1
|
Contreras J, Tinuoye EO, Folch A, Aguilar J, Free K, Ilonze O, Mazimba S, Rao R, Breathett K. Heart Failure with Reduced Ejection Fraction and COVID-19, when the Sick Get Sicker: Unmasking Racial and Ethnic Inequities During a Pandemic. Heart Fail Clin 2024; 20:353-361. [PMID: 39216921 DOI: 10.1016/j.hfc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Minoritized racial and ethnic groups have the highest incidence, prevalence, and hospitalization rate for heart failure. Despite improvement in medical therapies and overall survival, the morbidity and mortality of these groups remain elevated. The reasons for this disparity are multifactorial, including social determinant of health (SDOH) such as access to care, bias, and structural racism. These same factors contributed to higher rates of COVID-19 infection among minoritized racial and ethnic groups. In this review, we aim to explore the lessons learned from the COVID-19 pandemic and its interconnection between heart failure and SDOH. The pandemic presents a window of opportunity for achieving greater equity in the health care of all vulnerable populations.
Collapse
Affiliation(s)
- Johanna Contreras
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Elizabeth O Tinuoye
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Alejandro Folch
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Jose Aguilar
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Kendall Free
- Department of Biofunction Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Onyedika Ilonze
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA
| | - Sula Mazimba
- Division of Cardiovascular Medicine, University of Virginia, 1215 Lee Street, Charlottesville, VA 22908-0158, USA
| | - Roopa Rao
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA
| | - Khadijah Breathett
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Jeong JH, Heo M, Park S, Lee SH, Park O, Kim T, Yeo HJ, Jang JH, Cho WH, Yoo JW. Association between Age-Adjusted Endothelial Activation and Stress Index and Intensive Care Unit Mortality in Patients with Severe COVID-19. Tuberc Respir Dis (Seoul) 2024; 87:524-531. [PMID: 39044336 PMCID: PMC11468444 DOI: 10.4046/trd.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Endothelial activation and stress index (EASIX) reflects endothelial dysfunction or damage. Because endothelial dysfunction is one of the key mechanisms, a few studies have shown the clinical usefulness of original and age-adjusted EASIX (age-EASIX) in patients with coronavirus disease 2019 (COVID-19). We aimed to evaluate the clinical utility of age-EASIX in predicting intensive care unit (ICU) mortality in critically ill patients with COVID-19 in South Korea. METHODS Secondary analysis was performed using clinical data retrospectively collected from 22 nationwide hospitals in South Korea between January 1, 2020, and August 31, 2021. Patients were at least 19 years old and admitted to the ICU for severe COVID-19, demanding at least high-flow nasal cannula oxygen therapy. EASIX [lactate dehydrogenase (U/L)×creatinine (mg/dL)/platelet count (109 cells/L)] and age-EASIX (EASIX×age) were calculated and log2-transformed. RESULTS The mean age of 908 critically ill patients with COVID-19 was 67.4 years with 59.7% male sex. The mean log2 age-EASIX was 7.38±1.45. Non-survivors (n=222, 24.4%) in the ICU had a significantly higher log2 age-EASIX than of survivors (8.2±1.52 vs. 7.1±1.32, p<0.001). log2 age-EASIX was significantly associated with ICU mortality (odds ratio, 1.541; 95% confidence interval, 1.322 to 1.796; p<0.001) and had a better area under the receiver operating characteristic curve than of the sequential organ failure assessment (SOFA) score in predicting ICU mortality (0.730 vs. 0.660, p=0.001). CONCLUSION Age-EASIX is significantly associated with ICU mortality and has better discriminatory ability than the SOFA score in predicting ICU mortality.
Collapse
Affiliation(s)
- Jong Hwan Jeong
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Manbong Heo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Sunghoon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Su Hwan Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Onyu Park
- BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Taehwa Kim
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Hye Ju Yeo
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jin Ho Jang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Woo Hyun Cho
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - on behalf of the Korean Intensive Care Study Group
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
3
|
Bakowski W, Smiechowicz J, Dragan B, Goździk W, Adamik B. Platelet Aggregation Alterations in Patients with Severe Viral Infection Treated at the Intensive Care Unit: Implications for Mortality Risk. Pathogens 2024; 13:778. [PMID: 39338970 PMCID: PMC11435101 DOI: 10.3390/pathogens13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Severe viral infections often result in abnormal platelet function, affecting various stages of hemostasis. Activated platelets are often considered prothrombotic and more susceptible to further stimulation. However, emerging evidence suggests that initial hyperactivation is followed by platelet exhaustion and hypo-responsiveness, affecting platelet degranulation, activation, and aggregation. We examined early alterations in platelet aggregation among patients (N = 28) with acute respiratory distress syndrome and SARS-CoV-2 infection who were receiving mechanical ventilation and venovenous extracorporeal membrane oxygenation support. Blood samples were stimulated with four different activators: arachidonic acid, adenosine diphosphate, thrombin receptor-activating protein 6, and ristocetin. Our observations revealed that platelet aggregation was reduced in most patients upon admission (ranging from 61 to 89%, depending on the agonist used), and this trend intensified during the 5-day observation period. Concurrently, other coagulation parameters remained within normal ranges, except for elevated d-dimer and fibrinogen levels. Importantly, we found a significant association between platelet aggregation and patient mortality. Impaired platelet aggregation was more severe in patients who ultimately died, and reduced aggregation was associated with a significantly lower probability of survival, as confirmed by Kaplan-Meier analysis (p = 0.028). These findings underscore the potential of aggregometry as an early detection tool for identifying patients at higher risk of mortality within this specific cohort.
Collapse
Affiliation(s)
- Wojciech Bakowski
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Smiechowicz
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Barbara Dragan
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Satoh K, Wada T, Tampo A, Takahashi G, Hoshino K, Matsumoto H, Taira T, Kazuma S, Masuda T, Tagami T, Ishikura H. Practical approach to thrombocytopenia in patients with sepsis: a narrative review. Thromb J 2024; 22:67. [PMID: 39039520 PMCID: PMC11265094 DOI: 10.1186/s12959-024-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Thrombocytopenia frequently occurs in patients with sepsis. Disseminated intravascular coagulation (DIC) may be a possible cause of thrombocytopenia owing to its high prevalence and association with poor outcomes; however, it is important to keep the presence of other diseases in mind in sepsis practice. Thrombotic microangiopathy (TMA), which is characterized by thrombotic thrombocytopenic purpura, Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (HUS), and complement-mediated HUS, is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ damage. TMA has become widely recognized in recent years because of the development of specific treatments. Previous studies have reported a remarkably lower prevalence of TMA than DIC; however, its epidemiology is not well defined, and there may be cases in which TMA is not correctly diagnosed, resulting in poor outcomes. Therefore, it is important to differentiate DIC from TMA. Nevertheless, differentiating between DIC and TMA remains a challenge as indicated by previous reports that most patients with TMA can be diagnosed as DIC using the universal coagulation scoring system. Several algorithms to differentiate sepsis-related DIC from TMA have been suggested, contributing to improving the care of septic patients with thrombocytopenia; however, it may be difficult to apply these algorithms to patients with coexisting DIC and TMA, which has recently been reported. This review describes the disease characteristics, including epidemiology, pathophysiology, and treatment, of DIC, TMA, and other diseases with thrombocytopenia and proposes a novel practical approach flow, which is characterized by the initiation of the diagnosis of TMA in parallel with the diagnosis of DIC. This practical flow also refers to the longitudinal diagnosis and treatment flow with TMA in mind and real clinical timeframes. In conclusion, we aim to widely disseminate the results of this review that emphasize the importance of incorporating consideration of TMA in the management of septic DIC. We anticipate that this practical new approach for the diagnostic and treatment flow will lead to the appropriate diagnosis and treatment of complex cases, improve patient outcomes, and generate new epidemiological evidence regarding TMA.
Collapse
Affiliation(s)
- Kasumi Satoh
- Advanced Emergency and Critical Care Center, Akita University Hospital, Akita, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Gaku Takahashi
- Department of Critical Care, Disaster and General Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kota Hoshino
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hironori Matsumoto
- Department of Emergency and Critical Care Medicine, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takayuki Taira
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Takamitsu Masuda
- Department of Emergency Medicine, Emergency and Critical Care Center, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, Tokyo, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
5
|
Villacampa A, Shamoon L, Valencia I, Morales C, Figueiras S, de la Cuesta F, Sánchez-Niño D, Díaz-Araya G, Sánchez-Pérez I, Lorenzo Ó, Sánchez-Ferrer CF, Peiró C. SARS-CoV-2 S Protein Reduces Cytoprotective Defenses and Promotes Human Endothelial Cell Senescence. Aging Dis 2024:AD.2024.0405. [PMID: 39012668 DOI: 10.14336/ad.2024.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Premature vascular aging and endothelial cell senescence are major risk factors for cardiovascular diseases and atherothrombotic disturbances, which are main complications of both acute and long COVID-19. The S protein of SARS-CoV2, which acts as the receptor binding protein for the viral infection, is able to induce endothelial cells inflammation and it has been found as an isolated element in the circulation and in human tissues reservoirs months after infection. Here, we investigated whether the S protein is able to directly induce endothelial cell senescence and deciphered some of the mechanisms involved. In primary cultures of human umbilical vein endothelial cells (HUVEC), SARS-CoV-2 S protein enhanced in a concentration-dependent manner the cellular content of senescence and DNA damage response markers (senescence-associated-β galactosidase, γH2AX), as well as growth-arrest effectors (p53, p21, p16). In parallel, the S protein reduced the availability of cytoprotective proteins, such as the anti-aging protein klotho, Nrf2 or heme oxygenase-1, and caused functional harm by impairing ex vivo endothelial-dependent vasorelaxation in murine microvessels. These effects were prevented by the pharmacological inhibition of the NLRP3 inflammasome with MCC950. Furthermore, the supplementation with either recombinant klotho or angiotensin-(1-7), equally protected against the pro-senescence, pro-inflammatory and pro-oxidant action of the S protein. Globally, this study proposes novel mechanisms of disease in the context of COVID-19 and its vascular sequelae and provides pharmacological clues in order to prevent such complications.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Licia Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Sofía Figueiras
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Fernando de la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Dolores Sánchez-Niño
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Nephrology and Hypertension Lab, IIS-Fundación Jimenez Diaz, Madrid, Spain
| | - Guillermo Díaz-Araya
- Department of Pharmacological &;amp Toxicological Chemistry, Faculty of Chemical &;amp Pharmaceutical Sciences &;amp Faculty of Medicine, University of Chile, Santiago, Chile
| | - Isabel Sánchez-Pérez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases, CIBERER, ISCIII, Madrid, Spain
| | - Óscar Lorenzo
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carlos Félix Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| |
Collapse
|
6
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhou P, Guo QQ, Wang FX, Zhou L, Hu HF, Deng Z. Nonlinear relationship between platelet count and 30-day in-hospital mortality in ICU acute respiratory failure patients: a multicenter retrospective cohort study. Eur J Med Res 2024; 29:312. [PMID: 38849948 PMCID: PMC11161993 DOI: 10.1186/s40001-024-01909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Limited evidence exists regarding the link between platelet count and 30-day in-hospital mortality in acute respiratory failure (ARF) patients. Thus, this study aims to investigate this association among ICU patients experiencing acute respiratory failure. METHODS We conducted a retrospective cohort study across multiple centers, utilizing data from the US eICU-CRD v2.0 database covering 22,262 patients with ARF in the ICU from 2014 to 2015. Our aim was to investigate the correlation between platelet count and 30-day in-hospital mortality using binary logistic regression, subgroup analyses, and smooth curve fitting. RESULTS The 30-day in-hospital mortality rate was 19.73% (4393 out of 22,262), with a median platelet count of 213 × 109/L. After adjusting for covariates, our analysis revealed an inverse association between platelet count and 30-day in-hospital mortality (OR = 0.99, 95% CI 0.99, 0.99). Subgroup analyses supported the robustness of these findings. Furthermore, a nonlinear relationship was identified between platelet count and 30-day in-hospital mortality, with the inflection point at 120 × 109/L. Below the inflection point, the effect size (OR) was 0.89 (0.87, 0.91), indicating a significant association. However, beyond this point, the relationship was not statistically significant. CONCLUSION This study establishes a clear negative association between platelet count and 30-day in-hospital mortality among ICU patients with ARF. Furthermore, we have identified a nonlinear relationship with saturation effects, indicating that among ICU patients with acute respiratory failure, the lowest 30-day in-hospital mortality rate occurs when the baseline platelet count is approximately 120 × 109/L.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Emergency Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Qin-Qin Guo
- Department of Emergency Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Fang-Xi Wang
- Department of Emergency Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Li Zhou
- Department of Emergency Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Hao-Fei Hu
- Department of Nephrology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Zhe Deng
- Department of Emergency Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| |
Collapse
|
8
|
Suárez-Castillejo C, Calvo N, Preda L, Toledo-Pons N, Millán-Pons AR, Martínez J, Ramón L, Iglesias A, Morell-García D, Bauça JM, Núñez B, Sauleda J, Sala-Llinas E, Alonso-Fernández A. Pulmonary thrombosis associated with COVID-19 pneumonia: Beyond classical pulmonary thromboembolism. Eur J Clin Invest 2024; 54:e14176. [PMID: 38339827 DOI: 10.1111/eci.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Classical pulmonary thromboembolism (TE) and local pulmonary thrombosis (PT) have been suggested as mechanisms of thrombosis in COVID-19. However, robust evidence is still lacking because this was mainly based on retrospective studies, in which patients were included when TE was suspected. METHODS All patients with COVID-19 pneumonia underwent computed tomography and pulmonary angiography in a prospective study. The main objective was to determine the number and percentage of thrombi surrounded by lung opacification (TSO) in each patient, as well as their relationship with percentage of lung involvement (TLI), to distinguish classical TE (with a random location of thrombi that should correspond to a percentage of TSO equivalent to the TLI) from PT. We determined TLI by artificial intelligence. Analyses at patient level (TLI and percentage of TSO) and at thrombi level (TLI and TSO) were performed. RESULTS We diagnosed TE in 70 out of 184 patients. Three (2-8) thrombi/patient were detected. The percentage of TSO was 100% (75-100) per patient, and TLI was 19.9% (4.6-35.2). Sixty-five patients (92.9%) were above the random scenario with higher percentage of TSO than TLI. Most thrombi were TSO (n = 299, 75.1%). When evaluating by TLI (<10%, 10%-20%, 20%-30% and >30%), percentage of TSO was higher in most groups. Thrombi were mainly in subsegmental/segmental arteries, and percentage of TSO was higher in all locations. CONCLUSIONS Thrombi in COVID-19 were found within lung opacities in a higher percentage than lung involvement, regardless of TLI and clot location, supporting the hypothesis of local PT rather than "classic TE".
Collapse
Affiliation(s)
- Carla Suárez-Castillejo
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Néstor Calvo
- Servicio de Radiodiagnostico, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Luminita Preda
- Servicio de Radiodiagnostico, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Joaquín Martínez
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Ramón
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Amanda Iglesias
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
| | - Daniel Morell-García
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Josep Miquel Bauça
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Belén Núñez
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jaume Sauleda
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Ernest Sala-Llinas
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Alberto Alonso-Fernández
- Servicio de Neumología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, Palma de Mallorca, Spain
| |
Collapse
|
9
|
Katagiri D, Tsukada A, Izumi S, Shimizu Y, Terada-Hirashima J, Uemura Y, Kusaba Y, Takasaki J, Takoi H, Tamura-Nakano M, Hojo M, Takano H, Noiri E, Abe S, Azuma A, Sugiyama H. Blood perfusion with polymyxin B immobilized columns in patients with COVID-19 requiring oxygen therapy. Sci Rep 2024; 14:12550. [PMID: 38822071 PMCID: PMC11143350 DOI: 10.1038/s41598-024-63330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Extracorporeal blood purification with polymyxin B immobilized fiber column direct hemoperfusion (PMX-DHP), is reported to be effective in treating COVID-19 pneumonitis with oxygen demand. This multicenter prospective study evaluated the efficacy and safety of PMX-DHP in oxygen-requiring patients with COVID-19 admitted between September 28, 2020, and March 31, 2022. The primary endpoint was the percentage of clinical improvement 15 days after treatment. The secondary endpoint was the percentage of worsened disease status. Data from the COVID-19 patient registry were used for the synthetic control group. The improvement rate on Day 15 did not differ between PMX-treated patients and controls; however, the deterioration rate was 0.38 times lower in the PMX-treated group, and the death rates on Day 29 were 0 and 11.1% in the PMX-treated and control groups, respectively. The PMX group showed a 0.73 times higher likelihood for reduced intensive care demand, as 16.7% of PMX-treated patients and 22.8% of controls worsened. After treatment blood oxygenation improved, urinary β2-microglobulin and liver-type fatty acid-binding protein showed significant decreases, and IL-6 decreased once during treatment but did not persist. In this study, PMX treatment effectively prevented the worsening of COVID-19 pathology, accompanied by improved oxygenation. PMX treatment to remove activated cells may effectively improve patient outcomes.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Department of Nephrology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Akinari Tsukada
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan.
| | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junko Terada-Hirashima
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusaku Kusaba
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Jin Takasaki
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Takoi
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Hojo
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideki Takano
- Department of Nephrology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Eisei Noiri
- National Center Biobank Network, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Mihara General Hospital, Pulmonary Medicine and Clinical Research Center, Saitama, Japan
| | - Haruhito Sugiyama
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Qiu X, Nair MG, Jaroszewski L, Godzik A. Deciphering Abnormal Platelet Subpopulations in COVID-19, Sepsis and Systemic Lupus Erythematosus through Machine Learning and Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:5941. [PMID: 38892129 PMCID: PMC11173046 DOI: 10.3390/ijms25115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function.
Collapse
Affiliation(s)
| | | | | | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521, USA; (X.Q.); (M.G.N.); (L.J.)
| |
Collapse
|
11
|
Sofi F, Dinu M, Reboldi G, Lotti S, Genovese L, Tritto I, Gensini G, Gibson CM, Ambrosio G. Worldwide impact of COVID-19 on hospital admissions for non-ST-elevation acute coronary syndromes (NSTACS): a systematic review with meta-analysis of 553 038 cases. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2024; 10:265-283. [PMID: 37580157 PMCID: PMC11112522 DOI: 10.1093/ehjqcco/qcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND How coronavirus disease 2019 (COVID-19) impacted non-ST-segment elevation acute coronary syndromes (NSTACS) is an object of controversial reports. AIM To systematically review studies reporting NSTACS hospitalizations during the COVID-19 pandemic, and analyse whether differences in COVID-19 epidemiology, methodology of report, or public health-related factors could contribute to discrepant findings. METHODS Comprehensive search (Medline, Embase, Scopus, Web of Science, Cochrane Register), of studies reporting NSTACS hospitalizations during the COVID-19 pandemic compared with a reference period, following Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. Data were independently extracted by multiple investigators and pooled using a random-effects model. Health-related metrics were from publicly available sources, and analysed through multiple meta-regression modelling. RESULTS We retrieved 102 articles (553 038 NSTACS cases, 40 countries). During peak COVID-19 pandemic, overall incidence rate ratio (IRR) of NSTACS hospitalizations over reference period decreased (0.70, 95% confidence interval (CI) 0.66-0.75; P < 0.00001). Significant heterogeneity was detected among studies (I2 = 98%; P < 0.00001). Importantly, wide variations were observed among, and within, countries. No significant differences were observed by study quality, whereas comparing different periods within 2020 resulted in greater decrease (IRR: 0.61; CI: 0.53-0.71) than comparing 2020 vs. previous years (IRR: 0.74; CI 0.69-0.79). Among many variables, major predictors of heterogeneity were severe acute respiratory syndrome coronavirus 2 reproduction rate/country, number of hospitals queried, and reference period length; country stringency index and socio-economical indicators did not contribute significantly. CONCLUSIONS During the COVID-19 pandemic, NSTACS hospitalizations decreased significantly worldwide. However, substantial heterogeneity emerged among countries, and within the same country. Factors linked to public health management, but also to methodologies to collect results may have contributed to this heterogeneity. TRIAL REGISTRATION The protocol was registered in the PROSPERO International Prospective Register of Systematic Reviews (ID: CRD42022308159).
Collapse
Affiliation(s)
- Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - GianPaolo Reboldi
- Department of Medicine, University of Perugia School of Medicine, Perugia 06126, Italy
- Center for Clinical and Translational Research—CERICLET, University of Perugia School of Medicine, Perugia 06126, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Luca Genovese
- Department of Cardiology, IRCCS MultiMedica, Milan 20138, Italy
| | - Isabella Tritto
- Division of Cardiology, University of Perugia School of Medicine, Perugia 06126, Italy
| | | | | | - Giuseppe Ambrosio
- Center for Clinical and Translational Research—CERICLET, University of Perugia School of Medicine, Perugia 06126, Italy
- Division of Cardiology, University of Perugia School of Medicine, Perugia 06126, Italy
| |
Collapse
|
12
|
Kircheis R. In Silico Analyses Indicate a Lower Potency for Dimerization of TLR4/MD-2 as the Reason for the Lower Pathogenicity of Omicron Compared to Wild-Type Virus and Earlier SARS-CoV-2 Variants. Int J Mol Sci 2024; 25:5451. [PMID: 38791489 PMCID: PMC11121871 DOI: 10.3390/ijms25105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.
Collapse
|
13
|
Thadani S, Fuhrman D, Hanson C, Park HJ, Angelo J, Srivaths P, Typpo K, Bell MJ, Gist KM, Carcillo J, Akcan-Arikan A. Patterns of Multiple Organ Dysfunction and Renal Recovery in Critically Ill Children and Young Adults Receiving Continuous Renal Replacement Therapy. Crit Care Explor 2024; 6:e1084. [PMID: 38709083 DOI: 10.1097/cce.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES Acute kidney injury requiring dialysis (AKI-D) commonly occurs in the setting of multiple organ dysfunction syndrome (MODS). Continuous renal replacement therapy (CRRT) is the modality of choice for AKI-D. Mid-term outcomes of pediatric AKI-D supported with CRRT are unknown. We aimed to describe the pattern and impact of organ dysfunction on renal outcomes in critically ill children and young adults with AKI-D. DESIGN Retrospective cohort. SETTING Two large quarternary care pediatric hospitals. PATIENTS Patients 26 y old or younger who received CRRT from 2014 to 2020, excluding patients with chronic kidney disease. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Organ dysfunction was assessed using the Pediatric Logistic Organ Dysfunction-2 (PELOD-2) score. MODS was defined as greater than or equal to two organ dysfunctions. The primary outcome was major adverse kidney events at 30 days (MAKE30) (decrease in estimated glomerular filtration rate greater than or equal to 25% from baseline, need for renal replacement therapy, and death). Three hundred seventy-three patients, 50% female, with a median age of 84 mo (interquartile range [IQR] 16-172) were analyzed. PELOD-2 increased from 6 (IQR 3-9) to 9 (IQR 7-12) between ICU admission and CRRT initiation. Ninety-seven percent of patients developed MODS at CRRT start and 266 patients (71%) had MAKE30. Acute kidney injury (adjusted odds ratio [aOR] 3.55 [IQR 2.13-5.90]), neurologic (aOR 2.07 [IQR 1.15-3.74]), hematologic/oncologic dysfunction (aOR 2.27 [IQR 1.32-3.91]) at CRRT start, and progressive MODS (aOR 1.11 [IQR 1.03-1.19]) were independently associated with MAKE30. CONCLUSIONS Ninety percent of critically ill children and young adults with AKI-D develop MODS by the start of CRRT. Lack of renal recovery is associated with specific extrarenal organ dysfunction and progressive multiple organ dysfunction. Currently available extrarenal organ support strategies, such as therapeutic plasma exchange lung-protective ventilation, and other modifiable risk factors, should be incorporated into clinical trial design when investigating renal recovery.
Collapse
Affiliation(s)
- Sameer Thadani
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Dana Fuhrman
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Claire Hanson
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Hyun Jung Park
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Angelo
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Poyyapakkam Srivaths
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Katri Typpo
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Michael J Bell
- Department of Critical Care Medicine, Children's National Hospital, Washington, DC
| | - Katja M Gist
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Joseph Carcillo
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
14
|
Goonewardena SN, Chen Q, Tate AM, Grushko OG, Damodaran D, Blakely P, Hayek SS, Pinsky DJ, Rosenson RS. Monocyte-Mediated Thrombosis Linked to Circulating Tissue Factor and Immune Paralysis in COVID-19. Arterioscler Thromb Vasc Biol 2024; 44:1124-1134. [PMID: 38511328 PMCID: PMC11043007 DOI: 10.1161/atvbaha.122.318721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND SARS-CoV-2 infections cause COVID-19 and are associated with inflammation, coagulopathy, and high incidence of thrombosis. Myeloid cells help coordinate the initial immune response in COVID-19. Although we appreciate that myeloid cells lie at the nexus of inflammation and thrombosis, the mechanisms that unite the two in COVID-19 remain largely unknown. METHODS In this study, we used systems biology approaches including proteomics, transcriptomics, and mass cytometry to define the circulating proteome and circulating immune cell phenotypes in subjects with COVID-19. RESULTS In a cohort of subjects with COVID-19 (n=35), circulating markers of inflammation (CCL23 [C-C motif chemokine ligand 23] and IL [interleukin]-6) and vascular dysfunction (ACE2 [angiotensin-converting enzyme 2] and TF [tissue factor]) were elevated in subjects with severe compared with mild COVID-19. Additionally, although the total white blood cell counts were similar between COVID-19 groups, CD14+ (cluster of differentiation) monocytes from subjects with severe COVID-19 expressed more TF. At baseline, transcriptomics demonstrated increased IL-6, CCL3, ACOD1 (aconitate decarboxylase 1), C5AR1 (complement component 5a receptor), C5AR2, and TF in subjects with severe COVID-19 compared with controls. Using stress transcriptomics, we found that circulating immune cells from subjects with severe COVID-19 had evidence of profound immune paralysis with greatly reduced transcriptional activation and release of inflammatory markers in response to TLR (Toll-like receptor) activation. Finally, sera from subjects with severe (but not mild) COVID-19 activated human monocytes and induced TF expression. CONCLUSIONS Taken together, these observations further elucidate the pathological mechanisms that underlie immune dysfunction and coagulation abnormalities in COVID-19, contributing to our growing understanding of SARS-CoV-2 infections that could also be leveraged to develop novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sascha N. Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - Qinzhong Chen
- Metabolism and Lipids Unit, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ashley M. Tate
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - Olga G Grushko
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - Dilna Damodaran
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - Pennelope Blakely
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - Salim S. Hayek
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - David J. Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, USA
| | - Robert S. Rosenson
- Metabolism and Lipids Unit, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
15
|
Su T, Zhong B, Tang C, Qiao S, Feng Y, Peng H, Gu X. Correlation between epicardial adipose tissue and myocardial injury in patients with COVID-19. Front Physiol 2024; 15:1368542. [PMID: 38706946 PMCID: PMC11066173 DOI: 10.3389/fphys.2024.1368542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Many people infected with COVID-19 develop myocardial injury. Epicardial adipose tissue (EAT) is among the various risk factors contributing to coronary artery disease. However, its correlation with myocardial injury in patients diagnosed with COVID-19 remains uncertain. Methods: We examined myocardial biomarkers in population affected by COVID-19 during the period from December 2022 to January 2023. The patients without myocardial injury were referred to as group A (n = 152) and those with myocardial injury were referred to as group B (n = 212). Results: 1) The A group and the B group exhibitedstatistically significant differences in terms of age, TC, CRP, Cr, BUN, LDL-C, IL-6, BNP, LVEF and EAT (p < 0.05). 2) EAT volumehad a close relationship with IL-6, LDL-C, cTnI, and CRP (p < 0.05); the corresponding correlation coefficient values were 0.24, 0.21, 0.24, and 0.16. In contrast to those with lower EAT volume, more subjects with a higher volume of EAT had myocardial injury (p < 0.05). Regression analysis showed that EAT, LDL-C, Age and Cr were established as independent risk variables for myocardial injury in subjects affected by COVID-19. 3) In COVID-19 patients, the likelihood of myocardial injury rised notably as EAT levels increase (p < 0.001). Addition of EAT to the basic risk model for myocardial injury resulted in improved reclassification. (Net reclassification index: 58.17%, 95% CI: 38.35%, 77.99%, p < 0.001). Conclusion: Patients suffering from COVID-19 with higher volume EAT was prone to follow myocardial injury and EAT was an independent predictor of heart damage in these individuals.
Collapse
Affiliation(s)
- Tianhong Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bincheng Zhong
- Department of Emergency, The Tongren Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chao Tang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shunsong Qiao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Zaheer N, Tallouzi MO, Kumar NA, Sreekantam S. Outer Retinopathies Associated with COVID-19 Infection: Case Reports and Review of Literature. Case Rep Ophthalmol Med 2024; 2024:7227086. [PMID: 38495090 PMCID: PMC10942824 DOI: 10.1155/2024/7227086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024] Open
Abstract
Background The coronavirus disease (COVID-19) is a highly contagious disease with profound health implications. It can affect any part of the body with variable severity. Various ophthalmic manifestations of coronavirus disease have been documented. Case Presentations. We reported three cases of outer retinopathies associated with COVID-19 infection. All three patients were young females. The first two patients presented within days of COVID-19 infection with complaints of black spots in the eyes. Multimodal retinal imaging showed lesions consistent with acute macular neuroretinopathy. Lesions were bilateral in the first patient and unilateral in the second one. Our third patient presented with blurred vision in one eye, 3 months after a suspected COVID-19 infection. Retinal imaging showed outer retinopathy. Our patients' vision was good and maintained during the follow-up. All three were monitored on observation only, and symptoms and lesions improved with time. Conclusion In conclusion, COVID-19-related thromboinflammatory response can result in localized vascular inflammation and hypoperfusion in any of the retinal capillary plexuses or choriocapillaris resulting in ischemia of the corresponding retinal or choroidal layers.
Collapse
Affiliation(s)
- Naima Zaheer
- Birmingham and Midland Eye Centre, Sandwell & West Birmingham NHS Trust, Birmingham, UK
| | - Mohammad O. Tallouzi
- Birmingham and Midland Eye Centre, Sandwell & West Birmingham NHS Trust, Birmingham, UK
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N. Ajith Kumar
- Birmingham and Midland Eye Centre, Sandwell & West Birmingham NHS Trust, Birmingham, UK
| | - Sreekanth Sreekantam
- Birmingham and Midland Eye Centre, Sandwell & West Birmingham NHS Trust, Birmingham, UK
| |
Collapse
|
17
|
Ng CY, Cheung C. Origins and functional differences of blood endothelial cells. Semin Cell Dev Biol 2024; 155:23-29. [PMID: 37202277 DOI: 10.1016/j.semcdb.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The interests in blood endothelial cells arise from their therapeutic potential in vascular repair and regeneration. Our understanding of blood endothelial cells that exist in the circulation has been evolving significantly from the original concept of endothelial progenitor cells. Many studies have uncovered heterogeneities of blood endothelial subtypes where some cells express both endothelial and hematopoietic antigens, and others possess either mature or immature endothelial markers. Due to the lack of definitive cell marker identities, there have been momentums in the field to adopt a technical-oriented labeling system based on the cells' involvement in postnatal neovascularization and cell culture derivatives. Our review streamlines nomenclatures for blood endothelial subtypes and standardizes understanding of their functional differences. Broadly, we will discuss about myeloid angiogenic cells (MACs), endothelial colony-forming cells (ECFCs), blood outgrowth endothelial cells (BOECs) and circulating endothelial cells (CECs). The strategic location of blood endothelial cells confers them essential roles in supporting physiological processes. MACs exert angiogenic effects through paracrine mechanisms, while ECFCs are recruited to sites of vascular injury to participate directly in new vessel formation. BOECs are an in vitro derivative of ECFCs. CECs are shed into the bloodstream from damaged vessels, hence reflective of endothelial dysfunction. With clarity on the functional attributes of blood endothelial subtypes, we present recent advances in their applications in disease modelling, along with serving as biomarkers of vascular tissue homeostasis.
Collapse
Affiliation(s)
- Chun-Yi Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
18
|
Romero-Molina AO, Ramirez-Garcia G, Chirino-Perez A, Fuentes-Zavaleta DA, Hernandez-Castillo CR, Marrufo-Melendez O, Lopez-Gonzalez D, Rodriguez-Rodriguez M, Castorena-Maldonado A, Rodriguez-Agudelo Y, Paz-Rodriguez F, Chavez-Oliveros M, Lozano-Tovar S, Gutierrez-Romero A, Arauz-Gongora A, Garcia-Santos RA, Fernandez-Ruiz J. SARS-CoV-2's brain impact: revealing cortical and cerebellar differences via cluster analysis in COVID-19 recovered patients. Neurol Sci 2024; 45:837-848. [PMID: 38172414 DOI: 10.1007/s10072-023-07266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND COVID-19 is a disease known for its neurological involvement. SARS-CoV-2 infection triggers neuroinflammation, which could significantly contribute to the development of long-term neurological symptoms and structural alterations in the gray matter. However, the existence of a consistent pattern of cerebral atrophy remains uncertain. OBJECTIVE Our study aimed to identify patterns of brain involvement in recovered COVID-19 patients and explore potential relationships with clinical variables during hospitalization. METHODOLOGY In this study, we included 39 recovered patients and 39 controls from a pre-pandemic database to ensure their non-exposure to the virus. We obtained clinical data of the patients during hospitalization, and 3 months later; in addition we obtained T1-weighted magnetic resonance images and performed standard screening cognitive tests. RESULTS We identified two groups of recovered patients based on a cluster analysis of the significant cortical thickness differences between patients and controls. Group 1 displayed significant cortical thickness differences in specific cerebral regions, while Group 2 exhibited significant differences in the cerebellum, though neither group showed cognitive deterioration at the group level. Notably, Group 1 showed a tendency of higher D-dimer values during hospitalization compared to Group 2, prior to p-value correction. CONCLUSION This data-driven division into two groups based on the brain structural differences, and the possible link to D-dimer values may provide insights into the underlying mechanisms of SARS-COV-2 neurological disruption and its impact on the brain during and after recovery from the disease.
Collapse
Affiliation(s)
- Angel Omar Romero-Molina
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
19
|
Khalaji A, Amirkhani N, Sharifkashani S, Peiman S, Behnoush AH. Systematic Review of Endocan as a Potential Biomarker of COVID-19. Angiology 2024; 75:107-115. [PMID: 36680504 PMCID: PMC9895317 DOI: 10.1177/00033197231152941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since the start of the coronavirus disease 2019 (COVID-19) pandemic, several biomarkers have been proposed to assess the diagnosis and prognosis of this disease. The present systematic review evaluated endocan (a marker of endothelial cell damage) as a potential diagnostic and prognostic biomarker for COVID-19. PubMed, Scopus, Web of Science, and Embase were searched for studies comparing circulating endocan levels between COVID-19 cases and controls, and/or different severities/complications of COVID-19. Eight studies (686 individuals) were included, from which four reported significantly higher levels of endocan in COVID-19 cases compared with healthy controls. More severe disease was also associated with higher endocan levels in some of the studies. Studies reported higher endocan levels in patients who died from COVID-19, were admitted to an intensive care unit, and had COVID-19-related complications. Endocan also acted as a diagnostic and prognostic biomarker with different cut-offs. In conclusion, endocan could be a novel diagnostic and prognostic biomarker for COVID-19. Further studies with larger sample sizes are warranted to evaluate this role of endocan.
Collapse
Affiliation(s)
- Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical
Sciences, Tehran, Iran
- Non-Communicable Diseases Research
Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical
Sciences, Tehran, Iran
| | - Nikan Amirkhani
- School of Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | | | - Soheil Peiman
- Department of Internal Medicine, AdventHealth Orlando
Hospital, FL, USA
| | - Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical
Sciences, Tehran, Iran
- Non-Communicable Diseases Research
Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical
Sciences, Tehran, Iran
| |
Collapse
|
20
|
Nara N, Shimizu M, Yamamoto M, Nakamizo T, Hayakawa A, Johkura K. Prolonged platelet hyperactivity after COVID-19 infection. Br J Haematol 2024; 204:492-496. [PMID: 37822090 DOI: 10.1111/bjh.19125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Platelet hyperactivity often occurs in patients with coronavirus disease 2019 (COVID-19). However, it remains unclear how long platelet hyperactivity lasts after the acute phase, owing to a lack of follow-up studies. To elucidate the course of platelet hyperactivity, we serially measured platelet activity in patients with COVID-19 up to 40 days after hospital admission using an easily assessable haematology analyser that semi-quantitates platelet clumps on a scattergram. Our results showed that platelet hyperactivity persisted for at least 40 days even after acute inflammation subsided in most patients with COVID-19, regardless of disease severity. Persistent platelet hyperactivity may contribute to thromboembolic complications in post-COVID-19 patients.
Collapse
Affiliation(s)
- Noriko Nara
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Mie Shimizu
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Masahiro Yamamoto
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Tomoki Nakamizo
- Department of Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - Azusa Hayakawa
- Department of Cardiology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Ken Johkura
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| |
Collapse
|
21
|
Villacampa A, Alfaro E, Morales C, Díaz-García E, López-Fernández C, Bartha JL, López-Sánchez F, Lorenzo Ó, Moncada S, Sánchez-Ferrer CF, García-Río F, Cubillos-Zapata C, Peiró C. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. Cell Commun Signal 2024; 22:38. [PMID: 38225643 PMCID: PMC10788971 DOI: 10.1186/s12964-023-01397-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Hyperinflammation, hypercoagulation and endothelial injury are major findings in acute and post-COVID-19. The SARS-CoV-2 S protein has been detected as an isolated element in human tissues reservoirs and is the main product of mRNA COVID-19 vaccines. We investigated whether the S protein alone triggers pro-inflammatory and pro-coagulant responses in primary cultures of two cell types deeply affected by SARS-CoV-2, such are monocytes and endothelial cells. METHODS In human umbilical vein endothelial cells (HUVEC) and monocytes, the components of NF-κB and the NLRP3 inflammasome system, as well as coagulation regulators, were assessed by qRT-PCR, Western blot, flow cytometry, or indirect immunofluorescence. RESULTS S protein activated NF-κB, promoted pro-inflammatory cytokines release, and triggered the priming and activation of the NLRP3 inflammasome system resulting in mature IL-1β formation in both cell types. This was paralleled by enhanced production of coagulation factors such as von Willebrand factor (vWF), factor VIII or tissue factor, that was mediated, at least in part, by IL-1β. Additionally, S protein failed to enhance ADAMTS-13 levels to counteract the pro-coagulant activity of vWF multimers. Monocytes and HUVEC barely expressed angiotensin-converting enzyme-2. Pharmacological approaches and gene silencing showed that TLR4 receptors mediated the effects of S protein in monocytes, but not in HUVEC. CONCLUSION S protein behaves both as a pro-inflammatory and pro-coagulant stimulus in human monocytes and endothelial cells. Interfering with the receptors or signaling pathways evoked by the S protein may help preventing immune and vascular complications driven by such an isolated viral element. Video Abstract.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - José Luis Bartha
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Gynecology and Obstetrics Service, La Paz University Hospital, Madrid, Spain
| | | | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Moncada
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain.
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| |
Collapse
|
22
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Tabe Y, Naito T, Takahashi K, Hattori K, Heissig B. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Front Immunol 2024; 14:1299792. [PMID: 38313435 PMCID: PMC10835145 DOI: 10.3389/fimmu.2023.1299792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1β (IL1β), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Yeh S, Yeh T, Wang Y, Chao C, Tzeng S, Tang T, Hsieh J, Kan Y, Yang W, Hsieh S. Nerve pathology of microangiopathy and thromboinflammation in hereditary transthyretin amyloidosis. Ann Clin Transl Neurol 2024; 11:30-44. [PMID: 37902278 PMCID: PMC10791016 DOI: 10.1002/acn3.51930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Despite amyloid deposition as a hallmark of hereditary transthyretin amyloidosis (ATTRv) with polyneuropathy, this pathology could not completely account for nerve degeneration. ATTRv patients frequently have vasomotor symptoms, but microangiopathy hypothesis in ATTRv was not systemically clarified. METHODS This study examined the vascular pathology of sural nerves in ATTRv patients with transthyretin (TTR) mutation of p.Ala117Ser (TTR-A97S), focusing on morphometry and patterns of molecular expression in relation to nerve degeneration. We further applied human microvascular endothelial cell (HMEC-1) culture to examine the direct effect of TTR-A97S protein on endothelial cells. RESULTS In ATTRv nerves, there was characteristic microangiopathy compared to controls: increased vessel wall thickness and decreased luminal area; both were correlated with the reduction of myelinated fiber density. Among the components of vascular wall, the area of collagen IV in ATTRv nerves was larger than that of controls. This finding was validated in a cell model of HMEC-1 culture in which the expression of collagen IV was upregulated after exposure to TTR-A97S. Apoptosis contributed to the endothelial cell degeneration of microvasculatures in ATTRv endoneurium. ATTRv showed prothrombotic status with intravascular fibrin deposition, which was correlated with (1) increased tissue factor and coagulation factor XIIIA and (2) reduced tissue plasminogen activator. This cascade led to intravascular thrombin deposition, which was colocalized with upregulated p-selectin and thrombomodulin, accompanied by complement deposition and macrophages infiltration, indicating thromboinflammation in ATTRv. INTERPRETATION Microangiopathy with thromboinflammation is characteristic of advanced-stage ATTRv nerves, which provides an add-on mechanism and therapeutic target for nerve degeneration.
Collapse
Affiliation(s)
- Shin‐Joe Yeh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ti‐Yen Yeh
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Yi‐Shiang Wang
- Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chi‐Chao Chao
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Shiou‐Ru Tzeng
- Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Tsz‐Yi Tang
- Department of UrologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyKaohsiung Municipal Siaogang HospitalKaohsiungTaiwan
| | - Jung‐Hsien Hsieh
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Yu‐Yu Kan
- Department of Anatomy and Cell Biology, School of MedicineCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
- School of Medicine, College of Medicine, National Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Wei‐Kang Yang
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Sung‐Tsang Hsieh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of MedicineTaipeiTaiwan
- Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
24
|
Motes A, Nugent K. Periodic generalized edema following COVID-19 infection. Am J Med Sci 2024; 367:61-66. [PMID: 37816456 DOI: 10.1016/j.amjms.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
The unprecedented impact and sequelae of COVID-19 infection are not yet fully understood, and better understanding of the pathophysiology of these infections is needed. Endothelial dysfunction might be common sequelae associated with COVID-19, and increased inflammatory responses, oxidative stress, proinflammatory cytokines, and impaired mitochondrial function also contribute to the pathophysiology of post COVID-19 medical disorders. Systemic capillary leak syndrome following COVID-19 infection, both new onset and exacerbation of a prior disorder, has been reported. The pathophysiology of SCLS is uncertain; it likely develops during transient vascular endothelial dysfunction or endotheliopathy and inflammation resulting from circulating humoral factors. Here, we report a case of adult patient with 2 episodes of systemic capillary leak syndrome following prior COVID-19 infection. This patient had a transient response to intravenous IgG.
Collapse
Affiliation(s)
- Arunee Motes
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX United States.
| |
Collapse
|
25
|
Ho M, Levy TJ, Koulas I, Founta K, Coppa K, Hirsch JS, Davidson KW, Spyropoulos AC, Zanos TP. Longitudinal dynamic clinical phenotypes of in-hospital COVID-19 patients across three dominant virus variants in New York. Int J Med Inform 2024; 181:105286. [PMID: 37956643 PMCID: PMC10843635 DOI: 10.1016/j.ijmedinf.2023.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND COVID-19 is a challenging disease to characterize given its wide-ranging heterogeneous symptomatology. Several studies have attempted to extract clinical phenotypes but often relied on data from small patient cohorts, usually limited to only one viral variant and utilizing a static snapshot of patient data. OBJECTIVE This study aimed to identify clinical phenotypes of hospitalized COVID-19 patients and investigate their longitudinal dynamics throughout the pandemic, with the goal to relate these phenotypes to clinical outcomes and treatment strategies. METHODS We utilized routinely collected demographic and clinical data throughout the hospitalization of 38,077 patients admitted between 3/2020 to 5/2022, in 12 New York hospitals. Uniform Manifold Approximation and Projection and agglomerative hierarchical clustering were used to derive the clusters, followed by exploratory data analysis to compare the prevalence of comorbidities and treatments per cluster. RESULTS 4 distinct clinical phenotypes remained robust in multi-site validation and were associated with different mortality rates. The temporal progression of these phenotypes throughout the COVID-19 pandemic demonstrated increased variability across the waves of the three dominant viral variants (alpha, delta, omicron). Longitudinal analysis evaluating changes in clinical phenotypes of each patient throughout the course of a 4-week hospital stay exemplified the dynamic nature of the disease progression. Factors such as sex, race/ethnicity and specific treatment modalities revealed significant and clinically relevant differences between the observed phenotypes. CONCLUSIONS Our proposed methodology has the potential of enabling clinicians and policy makers to draw evidence-based conclusions for guiding treatment modalities in a dynamic fashion.
Collapse
Affiliation(s)
- Matthew Ho
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Todd J Levy
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Ioannis Koulas
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Kyriaki Founta
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Kevin Coppa
- Department of Clinical Digital Solutions, Northwell Health, New Hyde Park, NY 11042
| | - Jamie S Hirsch
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549; Department of Clinical Digital Solutions, Northwell Health, New Hyde Park, NY 11042
| | - Karina W Davidson
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Alex C Spyropoulos
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Theodoros P Zanos
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549.
| |
Collapse
|
26
|
Shafeghat Z, Dorfaki M, Dehrouyeh S, Arab FL, Roozbehani M, Falak R, Faraji F, Jafari R. Mesenchymal stem cell-derived exosomes for managing graft-versus-host disease: An updated view. Transpl Immunol 2023; 81:101957. [PMID: 37935319 DOI: 10.1016/j.trim.2023.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Graft-versus-host disease (GvHD) is the most common complication after stem cell transplantation, and also it is one of the primary limiting factors for the use of hematopoietic stem cell transplantation (HSCT) in the treatment of hematologic cancers. GvHD, a systemic inflammatory disease, is caused by donor T cells recognizing the recipient's foreign antigens. In addition, an immune dysregulation, caused by autoreactive immune cells, complicates potent inflammatory process following HSCT. While there is no one approved treatment method for GvHD, corticosteroids are the most common first-line treatment. Exosomes are biological vesicles between 30 and 120 nm in diameter, which carry various biologically active molecules. They are known to play a key role in the paracrine effect of mesenchymal stem cells with therapeutic and tissue repair effects, including an immunosuppressive potential. Exosomes are unable to replicate themselves but because of their small size and fluid-like structure, they can pass through physiological barriers. Exosome are relatively easy to prepare and they can be quickly sterilized by a filtration process. Administration of exosomes, derived from mesenchymal stem cells, effectively reduced GvHD symptoms and significantly increased HSCT recipients' survival. Mesenchymal stem cell-derived exosome therapy reduced clinical symptoms of GvHD in patients after HSCT. Studies in patients with GvHD described that that mesenchymal stem cell-derived exosomes inhibited the release of IFN-γ and TNF-α by activated natural killer (NK cells), thereby reducing the lethal function of NK cells and inflammatory responses. Current review provides a comprehensive overview about the use of mesenchymal stem cells and their derived exosomes for the treatment of GvHD.
Collapse
Affiliation(s)
- Zahra Shafeghat
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dorfaki
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shiva Dehrouyeh
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
27
|
Maiorca F, Lombardi L, Marrapodi R, Pallucci D, Sabetta A, Zingaropoli MA, Perri V, Flego D, Romiti GF, Corica B, Miglionico M, Russo G, Pasculli P, Ciardi MR, Mastroianni CM, Ruberto F, Pugliese F, Pulcinelli F, Raparelli V, Cangemi R, Visentini M, Basili S, Stefanini L. Breakthrough infections after COVID-19 vaccinations do not elicit platelet hyperactivation and are associated with high platelet-lymphocyte and low platelet-neutrophil aggregates. Res Pract Thromb Haemost 2023; 7:102262. [PMID: 38193050 PMCID: PMC10772876 DOI: 10.1016/j.rpth.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 01/10/2024] Open
Abstract
Background Severe COVID-19 is associated with an excessive immunothrombotic response and thromboinflammatory complications. Vaccinations effectively reduce the risk of severe clinical outcomes in patients with COVID-19, but their impact on platelet activation and immunothrombosis during breakthrough infections is not known. Objectives To investigate how preemptive vaccinations modify the platelet-immune crosstalk during COVID-19 infections. Methods Cross-sectional flow cytometry study of the phenotype and interactions of platelets circulating in vaccinated (n = 21) and unvaccinated patients with COVID-19, either admitted to the intensive care unit (ICU, n = 36) or not (non-ICU, n = 38), in comparison to matched SARS-CoV-2-negative patients (n = 48), was performed. Results In the circulation of unvaccinated non-ICU patients with COVID-19, we detected hyperactive and hyperresponsive platelets and platelet aggregates with adaptive and innate immune cells. In unvaccinated ICU patients with COVID-19, most of whom had severe acute respiratory distress syndrome, platelets had high P-selectin and phosphatidylserine exposure but low capacity to activate integrin αIIbβ3, dysfunctional mitochondria, and reduced surface glycoproteins. In addition, in the circulation of ICU patients, we detected microthrombi and platelet aggregates with innate, but not with adaptive, immune cells. In vaccinated patients with COVID-19, who had no acute respiratory distress syndrome, platelets had surface receptor levels comparable to those in controls and did not form microthrombi or platelet-granulocyte aggregates but aggregated avidly with adaptive immune cells. Conclusion Our study provides evidence that vaccinated patients with COVID-19 are not associated with platelet hyperactivation and are characterized by platelet-leukocyte aggregates that foster immune protection but not excessive immunothrombosis. These findings advocate for the importance of vaccination in preventing severe COVID-19.
Collapse
Affiliation(s)
- Francesca Maiorca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ludovica Lombardi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Pallucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Sabetta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Davide Flego
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Bernadette Corica
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marzia Miglionico
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Franco Ruberto
- Department of Specialist Surgery and Organ Transplantation “Paride Stefanini,” Sapienza University of Rome, Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation “Paride Stefanini,” Sapienza University of Rome, Rome, Italy
| | - Fabio Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
- University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
28
|
Contreras J, Tinuoye EO, Folch A, Aguilar J, Free K, Ilonze O, Mazimba S, Rao R, Breathett K. Heart Failure with Reduced Ejection Fraction and COVID-19, when the Sick Get Sicker: Unmasking Racial and Ethnic Inequities During a Pandemic. Cardiol Clin 2023; 41:491-499. [PMID: 37743072 PMCID: PMC10267502 DOI: 10.1016/j.ccl.2023.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Minoritized racial and ethnic groups have the highest incidence, prevalence, and hospitalization rate for heart failure. Despite improvement in medical therapies and overall survival, the morbidity and mortality of these groups remain elevated. The reasons for this disparity are multifactorial, including social determinant of health (SDOH) such as access to care, bias, and structural racism. These same factors contributed to higher rates of COVID-19 infection among minoritized racial and ethnic groups. In this review, we aim to explore the lessons learned from the COVID-19 pandemic and its interconnection between heart failure and SDOH. The pandemic presents a window of opportunity for achieving greater equity in the health care of all vulnerable populations.
Collapse
Affiliation(s)
- Johanna Contreras
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Elizabeth O Tinuoye
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Alejandro Folch
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Jose Aguilar
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Kendall Free
- Department of Biofunction Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Onyedika Ilonze
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA
| | - Sula Mazimba
- Division of Cardiovascular Medicine, University of Virginia, 1215 Lee Street, Charlottesville, VA 22908-0158, USA
| | - Roopa Rao
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA
| | - Khadijah Breathett
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Gouzi F, Philippe A, Pastre J, Renaud B, Gendron N, Subileau M, Hua-Huy T, Planquette B, Sanchez O, Smadja DM, Günther S. Recovery of Endothelium-dependent vascular relaxation impairment in convalescent COVID-19 patients: Insight from a pilot study. Respir Med Res 2023; 84:101044. [PMID: 37625374 DOI: 10.1016/j.resmer.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Endothelial dysfunction is a key-feature in acute COVID-19. However, follow-up data regarding endothelial dysfunction and injury after COVID-19 infection are lacking. We aimed to investigate the changes in endothelium-dependent vasorelaxation at baseline and four months after hospital discharge in COVID-19 patients. METHODS Twenty COVID-19 patients were compared to 24 healthy controls. Clinical and morphological data were collected after hospital admission for SARS-CoV-2 infection and reactive hyperaemia index (RHI) measurement was performed with a delay between 24 and 48 h after hospital admission and four months after hospital discharge in the outpatient clinics. Blood tests including inflammatory markers and measurement of post-occlusive vasorelaxation by digital peripheral arterial tonometry were performed at both visits. RESULTS At baseline, COVID-19 patients exhibited reduced RHI compared to controls (p < 0.001), in line with an endothelial dysfunction. At four months follow-up, there was a 51% increase in the RHI (1.69 ± 0.32 to 2.51 ± 0.91; p < 0.01) in favor of endothelium-dependent vascular relaxation recovery. RHI changes were positively correlated with baseline C-reactive protein (r = 0.68; p = 0.02). Compared to COVID-19 patients with a decrease in RHI, COVID-19 patients with an increase in RHI beyond the day-to-day variability (i.e. >11%) had less severe systemic inflammation at baseline. CONCLUSION Convalescent COVID-19 patients showed a recovery of systemic artery endothelial dysfunction, in particular patients with lower inflammation at baseline. Further studies are needed to decipher the interplay between inflammation and endothelial dysfunction in COVID-19 patients.
Collapse
Affiliation(s)
- Fares Gouzi
- PhyMedExp, INSERM - CNRS - Montpellier University, CHRU Montpellier, Montpellier, France; Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France
| | - Aurélien Philippe
- Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France; Hematology Department, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Jean Pastre
- Department of Respiratory Medicine, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Bertrand Renaud
- Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France; Université Paris Cité, UFR de médecine, F-75006 Paris, France
| | - Nicolas Gendron
- Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France; Hematology Department, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Marielle Subileau
- Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Thông Hua-Huy
- Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Benjamin Planquette
- Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France; Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Olivier Sanchez
- Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France; Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - David M Smadja
- Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France; Hematology Department, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Sven Günther
- Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR_S1140, Paris Cité, F-75006 Paris, France; Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France.
| |
Collapse
|
30
|
Geyer CE, Chen HJ, Bye AP, Manz XD, Guerra D, Caniels TG, Bijl TP, Griffith GR, Hoepel W, de Taeye SW, Veth J, Vlaar AP, Vidarsson G, Bogaard HJ, Aman J, Gibbins JM, van Gils MJ, de Winther MP, den Dunnen J. Identification of new drugs to counteract anti-spike IgG-induced hyperinflammation in severe COVID-19. Life Sci Alliance 2023; 6:e202302106. [PMID: 37699657 PMCID: PMC10497933 DOI: 10.26508/lsa.202302106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.
Collapse
Affiliation(s)
- Chiara E Geyer
- https://ror.org/05grdyy37 Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Hung-Jen Chen
- https://ror.org/05grdyy37 Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, and School of Biological Sciences, University of Reading, Reading, UK
- Molecular and Clinical Sciences Research Institute, St George's University, London, UK
- School of Pharmacy, University of Reading, Reading, UK
| | - Xue D Manz
- https://ror.org/05grdyy37 Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Denise Guerra
- https://ror.org/05grdyy37 Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom G Caniels
- https://ror.org/05grdyy37 Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom Pl Bijl
- https://ror.org/05grdyy37 Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Guillermo R Griffith
- https://ror.org/05grdyy37 Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Willianne Hoepel
- https://ror.org/05grdyy37 Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Steven W de Taeye
- https://ror.org/05grdyy37 Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jennifer Veth
- https://ror.org/05grdyy37 Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander Pj Vlaar
- https://ror.org/05grdyy37 Department of Intensive Care Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Harm Jan Bogaard
- https://ror.org/05grdyy37 Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jurjan Aman
- https://ror.org/05grdyy37 Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, and School of Biological Sciences, University of Reading, Reading, UK
| | - Marit J van Gils
- https://ror.org/05grdyy37 Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Menno Pj de Winther
- https://ror.org/05grdyy37 Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jeroen den Dunnen
- https://ror.org/05grdyy37 Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
31
|
Lee SH, Cho S, Lee JY, Hong JY, Kim S, Jeong MH, Kim WH. Identification of Potential Drug Targets for Antiplatelet Therapy Specifically Targeting Platelets of Old Individuals through Proteomic Analysis. Biomedicines 2023; 11:2944. [PMID: 38001945 PMCID: PMC10669211 DOI: 10.3390/biomedicines11112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a growing problem worldwide, and the prevalence and mortality of arterial and venous thromboembolism (VTE) are higher in the elderly than in the young population. To address this issue, various anticoagulants have been used. However, no evidence can confirm that antithrombotic agents are suitable for the elderly. Therefore, this study aims to investigate the platelet proteome of aged mice and identify antithrombotic drug targets specific to the elderly. Based on the proteome analysis of platelets from aged mice, 308 increased or decreased proteins were identified. Among these proteins, three targets were selected as potential antithrombotic drug targets. These targets are membrane proteins or related to platelet function and include beta-2-glycoprotein 1 (β2GP1, ApolipoproteinH (ApoH)), alpha-1-acid glycoprotein2 (AGP2, Orosomucoid-2 (Orm2)), and Ras-related protein (Rab11a).
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| | | | | | | | | | | | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| |
Collapse
|
32
|
Singh M, Pushpakumar S, Zheng Y, Smolenkova I, Akinterinwa OE, Luulay B, Tyagi SC. Novel mechanism of the COVID-19 associated coagulopathy (CAC) and vascular thromboembolism. NPJ VIRUSES 2023; 1:3. [PMID: 38077924 PMCID: PMC10710223 DOI: 10.1038/s44298-023-00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 01/31/2024]
Abstract
Previous studies from our laboratory revealed that SARS-CoV-2 spike protein (SP) administration to a genetically engineered model expressing the human angiotensin-converting enzyme 2; ACE2 receptor (i.e., hACE2 humanized mouse) mimicked the coronavirus disease-19 (COVID-19) pathology. In humans the cause of high morbidity, and mortality is due to 'cytokine-storm' led thromboembolism; however, the exact mechanisms of COVID-19 associated coagulopathy (CAC) have yet to be discovered. Current knowledge suggests that CAC is distinct from the standard coagulopathy, in that the intrinsic and extrinsic thrombin-dependent coagulation factors, and the pathway(s) that are common to coagulopathy, are not recruited by SARS-CoV-2. Findings from patients revealed that there is little change in their partial thromboplastin, or the prothrombin time coupled with a significant decline in platelets. Further, there appears to be an endothelial dysfunction during COVID-19 suggesting an interaction of the endothelia with immune cells including neutrophils. There are also reports that inflammatory NGAL is elevated during COVID-19. Furthermore, the levels of NPT are also increased indicating an increase in inflammatory M1 macrophage iNOS which sequesters BH4; an essential enzyme co-factor that acts as a potent antioxidant thus causing damage to endothelia. SARS-CoV-2 entry into the host cells is facilitated by a co-operative action between TMPRSS2 and the main ACE2 receptor. Interestingly, after infection ADAMTS13; a von Willebrand factor; VWF cleaving enzyme is found to be decreased. Based on these facts, we hypothesize that vascular thromboembolism is associated with serine and metalloproteinase, and in that context, we opine that inhibition of iNOS might help mitigate COVID-19 harmful effects. To test this hypothesis, we administered SP to the hACE2 mice that were subsequently treated with amino guanidine (AG; a potent inhibitor of glycoxidation, lipoxidation and oxidative vicious cycles). Our results revealed increase in TMPRSS2, and NGAL by SP but treatment with AG mitigated their levels. Similarly, levels of MMP-2, and -9 were increased; however, AG treatment normalized these levels. Our findings suggest that occurrence of CAC is influenced by TMPRSS2, ADAMTS13, NGAL and MMP- 2, and -9 factors, and an intervention with iNOS blocker helped mitigate the CAC condition in experimental settings.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Irina Smolenkova
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Oluwaseun E. Akinterinwa
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bana Luulay
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
33
|
Nair S, Nova-Lamperti E, Labarca G, Kulasinghe A, Short KR, Carrión F, Salomon C. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 2023; 21:709. [PMID: 37817137 PMCID: PMC10563316 DOI: 10.1186/s12967-023-04552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4102, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia.
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
34
|
Gu SX, Yarovinsky TO, Hwa J. Fishing for "complements" with vascular organoid models of microvascular disease. Cell Stem Cell 2023; 30:1285-1286. [PMID: 37802032 DOI: 10.1016/j.stem.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In this issue of Cell Stem Cell, Kawakami et al. develop a SARS-CoV-2 infection-competent, progenitor-derived, human vascular organoid model and uncover a role for complement factor D (CFD) in mediating microvascular immunothrombosis. This model may be applied to conditions where microvascular disease plays a major pathogenic role.
Collapse
Affiliation(s)
- Sean X Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Timur O Yarovinsky
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Walborn AT, Heath A, Neal MD, Zarychanski R, Kornblith LZ, Hunt BJ, Castellucci LA, Hochman JS, Lawler PR, Paul JD. Effects of inflammation on thrombosis and outcomes in COVID-19: secondary analysis of the ATTACC/ACTIV-4a trial. Res Pract Thromb Haemost 2023; 7:102203. [PMID: 37854455 PMCID: PMC10579532 DOI: 10.1016/j.rpth.2023.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 10/20/2023] Open
Abstract
Background Patients hospitalized for COVID-19 are at high risk of thrombotic complications and organ failure, and often exhibit severe inflammation, which may contribute to hypercoagulability. Objectives To determine whether patients hospitalized for COVID-19 experience differing frequencies of thrombotic and organ failure complications and derive variable benefits from therapeutic-dose heparin dependent on the extent of systemic inflammation and whether observed benefit from therapeutic-dose anticoagulation varies depending on the degree of systemic inflammation. Methods We analyzed data from 1346 patients hospitalized for COVID-19 enrolled in the ATTACC and ACTIV-4a platforms who were randomized to therapeutic-dose heparin or usual care for whom levels of C-reactive protein (CRP) were reported at baseline. Results Increased CRP was associated with worse patient outcomes, including a >98% posterior probability of increased organ support requirement, hospital length of stay, risk of 28-day mortality, and incidence of major thrombotic events or death (patients with CRP 40-100 mg/L or ≥100 mg/L compared to patients with CRP <40 mg/L). Patients with CRP 40 to 100 mg/L experienced the greatest degree of benefit from treatment with therapeutic doses of unfractionated or low molecular weight heparin compared with usual-care prophylactic doses. This was most significant for an increase in organ support-free days (odds ratio: 1.63; 95% confidence interval, 1.09-2.40; 97.9% posterior probability of beneficial effect), with trends toward benefit for other evaluated outcomes. Conclusion Moderately ill patients hospitalized for COVID-19 with CRP between 40 mg/L and 100 mg/L derived the greatest benefit from treatment with therapeutic-dose heparin.
Collapse
Affiliation(s)
- Amanda T. Walborn
- Department of Anesthesia and Critical Care, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Anna Heath
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of the Biostatistics, The University of Toronto, Toronto, Ontario, Canada
- Department of Statistical Science, University College London, London, UK
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Zarychanski
- Department of Internal Medicine, Sections of Hematology/Medical Oncology and Critical Care, Max Rad College of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Lucy Z. Kornblith
- University of California, San Francisco, San Francisco, California, USA
| | - Beverley J. Hunt
- Thrombosis & Haemophilia Centre, Kings Healthcare Partners, London, UK
| | - Lana A. Castellucci
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Judith S. Hochman
- Department of Medicine, Section of Cardiology, NYU Langone Health, New York, New York, USA
| | - Patrick R. Lawler
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan D. Paul
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
36
|
Ślizień M, Sulecka P, Tylicki L, Janicka Z, Konopa J, Ślizień Z, Dębska-Ślizień A, Michalska-Małecka K, Biedunkiewicz B. Comprehensive Assessment of Eyes in Kidney Transplant Recipients after Recovering from COVID-19. Life (Basel) 2023; 13:2003. [PMID: 37895384 PMCID: PMC10608157 DOI: 10.3390/life13102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Patients after organ transplantation with COVID-19 have a higher risk of morbidity and mortality than patients in the general population. There are single studies that assess the eyes of COVID-19 patients, but there are no such studies on organ transplant recipients. The purpose of this study was to comprehensively examine the eyes of kidney transplant recipients (KTR) after recovery from mild to moderate SARS-CoV-2 infection. METHODS A total of 40 KTR after COVID-19 and 20 KTR without clinical and immunological symptoms of SARS-CoV-2 infection as a control group was qualified for the cross-sectional study. A total of 76 eyes from 38 KTR on an average of 7 weeks after COVID-19 and 36 eyes from 18 KTR from the control group were studied. The participants underwent an ophthalmological examination, and the retinal and choroid vessels and nerves were assessed by optical coherence tomography angiography. RESULTS We found a lower vessel density (VD) in the deep capillary plexus in the central part of the retina (VD deep central) of the study group. Women had significantly lower VD deep central in the study group (15.51 vs. 18.91, p < 0.001). Multivariate linear regression analysis confirmed an independent, negative impact of COVID-19 (p < 0.001) and female gender (p = 0.001) on VD deep central. CONCLUSION The results of our study confirmed that changes in microcirculation induced by SARS-CoV-2 infection may affect the retinal vessels in KTR. Mild to moderate COVID-19 in KTR resulted in a significant reduction in VD deep central of the retina, with these changes being more common in females.
Collapse
Affiliation(s)
- Mateusz Ślizień
- Ophthalmology Clinic, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Ś.); (P.S.); (Z.J.); (K.M.-M.)
| | - Paulina Sulecka
- Ophthalmology Clinic, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Ś.); (P.S.); (Z.J.); (K.M.-M.)
| | - Leszek Tylicki
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (L.T.); (J.K.); (Z.Ś.); (A.D.-Ś.)
| | - Zofia Janicka
- Ophthalmology Clinic, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Ś.); (P.S.); (Z.J.); (K.M.-M.)
| | - Joanna Konopa
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (L.T.); (J.K.); (Z.Ś.); (A.D.-Ś.)
| | - Zuzanna Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (L.T.); (J.K.); (Z.Ś.); (A.D.-Ś.)
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (L.T.); (J.K.); (Z.Ś.); (A.D.-Ś.)
| | - Katarzyna Michalska-Małecka
- Ophthalmology Clinic, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Ś.); (P.S.); (Z.J.); (K.M.-M.)
| | - Bogdan Biedunkiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (L.T.); (J.K.); (Z.Ś.); (A.D.-Ś.)
| |
Collapse
|
37
|
Garcia C, Compagnon B, Ribes A, Voisin S, Vardon-Bounes F, Payrastre B. SARS-CoV-2 Omicron variant infection affects blood platelets, a comparative analysis with Delta variant. Front Immunol 2023; 14:1231576. [PMID: 37828997 PMCID: PMC10565689 DOI: 10.3389/fimmu.2023.1231576] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction In November 2021, the SARS-CoV-2 Omicron variant of concern has emerged and is currently dominating the COVID-19 pandemic over the world. Omicron displays a number of mutations, particularly in the spike protein, leading to specific characteristics including a higher potential for transmission. Although Omicron has caused a significant number of deaths worldwide, it generally induces less severe clinical signs compared to earlier variants. As its impact on blood platelets remains unknown, we investigated platelet behavior in severe patients infected with Omicron in comparison to Delta. Methods Clinical and biological characteristics of severe COVID-19 patients infected with the Omicron (n=9) or Delta (n=11) variants were analyzed. Using complementary methods such as flow cytometry, confocal imaging and electron microscopy, we examined platelet activation, responsiveness and phenotype, presence of virus in platelets and induction of selective autophagy. We also explored the direct effect of spike proteins from the Omicron or Delta variants on healthy platelet signaling. Results Severe Omicron variant infection resulted in platelet activation and partial desensitization, presence of the virus in platelets and selective autophagy response. The intraplatelet processing of Omicron viral cargo was different from Delta as evidenced by the distribution of spike protein-positive structures near the plasma membrane and the colocalization of spike and Rab7. Moreover, spike proteins from the Omicron or Delta variants alone activated signaling pathways in healthy platelets including phosphorylation of AKT, p38MAPK, LIMK and SPL76 with different kinetics. Discussion Although SARS-CoV-2 Omicron has different biological characteristics compared to prior variants, it leads to platelet activation and desensitization as previously observed with the Delta variant. Omicron is also found in platelets from severe patients where it induces selective autophagy, but the mechanisms of intraplatelet processing of Omicron cargo, as part of the innate response, differs from Delta, suggesting that mutations on spike protein modify virus to platelet interactions.
Collapse
Affiliation(s)
- Cédric Garcia
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Baptiste Compagnon
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Pôle Anesthésie-Réanimation, Toulouse, France
| | - Agnès Ribes
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Sophie Voisin
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Fanny Vardon-Bounes
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Pôle Anesthésie-Réanimation, Toulouse, France
| | - Bernard Payrastre
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| |
Collapse
|
38
|
Gao S, Tang AT, Wang M, Buchholz DW, Imbiakha B, Yang J, Chen X, Hewins P, Mericko-Ishizuka P, Leu NA, Sterling S, August A, Jurado KA, Morrisey EE, Aguilar-Carreno H, Kahn ML. Endothelial SARS-CoV-2 infection is not the underlying cause of COVID-19-associated vascular pathology in mice. Front Cardiovasc Med 2023; 10:1266276. [PMID: 37823176 PMCID: PMC10562591 DOI: 10.3389/fcvm.2023.1266276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Endothelial damage and vascular pathology have been recognized as major features of COVID-19 since the beginning of the pandemic. Two main theories regarding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages endothelial cells and causes vascular pathology have been proposed: direct viral infection of endothelial cells or indirect damage mediated by circulating inflammatory molecules and immune mechanisms. However, these proposed mechanisms remain largely untested in vivo. In the present study, we utilized a set of new mouse genetic tools developed in our lab to test both the necessity and sufficiency of endothelial human angiotensin-converting enzyme 2 (hACE2) in COVID-19 pathogenesis. Our results demonstrate that endothelial ACE2 and direct infection of vascular endothelial cells do not contribute significantly to the diverse vascular pathology associated with COVID-19.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Wang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Brian Imbiakha
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaowen Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Patricia Mericko-Ishizuka
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - N. Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Edward E. Morrisey
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hector Aguilar-Carreno
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Dabbiru VAS, Müller L, Schönborn L, Greinacher A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)-Insights from Clinical Cases, In Vitro Studies and Murine Models. J Clin Med 2023; 12:6126. [PMID: 37834770 PMCID: PMC10573542 DOI: 10.3390/jcm12196126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
An effective worldwide vaccination campaign started and is still being carried out in the face of the coronavirus disease 2019 (COVID-19) pandemic. While vaccines are great tools to confront the pandemic, predominantly adenoviral vector-based vaccines can cause a rare severe adverse effect, termed vaccine-induced immune thrombocytopenia and thrombosis (VITT), in about 1 in 100,000 vaccinated individuals. VITT is diagnosed 5-30 days post-vaccination and clinically characterized by thrombocytopenia, strongly elevated D-dimer levels, platelet-activating anti-platelet factor 4 (PF4) antibodies and thrombosis, especially at atypical sites such as the cerebral venous sinus and/or splanchnic veins. There are striking similarities between heparin-induced thrombocytopenia (HIT) and VITT. Both are caused by anti-PF4 antibodies, causing platelet and leukocyte activation which results in massive thrombo-inflammation. However, it is still to be determined why PF4 becomes immunogenic in VITT and which constituent of the vaccine triggers the immune response. As VITT-like syndromes are increasingly reported in patients shortly after viral infections, direct virus-PF4 interactions might be most relevant. Here we summarize the current information and hypotheses on the pathogenesis of VITT and address in vivo models, especially murine models for further studies on VITT.
Collapse
Affiliation(s)
| | | | | | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (V.A.S.D.); (L.M.); (L.S.)
| |
Collapse
|
40
|
Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, Connors JM, De Caterina R, Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res 2023; 119:2046-2060. [PMID: 37253117 PMCID: PMC10893977 DOI: 10.1093/cvr/cvad084] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023] Open
Abstract
Immunothrombosis-immune-mediated activation of coagulation-is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe coronavirus disease 2019 (COVID-19). The NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1β and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy and is approved for the treatment of hypoxaemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps, and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Evan Garrad
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, Marseille, France
- Division of Internal Medicine and Clinical Immunology, Assistance Publique - Hôpitaux de Marseille, Hôpital Conception, Aix-Marseille Université, Marseille, France
| | - Aldo Bonaventura
- Department of Internal Medicine, Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Jean Marie Connors
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaele De Caterina
- University Cardiology Division, Pisa University Hospital, Pisa, Italy
- Chair and Postgraduate School of Cardiology, University of Pisa, Pisa, Italy
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, Pescara, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, 415 Lane Rd (MR5), PO Box 801394, Charlottesville, VA 22903, USA
| |
Collapse
|
41
|
Saadalla A, Seheult J, Pruthi RK, Chen D. Von Willebrand Factor Multimer Analysis and Classification: A Comprehensive Review and Updates. Semin Thromb Hemost 2023; 49:580-591. [PMID: 36174612 DOI: 10.1055/s-0042-1757183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein with essential roles in primary hemostasis. Patients with von Willebrand disease (VWD), due to quantitative and/or qualitative defects of VWF usually experience mucocutaneous bleeding. Based on the laboratory results of VWF antigen, various VWF activities, factor VIII activity, and VWF multimer patterns, VWD can be categorized as type 1, 2, and 3 VWD. VWF multimer analysis by either manual or semi-automated electrophoresis and immunoblotting is a critical part of the laboratory testing to differentiate type 1, type 2 VWD, and subtypes of type 1 or 2 VWD. The multimer distribution patterns can also help to understand the underlying molecular mechanism of VWF synthesis, multimerization, and clearance defects in VWD. This review will cover VWF synthesis, multimerization, secretion, VWF multimer analysis, and VWF multimer interpretation of various types and subtypes of VWD.
Collapse
Affiliation(s)
- Abdulrahman Saadalla
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Jansen Seheult
- Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Rajiv K Pruthi
- Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Dong Chen
- Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
42
|
Kumar R, Rivkin MJ, Raffini L. Thrombotic complications in children with Coronavirus disease 2019 and Multisystem Inflammatory Syndrome of Childhood. J Thromb Haemost 2023; 21:2313-2326. [PMID: 37268064 PMCID: PMC10232718 DOI: 10.1016/j.jtha.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) associated coagulopathy is multifactorial and involves inflammation driven hypercoagulability, endothelial dysfunction, platelet activation, and impaired fibrinolysis. Hospitalized adults with COVID-19 are at an increased risk of both venous thromboembolism and ischemic stroke, resulting in adverse outcomes, including increased mortality. Although COVID-19 in children follows a less severe course, both arterial and venous thromboses have been reported in hospitalized children with COVID-19. Additionally, some children develop a postinfectious, hyperinflammatory illness termed multisystem inflammatory syndrome of childhood (MIS-C), which is also associated with hypercoagulability and thrombosis. Several randomized trials have evaluated the safety and efficacy of antithrombotic therapy in adults with COVID-19, although similar pediatric data are lacking. In this narrative review, we discuss the postulated pathophysiology of COVID-19 coagulopathy and summarize principal findings of the recently completed adult trials of antithrombotic therapy. We provide an up-to-date summary of pediatric studies investigating the rate of venous thromboembolism and ischemic stroke in COVID-19 and multisystem inflammatory syndrome of childhood in addition to reviewing the findings of the single, nonrandomized pediatric trial investigating the safety of prophylactic anticoagulation. Lastly, we outline adult and pediatric consensus guidelines on the use of antithrombotic therapy in this cohort. A detailed discussion of the practical implementation and current limitations of published data will hopefully address the knowledge deficits surrounding the use of antithrombotic therapy in children with COVID-19 and generate hypotheses for future research.
Collapse
Affiliation(s)
- Riten Kumar
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| | - Michael J Rivkin
- Department of Neurology, Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Leslie Raffini
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Giaglis S. Poised to cast wide NETs in long COVID. J Thromb Haemost 2023; 21:2362-2364. [PMID: 37597894 DOI: 10.1016/j.jtha.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Stavros Giaglis
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Rheumatology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
44
|
Shama, Mahmood A, Mehmood S, Zhang W. Pathological Effects of SARS-CoV-2 Associated with Hematological Abnormalities. Curr Issues Mol Biol 2023; 45:7161-7182. [PMID: 37754237 PMCID: PMC10528388 DOI: 10.3390/cimb45090453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The SARS coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease (COVID-19) pandemic that has claimed the lives of 6.9 million people and infected over 765 million. It has become a major worldwide health problem and is also known to cause abnormalities in various systems, including the hematologic system. COVID-19 infection primarily affects the lower respiratory tract and can lead to a cascade of events, including a cytokine storm, intravascular thrombosis, and subsequent complications such as arterial and venous thromboses. COVID-19 can cause thrombocytopenia, lymphopenia, and neutrophilia, which are associated with worse outcomes. Prophylactic anticoagulation is essential to prevent complications and death rates associated with the virus's effect on the coagulation system. It is crucial to recognize these complications early and promptly start therapeutic anticoagulation to improve patient outcomes. While rare, COVID-19-induced disseminated intravascular coagulation (DIC) exhibits some similarities to DIC induced by sepsis. Lactate dehydrogenase (LDH), D-dimer, ferritin, and C-reactive protein (CRP) biomarkers often increase in serious COVID-19 cases and poor prognosis. Understanding the pathophysiology of the disease and identifying risk factors for adverse outcomes is critical for effective management of COVID-19.
Collapse
Affiliation(s)
- Shama
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China (A.M.)
| | - Asif Mahmood
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China (A.M.)
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shahid Mehmood
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China (A.M.)
| |
Collapse
|
45
|
Villalba N, Sackheim AM, Lawson MA, Haines L, Chen YL, Sonkusare SK, Ma YT, Li J, Majumdar D, Bouchard BA, Boyson JE, Poynter ME, Nelson MT, Freeman K. The Polyanionic Drug Suramin Neutralizes Histones and Prevents Endotheliopathy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:648-657. [PMID: 37405700 PMCID: PMC10644384 DOI: 10.4049/jimmunol.2200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/09/2023] [Indexed: 07/06/2023]
Abstract
Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Adrian M. Sackheim
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Michael A. Lawson
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Laurel Haines
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Yen-Lin Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA USA
| | - Swapnil K. Sonkusare
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA USA
| | - Yong-Tao Ma
- Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Dev Majumdar
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT USA
| | - Beth A. Bouchard
- Department of Biochemistry, University of Vermont, Burlington, VT USA
| | - Jonathan E. Boyson
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | | | - Mark T. Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
- Department of Pharmacology, University of Vermont, Burlington, VT USA
| |
Collapse
|
46
|
Moey MYY, Hennessy C, French B, Warner JL, Tucker MD, Hausrath DJ, Shah DP, DeCara JM, Bakouny Z, Labaki C, Choueiri TK, Dent S, Akhter N, Ismail-Khan R, Tachiki L, Slosky D, Polonsky TS, Awosika JA, Crago A, Wise-Draper T, Balanchivadze N, Hwang C, Fecher LA, Gomez CG, Hayes-Lattin B, Glover MJ, Shah SA, Gopalakrishnan D, Griffiths EA, Kwon DH, Koshkin VS, Mahmood S, Bashir B, Nonato T, Razavi P, McKay RR, Nagaraj G, Oligino E, Puc M, Tregubenko P, Wulff-Burchfield EM, Xie Z, Halfdanarson TR, Farmakiotis D, Klein EJ, Robilotti EV, Riely GJ, Durand JB, Hayek SS, Kondapalli L, Berg S, O'Connor TE, Bilen MA, Castellano C, Accordino MK, Sibel B, Weissmann LB, Jani C, Flora DB, Rudski L, Dutra MS, Nathaniel B, Ruíz-García E, Vilar-Compte D, Gupta S, Morgans A, Nohria A. COVID-19 severity and cardiovascular outcomes in SARS-CoV-2-infected patients with cancer and cardiovascular disease. Transl Oncol 2023; 34:101709. [PMID: 37302348 PMCID: PMC10235676 DOI: 10.1016/j.tranon.2023.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Background Data regarding outcomes among patients with cancer and co-morbid cardiovascular disease (CVD)/cardiovascular risk factors (CVRF) after SARS-CoV-2 infection are limited. Objectives To compare Coronavirus disease 2019 (COVID-19) related complications among cancer patients with and without co-morbid CVD/CVRF. Methods Retrospective cohort study of patients with cancer and laboratory-confirmed SARS-CoV-2, reported to the COVID-19 and Cancer Consortium (CCC19) registry from 03/17/2020 to 12/31/2021. CVD/CVRF was defined as established CVD or no established CVD, male ≥ 55 or female ≥ 60 years, and one additional CVRF. The primary endpoint was an ordinal COVID-19 severity outcome including need for hospitalization, supplemental oxygen, intensive care unit (ICU), mechanical ventilation, ICU or mechanical ventilation plus vasopressors, and death. Secondary endpoints included incident adverse CV events. Ordinal logistic regression models estimated associations of CVD/CVRF with COVID-19 severity. Effect modification by recent cancer therapy was evaluated. Results Among 10,876 SARS-CoV-2 infected patients with cancer (median age 65 [IQR 54-74] years, 53% female, 52% White), 6253 patients (57%) had co-morbid CVD/CVRF. Co-morbid CVD/CVRF was associated with higher COVID-19 severity (adjusted OR: 1.25 [95% CI 1.11-1.40]). Adverse CV events were significantly higher in patients with CVD/CVRF (all p<0.001). CVD/CVRF was associated with worse COVID-19 severity in patients who had not received recent cancer therapy, but not in those undergoing active cancer therapy (OR 1.51 [95% CI 1.31-1.74] vs. OR 1.04 [95% CI 0.90-1.20], pinteraction <0.001). Conclusions Co-morbid CVD/CVRF is associated with higher COVID-19 severity among patients with cancer, particularly those not receiving active cancer therapy. While infrequent, COVID-19 related CV complications were higher in patients with comorbid CVD/CVRF. (COVID-19 and Cancer Consortium Registry [CCC19]; NCT04354701).
Collapse
Affiliation(s)
- Melissa Y Y Moey
- Department of Cardiovascular Disease, Vidant Medical Center/East Carolina University, Greenville, NC, United States
| | - Cassandra Hennessy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeremy L Warner
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Medicine, Division of Hematology/Oncology, Vanderbilt University, Nashville, TN, United States; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
| | - Matthew D Tucker
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University, Nashville, TN, United States
| | - Daniel J Hausrath
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University, Nashville, TN, United States
| | - Dimpy P Shah
- Mays Cancer Center at UTHealth San Antonio MD Anderson, San Antonio, TX, United States
| | - Jeanne M DeCara
- Section of Cardiology, University of Chicago Medical Center, Chicago, IL, United States
| | - Ziad Bakouny
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - Chris Labaki
- Dana-Farber Cancer Institute, Boston, MA, United States
| | | | - Susan Dent
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nausheen Akhter
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roohi Ismail-Khan
- Cardio-Oncology Program, Division of Cardiovascular Medicine, University of South Florida Morsani College of Medicine and Moffitt Cancer Center, Tampa, FL, United States
| | - Lisa Tachiki
- University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David Slosky
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tamar S Polonsky
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joy A Awosika
- University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Audrey Crago
- University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | | | - Nino Balanchivadze
- Henry Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, United States
| | - Clara Hwang
- Henry Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, United States
| | - Leslie A Fecher
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| | | | - Brandon Hayes-Lattin
- Division of Hematology and Medical Oncology, Knight Cancer Institute at Oregon Health and Science University, Portland, OR, United States
| | - Michael J Glover
- Stanford Cancer Institute at Stanford University, Stanford, CA, United States
| | - Sumit A Shah
- Stanford Cancer Institute at Stanford University, Stanford, CA, United States
| | - Dharmesh Gopalakrishnan
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A Griffiths
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Daniel H Kwon
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, United States
| | - Vadim S Koshkin
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, United States
| | - Sana Mahmood
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Babar Bashir
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Taylor Nonato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Pedram Razavi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Rana R McKay
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Gayathri Nagaraj
- Division of Medical Oncology and Hematology, Loma Linda University, Loma Linda, CA, United States
| | - Eric Oligino
- Cardio-Oncology, Hartford HealthCare Cancer, Hartford, CT, United States
| | | | - Polina Tregubenko
- The University of Kansas Health System, Kansas City, KS, United States
| | | | - Zhuoer Xie
- Mayo Clinic, Rochester, MN, United States
| | | | | | - Elizabeth J Klein
- Brown University and Lifespan Cancer Institute, Providence, RI, United States
| | | | - Gregory J Riely
- Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | | | - Salim S Hayek
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, United States
| | - Lavanya Kondapalli
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stephanie Berg
- Loyola University Medical Center, Chicago, IL, United States
| | | | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, United States
| | - Cecilia Castellano
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, United States
| | - Melissa K Accordino
- Herbert Irving Comprehensive Cancer Center at Columbia University, New York, NY, United States
| | - Blau Sibel
- Northwest Medical Specialties, Tacoma, WA, United States
| | | | - Chinmay Jani
- Mount Auburn Hospital, Cambridge, MA, United States
| | | | - Lawrence Rudski
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Miriam Santos Dutra
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | | | | | | | | | - Alicia Morgans
- Dana-Farber Cancer Institute, Boston, MA, United States.
| | - Anju Nohria
- Cardiovascular Division, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, United States.
| |
Collapse
|
47
|
Liu Z, Huang Y, Wang D, Li M, Zhang Q, Pan C, Lin Y, Luo Y, Shi Z, Zhang P, Zheng Y. Insights gained from single-cell RNA analysis of murine endothelial cells in aging hearts. Heliyon 2023; 9:e18324. [PMID: 37554834 PMCID: PMC10404962 DOI: 10.1016/j.heliyon.2023.e18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Aging is the strongest risk factor for cardiovascular disease, with progressive decline in the function of vascular endothelial cells (ECs) with age. Systematic analyses of the effects of aging on different cardiac EC types remain limited. Here, we constructed a scRNA atlas of EC transcriptomes in young and old mouse hearts. We identified 10 EC subclusters. The multidimensionally differential genes (DEGs) analysis across different EC clusters shows molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the decrease in angiogenesis and cytoskeletal support capacity of aged ECs. And we performed an in-depth analysis of 3 special ECs, Immunology, Proliferating and Angiogenic. The Immunology EC seems highly associated with some immune regulatory functions, which decline with aging at different degrees. Analysis of two types of neovascular ECs, Proliferating, Angiogenic, implied that Angiogenic ECs can differentiate into multiple EC directions after initially originating from proliferating ECs. And aging leads to a decrease in the ability of vascular angiogenesis and differentiation. Finally, we summarized the effects of aging on cell signaling communication between different EC clusters. This cardiac EC atlas offers comprehensive insights into the molecular regulations of cardiovascular aging, and provides new directions for the prevention and treatment of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| | - Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuanting Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| |
Collapse
|
48
|
Zhang Z, Dai W, Zhu W, Rodriguez M, Lund H, Xia Y, Chen Y, Rau M, Schneider EA, Graham MB, Jobe S, Wang D, Cui W, Wen R, Whiteheart SW, Wood JP, Silverstein R, Berger JS, Kreuziger LB, Barrett TJ, Zheng Z. Plasma tissue-type plasminogen activator is associated with lipoprotein(a) and clinical outcomes in hospitalized patients with COVID-19. Res Pract Thromb Haemost 2023; 7:102164. [PMID: 37680312 PMCID: PMC10480648 DOI: 10.1016/j.rpth.2023.102164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/09/2023] Open
Abstract
Background Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Diversity Summer Health-Related Research Education Program (DSHREP), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yuhe Xia
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary Rau
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ellen Anje Schneider
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary Beth Graham
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shawn Jobe
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Center for Bleeding and Clotting Disorders, Michigan State University, Lansing, Michigan, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Divison of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Lexington, Kentucky, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Divison of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Lexington, Kentucky, USA
| | - Roy Silverstein
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffery S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Surgery, New York University Langone Health, New York, New York, USA
| | - Lisa Baumann Kreuziger
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
49
|
Robertson SJ, Bedard O, McNally KL, Shaia C, Clancy CS, Lewis M, Broeckel RM, Chiramel AI, Shannon JG, Sturdevant GL, Rosenke R, Anzick SL, Forte E, Preuss C, Baker CN, Harder JM, Brunton C, Munger S, Bruno DP, Lack JB, Leung JM, Shamsaddini A, Gardina P, Sturdevant DE, Sun J, Martens C, Holland SM, Rosenthal NA, Best SM. Genetically diverse mouse models of SARS-CoV-2 infection reproduce clinical variation in type I interferon and cytokine responses in COVID-19. Nat Commun 2023; 14:4481. [PMID: 37491352 PMCID: PMC10368652 DOI: 10.1038/s41467-023-40076-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.
Collapse
Affiliation(s)
- Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | | | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Matthew Lewis
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Rebecca M Broeckel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Jeffrey G Shannon
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Gail L Sturdevant
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Sarah L Anzick
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME, USA
- Springer Nature, New York, NY, USA
| | | | | | | | | | | | - Daniel P Bruno
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Justin B Lack
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jacqueline M Leung
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Paul Gardina
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Daniel E Sturdevant
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jian Sun
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA.
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA.
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA.
| |
Collapse
|
50
|
Gao S, Tang AT, Wang M, Buchholz DW, Imbiakha B, Yang J, Chen X, Hewins P, Mericko-Ishizuka P, Leu NA, Sterling S, August A, Jurado KA, Morrisey EE, Aguilar-Carreno H, Kahn ML. Endothelial SARS-CoV-2 infection is not the underlying cause of COVID19-associated vascular pathology in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550352. [PMID: 37546961 PMCID: PMC10402014 DOI: 10.1101/2023.07.24.550352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endothelial damage and vascular pathology have been recognized as major features of COVID-19 since the beginning of the pandemic. Two main theories regarding how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) damages endothelial cells and causes vascular pathology have been proposed: direct viral infection of endothelial cells or indirect damage mediated by circulating inflammatory molecules and immune mechanisms. However, these proposed mechanisms remain largely untested in vivo. Here, we utilized a set of new mouse genetic tools 1 developed in our lab to test both the necessity and sufficiency of endothelial human angiotensin-converting enzyme 2 (hACE2) in COVID19 pathogenesis. Our results demonstrate that endothelial ACE2 and direct infection of vascular endothelial cells does not contribute significantly to the diverse vascular pathology associated with COVID-19.
Collapse
|