1
|
Tang P, Wei F, Qiao W, Chen X, Ji C, Yang W, Zhang X, Chen S, Wu Y, Jiang M, Ma C, Shen W, Dong Q, Cao H, Xie M, Cai Z, Xu L, Shi J, Dong N, Chen J, Wang N. Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells. Bioact Mater 2025; 45:181-200. [PMID: 39651397 PMCID: PMC11625219 DOI: 10.1016/j.bioactmat.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and in vivo application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge. Utilizing a combinatorial strategy of selective soluble chemicals, cytokines and substrate stiffness modulation, mouse embryonic fibroblasts are directly and efficiently transdifferentiated into induced aortic endothelial cell-like cells (iAECs), or human primary adult fibroblasts are transdifferentiated into induced valvular endothelial cell-like cells (hiVECs), without expressing pluripotency stem cell markers. These iAECs and hiVECs express VEC-associated genes and proteins and VEC-specific marker NFATC1 and are functional in culture and on decellularized porcine aortic valves, like mouse aortic endothelial cells or human primary aortic valvular endothelial cells. The iAECs and hiVECs seeded on decellularized porcine aortic valves stay intact and express VEC-associated proteins for 60 days after grafting into abdominal aorta of immune-compromised rats. In contrast, induced pluripotent stem cells (iPSCs) are less efficient in differentiating into VEC-like cells and pluripotency marker Nanog is expressed in a small subpopulation of iPSC-derived VEC-like cells that generate teratomas in SCID mice whereas hiVECs derived from transdifferentiation do not generate teratomas in vivo. Our findings highlight an approach to efficiently convert fibroblasts into iAECs and hiVECs and seed them onto decellularized aortic valves for safely generating autologous tissue-engineered aortic valves without using viruses or first reprogramming the cells into pluripotent stem cells.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wanzhi Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenyu Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiqiang Shen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Song P, Wu Y, Fan M, Chen X, Dong M, Qiao W, Dong N, Wang Q. Folic acid modified silver nanoparticles promote endothelialization and inhibit calcification of decellularized heart valves by immunomodulation with anti-bacteria property. BIOMATERIALS ADVANCES 2025; 166:214069. [PMID: 39447240 DOI: 10.1016/j.bioadv.2024.214069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Xenogeneic decellularized heart valves (DHVs) have become one of the most commonly used scaffolds for tissue engineered heart valves (TEHVs) due to extensive resources and possessing the distinct three-layer structure similar to native heart valves. However, DHVs as scaffolds face the shortages such as poor mechanical properties, proneness to thrombosis and calcification, difficulty in endothelialization and chronic inflammatory responses etc., which limit their applications in clinic. In this work, we constructed a novel TEHV with immunomodulatory functions by loading folic acid modified silver nanoparticles (FS NPs) on DHVs to overcome these issues. The FS NPs preferentially targeted M1 macrophages and reduced their intracellular H2O2 level, resulting in polarizing them into M2 phenotype. The increased M2 macrophages facilitated to eliminate inflammation, recruit endothelial cells, and promote their proliferation and endothelialization by secreting relative factors. We founded that FS NPs with the size of 80 nm modified DHVs (FSD-80) performed optimally on cytocompatibility and regulating macrophage phenotype ability in vitro. In addition, the FSD-80 had excellent mechanical properties, hemocompatibility and anti-bacteria property. The results of the subcutaneous implantation in rats revealed that the FSD-80 also had good performance in regulating macrophage phenotype, promoting endothelialization, remolding the extracellular matrix and anti-calcification in vivo. Therefore, FS NPs-loaded DHVs possess immunomodulatory functions, which is a feasible and promising strategy for constructing TEHVs with excellent comprehensive performance.
Collapse
Affiliation(s)
- Peng Song
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Mengna Dong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Wang S, Wu R, Chen Q, Liu T, Li L. Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice. Organogenesis 2024; 20:2356341. [PMID: 38766777 PMCID: PMC11110693 DOI: 10.1080/15476278.2024.2356341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) exhibit considerable therapeutic potential for myocardial regeneration. In our investigation, we delved into their impact on various aspects of myocardial infarction (MI), including cardiac function, tissue damage, inflammation, and macrophage polarization in a murine model. We meticulously isolated the exosomes from TNF-α-treated BMSCs and evaluated their therapeutic efficacy in a mouse MI model induced by coronary artery ligation surgery. Our comprehensive analysis, incorporating ultrasound, serum assessment, Western blot, and qRT-PCR, revealed that exosomes from TNF-α-treated BMSCs demonstrated significant therapeutic potential in reducing MI-induced injury. Treatment with these exosomes resulted in improved cardiac function, reduced infarct area, and increased left ventricular wall thickness in MI mice. On a mechanistic level, exosome treatment fostered M2 macrophage polarization while concurrently suppressing M1 polarization. Hence, exosomes derived from TNF-α-treated BMSCs emerge as a promising therapeutic strategy for alleviating MI injury in a mouse model.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Rubin Wu
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Qincong Chen
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Tao Liu
- Department of Cardiovascular Medicine, Hebei Medical University Second Hospital, Shijiazhuang, Hebei, China
| | - Liu Li
- Department of Cardiovascular Medicine, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Middendorp E, Braeu F, Baaijens FPT, Humphrey JD, Cyron CJ, Loerakker S. Computational analysis of heart valve growth and remodeling after the Ross procedure. Biomech Model Mechanobiol 2024; 23:1889-1907. [PMID: 39269523 PMCID: PMC11554944 DOI: 10.1007/s10237-024-01874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 09/15/2024]
Abstract
During the Ross procedure, an aortic heart valve is replaced by a patient's own pulmonary valve. The pulmonary autograft subsequently undergoes substantial growth and remodeling (G&R) due to its exposure to increased hemodynamic loads. In this study, we developed a homogenized constrained mixture model to understand the observed adaptation of the autograft leaflets in response to the changed hemodynamic environment. This model was based on the hypothesis that tissue G&R aims to preserve mechanical homeostasis for each tissue constituent. To model the Ross procedure, we simulated the exposure of a pulmonary valve to aortic pressure conditions and the subsequent G&R of the valve. Specifically, we investigated the effects of assuming either stress- or stretch-based mechanical homeostasis, the use of blood pressure control, and the effect of root dilation. With this model, we could explain different observations from published clinical studies, such as the increase in thickness, change in collagen organization, and change in tissue composition. In addition, we found that G&R based on stress-based homeostasis could better capture the observed changes in tissue composition than G&R based on stretch-based homeostasis, and that root dilation or blood pressure control can result in more leaflet elongation. Finally, our model demonstrated that successful adaptation can only occur when the mechanically induced tissue deposition is sufficiently larger than tissue degradation, such that leaflet thickening overrules leaflet dilation. In conclusion, our findings demonstrated that G&R based on mechanical homeostasis can capture the observed heart valve adaptation after the Ross procedure. Finally, this study presents a novel homogenized mixture model that can be used to investigate other cases of heart valve G&R as well.
Collapse
Affiliation(s)
- Elmer Middendorp
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fabian Braeu
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
- Helmholtz-Zentrum, Institute for Material Systems Modeling, Geesthacht, Germany
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Zhang Y, Hu H, Zhu Y, Xiao J, Li C, Qian C, Yu X, Zhao J, Chen X, Liu J, Zhou J. Butterfly-Inspired Multiple Cross-Linked Dopamine-Metal-Phenol Bioprosthetic Valves with Enhanced Endothelialization and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64522-64535. [PMID: 39535147 PMCID: PMC11615854 DOI: 10.1021/acsami.4c14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Valve replacement is the most effective means of treating heart valve diseases, and transcatheter heart valve replacement (THVR) is the hottest field at present. However, the durability of the commercial bioprosthetic valves has always been the limiting factor restricting the development of interventional valve technology. The chronic inflammatory reaction, calcification, and difficulty in endothelialization after the implantation of a glutaraldehyde cross-linked porcine aortic valve or bovine pericardium often led to valve degeneration. Improving the biocompatibility of valve materials and inducing endothelialization to promote in situ regeneration can extend the service life of valve materials. Herein, inspired by the hardening process of butterfly wings, this study proposed a dopamine-metal-phenol strategy to modify decellularized porcine pericardium (DPP). This is a strategy to make dopamine (DA) coordinate trivalent metal chromium ions (Cr(III)) with antiplatelets (PLTs) and anti-inflammatory properties, and then cross-link it with tea polyphenols (TP) to generate a valve scaffold that is mechanically comparable to glutaraldehyde-cross-linked scaffolds but avoids the cytotoxicity of aldehyde and presents better biocompatibility, hemocompatibility, anticalcification, and anti-inflammatory response properties.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Hai Hu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Yaoxi Zhu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jie Xiao
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Chenghao Li
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Chen Qian
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Xiaobo Yu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jinping Zhao
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Xing Chen
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jinping Liu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jianliang Zhou
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| |
Collapse
|
6
|
Mannina C, Sharma A, Carbone A, Bossone E, Tuttolomondo A, Argulian E, Neibart E, Hadley MB, Halperin J, Dangas G, Sharma SK, Kini A, Lerakis S. Association of Systemic Inflammatory Response Syndrome With Cardiovascular Events After Mitral Transcatheter Edge-to-Edge Repair. J Am Heart Assoc 2024; 13:e036539. [PMID: 39526356 DOI: 10.1161/jaha.124.036539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Systemic inflammatory response syndrome (SIRS) following cardiovascular interventions is associated with adverse events during hospitalization and follow-up. Mitral transcatheter edge-to-edge repair is increasingly utilized for treatment of mitral regurgitation (MR). We investigated whether SIRS following mitral transcatheter edge-to-edge repair may occur and be associated with adverse clinical outcomes. METHODS AND RESULTS A total of 158 consecutive patients with severe MR undergoing mitral transcatheter edge-to-edge repair were studied. SIRS was defined by leukocytosis (≥12 × 109/L) and fever (≥38 °C) within 48 hours after intervention. Baseline inflammation was measured by absolute neutrophil and lymphocyte counts and neutrophil-lymphocyte ratio. The primary end point of major cardiovascular events was the composite of nonfatal myocardial infarction, nonfatal stroke, and all-cause death. Recurrent MR at follow-up was also recorded. The mean patient age was 80.8±8.8 years. Forty-four (27.9%) developed SIRS. Neutrophil-lymphocyte ratio correlated with onset of leukocytosis and fever (P=0.04). During a median follow-up of 12.5 (5.4-17.4) months, the primary end point occurred in 27 (17.1%) patients (6 myocardial infarction, 5 strokes, and 16 deaths). Patients with SIRS more often had severe MR (79.5% versus 62.7%, P=0.02) at follow-up. After adjustment for pertinent variables, SIRS (HR 2.73 [95% CI, 1.08-6.86]; P=0.03) was independently associated with major cardiovascular events. CONCLUSIONS SIRS after mitral transcatheter edge-to-edge repair is a strong independent predictor of major cardiovascular events. Closer follow-up is warranted because patients with SIRS have more severe MR at follow-up.
Collapse
Affiliation(s)
- Carlo Mannina
- Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
- Department of Internal Medicine University of Palermo Palermo Italy
| | - Akarsh Sharma
- Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
| | - Andreina Carbone
- Unit of Cardiology University Hospital "Luigi Vanvitelli" Naples Italy
| | - Eduardo Bossone
- Department of Public Health Federico II University Naples Italy
| | | | - Edgar Argulian
- Division of Cardiology, Mount Sinai Morningside Icahn School of Medicine at Mount Sinai New York NY
| | - Eric Neibart
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| | - Michael B Hadley
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| | - Jonathan Halperin
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| | - George Dangas
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| | - Samin K Sharma
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| | - Annapoorna Kini
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| | - Stamatios Lerakis
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Fuster Hospital Icahn School of Medicine at Mount Sinai New York NY
| |
Collapse
|
7
|
Chen X, Wu Y, Song P, Feng L, Zhou Y, Shi J, Dong N, Qiao W. Matrix Metalloproteinase-Responsive Controlled Release of Self-Assembly Nanoparticles Accelerates Heart Valve Regeneration In Situ by Orchestrating Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403351. [PMID: 39535930 DOI: 10.1002/advs.202403351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
In situ tissue engineering heart valves (TEHVs) are the most promising way to overcome the defects of existing valve prostheses. Despite their promising prospects, the clinical translation of TEHVs remains a formidable challenge, mainly due to unpredictable host interactions post-implantation. An immunomodulatory idea based on hydrogel encapsulation of nanoparticle-coated heart valve scaffolds is introduced. Specifically, galactose-modified human serum albumin nanoparticles (miR-93@HSA NPs) to deliver microRNA-93 mimics are utilized, which target macrophages and induce their differentiation into the anti-inflammatory M2 subtype, fostering a conducive immune microenvironment. Matrix metalloproteinase (MMP)-responsive hydrogel is used to encapsulate the nanoparticles, enabling targeted and sustained release. Results show that the miR-93@HSA NPs exhibit excellent ability to induce macrophage polarization toward the M2 phenotype. A decellularized valve modified with hydrogel reveals MMP-response release of the miR-93@HSA NPs. In vitro, the immunomodulatory heart valve possesses good endocytocompatibility and effectively reprograms macrophages when cocultured with HUVECs or RAW264.7 macrophages. In vivo, this valve scaffold promises to mitigate early inflammatory damage and provide a pro-endothelialization niche for scaffolds' constructive remodeling. With the use of cell coculture systems and transcriptome sequencing, the mechanism of immune-modulating scaffold accelerating endothelialization is being elucidated. The immunomodulatory heart valve scaffold holds promising potential for clinical translation.
Collapse
Affiliation(s)
- Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Song
- School of Chemistry and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liandong Feng
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Hu Y, Xiong Y, Wei Y, Liu J, Zheng T, Zheng C, Li G, Luo R, Yang L, Zhang F, Wang Y. Polymeric artificial heart valves derived from modified diol-based polycarbonate polyurethanes. Acta Biomater 2024:S1742-7061(24)00637-8. [PMID: 39486778 DOI: 10.1016/j.actbio.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
A series of polycarbonate silicone polyurethanes (SiPCUs) have been synthesized to develop elastomers with the mechanical properties, biostability, and biocompatibility required for artificial heart valve manufacturing. In these SiPCUs, the polar functional group 4,4'-dicyclohexylmethane diisocyanate (HMDI) was incorporated into the soft segment 1,6-poly (hexamethylene carbonate) diol (PCDL) to form the modified macromolecular diol, PCDL-HMDI-PCDL. The hard segment consisted of HMDI and the chain extenders 1,4-butanediol and 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyl disiloxane (BHTD). The synthesized PHC-PCUB improves the excessive microphase separation caused by the introduction of PDMS. This material possesses good physicochemical properties, long-term oxidative degradation stability, and comparatively low mechanical performance loss after degradation. Compared to the commercially available bioprosthetic heart valve (BHV) material Glut-PP, PHC-PCUB demonstrated enhanced biocompatibility, good thromboresistant properties, less calcification, and higher endothelial cell adhesion. Furthermore, valve prototypes fabricated with PHC-PCUB showed improved hemodynamic performance under various simulated conditions, highlighting the potential of PHC-PCUB as an advanced material for valve leaflets. STATEMENT OF SIGNIFICANCE: Artificial heart valves are crucial for treating valve diseases, and polyurethane-based valves present a promising alternative due to their durability, strong biocompatibility, and customizable properties. This study improves the biostability and post-degradation mechanical properties of siloxane polyurethanes by reducing the content of polydimethylsiloxane (PDMS) and adding modified diol (PCDL-HMDI-PCDL). By integrating hexamethylene diisocyanate (HMDI) and chain extenders, we developed polycarbonate siloxane polyurethanes (SiPCUs) that improve phase mixing, mechanical strength, and oxidative stability. These SiPCUs also exhibit good thromboresistance and calcification resistance, low cytotoxicity, and promote cell adhesion, positioning them as highly promising materials for heart valve leaflets, effectively addressing the limitations of current mechanical and bioprosthetic valves.
Collapse
Affiliation(s)
- Yage Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yao Xiong
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yuan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jingze Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Tiantian Zheng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Li Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
9
|
Qin J, Guo X, Qian Z, Zhang C, Zhang X. Valved Microwell Array Platforms for Stepwise Liquid Dispensing. Anal Chem 2024; 96:16668-16675. [PMID: 39385520 DOI: 10.1021/acs.analchem.4c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The fabrication of microarray chips and the precise dispensing of nanoliter to microliter liquids are fundamental for high-throughput parallel biochemical testing. Conventional microwells, typically featuring a uniform cross section, fill completely in a single operation, complicating the introduction of multiple reagents for stepwise and combinatorial analyses. To overcome this limitation, we developed an innovative valved microwell array. Using ultraviolet (UV)-curing resin three-dimensional (3D) printing, these multilayer configurations can be rapidly fabricated through direct template printing and polydimethylsiloxane (PDMS) casting. Each microwell incorporates a microvalve structure, truncating fluids within the upper metering well and allowing transfer to the bottom reservoir well under centrifugal force. Sequential operations enable the introduction of multiple reagents, facilitating orthogonal combinations for complex assays. We explored four types of valving methods: DeepWell, Expansion, Bottleneck, and Membrane valve, each offering varying degrees of design complexity, operational efficiency, robustness, and precision. These methods constitute a versatile toolkit to accommodate a broad spectrum of analytical requirements. Our innovative approach redefines microwell architecture, direct manufacturing techniques, and stepwise fluid dispensation in microarrays.
Collapse
Affiliation(s)
- Jinglin Qin
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Guo
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing 100039, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiannian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
11
|
Yang F, Du X, Zhao Z, Guo G, Wang Y. Impact of Diabetic Condition on the Remodeling of In Situ Tissue-Engineered Heart Valves. ACS Biomater Sci Eng 2024; 10:6569-6580. [PMID: 39324571 DOI: 10.1021/acsbiomaterials.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most in situ tissue-engineered heart valve (TEHV) evaluation studies are conducted in a healthy physical environment, which cannot accurately reflect the specific characteristics of patients. In this study, we established a diabetic rabbit model and implanted decellularized extracellular matrix (dECM) into the abdominal aorta of rabbits through interventional surgery with a follow-up period of 8 weeks. The results indicated that dECM implants in diabetic rabbits exhibited poorer endothelialization and more severe fibrosis compared to those in healthy animals. Furthermore, mechanistic studies revealed that high glucose induced endothelial cell (EC) apoptosis and impeded their proliferation and migration, accompanied by an increase in reactive oxygen species (ROS) concentration and a decrease in the nitric oxide (NO) level. High glucose also led to elevated ROS levels and an increased expression of inflammatory factors and transforming growth factor β1 (TGF-β1) in macrophages, contributing to fibrosis. These findings suggest that oxidative-stress-mediated mechanisms are likely the primary pathways affecting heart valve repair and regeneration under diabetic conditions. Therefore, future design and evaluation of TEHVs may concern more patient-specific circumstances.
Collapse
Affiliation(s)
- Fan Yang
- Chengdu Medical College, Chengdu 610500, China
| | - Xingzhuang Du
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Wang Y, Fu Y, Wang Q, Kong D, Wang Z, Liu J. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater Today Bio 2024; 28:101194. [PMID: 39221196 PMCID: PMC11364905 DOI: 10.1016/j.mtbio.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Valvular heart diseases (VHDs) have become one of the most prevalent heart diseases worldwide, and prosthetic valve replacement is one of the effective treatments. With the fast development of minimal invasive technology, transcatheter valves replacement has been exploring in recent years, such as transcatheter aortic valve replacement (TAVR) technology. In addition, basic research on prosthetic valves has begun to shift from traditional mechanical valves and biological valves to the development of polymeric heart valves. The polymeric heart valves (PHVs) have shown a bright future due to their advantages of longer durability, better biocompatibility and reduced cost. This review gives a brief history of the development of polymeric heart valves, provides a summary of the types of polymer materials suitable for heart leaflets and the emerging processing/preparation methods for polymeric heart valves in the basic research. Besides, we facilitate a deeper understanding of polymeric heart valve products that are currently in preclinical/clinical studies, also summary the limitations of the present researches as well as the future development trends. Hence, this review will provide a holistic understanding for researchers working in the field of prosthetic valves, and will offer ideas for the design and research of valves with better durability and biocompatibility.
Collapse
Affiliation(s)
- Yuanchi Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yulong Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, Nankai University School of Medicine, Tianjin 300071, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
13
|
Li J, Qiao W, Liu Y, Lei H, Wang S, Xu Y, Zhou Y, Wen S, Yang Z, Wan W, Shi J, Dong N, Wu Y. Facile engineering of interactive double network hydrogels for heart valve regeneration. Nat Commun 2024; 15:7462. [PMID: 39198477 PMCID: PMC11358442 DOI: 10.1038/s41467-024-51773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Regenerative heart valve prostheses are essential for treating valvular heart disease, which requested interactive materials that can adapt to the tissue remodeling process. Such materials typically involves intricate designs with multiple active components, limiting their translational potential. This study introduces a facile method to engineer interactive materials for heart valve regeneration using 1,1'-thiocarbonyldiimidazole (TCDI) chemistry. TCDI crosslinking forms cleavable thiourea and thiocarbamate linkages which could gradually release H2S during degradation, therefore regulates the immune microenvironment and accelerates tissue remodeling. By employing this approach, a double network hydrogel was formed on decellularized heart valves (DHVs), showcasing robust anti-calcification and anti-thrombosis properties post fatigue testing. Post-implantation, the DHVs could adaptively degrade during recellularization, releasing H2S to further support tissue regeneration. Therefore, the comprehensive endothelial cell coverage and notable extracellular matrix remodeling could be clearly observed. This accessible and integrated strategy effectively overcomes various limitations of bioprosthetic valves, showing promise as an attractive approach for immune modulation of biomaterials.
Collapse
Affiliation(s)
- Jinsheng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Yuqi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Huiling Lei
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
| | - Shuangshuang Wang
- School of Life Science and Chemistry, Wuhan Donghu University, Wuhan, P. R. China
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Zhuoran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
| | - Wenyi Wan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China.
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China.
| |
Collapse
|
14
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Yan G, Fan M, Zhou Y, Xie M, Shi J, Dong N, Wang Q, Qiao W. Chondroitin Sulfate Derivative Cross-Linking of Decellularized Heart Valve for the Improvement of Mechanical Properties, Hemocompatibility, and Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35936-35948. [PMID: 38958205 DOI: 10.1021/acsami.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.
Collapse
Affiliation(s)
- Ge Yan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Min Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- National Engineering Research Center for Nanomedicine, Wuhan, Hubei 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
16
|
Xu C, Yang K, Xu Y, Meng X, Zhou Y, Xu Y, Li X, Qiao W, Shi J, Zhang D, Wang J, Xu W, Yang H, Luo Z, Dong N. Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering. J Nanobiotechnology 2024; 22:378. [PMID: 38943185 PMCID: PMC11212200 DOI: 10.1186/s12951-024-02656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.
Collapse
Affiliation(s)
- Chao Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China
| | - Kun Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Yanping Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Xueyao Li
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jianglin Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Weilin Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China
| | - Hongjun Yang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China.
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China.
| |
Collapse
|
17
|
Danilov VV, Laptev VV, Klyshnikov KY, Stepanov AD, Bogdanov LA, Antonova LV, Krivkina EO, Kutikhin AG, Ovcharenko EA. ML-driven segmentation of microvascular features during histological examination of tissue-engineered vascular grafts. Front Bioeng Biotechnol 2024; 12:1411680. [PMID: 38988863 PMCID: PMC11233802 DOI: 10.3389/fbioe.2024.1411680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction The development of next-generation tissue-engineered medical devices such as tissue-engineered vascular grafts (TEVGs) is a leading trend in translational medicine. Microscopic examination is an indispensable part of animal experimentation, and histopathological analysis of regenerated tissue is crucial for assessing the outcomes of implanted medical devices. However, the objective quantification of regenerated tissues can be challenging due to their unusual and complex architecture. To address these challenges, research and development of advanced ML-driven tools for performing adequate histological analysis appears to be an extremely promising direction. Methods We compiled a dataset of 104 representative whole slide images (WSIs) of TEVGs which were collected after a 6-month implantation into the sheep carotid artery. The histological examination aimed to analyze the patterns of vascular tissue regeneration in TEVGs in situ. Having performed an automated slicing of these WSIs by the Entropy Masker algorithm, we filtered and then manually annotated 1,401 patches to identify 9 histological features: arteriole lumen, arteriole media, arteriole adventitia, venule lumen, venule wall, capillary lumen, capillary wall, immune cells, and nerve trunks. To segment and quantify these features, we rigorously tuned and evaluated the performance of six deep learning models (U-Net, LinkNet, FPN, PSPNet, DeepLabV3, and MA-Net). Results After rigorous hyperparameter optimization, all six deep learning models achieved mean Dice Similarity Coefficients (DSC) exceeding 0.823. Notably, FPN and PSPNet exhibited the fastest convergence rates. MA-Net stood out with the highest mean DSC of 0.875, demonstrating superior performance in arteriole segmentation. DeepLabV3 performed well in segmenting venous and capillary structures, while FPN exhibited proficiency in identifying immune cells and nerve trunks. An ensemble of these three models attained an average DSC of 0.889, surpassing their individual performances. Conclusion This study showcases the potential of ML-driven segmentation in the analysis of histological images of tissue-engineered vascular grafts. Through the creation of a unique dataset and the optimization of deep neural network hyperparameters, we developed and validated an ensemble model, establishing an effective tool for detecting key histological features essential for understanding vascular tissue regeneration. These advances herald a significant improvement in ML-assisted workflows for tissue engineering research and development.
Collapse
Affiliation(s)
| | - Vladislav V Laptev
- Siberian State Medical University, Tomsk, Russia
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Kirill Yu Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Alexander D Stepanov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Leo A Bogdanov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Larisa V Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Evgenia O Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Anton G Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Evgeny A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
18
|
De Kanter AJ, Daal MV, Gunn CJ, Bredenoord AL, Graeff ND, Jongsma KR. A value hierarchy for inclusive design of heart valve implants in regenerative medicine. Regen Med 2024; 19:289-301. [PMID: 39177570 PMCID: PMC11346526 DOI: 10.1080/17460751.2024.2357500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/16/2024] [Indexed: 08/24/2024] Open
Abstract
Aim: This paper investigates the conditions for inclusive design of regenerative medicine interventions from a bioethical perspective, taking regenerative valve implants as a showcase.Methods: A value hierarchy is construed to translate the value of justice into norms and design requirements for inclusive design of regenerative valve implants.Results: Three norms are proposed and translated into design requirements: regenerative valve implants should be designed to promote equal opportunity to good health for all potential users; equal respect for all potential users should be shown; and the implants should be designed to be accessible to everyone in need.Conclusion: The norms and design requirements help to design regenerative valve implants that are appropriate, respectful and available for everyone in need.
Collapse
Affiliation(s)
- Anne Johanna De Kanter
- Department of Bioethics & Health Humanities, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Manon Van Daal
- Department of Bioethics & Health Humanities, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Callum J Gunn
- Department of Bioethics & Health Humanities, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, 3062 PA, The Netherlands
| | - Nienke De Graeff
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Karin R Jongsma
- Department of Bioethics & Health Humanities, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
| |
Collapse
|
19
|
Tong Q, Cai J, Wang Z, Sun Y, Liang X, Xu Q, Mahamoud OA, Qian Y, Qian Z. Recent Advances in the Modification and Improvement of Bioprosthetic Heart Valves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309844. [PMID: 38279610 DOI: 10.1002/smll.202309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Jie Cai
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yiren Sun
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Xuyue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Qiyue Xu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Oumar Abdel Mahamoud
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
20
|
Wang Q, Gao C, Zhai H, Peng C, Yu X, Zheng X, Zhang H, Wang X, Yu L, Wang S, Ding J. Electrospun Scaffolds are Not Necessarily Always Made of Nanofibers as Demonstrated by Polymeric Heart Valves for Tissue Engineering. Adv Healthc Mater 2024; 13:e2303395. [PMID: 38554036 DOI: 10.1002/adhm.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Indexed: 04/01/2024]
Abstract
In the last 30 years, there are ≈60 000 publications about electrospun nanofibers, but it is still unclear whether nanoscale fibers are really necessary for electrospun tissue engineering scaffolds. The present report puts forward this argument and reveals that compared with electrospun nanofibers, microfibers with diameter of ≈3 µm (named as "oligo-micro fiber") are more appropriate for tissue engineering scaffolds owing to their better cell infiltration ability caused by larger pores with available nuclear deformation. To further increase pore sizes, electrospun poly(ε-caprolactone) (PCL) scaffolds are fabricated using latticed collectors with meshes. Fiber orientation leads to sufficient mechanical strength albeit increases porosity. The latticed scaffolds exhibit good biocompatibility and improve cell infiltration. Under aortic conditions in vitro, the performances of latticed scaffolds are satisfactory in terms of the acute systolic hemodynamic functionality, except for the higher regurgitation fraction caused by the enlarged pores. This hierarchical electrospun scaffold with sparse fibers in macropores and oligo-micro fibers in filaments provides new insights into the design of tissue engineering scaffolds, and tissue engineering may provide living heart valves with regenerative capabilities for patients with severe valve disease in the future.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Huajuan Zhai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chen Peng
- Institute for Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiaofan Zheng
- Institute for Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shengzhang Wang
- Institute for Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
21
|
Wu Y, Chen X, Song P, Li R, Zhou Y, Wang Q, Shi J, Qiao W, Dong N. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Adv Healthc Mater 2024; 13:e2303737. [PMID: 38560921 DOI: 10.1002/adhm.202303737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.
Collapse
Affiliation(s)
- Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Peng Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
22
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Development of an iPSC-derived tissue-resident macrophage-based platform for the in vitro immunocompatibility assessment of human tissue engineered matrices. Sci Rep 2024; 14:12171. [PMID: 38806547 PMCID: PMC11133401 DOI: 10.1038/s41598-024-62745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Upon implanting tissue-engineered heart valves (TEHVs), blood-derived macrophages are believed to orchestrate the remodeling process. They initiate the immune response and mediate the remodeling of the TEHV, essential for the valve's functionality. The exact role of another macrophage type, the tissue-resident macrophages (TRMs), has not been yet elucidated even though they maintain the homeostasis of native tissues. Here, we characterized the response of hTRM-like cells in contact with a human tissue engineered matrix (hTEM). HTEMs comprised intracellular peptides with potentially immunogenic properties in their ECM proteome. Human iPSC-derived macrophages (iMφs) could represent hTRM-like cells in vitro and circumvent the scarcity of human donor material. iMφs were derived and after stimulation they demonstrated polarization towards non-/inflammatory states. Next, they responded with increased IL-6/IL-1β secretion in separate 3/7-day cultures with longer production-time-hTEMs. We demonstrated that iMφs are a potential model for TRM-like cells for the assessment of hTEM immunocompatibility. They adopt distinct pro- and anti-inflammatory phenotypes, and both IL-6 and IL-1β secretion depends on hTEM composition. IL-6 provided the highest sensitivity to measure iMφs pro-inflammatory response. This platform could facilitate the in vitro immunocompatibility assessment of hTEMs and thereby showcase a potential way to achieve safer clinical translation of TEHVs.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland.
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Institut für Regenerative Medizin (IREM), University of Zurich, Moussonstrasse 13, 8044, Zurich, Switzerland.
| | - Emanuela S Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| |
Collapse
|
23
|
Chen Y, Guo Y, Li X, Chen Y, Wang J, Qian H, Wang J, Wang Y, Hu X, Wang J, Ji J. Comparison study of surface-initiated hydrogel coatings with distinct side-chains for improving biocompatibility of polymeric heart valves. Biomater Sci 2024; 12:2717-2729. [PMID: 38619816 DOI: 10.1039/d4bm00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Polymeric heart valves (PHVs) present a promising alternative for treating valvular heart diseases with satisfactory hydrodynamics and durability against structural degeneration. However, the cascaded coagulation, inflammatory responses, and calcification in the dynamic blood environment pose significant challenges to the surface design of current PHVs. In this study, we employed a surface-initiated polymerization method to modify polystyrene-block-isobutylene-block-styrene (SIBS) by creating three hydrogel coatings: poly(2-methacryloyloxy ethyl phosphorylcholine) (pMPC), poly(2-acrylamido-2-methylpropanesulfonic acid) (pAMPS), and poly(2-hydroxyethyl methacrylate) (pHEMA). These hydrogel coatings dramatically promoted SIBS's hydrophilicity and blood compatibility at the initial state. Notably, the pMPC and pAMPS coatings maintained a considerable platelet resistance performance after 12 h of sonication and 10 000 cycles of stretching and bending. However, the sonication process induced visible damage to the pHEMA coating and attenuated the anti-coagulation property. Furthermore, the in vivo subcutaneous implantation studies demonstrated that the amphiphilic pMPC coating showed superior anti-inflammatory and anti-calcification properties. Considering the remarkable stability and optimal biocompatibility, the amphiphilic pMPC coating constructed by surface-initiated polymerization holds promising potential for modifying PHVs.
Collapse
Affiliation(s)
- Yiduo Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Yirong Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Xinyi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Yanchen Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jiarong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Honglin Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou 310009, P.R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Xinyang Hu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou 310009, P.R. China
| | - Jian'an Wang
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou 310009, P.R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou 310009, P.R. China
| |
Collapse
|
24
|
Sedláková V, Mourcos S, Pupkaitė J, Lunn Y, Visintini S, Guzman-Soto I, Ruel M, Suuronen E, Alarcon EI. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater 2024; 180:61-81. [PMID: 38588997 DOI: 10.1016/j.actbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czechia.
| | - Sophia Mourcos
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biomedical Science, Faculty of Science, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, Ontario K1N 9A7, Canada
| | - Justina Pupkaitė
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Yvonne Lunn
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Irene Guzman-Soto
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
25
|
Vernon MJ, Mela P, Dilley RJ, Jansen S, Doyle BJ, Ihdayhid AR, De-Juan-Pardo EM. 3D printing of heart valves. Trends Biotechnol 2024; 42:612-630. [PMID: 38238246 DOI: 10.1016/j.tibtech.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 05/04/2024]
Abstract
3D printing technologies have the potential to revolutionize the manufacture of heart valves through the ability to create bespoke, complex constructs. In light of recent technological advances, we review the progress made towards 3D printing of heart valves, focusing on studies that have utilised these technologies beyond manufacturing patient-specific moulds. We first overview the key requirements of a heart valve to assess functionality. We then present the 3D printing technologies used to engineer heart valves. By referencing International Organisation for Standardisation (ISO) Standard 5840 (Cardiovascular implants - Cardiac valve prostheses), we provide insight into the achieved functionality of these valves. Overall, 3D printing promises to have a significant positive impact on the creation of artificial heart valves and potentially unlock full complex functionality.
Collapse
Affiliation(s)
- Michael J Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering, Munich Institute of Biomedical Engineering and TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia; Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Abdul R Ihdayhid
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia; Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
26
|
Sengupta PP, Kluin J, Lee SP, Oh JK, Smits AIPM. The future of valvular heart disease assessment and therapy. Lancet 2024; 403:1590-1602. [PMID: 38554727 DOI: 10.1016/s0140-6736(23)02754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 04/02/2024]
Abstract
Valvular heart disease (VHD) is becoming more prevalent in an ageing population, leading to challenges in diagnosis and management. This two-part Series offers a comprehensive review of changing concepts in VHD, covering diagnosis, intervention timing, novel management strategies, and the current state of research. The first paper highlights the remarkable progress made in imaging and transcatheter techniques, effectively addressing the treatment paradox wherein populations at the highest risk of VHD often receive the least treatment. These advances have attracted the attention of clinicians, researchers, engineers, device manufacturers, and investors, leading to the exploration and proposal of treatment approaches grounded in pathophysiology and multidisciplinary strategies for VHD management. This Series paper focuses on innovations involving computational, pharmacological, and bioengineering approaches that are transforming the diagnosis and management of patients with VHD. Artificial intelligence and digital methods are enhancing screening, diagnosis, and planning procedures, and the integration of imaging and clinical data is improving the classification of VHD severity. The emergence of artificial intelligence techniques, including so-called digital twins-eg, computer-generated replicas of the heart-is aiding the development of new strategies for enhanced risk stratification, prognostication, and individualised therapeutic targeting. Various new molecular targets and novel pharmacological strategies are being developed, including multiomics-ie, analytical methods used to integrate complex biological big data to find novel pathways to halt the progression of VHD. In addition, efforts have been undertaken to engineer heart valve tissue and provide a living valve conduit capable of growth and biological integration. Overall, these advances emphasise the importance of early detection, personalised management, and cutting-edge interventions to optimise outcomes amid the evolving landscape of VHD. Although several challenges must be overcome, these breakthroughs represent opportunities to advance patient-centred investigations.
Collapse
Affiliation(s)
- Partho P Sengupta
- Division of Cardiovascular Diseases and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Cardiovascular Services, Robert Wood Johnson University Hospital, New Brunswick, NJ, USA.
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Erasmus MC Rotterdam, Thorax Center, Rotterdam, Netherlands
| | - Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Jae K Oh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
27
|
Brodeur A, Roy V, Touzel-Deschênes L, Bianco S, Droit A, Fradette J, Ruel J, Gros-Louis F. Transcriptomic Analysis of Mineralized Adipose-Derived Stem Cell Tissues for Calcific Valve Disease Modelling. Int J Mol Sci 2024; 25:2291. [PMID: 38396969 PMCID: PMC10889332 DOI: 10.3390/ijms25042291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is characterized by the fibrosis and mineralization of the aortic valve, which leads to aortic stenosis and heart failure. At the cellular level, this is due to the osteoblastic-like differentiation of valve interstitial cells (VICs), resulting in the calcification of the tissue. Unfortunately, human VICs are not readily available to study CAVD pathogenesis and the implicated mechanisms in vitro; however, adipose-derived stromal/stem cells (ASCs), carrying the patient's specific genomic features, have emerged as a promising cell source to model cardiovascular diseases due to their multipotent nature, availability, and patient-specific characteristics. In this study, we describe a comprehensive transcriptomic analysis of tissue-engineered, scaffold-free, ASC-embedded mineralized tissue sheets using bulk RNA sequencing. Bioinformatic and gene set enrichment analyses revealed the up-regulation of genes associated with the organization of the extracellular matrix (ECM), suggesting that the ECM could play a vital role in the enhanced mineralization observed in these tissue-engineered ASC-embedded sheets. Upon comparison with publicly available gene expression datasets from CAVD patients, striking similarities emerged regarding cardiovascular diseases and ECM functions, suggesting a potential link between ECM gene expression and CAVDs pathogenesis. A matrisome-related sub-analysis revealed the ECM microenvironment promotes the transcriptional activation of the master gene runt-related transcription factor 2 (RUNX2), which is essential in CAVD development. Tissue-engineered ASC-embedded sheets with enhanced mineralization could be a valuable tool for research and a promising avenue for the identification of more effective aortic valve replacement therapies.
Collapse
Affiliation(s)
- Alyssa Brodeur
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Vincent Roy
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Lydia Touzel-Deschênes
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Stéphanie Bianco
- Department of Molecular Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 5C3, Canada; (S.B.); (A.D.)
- Computational Biology Laboratory, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- Department of Molecular Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 5C3, Canada; (S.B.); (A.D.)
- Computational Biology Laboratory, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 4G2, Canada
| | - Julie Fradette
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Jean Ruel
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
- Department of Mechanical Engineering, Faculty of Sciences and Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| |
Collapse
|
28
|
Oliveira HL, Buscaglia GC, Paz RR, Del Pin F, Cuminato JA, Kerr M, McKee S, Stewart IW, Wheatley DJ. Three-dimensional fluid-structure interaction simulation of the Wheatley aortic valve. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3792. [PMID: 38010884 DOI: 10.1002/cnm.3792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Valvular heart diseases (such as stenosis and regurgitation) are recognized as a rapidly growing cause of global deaths and major contributors to disability. The most effective treatment for these pathologies is the replacement of the natural valve with a prosthetic one. Our work considers an innovative design for prosthetic aortic valves that combines the reliability and durability of artificial valves with the flexibility of tissue valves. It consists of a rigid support and three polymer leaflets which can be cut from an extruded flat sheet, and is referred to hereafter as the Wheatley aortic valve (WAV). As a first step towards the understanding of the mechanical behavior of the WAV, we report here on the implementation of a numerical model built with the ICFD multi-physics solver of the LS-DYNA software. The model is calibrated and validated using data from a basic pulsatile-flow experiment in a water-filled straight tube. Sensitivity to model parameters (contact parameters, mesh size, etc.) and to design parameters (height, material constants) is studied. The numerical data allow us to describe the leaflet motion and the liquid flow in great detail, and to investigate the possible failure modes in cases of unfavorable operational conditions (in particular, if the leaflet height is inadequate). In future work the numerical model developed here will be used to assess the thrombogenic properties of the valve under physiological conditions.
Collapse
Affiliation(s)
- Hugo L Oliveira
- Instituto de Ciências Matemáticas e de Computação-ICMC, Universidade de São Paulo-Campus de São Carlos, Avenida Trabalhador São-Carlense, São Carlos, Brazil
| | - Gustavo C Buscaglia
- Instituto de Ciências Matemáticas e de Computação-ICMC, Universidade de São Paulo-Campus de São Carlos, Avenida Trabalhador São-Carlense, São Carlos, Brazil
| | - Rodrigo R Paz
- ANSYS Inc., Livermore, California, USA
- IMIT, CONICET, National Council for Scientific and Technical Research, Resistencia, Argentina
| | | | - José A Cuminato
- Instituto de Ciências Matemáticas e de Computação-ICMC, Universidade de São Paulo-Campus de São Carlos, Avenida Trabalhador São-Carlense, São Carlos, Brazil
| | - Monica Kerr
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Sean McKee
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Iain W Stewart
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - David J Wheatley
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| |
Collapse
|
29
|
Notenboom ML, Van Hoof L, Schuermans A, Takkenberg JJM, Rega FR, Taverne YJHJ. Aortic Valve Embryology, Mechanobiology, and Second Messenger Pathways: Implications for Clinical Practice. J Cardiovasc Dev Dis 2024; 11:49. [PMID: 38392263 PMCID: PMC10888685 DOI: 10.3390/jcdd11020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
During the Renaissance, Leonardo Da Vinci was the first person to successfully detail the anatomy of the aortic root and its adjacent structures. Ever since, novel insights into morphology, function, and their interplay have accumulated, resulting in advanced knowledge on the complex functional characteristics of the aortic valve (AV) and root. This has shifted our vision from the AV as being a static structure towards that of a dynamic interconnected apparatus within the aortic root as a functional unit, exhibiting a complex interplay with adjacent structures via both humoral and mechanical stimuli. This paradigm shift has stimulated surgical treatment strategies of valvular disease that seek to recapitulate healthy AV function, whereby AV disease can no longer be seen as an isolated morphological pathology which needs to be replaced. As prostheses still cannot reproduce the complexity of human nature, treatment of diseased AVs, whether stenotic or insufficient, has tremendously evolved, with a similar shift towards treatments options that are more hemodynamically centered, such as the Ross procedure and valve-conserving surgery. Native AV and root components allow for an efficient Venturi effect over the valve to allow for optimal opening during the cardiac cycle, while also alleviating the left ventricle. Next to that, several receptors are present on native AV leaflets, enabling messenger pathways based on their interaction with blood and other shear-stress-related stimuli. Many of these physiological and hemodynamical processes are under-acknowledged but may hold important clues for innovative treatment strategies, or as potential novel targets for therapeutic agents that halt or reverse the process of valve degeneration. A structured overview of these pathways and their implications for cardiothoracic surgeons and cardiologists is lacking. As such, we provide an overview on embryology, hemodynamics, and messenger pathways of the healthy and diseased AV and its implications for clinical practice, by relating this knowledge to current treatment alternatives and clinical decision making.
Collapse
Affiliation(s)
- Maximiliaan L. Notenboom
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.L.N.)
| | - Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Art Schuermans
- Department of Cardiac Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Johanna J. M. Takkenberg
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.L.N.)
| | - Filip R. Rega
- Department of Cardiac Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yannick J. H. J. Taverne
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.L.N.)
| |
Collapse
|
30
|
Wu H, Chen N, Zheng T, Li L, Hu M, Qin Y, Guo G, Yang L, Wang Y. A strategy for mechanically integrating robust hydrogel-tissue hybrid to promote the anti-calcification and endothelialization of bioprosthetic heart valve. Regen Biomater 2024; 11:rbae003. [PMID: 38414796 PMCID: PMC10898858 DOI: 10.1093/rb/rbae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024] Open
Abstract
Bioprosthetic heart valve (BHV) replacement has been the predominant treatment for severe heart valve diseases over decades. Most clinically available BHVs are crosslinked by glutaraldehyde (GLUT), while the high toxicity of residual GLUT could initiate calcification, severe thrombosis, and delayed endothelialization. Here, we construed a mechanically integrating robust hydrogel-tissue hybrid to improve the performance of BHVs. In particular, recombinant humanized collagen type III (rhCOLIII), which was precisely customized with anti-coagulant and pro-endothelialization bioactivity, was first incorporated into the polyvinyl alcohol (PVA)-based hydrogel via hydrogen bond interactions. Then, tannic acid was introduced to enhance the mechanical performance of PVA-based hydrogel and interfacial bonding between the hydrogel layer and bio-derived tissue due to the strong affinity for a wide range of substrates. In vitro and in vivo experimental results confirmed that the GLUT-crosslinked BHVs modified by the robust PVA-based hydrogel embedded rhCOLIII and TA possessed long-term anti-coagulant, accelerated endothelialization, mild inflammatory response and anti-calcification properties. Therefore, our mechanically integrating robust hydrogel-tissue hybrid strategy showed the potential to enhance the service function and prolong the service life of the BHVs after implantation.
Collapse
Affiliation(s)
- Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Tiantian Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Alberini R, Spagnoli A, Sadeghinia MJ, Skallerud B, Terzano M, Holzapfel GA. Fourier transform-based method for quantifying the three-dimensional orientation distribution of fibrous units. Sci Rep 2024; 14:1999. [PMID: 38263352 PMCID: PMC11222475 DOI: 10.1038/s41598-024-51550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
Several materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times. We validated the method using artificially generated 3D images, in terms of fiber dispersion by considering the error between the standard deviation of the reconstructed and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber dispersion.
Collapse
Affiliation(s)
- Riccardo Alberini
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parma, Italy.
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| |
Collapse
|
32
|
Overbey DM, Rajab TK, Turek JW. Partial Heart Transplantation - How to Change the System. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2024; 27:100-105. [PMID: 38522865 DOI: 10.1053/j.pcsu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/26/2024]
Abstract
Partial heart transplantation is the first clinically successful approach to deliver growing heart valve implants. To date, 13 clinical partial heart transplants have been performed. However, turning partial heart transplantation into a routine procedure that is available to all children who would benefit from growing heart valve implants poses formidable logistical challenges. Firstly, a supply for partial heart transplant donor grafts needs to be developed. This challenge is complicated by the scarcity of donor organs. Importantly, the donor pools for orthotopic heart transplants, partial heart transplants and cadaver homografts overlap. Secondly, partial heart transplants need to be allocated. Factors relevant for equitable allocation include the indication, anatomical fit, recipient clinical status and time on the wait list. Finally, partial heart transplantation will require regulation and oversight, which only recently has been undertaken by the Food and Drug Administration, which regulates human cellular and tissue-based products. Overcoming these challenges will require a change in the system. Once this is achieved, partial heart transplantation could open new horizons for children who require growing tissue implants.
Collapse
Affiliation(s)
- Douglas M Overbey
- Congenital Heart Surgery Research and Training Laboratory, Duke University, Durham, North Carolina.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Taufiek K Rajab
- Medical University of South Carolina, Charleston, South Carolina.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Joseph W Turek
- Congenital Heart Surgery Research and Training Laboratory, Duke University, Durham, North Carolina.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina..
| |
Collapse
|
33
|
Chen Q, Wang C, Wang H, Xiao J, Zhou Y, Gu S, Xu W, Yang H. Strengthened Decellularized Porcine Valves via Polyvinyl Alcohol as a Template Improving Processability. Polymers (Basel) 2023; 16:16. [PMID: 38201681 PMCID: PMC10780456 DOI: 10.3390/polym16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft immunogenicity. In this study, removable polyvinyl alcohol (PVA) is used to encapsulate decellularized porcine heart valves (DHVs) as a dynamic template to improve the processability of DHVs, such as suturing. Mechanical tests show that the strength and elastic modulus of DHVs treated with different concentrations of PVA significantly improve. Without the PVA layer, the valve would shift during suture puncture and not achieve the desired suture result. The in vitro results indicate that decellularized valves treated with PVA can sustain the adhesion and growth of human umbilical vein endothelial cells (HUVECs). All results above show that the DHVs treated with water-soluble PVA have good mechanical properties and cytocompatibility to ensure post-treatment. On this basis, the improved processability of DHV treated with PVA enables a new paradigm for the manufacturing of scaffolds, making it easy to apply.
Collapse
Affiliation(s)
- Qingqing Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Chaorong Wang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Jinfeng Xiao
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| | - Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Shaojin Gu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| |
Collapse
|
34
|
Terzic A. Modern regenerative medicine dictionary: an augmented guide to biotherapy. Regen Med 2023; 18:885-889. [PMID: 37961818 PMCID: PMC10782411 DOI: 10.2217/rme-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Andre Terzic
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Vis A, de Kort BJ, Szymczyk W, van Rijswijk JW, Dekker S, Driessen R, Wijkstra N, Gründeman PF, Niessen HWM, Janssen HM, Söntjens SHM, Dankers PYW, Smits AIPM, Bouten CVC, Kluin J. Evaluation of pliable bioresorbable, elastomeric aortic valve prostheses in sheep during 12 months post implantation. Commun Biol 2023; 6:1166. [PMID: 37964029 PMCID: PMC10646052 DOI: 10.1038/s42003-023-05533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Pliable microfibrous, bioresorbable elastomeric heart valve prostheses are investigated in search of sustainable heart valve replacement. These cell-free implants recruit cells and trigger tissue formation on the valves in situ. Our aim is to investigate the behaviour of these heart valve prostheses when exposed to the high-pressure circulation. We conducted a 12-month follow-up study in sheep to evaluate the in vivo functionality and neo-tissue formation of these valves in the aortic position. All valves remained free from endocarditis, thrombotic complications and macroscopic calcifications. Cell colonisation in the leaflets was mainly restricted to the hinge area, while resorption of synthetic fibers was limited. Most valves were pliable and structurally intact (10/15), however, other valves (5/15) showed cusp thickening, retraction or holes in the leaflets. Further research is needed to assess whether in-situ heart valve tissue engineering in the aortic position is possible or whether non-resorbable synthetic pliable prostheses are preferred.
Collapse
Affiliation(s)
- Annemijn Vis
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, The Netherlands
| | - Bente J de Kort
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wojciech Szymczyk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jan Willem van Rijswijk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Niels Wijkstra
- Department of Cardiology, Amsterdam University Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul F Gründeman
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam University Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, The Netherlands.
- Department of Cardiothoracic Surgery, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Steitz M, Zouhair S, Khan MB, Breitenstein-Attach A, Fritsch K, Tuladhar SR, Wulsten D, Wolkers WF, Sun X, Hao Y, Emeis J, Lange HE, Berger F, Schmitt B. A Glutaraldehyde-Free Crosslinking Method for the Treatment of Collagen-Based Biomaterials for Clinical Application. Bioengineering (Basel) 2023; 10:1247. [PMID: 38002371 PMCID: PMC10669889 DOI: 10.3390/bioengineering10111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Biological bioprostheses such as grafts, patches, and heart valves are often derived from biological tissue like the pericardium. These bioprostheses can be of xenogenic, allogeneic, or autologous origin. Irrespective of their origin, all types are pre-treated via crosslinking to render the tissue non-antigenic and mechanically strong or to minimize degradation. The most widely used crosslinking agent is glutaraldehyde. However, glutaraldehyde-treated tissue is prone to calcification, inflammatory degradation, and mechanical injury, and it is incapable of matrix regeneration, leading to structural degeneration over time. In this work, we are investigating an alternative crosslinking method for an intraoperative application. The treated tissue's crosslinking degree was evaluated by differential scanning calorimetry. To confirm the findings, a collagenase assay was conducted. Uniaxial tensile testing was used to assess the tissue's mechanical properties. To support the findings, the treated tissue was visualized using two-photon microscopy. Additionally, fourier transform infrared spectroscopy was performed to study the overall protein secondary structure. Finally, a crosslinking procedure was identified for intraoperative processing. The samples showed a significant increase in thermal and enzymatic stability after treatment compared to the control, with a difference of up to 22.2 °C and 100%, respectively. Also, the tissue showed similar biomechanics to glutaraldehyde-treated tissue, showing greater extensibility, a higher failure strain, and a lower ultimate tensile strength than the control. The significant difference in the structure band ratio after treatment is proof of the introduction of additional crosslinks compared to the untreated control with regard to differences in the amide-I region. The microscopic images support these findings, showing an alteration of the fiber orientation after treatment. For collagen-based biomaterials, such as pericardial tissue, the novel phenolic crosslinking agent proved to be an equivalent alternative to glutaraldehyde regarding tissue characteristics. Although long-term studies must be performed to investigate superiority in terms of longevity and calcification, our novel crosslinking agent can be applied in concentrations of 1.5% or 2.0% for the treatment of biomaterials.
Collapse
Affiliation(s)
- Marvin Steitz
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Berlin (Charité), D-13353 Berlin, Germany
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
- German Centre for Cardiovascular Research, D-10785 Berlin, Germany
| | - Sabra Zouhair
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
| | - Mahamuda Badhon Khan
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
| | - Alexander Breitenstein-Attach
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Berlin (Charité), D-13353 Berlin, Germany
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
- German Centre for Cardiovascular Research, D-10785 Berlin, Germany
| | - Katharina Fritsch
- Department Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany
| | - Sugat Ratna Tuladhar
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hanover, D-30625 Hannover, Germany
| | - Dag Wulsten
- Julius Wolff Institute—Center for Musculoskeletal Biomechanics and Regeneration, D-13353 Berlin, Germany
| | - Willem-Frederik Wolkers
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hanover, D-30625 Hannover, Germany
| | - Xiaolin Sun
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Berlin (Charité), D-13353 Berlin, Germany
- German Centre for Cardiovascular Research, D-10785 Berlin, Germany
| | - Yimeng Hao
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
| | - Jasper Emeis
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
| | - Hans-E. Lange
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
| | - Felix Berger
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Berlin (Charité), D-13353 Berlin, Germany
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
- German Centre for Cardiovascular Research, D-10785 Berlin, Germany
| | - Boris Schmitt
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Berlin (Charité), D-13353 Berlin, Germany
- Department of Pediatric Cardiology and Congenital Heart Disease, Charité University Medicine Berlin, D-13353 Berlin, Germany
- German Centre for Cardiovascular Research, D-10785 Berlin, Germany
| |
Collapse
|
37
|
Yacoub MH, Tseng YT, Kluin J, Vis A, Stock U, Smail H, Sarathchandra P, Aikawa E, El-Nashar H, Chester AH, Shehata N, Nagy M, El-Sawy A, Li W, Burriesci G, Salmonsmith J, Romeih S, Latif N. Valvulogenesis of a living, innervated pulmonary root induced by an acellular scaffold. Commun Biol 2023; 6:1017. [PMID: 37805576 PMCID: PMC10560219 DOI: 10.1038/s42003-023-05383-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Heart valve disease is a major cause of mortality and morbidity worldwide with no effective medical therapy and no ideal valve substitute emulating the extremely sophisticated functions of a living heart valve. These functions influence survival and quality of life. This has stimulated extensive attempts at tissue engineering "living" heart valves. These attempts utilised combinations of allogeneic/ autologous cells and biological scaffolds with practical, regulatory, and ethical issues. In situ regeneration depends on scaffolds that attract, house and instruct cells and promote connective tissue formation. We describe a surgical, tissue-engineered, anatomically precise, novel off-the-shelf, acellular, synthetic scaffold inducing a rapid process of morphogenesis involving relevant cell types, extracellular matrix, regulatory elements including nerves and humoral components. This process relies on specific material characteristics, design and "morphodynamism".
Collapse
Affiliation(s)
- Magdi H Yacoub
- Magdi Yacoub Institute, Harefield, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt.
| | - Yuan-Tsan Tseng
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Annemijn Vis
- Amsterdam UMC, University of Amsterdam, Department of Cardiothoracic Surgery, Amsterdam, The Netherlands
| | - Ulrich Stock
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospital, London, UK
| | | | - Padmini Sarathchandra
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hussam El-Nashar
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
- Department of Bioengineering, Imperial College London, London, UK
| | - Adrian H Chester
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nairouz Shehata
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
- Department of Computing, Imperial College London, London, UK
| | - Mohamed Nagy
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Amr El-Sawy
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Wei Li
- Royal Brompton and Harefield Hospital, London, UK
| | - Gaetano Burriesci
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, London, UK
- Bioengineering Unit, Ri.MED Foundation, Palermo, Italy
| | - Jacob Salmonsmith
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, London, UK
| | - Soha Romeih
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Najma Latif
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
38
|
Wu H, Huang K, Hu M, Chen N, Qin Y, Wang J, Luo R, Yang L, Wang Y. Postfunctionalization of biological valve leaflets with a polyphenol network and anticoagulant recombinant humanized type III collagen for improved anticoagulation and endothelialization. J Mater Chem B 2023; 11:9260-9275. [PMID: 37724634 DOI: 10.1039/d3tb01145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Almost all commercial bioprosthetic heart valves (BHVs) are crosslinked with glutaraldehyde (GLUT); however, issues such as immune responses, calcification, delayed endothelialization, and especially severe thrombosis threaten the service lifespan of BHVs. Surface modification is expected to impart GLUT-crosslinked BHVs with versatility to optimize service performance. Here, a postfunctionalization strategy was established for GLUT-crosslinked BHVs, which were firstly modified with metal-phenolic networks (MPNs) to shield the exposed calcification site, and then anticoagulant recombinant humanized type III collagen (rhCOLIII) was immobilized to endow them with long-term antithrombogenicity and enhanced endothelialization properties. The postfunctionalization coating exhibited promising mechanical properties and resistance to enzymatic degradation capability resembling that of GLUT-crosslinked porcine pericardium (GLUT-PP). With the introduction of meticulously tailored rhCOLIII, the anti-coagulation and re-endothelialization properties of TA/Fe-rhCOLIII were significantly improved. Furthermore, the mild inflammatory response and reduced calcification were evidenced in TA/Fe-rhCOLIII by subcutaneous implantation. In conclusion, the efficacy of the proposed strategy combining anti-inflammatory MPNs and multifunctional rhCOLIII to improve anticoagulation, reduce the inflammatory response, and ultimately achieve rapid reendothelialization was supported by both ex vivo and in vivo experiments. Altogether, the current findings may provide a simple strategy for enhancing the service function of BHVs after implantation and show great potential in clinical applications.
Collapse
Affiliation(s)
- Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Kaiyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Jian Wang
- Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030001, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
39
|
Pedersen DD, Kim S, D'Amore A, Wagner WR. Cardiac valve scaffold design: Implications of material properties and geometric configuration on performance and mechanics. J Mech Behav Biomed Mater 2023; 146:106043. [PMID: 37531773 DOI: 10.1016/j.jmbbm.2023.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
Development of tissue engineered scaffolds for cardiac valve replacement is nearing clinical translation. While much work has been done to characterize mechanical behavior of native and bioprosthetic valves, and incorporate those data into models improving valve design, similar work for degradable valve scaffolds is lacking. This is particularly important given the implications mechanics have on short-term survival and long-term remodeling. As such, this study aimed to characterize spatially-resolved strain profiles on the leaflets of degradable polymeric valve scaffolds, manipulating common design features such as material stiffness by blending poly(carbonate urethane)urea with stiffer polymers, and geometric configuration, modeled after either a clinically-used valve design (Mk1 design) or an anatomically "optimized" design (Mk2 design). It was shown that material stiffness plays a significant role in overall valve performance, with the stiffest valve groups showing asymmetric and incomplete opening during systole. However, the geometric configuration had a significantly greater effect on valve performance as well as strain magnitude and distribution. Major findings in the strain maps included systolic strains having overall higher strain magnitudes than diastole, and peak radial-direction strain concentrations in the base region of Mk1 valves during systole, with a significant mitigation of radial strain in Mk2 valves. The high tunability of tissue engineered scaffolds is a great advantage for valve design, and the results reported here indicate that design parameters have significant and unequal impact on valve performance and mechanics.
Collapse
Affiliation(s)
- Drake D Pedersen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, PA, USA
| | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, PA, USA; Fondazione Ri.MED, Palermo, Italy; Clinical and Translational Science Institute, University of Pittsburgh, PA, USA
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, PA, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Chen CY, Lin CP, Hung KC, Chan YH, Wu VCC, Cheng YT, Yeh JK, Chu PH, Chou AH, Chen SW. Durability of Biological Valves Implanted in Aortic or Mitral Positions: A Nationwide Cohort Study. Ann Thorac Surg 2023; 116:751-757. [PMID: 37356516 DOI: 10.1016/j.athoracsur.2023.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Biologic prostheses are being increasingly used for aortic and mitral valve replacement (AVR and MVR). This study evaluated the long-term durability of bioprosthetic valves in the mitral and aortic positions, as no well-designed population-based studies have addressed this issue before. METHODS Using Taiwan's National Health Insurance Research Database, we compared biologic valve durability in the mitral and aortic positions in patients hospitalized between 2001 and 2017, with reoperation as the primary outcome. Both between-subject and within-subject designs were used, and the propensity score matching cohort (1:1 ratio) was created for the former. RESULTS We identified a total of 10,308 patients, 5462 of whom received AVR, 3901 received MVR, and 945 received double valve replacement. Both AVR and MVR cohorts had 2259 patients after matching. During a mean follow-up of 4.2 years (range, 1 day to 17.9 years), the reoperation rate in the MVR cohort (3.5%) was higher than that in the AVR cohort (2.6%) (hazard ratio 1.41; 95% CI, 1.01-1.98). A higher risk of all-cause death was observed in the MVR cohort (36.5%) than in the AVR cohort (32.6%) (hazard ratio 1.21; 95% CI, 1.10-1.34). Among patients receiving double valve replacement with the same prosthesis type, valves implanted in the aortic position were considerably less likely to require reimplantation. CONCLUSIONS Bioprosthetic valve placement in the aortic position is associated with superior outcomes in terms of durability, long-term mortality, and perioperative morbidity. Developing novel interventions and enhancing valve durability would expand bioprosthesis use for valve replacement.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Pin Lin
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsin Chan
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Victor Chien-Chia Wu
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-Ting Cheng
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shao-Wei Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan; Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan.
| |
Collapse
|
41
|
Vervoort D, Yilgwan CS, Ansong A, Baumgartner JN, Bansal G, Bukhman G, Cannon JW, Cardarelli M, Cunningham MW, Fenton K, Green-Parker M, Karthikeyan G, Masterson M, Maswime S, Mensah GA, Mocumbi A, Kpodonu J, Okello E, Remenyi B, Williams M, Zühlke LJ, Sable C. Tertiary prevention and treatment of rheumatic heart disease: a National Heart, Lung, and Blood Institute working group summary. BMJ Glob Health 2023; 8:e012355. [PMID: 37914182 PMCID: PMC10619050 DOI: 10.1136/bmjgh-2023-012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/14/2023] [Indexed: 11/03/2023] Open
Abstract
Although entirely preventable, rheumatic heart disease (RHD), a disease of poverty and social disadvantage resulting in high morbidity and mortality, remains an ever-present burden in low-income and middle-income countries (LMICs) and rural, remote, marginalised and disenfranchised populations within high-income countries. In late 2021, the National Heart, Lung, and Blood Institute convened a workshop to explore the current state of science, to identify basic science and clinical research priorities to support RHD eradication efforts worldwide. This was done through the inclusion of multidisciplinary global experts, including cardiovascular and non-cardiovascular specialists as well as health policy and health economics experts, many of whom also represented or closely worked with patient-family organisations and local governments. This report summarises findings from one of the four working groups, the Tertiary Prevention Working Group, that was charged with assessing the management of late complications of RHD, including surgical interventions for patients with RHD. Due to the high prevalence of RHD in LMICs, particular emphasis was made on gaining a better understanding of needs in the field from the perspectives of the patient, community, provider, health system and policy-maker. We outline priorities to support the development, and implementation of accessible, affordable and sustainable interventions in low-resource settings to manage RHD and related complications. These priorities and other interventions need to be adapted to and driven by local contexts and integrated into health systems to best meet the needs of local communities.
Collapse
Affiliation(s)
- Dominique Vervoort
- Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | - Annette Ansong
- Outpatient Cardiology, Children's National Hospital, Washington, District of Columbia, USA
| | | | - Geetha Bansal
- Division of International Training and Research, John E Fogarty International Center, Bethesda, Maryland, USA
| | - Gene Bukhman
- Center for Integration Science, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Program in Global Noncommunicable Disease and Social Change, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey W Cannon
- Department of Global Health and Population, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Marcelo Cardarelli
- Pediatric Heart Surgery, Inova Children Hospital, Falls Church, Virginia, USA
| | | | - Kathleen Fenton
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Melissa Green-Parker
- National Institutes of Health Office of Disease Prevention, Bethesda, Maryland, USA
| | | | - Mary Masterson
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Salome Maswime
- Global Surgery, University of Cape Town Faculty of Health Sciences, Observatory, Western Cape, South Africa
| | - George A Mensah
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Ana Mocumbi
- Non Communicable Diseases, Instituto Nacional de Saúde, Maputo, Mozambique
- Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Jacques Kpodonu
- Division of Cardiac Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emmy Okello
- Cardiology, Uganda Heart Institute Ltd, Kampala, Uganda
| | - B Remenyi
- Menzies School of Health Research, Charles Darwin University, Casuarina, Northern Territory of Australia, Australia
| | - Makeda Williams
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Liesl J Zühlke
- South African Medical Research Council, Tygerberg, South Africa
- Department of Medicine, Red Cross War Memorial Children's Hospital, Rondebosch, Western Cape, South Africa
| | - Craig Sable
- Division of Cardiology, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
42
|
Boehm CA, Donay C, Lubig A, Ruetten S, Sesa M, Fernández-Colino A, Reese S, Jockenhoevel S. Bio-Inspired Fiber Reinforcement for Aortic Valves: Scaffold Production Process and Characterization. Bioengineering (Basel) 2023; 10:1064. [PMID: 37760166 PMCID: PMC10525898 DOI: 10.3390/bioengineering10091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement for an aortic valve scaffold. The reinforcement structure consists of polyvinylidene difluoride monofilament fibers that are biomimetically arranged by a novel winding process. The fibers were embedded and fixated into electrospun polycarbonate urethane on a cylindrical collector. The scaffold was characterized by biaxial tensile strength, bending stiffness, burst pressure and hemodynamically in a mock circulation system. The produced fiber-reinforced scaffold showed adequate acute mechanical and hemodynamic properties. The transvalvular pressure gradient was 3.02 ± 0.26 mmHg with an effective orifice area of 2.12 ± 0.22 cm2. The valves sustained aortic conditions, fulfilling the ISO-5840 standards. The fiber-reinforced scaffold failed in a circumferential direction at a stress of 461.64 ± 58.87 N/m and a strain of 49.43 ± 7.53%. These values were above the levels of tested native heart valve tissue. Overall, we demonstrated a novel manufacturing approach to develop a fiber-reinforced biomimetic scaffold for aortic heart valve tissue engineering. The characterization showed that this approach is promising for an in situ valve replacement.
Collapse
Affiliation(s)
- Christian A. Boehm
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Christine Donay
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Andreas Lubig
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Stephan Ruetten
- Electron Microscopy Facility, University Hospital Aachen, Pauwelstr. 30, 52074 Aachen, Germany;
| | - Mahmoud Sesa
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; (M.S.); (S.R.)
| | - Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; (M.S.); (S.R.)
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 Geleen, The Netherlands
| |
Collapse
|
43
|
de Kanter AFJ, Jongsma KR, Bouten CVC, Bredenoord AL. How Smart are Smart Materials? A Conceptual and Ethical Analysis of Smart Lifelike Materials for the Design of Regenerative Valve Implants. SCIENCE AND ENGINEERING ETHICS 2023; 29:33. [PMID: 37668955 PMCID: PMC10480256 DOI: 10.1007/s11948-023-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
It may soon become possible not just to replace, but to re-grow healthy tissues after injury or disease, because of innovations in the field of Regenerative Medicine. One particularly promising innovation is a regenerative valve implant to treat people with heart valve disease. These implants are fabricated from so-called 'smart', 'lifelike' materials. Implanted inside a heart, these implants stimulate re-growth of a healthy, living heart valve. While the technological development advances, the ethical implications of this new technology are still unclear and a clear conceptual understanding of the notions 'smart' and 'lifelike' is currently lacking. In this paper, we explore the conceptual and ethical implications of the development of smart lifelike materials for the design of regenerative implants, by analysing heart valve implants as a showcase. In our conceptual analysis, we show that the materials are considered 'smart' because they can communicate with human tissues, and 'lifelike' because they are structurally similar to these tissues. This shows that regenerative valve implants become intimately integrated in the living tissues of the human body. As such, they manifest the ontological entanglement of body and technology. In our ethical analysis, we argue this is ethically significant in at least two ways: It exacerbates the irreversibility of the implantation procedure, and it might affect the embodied experience of the implant recipient. With our conceptual and ethical analysis, we aim to contribute to responsible development of smart lifelike materials and regenerative implants.
Collapse
Affiliation(s)
- Anne-Floor J de Kanter
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands.
| | - Karin R Jongsma
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Annelien L Bredenoord
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Terzano M, Wollner MP, Kainz MP, Rolf-Pissarczyk M, Götzen N, Holzapfel GA. Modelling the anisotropic inelastic response of polymeric scaffolds for in situ tissue engineering applications. J R Soc Interface 2023; 20:20230318. [PMID: 37700713 PMCID: PMC10498354 DOI: 10.1098/rsif.2023.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
In situ tissue engineering offers an innovative solution for replacement valves and grafts in cardiovascular medicine. In this approach, a scaffold, which can be obtained by polymer electrospinning, is implanted into the human body and then infiltrated by cells, eventually replacing the scaffold with native tissue. In silico simulations of the whole process in patient-specific models, including implantation, growth and degradation, are very attractive to study the factors that might influence the end result. In our research, we focused on the mechanical behaviour of the polymeric scaffold and its short-term response. Following a recently proposed constitutive model for the anisotropic inelastic behaviour of fibrous polymeric materials, we present here its numerical implementation in a finite element framework. The numerical model is developed as user material for commercial finite element software. The verification of the implementation is performed for elementary deformations. Furthermore, a parallel-plate test is proposed as a large-scale representative example, and the model is validated by comparison with experiments.
Collapse
Affiliation(s)
- Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | | | - Manuel P. Kainz
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | | | - Nils Götzen
- 4RealSim Services BV, IJsselstein, The Netherlands
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
45
|
İnal MS, Darcan C, Akpek A. Characterization of a Decellularized Sheep Pulmonary Heart Valves and Analysis of Their Capability as a Xenograft Initial Matrix Material in Heart Valve Tissue Engineering. Bioengineering (Basel) 2023; 10:949. [PMID: 37627834 PMCID: PMC10451205 DOI: 10.3390/bioengineering10080949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
In order to overcome the disadvantages of existing treatments in heart valve tissue engineering, decellularization studies are carried out. The main purpose of decellularization is to eliminate the immunogenicity of biologically derived grafts and to obtain a scaffold that allows recellularization while preserving the natural tissue architecture. SD and SDS are detergent derivatives frequently used in decellularization studies. The aim of our study is to decellularize the pulmonary heart valves of young Merino sheep by using low-density SDS and SD detergents together, and then to perform their detailed characterization to determine whether they are suitable for clinical studies. Pulmonary heart valves of 4-6-month-old sheep were decellularized in detergent solution for 24 h. The amount of residual DNA was measured to determine the efficiency of decellularization. Then, the effect of decellularization on the ECM by histological staining was examined. In addition, the samples were visualized by SEM to determine the surface morphologies of the scaffolds. A uniaxial tensile test was performed to examine the effect of decellularization on biomechanical properties. In vitro stability of scaffolds decellularized by collagenase treatment was determined. In addition, the cytotoxic effect of scaffolds on 3T3 cells was examined by MTT assay. The results showed DNA removal of 94% and 98% from the decellularized leaflet and pulmonary wall portions after decellularization relative to the control group. No cell nuclei were found in histological staining and it was observed that the three-layer leaflet structure was preserved. As a result of the tensile test, it was determined that there was no statistically significant difference between the control and decellularized groups in the UTS and elasticity modulus, and the biomechanical properties did not change. It was also observed that decellularized sheep pulmonary heart valves had no cytotoxic effect. In conclusion, we suggest that the pulmonary valves of decellularized young Merino sheep can be used as an initial matrix in heart valve tissue engineering studies.
Collapse
Affiliation(s)
- Müslüm Süleyman İnal
- Department of Molecular Biology and Genetics, Institute of Science, Bilecik Seyh Edebali University, Bilecik 11230, Turkey;
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik 11230, Turkey;
| | - Ali Akpek
- Department of Biomedical Engineering, Faculty of Electrical-Electronics, Yildiz Technical University, Istanbul 34220, Turkey
| |
Collapse
|
46
|
Bharucha AH, Moore J, Carnahan P, MacCarthy P, Monaghan MJ, Baghai M, Deshpande R, Byrne J, Dworakowski R, Eskandari M. Three-dimensional printing in modelling mitral valve interventions. Echo Res Pract 2023; 10:12. [PMID: 37528494 PMCID: PMC10394816 DOI: 10.1186/s44156-023-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Mitral interventions remain technically challenging owing to the anatomical complexity and heterogeneity of mitral pathologies. As such, multi-disciplinary pre-procedural planning assisted by advanced cardiac imaging is pivotal to successful outcomes. Modern imaging techniques offer accurate 3D renderings of cardiac anatomy; however, users are required to derive a spatial understanding of complex mitral pathologies from a 2D projection thus generating an 'imaging gap' which limits procedural planning. Physical mitral modelling using 3D printing has the potential to bridge this gap and is increasingly being employed in conjunction with other transformative technologies to assess feasibility of intervention, direct prosthesis choice and avoid complications. Such platforms have also shown value in training and patient education. Despite important limitations, the pace of innovation and synergistic integration with other technologies is likely to ensure that 3D printing assumes a central role in the journey towards delivering personalised care for patients undergoing mitral valve interventions.
Collapse
Affiliation(s)
- Apurva H Bharucha
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - John Moore
- Robarts Research Institute, Western University, London, ON, Canada
| | - Patrick Carnahan
- Robarts Research Institute, Western University, London, ON, Canada
| | - Philip MacCarthy
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Mark J Monaghan
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Max Baghai
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Ranjit Deshpande
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Jonathan Byrne
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Rafal Dworakowski
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Mehdi Eskandari
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
47
|
Rajab TK, Goerlich CE, Forbess JM, Griffith BP, Mohiuddin MM. Partial heart xenotransplantation: A research protocol in non-human primates. Artif Organs 2023; 47:1262-1266. [PMID: 37334835 DOI: 10.1111/aor.14546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 06/21/2023]
Abstract
Partial heart transplantation is a new type of transplant that delivers growing heart valve replacements for babies. Partial heart transplantation differs from orthotopic heart transplantation because only the part of the heart containing the heart valve is transplanted. It also differs from homograft valve replacement because viability of the graft is preserved by tissue matching, minimizing donor ischemia times, and recipient immunosuppression. This preserves partial heart transplant viability and allows the grafts to fulfill biological functions such as growth and self-repair. These advantages over conventional heart valve prostheses are balanced by similar disadvantages as other organ transplants, most importantly limitations in donor graft availability. Prodigious progress in xenotransplantation promises to solve this problem by providing an unlimited source of donor grafts. In order to study partial heart xenotransplantation, a suitable large animal model is important. Here we describe our research protocol for partial heart xenotransplantation in nonhuman primates.
Collapse
Affiliation(s)
- Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Corbin E Goerlich
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph M Forbess
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Muhammad M Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
McVadon DH, Hardy WA, Boucek KA, Rivers WD, Kwon JH, Kavarana MN, Costello JM, Rajab TK. Effect of cardiac graft rejection on semilunar valve function: implications for heart valve transplantation. Cardiol Young 2023; 33:1401-1408. [PMID: 35968848 DOI: 10.1017/s104795112200258x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The treatment of neonates with unrepairable heart valve dysfunction remains an unsolved problem because there are no growing heart valve replacements. Heart valve transplantation is a potential approach to deliver growing heart valve replacements. Therefore, we retrospectively analysed the semilunar valve function of orthotopic heart transplants during rejection episodes. METHODS We included children who underwent orthotopic heart transplantation at our institution and experienced at least one episode of rejection between 1/1/2010 and 1/1/2020. Semilunar valve function was analysed using echocardiography at baseline, during rejection and approximately 3 months after rejection. RESULTS Included were a total of 31 episodes of rejection. All patients had either no (27) or trivial (4) aortic insufficiency prior to rejection. One patient developed mild aortic insufficiency during a rejection episode (P = 0.73), and all patients had either no (21) or trivial (7) aortic insufficiency at follow-up (P = 0.40). All patients had mild or less pulmonary insufficiency prior to rejection, which did not significantly change during (P = 0.40) or following rejection (P = 0.35). Similarly, compared to maximum pressure gradients across the valves at baseline, which were trivial, there was no appreciable change in the gradient across the aortic valve during (P = 0.50) or following rejection (P = 0.42), nor was there any meaningful change in the gradient across the pulmonary valve during (P = 0.55) or following rejection (P = 0.91). CONCLUSIONS This study demonstrated that there was no echocardiographic evidence of change in semilunar valve function during episodes of rejection in patient with heart transplants. These findings indicate that heart valve transplants require lower levels of immune suppression than orthotopic heart transplants and provide partial foundational evidence to justify future research that will determine whether heart valve transplantation may deliver growing heart valve replacements for children.
Collapse
Affiliation(s)
- Deani H McVadon
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - William A Hardy
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Katerina A Boucek
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - William D Rivers
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jennie H Kwon
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Minoo N Kavarana
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - John M Costello
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Taufiek Konrad Rajab
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
49
|
Wu CA, Zhu Y, Woo YJ. Advances in 3D Bioprinting: Techniques, Applications, and Future Directions for Cardiac Tissue Engineering. Bioengineering (Basel) 2023; 10:842. [PMID: 37508869 PMCID: PMC10376421 DOI: 10.3390/bioengineering10070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in the United States. Cardiac tissue engineering is a direction in regenerative medicine that aims to repair various heart defects with the long-term goal of artificially rebuilding a full-scale organ that matches its native structure and function. Three-dimensional (3D) bioprinting offers promising applications through its layer-by-layer biomaterial deposition using different techniques and bio-inks. In this review, we will introduce cardiac tissue engineering, 3D bioprinting processes, bioprinting techniques, bio-ink materials, areas of limitation, and the latest applications of this technology, alongside its future directions for further innovation.
Collapse
Affiliation(s)
- Catherine A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Liu D, Feng S, Huang Q, Sun S, Dong G, Long F, Milazzo M, Wang M. Soft, strong, tough, and durable bio-hydrogels via maximizing elastic entropy. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300426. [PMID: 39399778 PMCID: PMC11469578 DOI: 10.1002/adfm.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 10/15/2024]
Abstract
Load-bearing soft tissues are soft but strong, strong yet tough. These properties can only be replicated in synthetic hydrogels, which do not have the biocomplexity required by many biomedical applications. By contrast, natural hydrogels, although retaining the native complexity, are weak and fragile. Here we present a thermomechanical casting method to achieve the mechanical capabilities of synthetic materials in biopolymer hydrogels. The thermomechanical cast and chemically crosslinked biopolymer chains form a short-range disordered but long-range ordered structure in water. Upon stretch, the disordered structure transforms to a hierarchically ordered structure. This disorder-order transformation resembles the synergy of the disordered elastin and ordered collagen in load-bearing soft tissues. As entropy drives a reverse order-disorder transformation, the hydrogels can resist repeated cycles of loads without deterioration in mechanical properties. Gelatin hydrogels produced by this method combine tissue-like tunable mechanical properties that outperform the gelatin prepared by synthetic approaches, and in vivo biocomplexity beyond current natural systems. Unlike polymer engineering approaches, which rely on specific crosslinks provided by special polymers, this strategy utilizes the entropy of swollen chains and is generalizable to many other biopolymers. It could thus significantly accelerate translational success of biomaterials.
Collapse
Affiliation(s)
- Dani Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, 14853, USA
| | - Shuofei Sun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Gening Dong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Feifei Long
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122 Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mingkun Wang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|