Monteiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Eliezeck
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sérgio R A Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Morais Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Sanches
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Katyana K S Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maristela O Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A Peliciari-Garcia
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Stêfany B A Cau
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robson A Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
21
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
22
|
Flores Y, Zapata-Torres G, Nuñez A, Matthies DJ, Alemán L, Hernández-Fuentes C, Sánchez G, Araya E, Guzman F, Pedrozo Z, Guardiola S, Varese M, Giralt E, Maslov I, Del Borgo M, Widdop RE, Valdebenito S, Eugenin EA, Chiong M, Hill JA, Ocaranza MP, Kogan MJ, Lavandero S. Angiotensin-(1-9) Retro-Enantiomer Peptide With Cardioprotective Activity. Circulation 2024; 150:816-820. [PMID: 39226382 PMCID: PMC11373884 DOI: 10.1161/circulationaha.122.061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Affiliation(s)
- Yvo Flores
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
| | - Gerald Zapata-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
- Facultad Ciencias Químicas y Farmacéuticas (G.Z.-T., D.J.M.), Universidad de Chile, Santiago
| | - Agustín Nuñez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
| | - Douglas J Matthies
- Facultad Ciencias Químicas y Farmacéuticas (G.Z.-T., D.J.M.), Universidad de Chile, Santiago
| | - Larissa Alemán
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
| | - Carolina Hernández-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
| | - Gina Sánchez
- Instituto de Ciencias Biomédicas (ICBM), Facultad Medicina (G.S., Z.P., S.L.), Universidad de Chile, Santiago
| | - Eyleen Araya
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile (E.A.)
| | - Fanny Guzman
- Núcleo de Biotecnología de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Chile (F.G.)
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
- Instituto de Ciencias Biomédicas (ICBM), Facultad Medicina (G.S., Z.P., S.L.), Universidad de Chile, Santiago
| | - Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Spain (S.G., M.V., E.G.)
| | - Mónica Varese
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Spain (S.G., M.V., E.G.)
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Spain (S.G., M.V., E.G.)
- Department of Inorganic and Organic Chemistry, University of Barcelona, Spain (E.G.)
| | - Ivan Maslov
- Department of Pharmacology (I.M., M.D.B., R.E.W.), Monash University, Clayton, VIC
- Cardiovascular Disease Program, Biomedicine Discovery Institute (I.M., M.D.B., R.E.W.), Monash University, Clayton, VIC
| | - Mark Del Borgo
- Department of Pharmacology (I.M., M.D.B., R.E.W.), Monash University, Clayton, VIC
- Cardiovascular Disease Program, Biomedicine Discovery Institute (I.M., M.D.B., R.E.W.), Monash University, Clayton, VIC
| | - Robert E Widdop
- Department of Pharmacology (I.M., M.D.B., R.E.W.), Monash University, Clayton, VIC
- Cardiovascular Disease Program, Biomedicine Discovery Institute (I.M., M.D.B., R.E.W.), Monash University, Clayton, VIC
| | - Silvana Valdebenito
- Australia. Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston (S.V., E.A.E.)
| | - Eliseo A Eugenin
- Australia. Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston (S.V., E.A.E.)
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division) (J.A.H., S.L.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Harry S. Moss Heart Center (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago (M.P.O.)
- Center of New Drugs for Hypertension and Heart Failure (CENDHY), División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Universidad de Chile, and Universidad Andrés Bello, Santiago (M.P.O.)
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina (Y.F., G.Z.-T., A.N., L.A., C.H.-F., Z.P., M.C., M.J.K., S.L.), Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2)
- Instituto de Ciencias Biomédicas (ICBM), Facultad Medicina (G.S., Z.P., S.L.), Universidad de Chile, Santiago
- Department of Internal Medicine (Cardiology Division) (J.A.H., S.L.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
23
|
Yang W, Bai X, Jia X, Li H, Min J, Li H, Zhang H, Zhou J, Zhao Y, Liu W, Xin H, Sun L. The binding of extracellular cyclophilin A to ACE2 and CD147 triggers psoriasis-like inflammation. J Autoimmun 2024; 148:103293. [PMID: 39096717 DOI: 10.1016/j.jaut.2024.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Psoriasis is a chronic, proliferative, and inflammatory skin disease closely associated with inflammatory cytokine production. Cyclophilin A (CypA) is an important proinflammatory factor; however, its role in psoriasis remains unclear. The present data indicate that CypA levels are increased in the lesion skin and serum of patients with psoriasis, which is positively correlated with the psoriasis area severity index. Furthermore, extracellular CypA (eCypA) triggered psoriasis-like inflammatory responses in keratinocytes. Moreover, anti-CypA mAb significantly reduced pathological injury, keratinocyte proliferation, cytokine expression in imiquimod-induced mice. Notably, the therapeutic effect of anti-CypA mAb was better than that of the clinically used anti-IL-17A mAb and methotrexate. Mechanistically, eCypA binds to ACE2 and CD147 and is blocked by anti-CypA mAb. eCypA not only induces the dimerization and phosphorylation of ACE2 to trigger the JAK1/STAT3 signaling pathway for cytokine expression but also interacts with CD147 to promote PI3K/AKT/mTOR signaling-mediated keratinocyte proliferation. These findings demonstrate that the binding of eCypA to ACE2 and CD147 cooperatively triggers psoriasis-like inflammation and anti-CypA mAb is a promising candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wenxian Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Xiaoyuan Bai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heqiao Li
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
| | - Haoran Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjing Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjun Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiming Xin
- Center of Burns, Plastic Cosmetic and Dermatology, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin, Guangxi, 541002, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Sigrid A Langhans
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Division of Neurology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - David K Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Erik Stauff
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Vinay V R Kandula
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Heidi H Kecskemethy
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Lauren W Averill
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| |
Collapse
|
25
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Gu Y, Du L, Wu Y, Qin J, Gu X, Guo Z, Li Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024; 14:960. [PMID: 39199348 PMCID: PMC11352341 DOI: 10.3390/biom14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs.
Collapse
Affiliation(s)
- Yunan Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Yuxin Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Juan Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| |
Collapse
|
27
|
See EJ, Chaba A, Spano S, Maeda A, Clapham C, Burrell LM, Liu J, Khasin M, Liskaser G, Eastwood G, Bellomo R. Renin Levels and Angiotensin II Responsiveness in Vasopressor-Dependent Hypotension. Crit Care Med 2024; 52:1218-1227. [PMID: 38511994 DOI: 10.1097/ccm.0000000000006273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVES The relationship between renin levels, exposure to renin-angiotensin system (RAS) inhibitors, angiotensin II (ANGII) responsiveness, and outcome in patients with vasopressor-dependent vasodilatory hypotension is unknown. DESIGN We conducted a single-center prospective observational study to explore whether recent RAS inhibitor exposure affected baseline renin levels, whether baseline renin levels predicted ANGII responsiveness, and whether renin levels at 24 hours were associated with clinical outcomes. SETTING An academic ICU in Melbourne, VIC, Australia. PATIENTS Forty critically ill adults who received ANGII as the primary agent for vasopressor-dependent vasodilatory hypotension who were included in the Acute Renal effects of Angiotensin II Management in Shock study. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS After multivariable adjustment, recent exposure to a RAS inhibitor was independently associated with a relative increase in baseline renin levels by 198% (95% CI, 36-552%). The peak amount of ANGII required to achieve target mean arterial pressure was independently associated with baseline renin level (increase by 46% per ten-fold increase; 95% CI, 8-98%). Higher renin levels at 24 hours after ANGII initiation were independently associated with fewer days alive and free of continuous renal replacement therapy (CRRT) (-7 d per ten-fold increase; 95% CI, -12 to -1). CONCLUSIONS In patients with vasopressor-dependent vasodilatory hypotension, recent RAS inhibitor exposure was associated with higher baseline renin levels. Such higher renin levels were then associated with decreased ANGII responsiveness. Higher renin levels at 24 hours despite ANGII infusion were associated with fewer days alive and CRRT-free. These preliminary findings emphasize the importance of the RAS and the role of renin as a biomarker in patients with vasopressor-dependent vasodilatory hypotension.
Collapse
Affiliation(s)
- Emily J See
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Institute of Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| | - Anis Chaba
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Sofia Spano
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Akinori Maeda
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Caroline Clapham
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Institute of Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| | - Jasmine Liu
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Monique Khasin
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Grace Liskaser
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Rinaldo Bellomo
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Ghasempour Dabaghi G, Rabiee Rad M, Amani-Beni R, Darouei B. The role of p130Cas/BCAR1 adaptor protein in the pathogenesis of cardiovascular diseases: A literature review. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100416. [PMID: 39036012 PMCID: PMC11259988 DOI: 10.1016/j.ahjo.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer anti-estrogen resistance-1 (p130Cas/BCAR1) is an adaptor protein of the cas(Cas) family. This protein regulates multiple complex pathways in different organs including bones, pancreas, and immune and cardiovascular systems. Although previous research well demonstrated the role of p130Cas/BCAR1 in different diseases especially cancers, a precise review study on the various effects of p130Cas/BCAR1 on cardiovascular diseases is missing. In this study, we reviewed mechanisms of action for p130Cas/BCAR1 impact, on cardiac embryonic development defects, hypertrophy and remodeling, pulmonary artery hypertension (PAH), and atherosclerosis. Also, we suggest feature direction for research and potential therapeutic implications. This study showed that p130Cas/BCAR1 can affect cardiovascular diseases in various mechanisms including actin stress fiber formation, attachment to focal adhesion kinase (FAK) and angiotensin II (Ang II), generation of reactive oxygen species (ROS), and growth factor signaling through amplifying receptor tyrosine kinase (RTKs).
Collapse
Affiliation(s)
- Ghazal Ghasempour Dabaghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Rabiee Rad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Bahar Darouei
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
29
|
Liu JY, Yi YZ, Guo QW, Jia KX, Li XC, Cai JJ, Shen YL, Su GM, Chen X, Zhang XY, Fang DZ, Hong H, Lin J. Associations of ACE I/D and AGTR1 rs5182 polymorphisms with diabetes and their effects on lipids in an elderly Chinese population. Lipids Health Dis 2024; 23:231. [PMID: 39080710 PMCID: PMC11290002 DOI: 10.1186/s12944-024-02222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Diabetes mellitus is generally accompanied by dyslipidaemia, but inconsistent relationships between lipid profiles and diabetes are noted. Moreover, genetic variations in insertion/deletion (I/D) polymorphisms at angiotensin-converting enzyme gene (ACE) and T/C polymorphisms in the angiotensin type 1 receptor gene (AGTR1) are related to diabetes and lipid levels, but the associations are controversial. Thus, the current research aimed to explore the effects of ACE I/D, AGTR1 rs5182 and diabetes mellitus on serum lipid profiles in 385 Chinese participants with an average age of 75.01 years. METHODS The ACE I/D variant was identified using the polymerase chain reaction (PCR) method, whereas the AGTR1 rs5182 polymorphism was identified using the PCR-based restriction fragment length polymorphism (PCR-RFLP) method and verified with DNA sequencing. Total cholesterol (TC), triglyceride (TG), apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured using routine methods, and the lipid ratios were calculated. RESULTS ACE I/D, but not AGTR1 rs5182, was a predictor of TG/HDL-C for the whole study population. Both ACE I/D and AGTR1 rs5182 were predictors of HDL-C and LDL-C levels in females but not in males. Moreover, in females, diabetes mellitus and ACE I/D were identified as predictors of TG and TG/HDL-C, whereas AGTR1 rs5182 and diabetes mellitus were predictors of TG/HDL-C. Moreover, diabetes mellitus and the combination of ACE I/D and AGTR1 rs5182 variations were predictors of TG and TG/HDL-C exclusively in females. CONCLUSIONS The results demonstrated the potential for gender-dependent interactions of ACE I/D, AGTR1 rs5182, and diabetes on lipid profiles. These findings may serve as an additional explanation for the inconsistent changes of blood lipids in individuals with diabetes mellitus, thereby offering a novel perspective for the clinical management of blood lipid levels in diabetic patients.
Collapse
Affiliation(s)
- Jun Yi Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yan Zhi Yi
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Ke Xin Jia
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Xue Cheng Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Jia Jing Cai
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Xing Yu Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Hao Hong
- Department of Spinal Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, P. R. China.
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China.
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
30
|
Takeda Y, Demura M, Yoneda T, Takeda Y. Epigenetic Regulation of the Renin-Angiotensin-Aldosterone System in Hypertension. Int J Mol Sci 2024; 25:8099. [PMID: 39125667 PMCID: PMC11312206 DOI: 10.3390/ijms25158099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Activation of the renin-angiotensin-aldosterone system (RAAS) plays an important pathophysiological role in hypertension. Increased mRNA levels of the angiotensinogen angiotensin-converting enzyme, angiotensin type 1 receptor gene, Agtr1a, and the aldosterone synthase gene, CYP11B2, have been reported in the heart, blood vessels, and kidneys in salt-sensitive hypertension. However, the mechanism of gene regulation in each component of the RAAS in cardiovascular and renal tissues is unclear. Epigenetic mechanisms, which are important for regulating gene expression, include DNA methylation, histone post-translational modifications, and microRNA (miRNA) regulation. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in visceral adipose tissue and the heart of salt-sensitive hypertensive rats. Several miRNAs influence AGT expression and are associated with cardiovascular diseases. Expression of both ACE and ACE2 genes is regulated by DNA methylation, histone modifications, and miRNAs. Expression of both angiotensinogen and CYP11B2 is reversibly regulated by epigenetic modifications and is related to salt-sensitive hypertension. The mineralocorticoid receptor (MR) exists in cardiovascular and renal tissues, in which many miRNAs influence expression and contribute to the pathogenesis of hypertension. Expression of the 11beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene is also regulated by methylation and miRNAs. Epigenetic regulation of renal and vascular HSD11B2 is an important pathogenetic mechanism for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan;
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-8641, Japan;
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
| | - Yoshiyu Takeda
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
- Hypertension Center, Asanogawa General Hospital, Kanazawa 910-8621, Japan
| |
Collapse
|
31
|
Tayler HM, Skrobot OA, Baron DH, Kehoe PG, Miners JS. Dysregulation of the renin-angiotensin system in vascular dementia. Brain Pathol 2024; 34:e13251. [PMID: 38454306 PMCID: PMC11189771 DOI: 10.1111/bpa.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The renin-angiotensin system (RAS) regulates systemic and cerebral blood flow and is dysregulated in dementia. The major aim of this study was to determine if RAS signalling is dysregulated in vascular dementia. We measured markers of RAS signalling in white matter underlying the frontal and occipital cortex in neuropathologically confirmed cases of vascular dementia (n = 42), Alzheimer's disease (n = 50), mixed AD/VaD (n = 50) and age-matched controls (n = 50). All cases were stratified according to small vessel disease (SVD) severity across both regions. ACE-1 and ACE-2 protein and activity was measured by ELISA and fluorogenic peptide assays respectively, and angiotensin peptide (Ang-II, Ang-III and Ang-(1-7)) levels were measured by ELISA. ACE-1 protein level and enzyme activity, and Ang-II and Ang-III, were elevated in the white matter in vascular dementia in relation to SVD severity. ACE-1 and Ang-II protein levels were inversely related to MAG:PLP1 ratio, a biochemical marker of brain tissue oxygenation that when reduced indicates cerebral hypoperfusion, in a subset of cases. ACE-2 level was elevated in frontal white matter in vascular dementia. Ang-(1-7) level was elevated across all dementia groups compared to age-matched controls but was not related to SVD severity. RAS signalling was not altered in the white matter in Alzheimer's disease. In the overlying frontal cortex, ACE-1 protein was reduced and ACE-2 protein increased in vascular dementia, whereas angiotensin peptide levels were unchanged. These data indicate that RAS signalling is dysregulated in the white matter in vascular dementia and may contribute to the pathogenesis of small vessel disease.
Collapse
Affiliation(s)
- H. M. Tayler
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - O. A. Skrobot
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - D. H. Baron
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - P. G. Kehoe
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - J. S. Miners
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
32
|
Mizutani S, Mizutani H, Mizutani E, Arita H, Kajiyama H. The Fate of Angiotensin II in Placental Tissue and Blood. Horm Metab Res 2024; 56:477-481. [PMID: 37913823 DOI: 10.1055/a-2202-3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The existence of a non-canonical pathway of renin-angiotensin system in the blood pressure control system has been highlighted over the past three decades. The enzymes involved in this pathway include a series of angiotensinases such as neprilysin (NEP), aminopeptidase A (APA), carboxypeptidase, and angiotensin converting enzyme 2. The physiological roles of these peptidases have been reconsidered in this study, based on the publications of other research groups and the results from our previous study, regarding the liberation of constituent amino acids from angiotensin II by placenta tissue and blood serum, respectively.
Collapse
Affiliation(s)
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| | | | - Harumasa Arita
- IP & License Strategy Division, Rohto Pharmaceutical Co.,Ltd., Osaka, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Passaglia P, Kanashiro A, Batista Silva H, Carlos Carvalho Navegantes L, Lacchini R, Capellari Cárnio E, Branco LGS. Diminazene aceturate attenuates systemic inflammation via microbiota gut-5-HT brain-spleen sympathetic axis in male mice. Brain Behav Immun 2024; 119:105-119. [PMID: 38548186 DOI: 10.1016/j.bbi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
34
|
Kalupahana NS, Moustaid-Moussa N. Beyond blood pressure, fluid and electrolyte homeostasis - Role of the renin angiotensin aldosterone system in the interplay between metabolic diseases and breast cancer. Acta Physiol (Oxf) 2024; 240:e14164. [PMID: 38770946 DOI: 10.1111/apha.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The classical renin angiotensin aldosterone system (RAAS), as well as the recently described counter-regulatory or non-canonical RAAS have been well characterized for their role in cardiovascular homeostasis. Moreover, extensive research has been conducted over the past decades on both paracrine and the endocrine roles of local RAAS in various metabolic regulations and in chronic diseases. Clinical evidence from patients on RAAS blockers as well as pre-clinical studies using rodent models of genetic manipulations of RAAS genes documented that this system may play important roles in the interplay between metabolic diseases and cancer, namely breast cancer. Some of these studies suggest potential therapeutic applications and repurposing of RAAS inhibitors for these diseases. In this review, we discuss the mechanisms by which RAAS is involved in the pathogenesis of metabolic diseases such as obesity and type-2 diabetes as well as the role of this system in the initiation, expansion and/or progression of breast cancer, especially in the context of metabolic diseases.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
35
|
Maurer J, de Groot A, Martin L, Grouzmann E, Wuerzner G, Eugster PJ. Quantification of endogenous Angiotensin 1-10, 1-9, 1-8, 1-7, and 1-5 in human plasma using micro-UHPLC-MS/MS: Outlining the importance of the pre-analytics for reliable results. J Pharm Biomed Anal 2024; 243:116101. [PMID: 38489957 DOI: 10.1016/j.jpba.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Angiotensin peptides (ANGs) play a central role in the renin-angiotensin-aldosterone system, rendering them interesting biomarkers associated with hypertension. Precise quantification of circulating ANGs holds the potential to assess the activity of angiotensin-converting enzyme (ACE), a key protease targeted by widely prescribed drugs, namely ACE inhibitors. This ability could pave the way for personalised medicine, offering insights into the prescription of inhibitors targeting either the proteases or the receptors within the system. Despite recent developments in liquid chromatography-mass spectrometry (LC-MS) methods for measuring circulating ANG concentrations, comprehensive stability studies of ANGs in human plasma are absent in the literature, raising concerns about the reliability of measured concentrations and their link to clinical conditions. To address this critical gap, we conducted an exhaustive evaluation of the pre-analytical stability of ANG1-10, ANG1-9, ANG1-8, ANG1-7, and ANG1-5. By employing surfactants to mitigate non-specific adsorption and a dedicated mix of protease inhibitors to limit protease activity, we established an MS-based assay for these five peptides. We used this method to quantify circulating concentrations of ANGs in the plasma of 11 healthy donors and 3 patients under kidney dialysis. Our findings revealed that ANG1-10 and ANG1-8 circulate at concentrations ranging from 1 to 10 pM in healthy subjects and exhibit a high degree of correlation. Notably, ANG1-9, ANG1-7, and ANG1-5 were undetectable in any of the 14 patients, despite a sub-picomolar limit of detection. This strikingly contrasts with the reference concentrations reported in the literature, which typically fall within the picomolar range. In light of these discrepancies, we strongly advocate for rigorous pre-analytical considerations and comprehensive stability studies to ensure reliable results. We emphasise the pivotal role of heightened pre-analytical awareness within the clinical chemistry community, and we hope for continued growth in this critical area.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anke de Groot
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Léon Martin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Hypertension and Nephrology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Cheng T, Yun Z, Fan S, Wang H, Xue W, Zhang X, Jia B, Hu Y. Causal association between blood metabolites and risk of hypertension: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1373480. [PMID: 38911515 PMCID: PMC11190327 DOI: 10.3389/fcvm.2024.1373480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Previous studies have indicated a strong link between blood metabolites and hypertension, however the causality of metabolites and hypertension is unknown. Methods Two-sample Mendelian randomization (MR) analysis was performed to assess the causal relationship between 486 blood metabolites and essential hypertension (EHT). Blood metabolite GWAS data was utilized as the exposure, with EHT GWAS data as the outcome. To further verify the results, another different source of EHT GWAS data was repeatedly analyzed. The major MR analytic approach used to determine causality was inverse variance weighted (IVW), with MR-Egger, Weighted Median, and MR-PRESSO models serving as supplements. We used the Cochran Q test to examine heterogeneity. Horizontal pleiotropy was examined using MR-Egger intercept and MR-PRESSO global test. The MR Steiger test confirmed the causal relationship between blood metabolites and EHT. Results In this study, nine blood metabolites associated with EHT were preliminarily identified by MR analysis, including four known metabolites (N-acetylornithine, X-12510-2-aminooctanoic acid, creatine, hexadecanedioate) and five unknown metabolites. Then another source of EHT GWAS data was repeatedly analyzed for further verification, and two overlapped metabolites (N-acetylornithine, X-12510-2-aminooctanoic acid) were found. There was a negative correlation between N-acetylornithine and EHT (OR = 0.987, 95% CI = 0.980-0.993, P = 1.01 × 10-4), Cochran's Q test suggested there was no heterogeneity (Q = 31.7586, P = 0.1331), MR-Egger intercept and MR-PRESSO global test suggested there was no horizontal pleiotropy (P > 0.05), Leave-one-out analysis indicated that no single single-nucleotide polymorphism (SNP) had a significant effect on the results, and MR Steiger test confirmed that the direction of causality was correct (P < 0.001). There was a negative correlation between X-12510-2-aminooctanoic acid and EHT (OR = 0.982, 95% CI = 0.972-0.993, P = 0.0017), and there was no evidence of heterogeneity or pleiotropy in multiple sensitivity analyses. Conclusion The study discovered some blood metabolites causally linked to EHT, which might lead to new understandings of the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zhangjun Yun
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Fan
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Huan Wang
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Bochao Jia
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
37
|
Pszczołowska M, Walczak K, Misków W, Antosz K, Batko J, Karska J, Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer's disease. GeroScience 2024; 46:2885-2899. [PMID: 38393535 PMCID: PMC11009207 DOI: 10.1007/s11357-024-01096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The long COVID (coronavirus disease), a multisystemic condition following severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the widespread problems. Some of its symptoms affect the nervous system and resemble symptoms of Alzheimer's disease (AD)-a neurodegenerative condition caused by the accumulation of amyloid beta and hyperphosphorylation of tau proteins. Multiple studies have found dependence between these two conditions. Patients with Alzheimer's disease have a greater risk of SARS-CoV-2 infection due to increased levels of angiotensin-converting enzyme 2 (ACE2), and the infection itself promotes amyloid beta generation which enhances the risk of AD. Also, the molecular pathways are alike-misregulations in folate-mediated one-carbon metabolism, a deficit of Cq10, and disease-associated microglia. Medical imaging in both of these diseases shows a decrease in the volume of gray matter, global brain size reduction, and hypometabolism in the parahippocampal gyrus, thalamus, and cingulate cortex. In some studies, a similar approach to applied medication can be seen, including the use of amino adamantanes and phenolic compounds of rosemary. The significance of these connections and their possible application in medical practice still needs further study but there is a possibility that they will help to better understand long COVID.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Misków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Antosz
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Joanna Batko
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Julia Karska
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
38
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
39
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
40
|
Luo D, Bai M, Zhang W, Wang J. The possible mechanism and research progress of ACE2 involved in cardiovascular injury caused by COVID-19: a review. Front Cardiovasc Med 2024; 11:1409723. [PMID: 38863899 PMCID: PMC11165996 DOI: 10.3389/fcvm.2024.1409723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
ACE2 is the earliest receptor discovered to mediate the entry of SARS-CoV-2. In addition to the receptor, it also participates in complex pathological and physiological processes, including regulating the RAS system, apelin, KKS system, and immune system. In addition to affecting the respiratory system, viral infections also interact with cardiovascular diseases. SARS-CoV-2 can directly invade the cardiovascular system through ACE2; Similarly, cardiovascular diseases such as hypertension and coronary heart disease can affect ACE2 levels and exacerbate the disease, and ACE2 dysregulation may also be a potential mechanism for long-term acute sequelae of COVID-19. Since the SARS CoV-2 epidemic, many large population studies have tried to clarify the current focus of debate, that is, whether we should give COVID-19 patients ACEI and ARB drug treatment, but there is still no conclusive conclusion. We also discussed potential disease treatment options for ACE2 at present. Finally, we discussed the researchers' latest findings on ACE2 and their prospects for future research.
Collapse
Affiliation(s)
| | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
41
|
Moore GJ, Ridway H, Gadanec LK, Apostolopoulos V, Zulli A, Swiderski J, Kelaidonis K, Vidali VP, Matsoukas MT, Chasapis CT, Matsoukas JM. Structural Features Influencing the Bioactive Conformation of Angiotensin II and Angiotensin A: Relationship between Receptor Desensitization, Addiction, and the Blood-Brain Barrier. Int J Mol Sci 2024; 25:5779. [PMID: 38891966 PMCID: PMC11171751 DOI: 10.3390/ijms25115779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity, implicating a specialized function for this cluster. In contrast, angiotensin A (ARVYIHPF; AngA) has reduced bioactivity at AT1R; however, replacement of Asp in AngII with sarcosine (N-methyl-glycine) not only restores bioactivity but increases the activity of agonist, antagonist, and inverse agonist analogues. A bend produced at the N-terminus by the introduction of the secondary amino acid sarcosine is thought to realign the functional groups that chaperone the C-terminal portion of AngII, allowing transfer of the negative charge originating at the C-terminus to be transferred to the Tyr hydroxyl-forming tyrosinate anion, which is required to activate the receptor and desensitizes the receptor (tachyphylaxis). Peptide (sarilesin) and nonpeptide (sartans) moieties, which are long-acting inverse agonists, appear to desensitize the receptor by a mechanism analogous to tachyphylaxis. Sartans/bisartans were found to bind to alpha adrenergic receptors resulting in structure-dependent desensitization or resensitization. These considerations have provided information on the mechanisms of receptor desensitization/tolerance and insights into possible avenues for treating addiction. In this regard sartans, which appear to cross the blood-brain barrier more readily than bisartans, are the preferred drug candidates.
Collapse
Affiliation(s)
- Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Harry Ridway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | - Jordan Swiderski
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | | | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - John M. Matsoukas
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
- NewDrug/NeoFar PC, Patras Science Park, 26504 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
42
|
Kotani Y, Chappell M, Landoni G, Zarbock A, Bellomo R, Khanna AK. Renin in critically ill patients. Ann Intensive Care 2024; 14:79. [PMID: 38775999 PMCID: PMC11111649 DOI: 10.1186/s13613-024-01304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The renin-angiotensin system (RAS) constitutes one of the principal mechanisms to maintain hemodynamic and fluid homeostasis. However, most research until now on RAS primarily focuses on its relationship with hypertension and its role in critically ill hypotensive populations is not well understood. With the approval of angiotensin II (Ang II) in the United States and Europe, following a phase 3 randomized controlled trial showing efficacy in catecholamine-resistant vasodilatory shock, there is growing interest in RAS in critically ill patients. Among the fundamental components of RAS, renin acts as the initial stimulus for the entire system. In the context of hypotension, its release increases in response to low blood pressure sensed by renal baroreceptors and attenuated negative Ang II feedback loop. Thus, elevated renin could reflect disease severity and predict poor outcomes. Studies investigating this hypothesis have validated the prognostic accuracy of renin in various critically ill populations, with several reports indicating its superiority to lactate for mortality prediction. Accordingly, renin reduction has been used to assess the effectiveness of Ang II administration. Furthermore, renin holds potential to identify patients who might benefit from Ang II treatment, potentially paving the way for personalized vasopressor management. Despite these promising data, most available evidence is derived from retrospective analysis and necessitates prospective confirmation. The absence of a rapid, point-of-care and reliable renin assay presents another hurdle to its integration into routine clinical practice. This narrative review aims to describe the current understanding and future directions of renin as a biomarker during resuscitation of critically ill patients.
Collapse
Affiliation(s)
- Yuki Kotani
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Mark Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Ashish K Khanna
- Section On Critical Care Medicine, Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Perioperative Outcomes and Informatics Collaborative, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
43
|
Lakhani HV, Zehra M, Pillai S, Shapiro JI, Sodhi K. Dysregulation of HO-1-SIRT1 Axis is Associated with AngII-Induced Adipocyte Dysfunction. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000275. [PMID: 39238841 PMCID: PMC11376061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Angiotensin II (AngII), a component of the Renin-Angiotensin-Aldosterone System (RAAS), has been implicated in the dysregulation of adipose tissue function. Inhibition of AngII has been shown to improve adipose tissue function in mice with metabolic syndrome. It is well established that the Heme Oxygenase-1 (HO-1), an antioxidant improves oxidative stress and phenotypic change in adipocytes. Molecular effects of high oxidative stress include suppression of Sirtuin-1 (SIRT1), which is amenable to redox manipulations. However, the underlying mechanisms by which the Renin-Angiotensin-Aldosterone System (RAAS) exerts its metabolic effects are not fully understood. In this study, we propose that AngII-induced oxidative stress may suppress adipocyte SIRT1 through down-regulation of HO-1. Consequently, this suppression of SIRT1 may result in the up-regulation of the Mineralocorticoid Receptor (MR). We further hypothesize that the induction of HO-1 would rescue SIRT1, thereby improving oxidative stress and adipocyte phenotype. To establish this hypothesis, we conducted experiments using mouse preadipocytes treated with AngII, in the presence or absence of Cobalt Protoporphyrin (CoPP), an inducer of HO-1, and Tin Mesoporphyrin (SnMP), an inhibitor of HO-1. Our data demonstrate that treatment of mouse preadipocytes with AngII leads to increased lipid accumulation, elevated levels of superoxide and inflammatory cytokines (Interleukin-6 and Tumor necrosis factor alpha), and reduced levels of adiponectin. However, these effects were attenuated by the induction of HO-1, and this attenuation was reversed by SnMP, indicating that the beneficial effects on adipocyte phenotype are modulated by HO-1. Furthermore, our findings reveal that AngII-treated preadipocytes exhibit upregulated MR levels and suppressed SIRT1 expression, which are rescued by HO-1 induction. Following treatment with CoPP and SIRT1 siRNA in mouse preadipocytes resulted in increased lipid accumulation and elevated levels of fatty acid synthase, indicating that the beneficial effects of HO-1 are modulated through SIRT1. Our study provides evidence that HO-1 restores cellular redox balance, rescues SIRT1, and attenuates the detrimental effects of AngII on adipocytes and systemic metabolic profile.
Collapse
Affiliation(s)
- Hari Vishal Lakhani
- Department of Surgery, Internal Medicine, and Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, United States of America
| | - Mishghan Zehra
- Department of Surgery, Internal Medicine, and Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, United States of America
| | - Sneha Pillai
- Department of Surgery, Internal Medicine, and Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, United States of America
| | - Joseph I Shapiro
- Department of Surgery, Internal Medicine, and Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, United States of America
| | - Komal Sodhi
- Department of Surgery, Internal Medicine, and Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, United States of America
| |
Collapse
|
44
|
Zheng X, Xu Z, Xu L, Wang L, Qin S, Ying L, Dong S, Tang L. Angiotensin II Type 2 Receptor Inhibits M1 Polarization and Apoptosis of Alveolar Macrophage and Protects Against Mechanical Ventilation-Induced Lung Injury. Inflammation 2024:10.1007/s10753-024-02037-y. [PMID: 38767784 DOI: 10.1007/s10753-024-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Angiotensin II (Ang II) is associated with macrophage polarization and apoptosis, but the role of the angiotensin type 2 receptor (AT2R) in these processes remains controversial. However, the effect of AT2Rs on alveolar macrophages and mechanical ventilation-induced lung injury has not been determined. Mechanical ventilation-induced lung injury in Sprague‒Dawley (SD) rats and LPS-stimulated rat alveolar macrophages (NR8383) were used to determine the effects of AT2Rs, selective AT2R agonists and selective AT1Rs or AT2R antagonists. Macrophage polarization, apoptosis, and related signaling pathways were assessed via western blotting, QPCR and flow cytometry. AT2R expression was decreased in LPS-stimulated rat alveolar macrophages (NR8383). Administration of the AT2R agonist CGP-42112 was associated with an increase in AT2R expression and M2 polarization, but no effect was observed upon administration of the AT2R antagonist PD123319 or the AT1R antagonist valsartan. In mechanical ventilation-induced lung injury in Sprague‒Dawley (SD) rats, the administration of the AT2R agonist C21 was associated with attenuation of the pathological damage score, lung wet/dry weight, cell count and protein content in BALF. C21 can significantly reduce proinflammatory factor TNF-α, IL-1β levels, increase anti-inflammatory factor IL-4, IL-10 levels in BALF, compared with the model group (p < 0.01). Similarly, compared with those at the same time points, the M1/M2 ratios in alveolar macrophages and apoptosis in peritoneal macrophages at 4 h, 6 h and 8 h in the mechanical ventilation models were lower after C21 administration. These findings indicated that the expression of AT2Rs in alveolar macrophages mediates M1 macrophage polarization and apoptosis and that AT2Rs play a protective role in mediating mechanical ventilation-induced lung injury.
Collapse
Affiliation(s)
- Xuyang Zheng
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Zhiguang Xu
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Lihui Xu
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Lingqiao Wang
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Siyun Qin
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Liu Ying
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Shuangyong Dong
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Lanfang Tang
- Department of pulmonology, Affiliated Children's Hospital, School of medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
45
|
Wang X, Ma J, Lin D, Bai Y, Zhang D, Jia X, Gao J. MiR-145-5p reduced ANG II-induced ACE2 shedding and the inflammatory response in alveolar epithelial cells by targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway. Eur J Pharmacol 2024; 971:176392. [PMID: 38365107 DOI: 10.1016/j.ejphar.2024.176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.
Collapse
Affiliation(s)
- Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China; Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China; Department of Anesthesiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Junwei Gao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
46
|
Mahmoud MR, Shahien MM, Ibrahim S, S Alenazi F, Hussein W, Abdallah MH, Aljadani A, Alreshidi F, E El-Horany H, M Osman Elhussein GE, Abdeen H Abdalla R, H Elhaj A, M Khalifa A. Novel Insights in the Hypertension Treatment & Type 2 Diabetics Induced by Angiotensin Receptor Blockers: MD Simulation Studies & Molecular Docking of Some Promising Natural Therapies. ACS OMEGA 2024; 9:21234-21244. [PMID: 38764667 PMCID: PMC11097153 DOI: 10.1021/acsomega.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Angiotensin receptor blockers (ARBs) are commonly used to treat hypertension that target the hormonal system (renin-angiotensin system (RAS)), which regulates various physiological functions in the body. ARBs work by blocking the binding of angiotensin II to its receptor, thereby preventing a rise in blood pressure. These drugs not only normalize the overactivation of RAS but also provide protective effects against cardiovascular, renal, and type 2 diabetic patients. Inappropriate RAS activity has been linked to insulin resistance of type 2 diabetes. Olmesartan, as an ARB, was found to have a beneficial role in reducing postprandial glucose levels in type 2 diabetes. However, ARBs can cause side effects, prompting a search for new compounds that have fewer adverse effects. This study explores the potential of natural metabolites, specifically eugenol, gallic acid, myricetin, p-cymene, quercetin, and kaempferol, as ARB inhibitors compared to the current standard, olmesartan. Using in silico studies, the binding affinity of these natural substances to the ARB receptor was evaluated. The results showed that myricetin and kaempferol had affinities higher than those of olmesartan, suggesting that they could serve as promising ARB inhibitors for hypertension treatment. These natural compounds could provide an alternative approach to conventional antihypertensive drugs, which may have fewer side effects. However, more research is needed to validate the efficacy and safety of these natural compounds as antihypertensive drugs. Further in vitro and in vivo studies are needed to confirm their effectiveness and safety. This study provides a promising starting point for future investigations into the potential of natural metabolites as alternative treatments for hypertension. The findings also highlight the importance of exploring natural alternative treatments for hypertension and the protective effects of ARBs on early stage type-2 diabetics.
Collapse
Affiliation(s)
- Madiha R. Mahmoud
- Department
of Pharmacology, College of Medicine, University
of Ha’il, Ha’il 81442, Saudi Arabia
- Department
of Pharmacology, TBRI, Ministry of Higher
Education and Scientific Research, Giza 12411, Egypt
| | - Mona M. Shahien
- Department
of Pediatrics, College of Medicine, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - Somia Ibrahim
- Department
of Pediatrics, College of Medicine, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - Fahaad S Alenazi
- Department
of Pharmacology, College of Medicine, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - Weiam Hussein
- Department
of Pharmaceutical Chemistry, College of
Pharmacy, University of Ha’il, Ha’il 81442, Saudi
Arabia
- Department
of Pharmaceutical Chemistry, College of
Pharmacy, Aden University, Aden 6075, Yemen
| | - Marwa H. Abdallah
- Department
of Pharmaceutics, College of Pharmacy, University
of Ha’il, Ha’il 81442, Saudi Arabia
- Department
of Pharmaceutics, Faculty of Pharmacy, Zagazig
University, Zagazig 44519, Egypt
| | - Ahmed Aljadani
- Department
of Psychiatry, College of Medicine, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - Fayez Alreshidi
- Department
of Family Medicine, College of Medicine,
University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Hemat E El-Horany
- Department
of Biochemistry, College of Medicine, University
of Ha’il, Ha’il 81442, Saudi Arabia
- Medical
Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Rania Abdeen H Abdalla
- Obstetric
and Gynecology Department, College of Medicine,
University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Abeer H Elhaj
- Family
and Community Medicine Department, College
of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amany M Khalifa
- Medical
Parasitology, Pathology Department, College
of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia
- Medical
Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| |
Collapse
|
47
|
Bian J, Zhu Y, Tian P, Yang Q, Li Z. Adaptor protein HIP-55 promotes macrophage M1 polarization through promoting AP-1 complex activation. Cell Signal 2024; 117:111124. [PMID: 38417633 DOI: 10.1016/j.cellsig.2024.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Overwhelming macrophage M1 polarization induced by malfunction of the renin-angiotensin-aldosterone system (RAAS) initiates inflammatory responses, which play a crucial role in various cardiovascular diseases. However, the underlying regulatory mechanism remains elusive. Here, we identified adaptor protein HIP-55 as a critical regulator of macrophage M1 polarization. The expression of HIP-55 was upregulated in M1 macrophage induced by Ang II. Overexpression of HIP-55 significantly promoted Ang II-induced macrophage M1 polarization, whereas genetic deletion of HIP-55 inhibited the Ang II-induced macrophage M1 polarization. Mechanistically, HIP-55 facilitated activator protein-1 (AP-1) complex activation induced by Ang II via promoting ERK1/2 and JNK phosphorylation. Moreover, blocking AP-1 complex activation can attenuate the function of HIP-55 in macrophage polarization. Collectively, our results reveal the role of HIP-55 in macrophage polarization and provide potential therapeutic insights for cardiovascular diseases associated with RAAS dysfunction.
Collapse
Affiliation(s)
- Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Panhui Tian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Qiqi Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
48
|
Ridgway H, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Hoffmann W, Węgrzyn K, Vassilaki N, Mpekoulis G, Zouridakis M, Giastas P, Vidali VP, Kelaidonis K, Matsoukas MT, Dimitriou M, Mavromoustakos T, Tsiodras S, Gorgoulis VG, Karakasiliotis I, Chasapis CT, Matsoukas JM. Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: computational and enzymatic studies. Expert Opin Ther Targets 2024; 28:437-459. [PMID: 38828744 DOI: 10.1080/14728222.2024.2362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
- AquaMem Consultants, Rodeo, NM, USA
| | - Graham J Moore
- Pepmetics Inc, 772 Murphy Place, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Weronika Hoffmann
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Petros Giastas
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | | | - Marios Dimitriou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- Faculty of Medicine, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - John M Matsoukas
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- NewDrug PC, Patras Science Park, Patras, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
49
|
Shi M, Zhang S, Rong J, Heng Z, Xu Y, Wang Y, Zhang Z. Identification of 18β-glycyrrhetinic acid as an AGT inhibitor against LPS-induced myocardial dysfunction via high throughput screening. Biochem Pharmacol 2024; 223:116127. [PMID: 38490519 DOI: 10.1016/j.bcp.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18β-glycyrrhetinic acid (18βGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18βGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18βGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18βGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18βGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.
Collapse
Affiliation(s)
- Mengying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shujing Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiabing Rong
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhaocai Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
50
|
Nocchi E, Scalzo S, Rocha-Resende C, Almeida P, Parreira A, Miranda K, Moura V, Dos Santos RAS, Guatimosim S. The Mas agonist CGEN-856S prevents Ang II induced cardiomyocyte hypertrophy via nitric oxide production. Peptides 2024; 175:171182. [PMID: 38428743 DOI: 10.1016/j.peptides.2024.171182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
With the previous knowledge of the cardioprotective effects of the Angiotensin-(1-7) axis, a agonist of Mas receptor has been described, the CGEN-856S. This peptide is more stable than Ang-(1-7), and has a low binding affinity to Angiotensin II receptors. Although the cardioprotective effects of CGEN-856S were previously shown in vivo, the mechanisms behind its effects are still unknown. Here, we employed a combination of molecular biology, confocal microscopy, and genetically modified mouse with Mas deletion to investigate the CGEN-856S protective signaling in cardiomyocytes. In isolated adult ventricular myocytes, CGEN-856S induced an increase in nitric oxide (NO) production which was absent in cells from Mas knockout mice. Using western blot, we observed a significant increase in phosphorylation of AKT after treatment with CGEN-856S. In addition, CGEN-856S prevented the Ang II induced hypertrophy and the nuclear translocation of GRK5 in a culture model of rat neonatal cardiomyocytes. Blockage of Mas receptor and inhibition of the NO synthase abolished the effects of CGEN-856S on Ang II treated cardiomyocytes. In conclusion, we show that CGEN-856S acting via receptor Mas induces NO raise to block Ang II induced cardiomyocyte hypertrophy. These results indicate that CGEN-856S acts very similarly to Ang-(1-7) in cardiac myocytes, highlighting its therapeutic potential for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Eduardo Nocchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Amanda Parreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kiany Miranda
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Moura
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A S Dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; INCT Nanobiofarmacêutica, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; INCT Nanobiofarmacêutica, Brazil.
| |
Collapse
|