1
|
Wang Y, Sun M, Kwon SH, Dong L. Advancements in flexible biomechanical energy harvesting for smart health applications. Chem Commun (Camb) 2025; 61:2424-2449. [PMID: 39744849 DOI: 10.1039/d4cc05917d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Advancing flexible electronics enables timely smart health management and diagnostic interventions. However, current health electronics typically rely on replaceable batteries or external power sources, requiring direct contact with the human skin or organs. This setup often results in rigid and bulky devices, reducing user comfort during long-term use. Flexible biomechanical energy harvesting technology, based on triboelectric or piezoelectric strategies, offers a promising approach for continuous and comfortable smart health applications, providing a sustainable power supply and self-powered sensing. This review systematically examines biomechanical energy sources around the human body, explores various energy harvesting mechanisms and their applications in smart health, and concludes with insights and future perspectives in this field.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Mengdie Sun
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Yang C, Wang H, Cao Z, Wang K, Zhou G, Hou W, Zhao Y, Sun B. TiO x-Based Implantable Memristor for Biomedical Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6550-6559. [PMID: 39818702 DOI: 10.1021/acsami.4c17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Implantable memristors are considered an emerging electronic technology that can simulate brain memory function and demonstrate some promising applications in the biomedical field. However, it remains a critical challenge to enhance their long-term stability and biocompatibility in implantation environments. In this work, an implantable memristor has been successfully fabricated based on TiOx using magnetron sputtering. The device demonstrated excellent thermal stability and recoverability at elevated temperatures, providing important experimental evidence for its applications under high-temperature environments. More importantly, after long-term testing under biological mimicking environments, such as fresh pork and bullfrog tissues, the memristor maintained excellent bipolar resistive switching (RS) characteristics and stable memory performance, indicating its potential for use in medical fields. Further analysis revealed that the RS behaviors of the device are mainly controlled by space charge limited currents (SCLC), Ohmic conduction, and Schottky emission conduction mechanisms. Therefore, the long-term stability of the implantable memristor is validated under real biological environments, promoting the transition of implantable memristor from theory to practical applications and laying the foundation for further biomedical applications.
Collapse
Affiliation(s)
- Chuan Yang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zelin Cao
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kun Wang
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing 400715, China
| | - Wentao Hou
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
3
|
Xin Y, Sun B, Kong Y, Zhao B, Chen J, Shen K, Zhang Y. Advances in integrated power supplies for self-powered bioelectronic devices. NANOSCALE 2025; 17:2423-2437. [PMID: 39844771 DOI: 10.1039/d4nr04645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection. To address these issues, self-powered devices with integrated power supplies have emerged, including triboelectric nanogenerators, piezoelectric nanogenerators, thermoelectric generators, batteries, biofuel cells, solar cells, wireless power transfer, and hybrid energy systems. This mini-review highlights the recent advances in the power supplies utilized in these self-powered devices. A concluding section discusses the subsisting challenges and future perspectives in integrated power supply technologies and design and manufacturing of self-powered devices.
Collapse
Affiliation(s)
- Yu Xin
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Bin Sun
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| | - Yifei Kong
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| | - Bojie Zhao
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| | - Jiayang Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kui Shen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
4
|
Li J, Sun Z, Wen N, Li Y. A Honeycomb-Structured Triboelectric Nanogenerator Based on Polyester Cloth for Smart Running Application. ChemistryOpen 2025:e202400252. [PMID: 39865990 DOI: 10.1002/open.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/30/2024] [Indexed: 01/28/2025] Open
Abstract
Self-powered devices for human motion monitoring and energy harvesting have garnered widespread attention in recent research. In this work, we designed a honeycomb-structured triboelectric nanogenerator (H-TENG) using polyester cloth and Teflon tape, with aluminum foil as the conductive electrode. This design leverages the large surface area and flexibility of textiles, resulting in significant performance improvements. The H-TENG achieves an output voltage of 350 V, an output current of 42 μA, and a transfer charge (QSC) of 77 nC, with a maximum output power of 465 μW. Additionally, the H-TENG demonstrates the ability to monitor running activities and various gait patterns, providing real-time bio-mechanical data for smart running applications. The introduction of a stacked structure further enhances the output performance by increasing contact area and scalability, making the H-TENG a robust and high-performance energy harvester suitable for advanced wearable and flexible electronics.
Collapse
Affiliation(s)
- Jianping Li
- Department of Physical Education and Research, Lanzhou University of Technology, Gansu, China
| | - Zuhao Sun
- School of Physical Education, Ningxia University, Yinchuan, China
| | - Nan Wen
- College of Physical Education, YiLi Normal University, Yining, China
| | - Yan Li
- Department of Pharmacy and Health Management, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
| |
Collapse
|
5
|
Seo B, Noh D, Choi Y, Chen X, Hu R, Choi W. Mechanical-Stimuli-Driven Pseudo-Conductive Channels Along Dielectric Heterojunction Interfaces for Mechanoelectric Energy Conversion and Transmission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416952. [PMID: 39663717 DOI: 10.1002/adma.202416952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Mechanoelectric energy conversion holds promise for energy conversion and transmission devices, yet conventional configurations rely on large-area conductive materials in active regions, limiting architectural design for cutting-edge devices. Here, a rational strategy is reported to create mechanical stimuli-driven pseudo-conductive (MSPC) channels entirely from dielectric materials, eliminating the need for electrodes in active regions. An in-depth investigation of MSPC channel formation mechanism at dielectric interfaces is conducted, employing energy band analyses. Following the mechanical stimuli-driven charging process, MSPC device effectively transmits electrical signals over 42 mm, achieving remarkable 512% enhancement compared to its pristine state. Control devices with non-continuous dielectric configurations highlight the impact of heterojunction interfaces on MSPC channels. A resistor-capacitor charging test reveals up to 49% reduction in voltage change rate, indicating a substantial decrease in electrical impedance along the MSPC channel. Furthermore, MSPC devices demonstrate information transmission capabilities, such as sequences of bits or letters, utilizing solely dielectric configurations. This study paves the way to reduce conductive materials of wearable electronics, biomedical implants, and IoT technologies, overcoming significant challenges such as potential electrical shortages, design inflexibility, limited manufacturing scalability, and maintenance issues.
Collapse
Affiliation(s)
- Byungseok Seo
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Dowon Noh
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Choi
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Xinqi Chen
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Run Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wonjoon Choi
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Wang J, Xu S, Hu C. Charge Generation and Enhancement of Key Components of Triboelectric Nanogenerators: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409833. [PMID: 39473343 DOI: 10.1002/adma.202409833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Indexed: 12/13/2024]
Abstract
The past decade has witnessed remarkable progress in high-performance Triboelectric nanogenerators (TENG) with the design and synthesis of functional dielectric materials, the exploration of novel dynamic charge transport mechanisms, and the innovative design of architecture, making it one of the most crucial technologies for energy harvesting. High output charge density is fundamental for TENG to expand its application scope and accelerate industrialization; it depends on the dynamic equilibrium of charge generation, trapping, de-trapping, and migration within its core components. Here, this review classifies and summarizes innovative approaches to enhance the charge density of the charge generation, charge trapping, and charge collection layers. The milestone of high charge density TENG is reviewed based on material selection and innovative mechanisms. The state-of-the-art principles and techniques for generating high charge density and suppressing charge decay are discussed and highlighted in detail, and the distinct charge transport mechanisms, the technologies of advanced materials preparation, and the effective charge excitation strategy are emphatically introduced. Lastly, the bottleneck and future research priorities for boosting the output charge density are summarized. A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-output TENG.
Collapse
Affiliation(s)
- Jian Wang
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P. R. China
| | - Shuyan Xu
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P. R. China
| | - Chenguo Hu
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
7
|
Bian Y, Jiang D, Ding H, Du X, Shan X, Wang W, Shiigi H, Chen Z. Hydrovoltaic-Photoelectric Coupling Strategy Triggered a Robust Output Signal for High-Performance Self-Powered Electrochemical Sensing. Anal Chem 2024; 96:18708-18717. [PMID: 39535204 DOI: 10.1021/acs.analchem.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrovoltaic self-powered electrochemical sensors hold significant potential for constructing wearable, portable, and real-time detection devices, but the low output signal due to the slow phase transition rate of water molecules and the intricate nature of integration limits their applications. In this work, a hydrovoltaic-photovoltaic coupling effect-enhanced self-powered electrochemical sensor was prepared by combining zinc oxide (ZnO) nanowire arrays with cerium-organometallic framework (Ce-MOF) materials, which greatly improved the electrical output of self-powered electrochemical systems and provided a new detection strategy for an efficient self-powered electrochemical sensing system. The heterojunction constructed by ZnO arrays and Ce-MOF could generate a built-in electric field under the action of light irradiation and promote the separation of the photocarriers. Moreover, the number of charged particles in the film further boosted the water evaporation effect. Notably, the optimal ZnO/Ce-MOF-based self-powered electrochemical device by hydrovoltaic-photoelectric coupling strategy displayed an outstanding output signal, which was 11-fold that of a pure hydrovoltaic-based device. As a proof of concept, the self-powered electrochemical sensing platform was explored for sensitive detection of lincomycin via electrostatic adsorption for the binding of an aptamer. The self-powered sensor showed superior performances, including a wide linear range from 1 fM to 1 nM with a detection limit of 0.2 fM, good stability, and satisfactory recoveries for the determination of lincomycin in real samples, holding great promise in environmental monitoring and food analysis. This study provides a promising avenue to boost the energy conversion efficiency with a high output signal for constructing sensitive self-powered biosensors.
Collapse
Affiliation(s)
- Yuqing Bian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Hanling Ding
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P.R. China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu 213032, P.R. China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
8
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. BIOSENSORS 2024; 14:560. [PMID: 39590019 PMCID: PMC11592256 DOI: 10.3390/bios14110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
9
|
Quan Y, Wang E, Ouyang H, Xu L, Jiang L, Teng L, Li J, Luo L, Wu X, Zeng Z, Li Z, Zheng Q. Biodegradable and Implantable Triboelectric Nanogenerator Improved by β-Lactoglobulin Fibrils-Assisted Flexible PVA Porous Film. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409914. [PMID: 39526831 DOI: 10.1002/advs.202409914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Triboelectric nanogenerators (TENGs) are highly promising as implantable, degradable energy sources and self-powered sensors. However, the degradable triboelectric materials are often limited in terms of contact electrification and mechanical properties. Here, a bio-macromolecule-assisted toughening strategy for PVA aerogel-based triboelectric materials is proposed. By introducing β-lactoglobulin fibrils (BF) into the PVA aerogel network, the material's mechanical properties while preserving its swelling resistance is significantly enhanced. Compared to pure PVA porous film, the BF-PVA porous film exhibits an eightfold increase in fracture strength (from 1.92 to 15.48 J) and a fourfold increase in flexibility (from 10.956 to 39.36 MPa). Additionally, the electrical output of BF-PVA in triboelectric performance tests increased nearly fivefold (from 45 to 203 V). Leveraging these enhanced properties, a biodegradable TENG (bi-TENG) for implantable muscle activity sensing is developed, achieving real-time monitoring of neuromuscular processes. This innovation holds significant potential for advancing implantable medical devices and promoting new applications in bio-integrated electronics.
Collapse
Affiliation(s)
- Yichang Quan
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Ouyang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingling Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Lu Jiang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Lin Luo
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xujie Wu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Qiang Zheng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
10
|
Xie L, Lei H, Liu Y, Lu B, Qin X, Zhu C, Ji H, Gao Z, Wang Y, Lv Y, Zhao C, Mitrovic IZ, Sun X, Wen Z. Ultrasensitive Wearable Pressure Sensors with Stress-Concentrated Tip-Array Design for Long-Term Bimodal Identification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406235. [PMID: 39007254 DOI: 10.1002/adma.202406235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Indexed: 07/16/2024]
Abstract
The great challenges for existing wearable pressure sensors are the degradation of sensing performance and weak interfacial adhesion owing to the low mechanical transfer efficiency and interfacial differences at the skin-sensor interface. Here, an ultrasensitive wearable pressure sensor is reported by introducing a stress-concentrated tip-array design and self-adhesive interface for improving the detection limit. A bipyramidal microstructure with various Young's moduli is designed to improve mechanical transfer efficiency from 72.6% to 98.4%. By increasing the difference in modulus, it also mechanically amplifies the sensitivity to 8.5 V kPa-1 with a detection limit of 0.14 Pa. The self-adhesive hydrogel is developed to strengthen the sensor-skin interface, which allows stable signals for long-term and real-time monitoring. It enables generating high signal-to-noise ratios and multifeatures when wirelessly monitoring weak pulse signals and eye muscle movements. Finally, combined with a deep learning bimodal fused network, the accuracy of fatigued driving identification is significantly increased to 95.6%.
Collapse
Affiliation(s)
- Lingjie Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Hao Lei
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Yina Liu
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Bohan Lu
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Xuan Qin
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chengyi Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haifeng Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenqiu Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Wang
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Yangyang Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Ivona Z Mitrovic
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
11
|
Iqbal SMA, Leavitt MA, Mahgoub I, Asghar W. Advances in Cardiovascular Wearable Devices. BIOSENSORS 2024; 14:525. [PMID: 39589984 PMCID: PMC11591746 DOI: 10.3390/bios14110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 11/28/2024]
Abstract
Cardiovascular diseases are a leading cause of death worldwide. They mainly include coronary artery disease, rheumatic heart disease, andcerebrovascular disease, and. Cardiovascular diseases can be better managed and diagnosed using wearable devices. Wearable devices, in comparison to traditional cardiovascular diagnostic tools, are not only inexpensive but also have the potential to provide continuous real-time monitoring. This paper reviews some of the recent advances in cardiovascular wearable devices. It discusses traditional implantable devices for cardiovascular diseases as well as wearable devices. The different types of wearable devices are categorized based on different technologies, namely using galvanic contact, photoplethysmography (PPG), and radio frequency (RF) waves. It also highlights the use of artificial intelligence (AI) in cardiovascular disease diagnostics as well as future perspectives on cardiovascular devices.
Collapse
Affiliation(s)
- Sheikh Muhammad Asher Iqbal
- Department of Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (S.M.A.I.); (I.M.)
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mary Ann Leavitt
- Christine E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Imadeldin Mahgoub
- Department of Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (S.M.A.I.); (I.M.)
| | - Waseem Asghar
- Department of Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (S.M.A.I.); (I.M.)
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
12
|
Sun Z, Jin Y, Luo J, Li L, Ding Y, Luo Y, Qi Y, Li Y, Zhang Q, Li K, Shi H, Yin S, Wang H, Wang H, Hou C. A bioabsorbable mechanoelectric fiber as electrical stimulation suture. Nat Commun 2024; 15:8462. [PMID: 39379368 PMCID: PMC11461631 DOI: 10.1038/s41467-024-52354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
In surgical medicine, suturing is the standard treatment for large incisions, yet traditional sutures are limited in functionality. Electrical stimulation is a non-pharmacological therapy that promotes wound healing. In this context, we designed a passive and biodegradable mechanoelectric suture. The suture consists of multi-layer coaxial structure composed of (poly(lactic-co-glycolic acid), polycaprolactone) and magnesium to allow safe degradation. In addition to the excellent mechanical properties, the mechanoelectrical nature of the suture grants the generation of electric fields in response to movement and stretching. This is shown to speed up wound healing by 50% and reduce the risk of infection. This work presents an evolution of the conventional wound closure procedures, using a safe and degradable device ready to be translated into clinical practice.
Collapse
Affiliation(s)
- Zhouquan Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yuefan Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| | - Yue Ding
- Department of General Surgery, Tongji Hospital, Tongji University Medical School, Shanghai, P. R. China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Yan Qi
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China.
| | - Hui Wang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China.
| |
Collapse
|
13
|
Zhang T, Wang Y, Feng X, Zuo Y, Yu H, Bao H, Jiang F, Jiang S. Flexible electronics for cardiovascular monitoring on complex physiological skins. iScience 2024; 27:110707. [PMID: 39262772 PMCID: PMC11387687 DOI: 10.1016/j.isci.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, responsible for a considerable portion of worldwide mortality. Flexible electronics enable continuous, noninvasive, real-time, and portable monitoring, providing an ideal platform for personalized healthcare. Nevertheless, challenges persist in sustaining stable adherence across diverse and intricate skin environments, hindering further advancement toward clinical applications. Strategies such as structural design and chemical modification can significantly enhance the environmental adaptability and monitoring performance of flexible electronics. This review delineates processing techniques, including structural design and chemical modification, to mitigate signal interference from sebaceous skin, motion artifacts from the skin in motion, and infection risks from fragile skin, thereby enabling the accurate monitoring of key cardiovascular indicators in complex physiological environments. Moreover, it delves into the potential for the strategic development and improvement of flexible electronics to ensure their alignment with complex physiological environment requirements, facilitating their transition to clinical applications.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yunshen Wang
- Department of Pneumology, Tianjin Children's Hospital, Children's Hospital, Tianjin University, Tianjin 300204, China
| | - Xingdong Feng
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yizhou Zuo
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hannong Yu
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| | - Fan Jiang
- Geriatric Medical Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| |
Collapse
|
14
|
Scagliusi SF, Giménez-Miranda L, Pérez-García P, Olmo-Fernández A, Huertas-Sánchez G, Medrano-Ortega FJ, Yúfera-García A. Wearable Devices Based on Bioimpedance Test in Heart-Failure: Design Issues. Rev Cardiovasc Med 2024; 25:320. [PMID: 39355596 PMCID: PMC11440418 DOI: 10.31083/j.rcm2509320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 10/03/2024] Open
Abstract
Heart-failure (HF) is a severe medical condition. Physicians need new tools to monitor the health status of their HF patients outside the hospital or medical supervision areas, to better know the evolution of their patients' main biomarker values, necessary to evaluate their health status. Bioimpedance (BI) represents a good technology for sensing physiological variables and processes on the human body. BI is a non-expensive and non-invasive technique for sensing a wide variety of physiological parameters, easy to be implemented on biomedical portable systems, also called "wearable devices". In this systematic review, we address the most important specifications of wearable devices based on BI used in HF real-time monitoring and how they must be designed and implemented from a practical and medical point of view. The following areas will be analyzed: the main applications of BI in heart failure, the sensing technique and impedance specifications to be met, the electrode selection, portability of wearable devices: size and weight (and comfort), the communication requests and the power consumption (autonomy). The different approaches followed by biomedical engineering and clinical teams at bibliography will be described and summarized in the paper, together with results derived from the projects and the main challenges found today.
Collapse
Affiliation(s)
- Santiago F Scagliusi
- Institute of Microelectronics of Seville - Spanish National Center of Microelectronics (IMSE-CNM) University of Seville, 41092 Seville, Spain
| | - Luis Giménez-Miranda
- Institute of Biomedicine of Seville (IBiS-US), Hospital Universitario Virgen del Rocío (HUVR) University of Seville, 41013 Seville, Spain
| | - Pablo Pérez-García
- Institute of Microelectronics of Seville - Spanish National Center of Microelectronics (IMSE-CNM) University of Seville, 41092 Seville, Spain
| | - Alberto Olmo-Fernández
- Institute of Microelectronics of Seville - Spanish National Center of Microelectronics (IMSE-CNM) University of Seville, 41092 Seville, Spain
| | - Gloria Huertas-Sánchez
- Institute of Microelectronics of Seville - Spanish National Center of Microelectronics (IMSE-CNM) University of Seville, 41092 Seville, Spain
| | - Francisco J Medrano-Ortega
- Institute of Biomedicine of Seville (IBiS-US), Hospital Universitario Virgen del Rocío (HUVR) University of Seville, 41013 Seville, Spain
| | - Alberto Yúfera-García
- Institute of Microelectronics of Seville - Spanish National Center of Microelectronics (IMSE-CNM) University of Seville, 41092 Seville, Spain
| |
Collapse
|
15
|
Wen K, Zhang C, Zhang G, Wang M, Mei G, Zhang Z, Zhao W, Guo W, Zhou Q, Liu E, Zhu Y, Bai J, Zhu M, Wang W, Liu Z, Zhou X. Jellyfish-Inspired Artificial Spider Silk for Luminous Surgical Sutures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314158. [PMID: 39081084 DOI: 10.1002/adma.202314158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/08/2024] [Indexed: 09/19/2024]
Abstract
The development of functional surgical sutures with excellent mechanical properties, good fluorescence, and high cytocompatibility is highly required in the field of medical surgeries. Achieving fibers that simultaneously exhibit high mechanical robustness, good spinnability, and durable fluorescence emission has remained challenging up to now. Taking inspiration from the spinning process of spider silk and the luminescence mechanism of jellyfish, this work reports a luminous artificial spider silk prepared with the aim of balancing the fiber spinnability and mechanical robustness. This is realized by employing highly hydrated segments with aggregation-induced luminescence for enhancing the fiber spinnability and polyhydroxyl segments for increasing the fiber mechanical robustness. Twist insertion during fiber spinning improves the fiber strength, toughness, and fluorescence emission. Furthermore, coating the fiber with an additional polymer layer results in a "sheath-core" architecture with improved mechanical properties and capacity to withstand water. This work provides a new design strategy for performing luminescent and robust surgical sutures.
Collapse
Affiliation(s)
- Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiqiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjin Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, 300071, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
16
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
17
|
Zheng Y, Zhang Z, Zhang Y, Pan Q, Yan X, Li X, Yang Z. Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407395. [PMID: 39044603 DOI: 10.1002/adma.202407395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Indexed: 07/25/2024]
Abstract
Implantable medical devices (IMDs), like pacemakers regulating heart rhythm or deep brain stimulators treating neurological disorders, revolutionize healthcare. However, limited battery life necessitates frequent surgeries for replacements. Ultrasound power transfer (UPT) emerges as a promising solution for sustainable IMD operation. Current research prioritizes implantable materials, with less emphasis on sound field analysis and maximizing energy transfer during wireless power delivery. This review addresses this gap. A comprehensive analysis of UPT technology, examining cutting-edge system designs, particularly in power supply and efficiency is provided. The review critically examines existing efficiency models, summarizing the key parameters influencing energy transmission in UPT systems. For the first time, an energy flow diagram of a general UPT system is proposed to offer insights into the overall functioning. Additionally, the review explores the development stages of UPT technology, showcasing representative designs and applications. The remaining challenges, future directions, and exciting opportunities associated with UPT are discussed. By highlighting the importance of sustainable IMDs with advanced functions like biosensing and closed-loop drug delivery, as well as UPT's potential, this review aims to inspire further research and advancements in this promising field.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yanhu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiqi Pan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| |
Collapse
|
18
|
Pan YC, Dai Z, Ma H, Zheng J, Leng J, Xie C, Yuan Y, Yang W, Yalikun Y, Song X, Han CB, Shang C, Yang Y. Self-powered and speed-adjustable sensor for abyssal ocean current measurements based on triboelectric nanogenerators. Nat Commun 2024; 15:6133. [PMID: 39033189 PMCID: PMC11271462 DOI: 10.1038/s41467-024-50581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
The monitoring of currents in the abyssal ocean is an essential foundation of deep-sea research. The state-of-the-art current meter has limitations such as the requirement of a power supply for signal transduction, low pressure resistance, and a narrow measurement range. Here, we report a fully integrated, self-powered, highly sensitive deep-sea current measurement system in which the ultra-sensitive triboelectric nanogenerator harvests ocean current energy for the self-powered sensing of tiny current motions down to 0.02 m/s. Through an unconventional magnetic coupling structure, the system withstands immense hydrostatic pressure exceeding 45 MPa. A variable-spacing structure broadens the measuring range to 0.02-6.69 m/s, which is 67% wider than that of commercial alternatives. The system successfully operates at a depth of 4531 m in the South China Sea, demonstrating the record-deep operations of triboelectric nanogenerator-based sensors in deep-sea environments. Our results show promise for sustainable ocean current monitoring with higher spatiotemporal resolution.
Collapse
Affiliation(s)
- Yuan Chao Pan
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Zhuhang Dai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haoxiang Ma
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jinrong Zheng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jing Leng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Chao Xie
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yapeng Yuan
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Wencai Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | - Xuemei Song
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Chang Bao Han
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| | - Chenjing Shang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
19
|
Liu S, Huo B, Guo CY. Progress on Material Design and Device Fabrication via Coupling Photothermal Effect with Thermoelectric Effect. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3524. [PMID: 39063816 PMCID: PMC11278506 DOI: 10.3390/ma17143524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Recovery and utilization of low-grade thermal energy is a topic of universal importance in today's society. Photothermal conversion materials can convert light energy into heat energy, which can now be used in cancer treatment, seawater purification, etc., while thermoelectric materials can convert heat energy into electricity, which can now be used in flexible electronics, localized cooling, and sensors. Photothermoelectrics based on the photothermal effect and the Seebeck effect provide suitable solutions for the development of clean energy and energy harvesting. The aim of this paper is to provide an overview of recent developments in photothermal, thermoelectric, and, most importantly, photothermal-thermoelectric coupling materials. First, the research progress and applications of photothermal and thermoelectric materials are introduced, respectively. After that, the classification of different application areas of materials coupling photothermal effect with thermoelectric effect, such as sensors, thermoelectric batteries, wearable devices, and multi-effect devices, is reviewed. Meanwhile, the potential applications and challenges to be overcome for future development are presented, which are of great reference value in waste heat recovery as well as solar energy resource utilization and are of great significance for the sustainable development of society. Finally, the challenges of photothermoelectric materials as well as their future development are summarized.
Collapse
Affiliation(s)
| | | | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.L.); (B.H.)
| |
Collapse
|
20
|
Anbuselvam B, Gunasekaran BM, Srinivasan S, Ezhilan M, Rajagopal V, Nesakumar N. Wearable biosensors in cardiovascular disease. Clin Chim Acta 2024; 561:119766. [PMID: 38857672 DOI: 10.1016/j.cca.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices. The review also delves into hydrogel-based wearable electrochemical biosensors, which detect biomarkers in sweat, interstitial fluids, saliva, and tears. Further attention is given to flexible electronics-based biosensors, including resistive, capacitive, and piezoelectric force sensors, as well as resistive and pyroelectric temperature sensors, flexible biochemical sensors, and sensor arrays. Moreover, the discussion extends to polymer-based wearable sensors, focusing on innovations in contact lens, textile-type, patch-type, and tattoo-type sensors. Finally, the review addresses the challenges associated with recent wearable biosensing technologies and explores future perspectives, highlighting potential groundbreaking avenues for transforming wearable sensing devices into advanced diagnostic tools with multifunctional capabilities for cardiovascular disease monitoring and other healthcare applications.
Collapse
Affiliation(s)
- Bhavadharani Anbuselvam
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Mechanical Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Madeshwari Ezhilan
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India.
| | - Venkatachalam Rajagopal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
21
|
Zhang W, Qin X, Li G, Zhou X, Li H, Wu D, Song Y, Zhao K, Wang K, Feng X, Tan L, Wang B, Sun X, Wen Z, Yang C. Self-powered triboelectric-responsive microneedles with controllable release of optogenetically engineered extracellular vesicles for intervertebral disc degeneration repair. Nat Commun 2024; 15:5736. [PMID: 38982049 PMCID: PMC11233569 DOI: 10.1038/s41467-024-50045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Qin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Gaocai Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Di Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Wang H, Yu X. Wireless powering solution for implantable electronics based on ultra-low frequency magnetic energy focusing. Natl Sci Rev 2024; 11:nwae140. [PMID: 38725936 PMCID: PMC11081072 DOI: 10.1093/nsr/nwae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Haoyu Wang
- Department of Biomedical Engineering, City University of Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, China
| |
Collapse
|
23
|
De Ridder D, Siddiqi MA, Dauwels J, Serdijn WA, Strydis C. NeuroDots: From Single-Target to Brain-Network Modulation: Why and What Is Needed? Neuromodulation 2024; 27:711-729. [PMID: 38639704 DOI: 10.1016/j.neurom.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/05/2023] [Accepted: 01/10/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Current techniques in brain stimulation are still largely based on a phrenologic approach that a single brain target can treat a brain disorder. Nevertheless, meta-analyses of brain implants indicate an overall success rate of 50% improvement in 50% of patients, irrespective of the brain-related disorder. Thus, there is still a large margin for improvement. The goal of this manuscript is to 1) develop a general theoretical framework of brain functioning that is amenable to surgical neuromodulation, and 2) describe the engineering requirements of the next generation of implantable brain stimulators that follow from this theoretic model. MATERIALS AND METHODS A neuroscience and engineering literature review was performed to develop a universal theoretical model of brain functioning and dysfunctioning amenable to surgical neuromodulation. RESULTS Even though a single target can modulate an entire network, research in network science reveals that many brain disorders are the consequence of maladaptive interactions among multiple networks rather than a single network. Consequently, targeting the main connector hubs of those multiple interacting networks involved in a brain disorder is theoretically more beneficial. We, thus, envision next-generation network implants that will rely on distributed, multisite neuromodulation targeting correlated and anticorrelated interacting brain networks, juxtaposing alternative implant configurations, and finally providing solid recommendations for the realization of such implants. In doing so, this study pinpoints the potential shortcomings of other similar efforts in the field, which somehow fall short of the requirements. CONCLUSION The concept of network stimulation holds great promise as a universal approach for treating neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Muhammad Ali Siddiqi
- Department of Electrical Engineering, Lahore University of Management Sciences, Lahore, Pakistan; Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands; Quantum and Computer Engineering Department, Delft University of Technology, Delft, The Netherlands
| | - Justin Dauwels
- Microelectronics Department, Delft University of Technology, Delft, The Netherlands
| | - Wouter A Serdijn
- Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands; Section Bioelectronics, Delft University of Technology, Delft, The Netherlands
| | - Christos Strydis
- Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands; Quantum and Computer Engineering Department, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
24
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
25
|
Tian G, Deng W, Yang T, Zhang J, Xu T, Xiong D, Lan B, Wang S, Sun Y, Ao Y, Huang L, Liu Y, Li X, Jin L, Yang W. Hierarchical Piezoelectric Composites for Noninvasive Continuous Cardiovascular Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313612. [PMID: 38574762 DOI: 10.1002/adma.202313612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Continuous monitoring of blood pressure (BP) and multiparametric analysis of cardiac functions are crucial for the early diagnosis and therapy of cardiovascular diseases. However, existing monitoring approaches often suffer from bulky and intrusive apparatus, cumbersome testing procedures, and challenging data processing, hampering their applications in continuous monitoring. Here, a heterogeneously hierarchical piezoelectric composite is introduced for wearable continuous BP and cardiac function monitoring, overcoming the rigidity of ceramic and the insensitivity of polymer. By optimizing the hierarchical structure and components of the composite, the developed piezoelectric sensor delivers impressive performances, ensuring continuous and accurate monitoring of BP at Grade A level. Furthermore, the hemodynamic parameters are extracted from the detected signals, such as local pulse wave velocity, cardiac output, and stroke volume, all of which are in alignment with clinical results. Finally, the all-day tracking of cardiac function parameters validates the reliability and stability of the developed sensor, highlighting its potential for personalized healthcare systems, particularly in early diagnosis and timely intervention of cardiovascular disease.
Collapse
Affiliation(s)
- Guo Tian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jieling Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianpei Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Boling Lan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shenglong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yong Ao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Longchao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuelan Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
26
|
Xu S, Wang J, Wu H, Zhao Q, Li G, Fu S, Shan C, Li K, Zhang Z, Hu C. Quantifying Dielectric Material Charge Trapping and De-Trapping Ability Via Ultra-Fast Charge Self-Injection Technique. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312148. [PMID: 38314966 DOI: 10.1002/adma.202312148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Recently, utilizing the air breakdown effect in the charge excitation strategy proves as an efficient charge injection technique to increase the surface charge density of dielectric polymers for triboelectric nanogenerators (TENGs). However, quantitative characterization of the ability of dielectric polymers to trap reverse charges and the effect on the startup time of secondary self-charge excitation (SSCE) are essential for extensive applications. Here, an ultra-fast charge self-injection technique based on a self-charge excitation strategy is proposed, and a standard method to quantify the charge trapping and de-trapping abilities of 23 traditional tribo-materials is introduced. Further, the relationship among the distribution of dielectric intrinsic deep, shallow trap states, and transportation of trapped charges is systematically analyzed in this article. It shows that the de-trapping rate of charges directly determines the reactivation and failure of SSCE. Last, independent of TENG contact efficiency, an ultra-high charge density of 2.67 mC m-2 and an ultra-fast startup time of SSCE are obtained using a 15 µm poly(vinylidene fluoride-trifluoroethylene) film, breaking the historical record for material modification. As a standard for material selection, this work quantifies the charge trapping and de-trapping ability of the triboelectric dielectric series and provides insights for understanding the charge transport in dielectrics.
Collapse
Affiliation(s)
- Shuyan Xu
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Jian Wang
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Huiyuan Wu
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Qionghua Zhao
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Gui Li
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Shaoke Fu
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Chuncai Shan
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Kaixian Li
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| | - Zhiyi Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Chenguo Hu
- Department of Applied Physics, Chongqing Key Laboratory of Interface Physics in Energy Conversion, Chongqing University, Chongqing, 400044, P.R. China
| |
Collapse
|
27
|
Xu M, Liu Y, Yang K, Li S, Wang M, Wang J, Yang D, Shkunov M, Silva SRP, Castro FA, Zhao Y. Minimally invasive power sources for implantable electronics. EXPLORATION (BEIJING, CHINA) 2024; 4:20220106. [PMID: 38854488 PMCID: PMC10867386 DOI: 10.1002/exp.20220106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/11/2024]
Abstract
As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.
Collapse
Affiliation(s)
- Ming Xu
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Yuheng Liu
- Department of Chemical and Process EngineeringUniversity of SurreyGuildfordSurreyUK
| | - Kai Yang
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Shaoyin Li
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Manman Wang
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Jianan Wang
- Department of Environmental Science and EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Dong Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Maxim Shkunov
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - S. Ravi P. Silva
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Fernando A. Castro
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
- National Physical LaboratoryTeddingtonMiddlesexUK
| | - Yunlong Zhao
- National Physical LaboratoryTeddingtonMiddlesexUK
- Dyson School of Design EngineeringImperial College LondonLondonUK
| |
Collapse
|
28
|
Liu Z, Hu Y, Qu X, Liu Y, Cheng S, Zhang Z, Shan Y, Luo R, Weng S, Li H, Niu H, Gu M, Yao Y, Shi B, Wang N, Hua W, Li Z, Wang ZL. A self-powered intracardiac pacemaker in swine model. Nat Commun 2024; 15:507. [PMID: 38218947 PMCID: PMC10787765 DOI: 10.1038/s41467-023-44510-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024] Open
Abstract
Harvesting biomechanical energy from cardiac motion is an attractive power source for implantable bioelectronic devices. Here, we report a battery-free, transcatheter, self-powered intracardiac pacemaker based on the coupled effect of triboelectrification and electrostatic induction for the treatment of arrhythmia in large animal models. We show that the capsule-shaped device (1.75 g, 1.52 cc) can be integrated with a delivery catheter for implanting in the right ventricle of a swine through the intravenous route, which effectively converts cardiac motion energy to electricity and maintains endocardial pacing function during the three-week follow-up period. We measure in vivo open circuit voltage and short circuit current of the self-powered intracardiac pacemaker of about 6.0 V and 0.2 μA, respectively. This approach exhibits up-to-date progress in self-powered medical devices and it may overcome the inherent energy shortcomings of implantable pacemakers and other bioelectronic devices for therapy and sensing.
Collapse
Affiliation(s)
- Zhuo Liu
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Yiran Hu
- Department of Cardiology, The Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
- Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xuecheng Qu
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Liu
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sijing Cheng
- Department of Cardiology, The Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Zhengmin Zhang
- School of Electronics and Information, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Ruizeng Luo
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Sixian Weng
- Department of Cardiology, The Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Hui Li
- Department of Ultrasound, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Hongxia Niu
- Department of Cardiology, The Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Min Gu
- Department of Cardiology, The Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China
| | - Bojing Shi
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Ningning Wang
- School of Electronics and Information, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Wei Hua
- Department of Cardiology, The Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China.
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zhong Lin Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
- Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
29
|
Wang T, Ouyang H, Luo Y, Xue J, Wang E, Zhang L, Zhou Z, Liu Z, Li X, Tan S, Chen Y, Nan L, Cao W, Li Z, Chen F, Zheng L. Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. SCIENCE ADVANCES 2024; 10:eadi6799. [PMID: 38181077 PMCID: PMC10776020 DOI: 10.1126/sciadv.adi6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Electrical stimulation can effectively accelerate bone healing. However, the substantial size and weight of electrical stimulation devices result in reduced patient benefits and compliance. It remains a challenge to establish a flexible and lightweight implantable microelectronic stimulator for bone regeneration. Here, we use self-powered technology to develop an electric pulse stimulator without circuits and batteries, which removes the problems of weight, volume, and necessary rigid packaging. The fully implantable bone defect electrical stimulation (BD-ES) system combines a hybrid tribo/piezoelectric nanogenerator to provide biphasic electric pulses in response to rehabilitation exercise with a conductive bioactive hydrogel. BD-ES can enhance multiple osteogenesis-related biological processes, including calcium ion import and osteogenic differentiation. In a rat model of critical-sized femoral defects, the bone defect was reversed by electrical stimulation therapy with BD-ES and subsequent bone mineralization, and the femur completely healed within 6 weeks. This work is expected to advance the development of symbiotic electrical stimulation therapy devices without batteries and circuits.
Collapse
Affiliation(s)
- Tianlong Wang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Han Ouyang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Luo
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiangtao Xue
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zifei Zhou
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhiqing Liu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xifan Li
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuo Tan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yixing Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Liping Nan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wentao Cao
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201102, China
| | - Zhou Li
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201102, China
| | - Longpo Zheng
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
30
|
Pisani AR, Rubini D, Altini C, Ruta R, Gazzilli M, Sardaro A, Iuele F, Maggialetti N, Rubini G. The Role of the 18F-FDG PET/CT in the Management of Patients Suspected of Cardiac Implantable Electronic Devices' Infection. J Pers Med 2024; 14:65. [PMID: 38248766 PMCID: PMC10820973 DOI: 10.3390/jpm14010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Infection of Cardiac Implantable Electronic Devices (CIEDI) is a real public health problem. The main aim of this study was to determine the diagnostic performance of 18F-FDG PET/CT in the diagnosis of CIEDI. Methods: A total of 48 patients, who performed 18F-FDG PET/CT for the clinical suspicion of CIEDI were retrospectively analyzed; all patients were provided with a model with procedural recommendations before the exam. Sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy (DA) of 18F-FDG PET/CT were calculated; the reproducibility of qualitative analysis was assessed with Cohen's κ test. The semi-quantitative parameters (SUVmax, SQR and TBR) were evaluated in CIEDI+ and CIEDI- patients using the Student' t-test; ROC curves were elaborated to detect cut-off values. The trend of image quality with regards to procedural recommendation adherence was evaluated. Results: Se, Sp, PPV, NPV and DA were respectively 96.2%, 81.8%, 86.2%, 94.7% and 89.6%. The reproducibility of qualitative analysis was excellent (K = 0.89). Semiquantitative parameters resulted statistically different in CIEDI+ and CIEDI- patients. Cut-off values were SUVmax = 2.625, SQR = 3.766 and TBR = 1.29. Trend curves showed increasing image quality due to adherence to procedural recommendations. Conclusions:18F-FDG-PET/CT is a valid tool in the management of patients suspected of CIEDI and adherence to procedural recommendations improves its image quality.
Collapse
Affiliation(s)
- Antonio Rosario Pisani
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (C.A.); (R.R.); (F.I.); (G.R.)
| | - Dino Rubini
- Radiotherapy, Precision Medicine Department, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Corinna Altini
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (C.A.); (R.R.); (F.I.); (G.R.)
| | - Rossella Ruta
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (C.A.); (R.R.); (F.I.); (G.R.)
| | - Maria Gazzilli
- Nuclear Medicine, ASL Bari—Di Venere, 70131 Bari, Italy;
| | - Angela Sardaro
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.S.); (N.M.)
| | - Francesca Iuele
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (C.A.); (R.R.); (F.I.); (G.R.)
| | - Nicola Maggialetti
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.S.); (N.M.)
| | - Giuseppe Rubini
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Policlinic of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; (C.A.); (R.R.); (F.I.); (G.R.)
| |
Collapse
|
31
|
Meng F, Cui Z, Guo H, Zhang Y, Gu Z, Wang Z. Global research on wearable technology applications in healthcare: A data-driven bibliometric analysis. Digit Health 2024; 10:20552076241281210. [PMID: 39347506 PMCID: PMC11439181 DOI: 10.1177/20552076241281210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background In recent years, with the advancement of technological innovation and the widespread application of semiconductor materials, wearable technology has emerged as a significant branch in healthcare, demonstrating considerable potential for further development. This analysis aims to explore the global scientific trends on wearable technology applications in healthcare. Methods Scientific publications on wearable technology applications in healthcare from 1 January 2003 to 31 December 2022 were retrieved from the Web of Science Core Collection. A total of 19,426 publications were included in the bibliometric analysis. VOSviewer and CiteSpace were used to conduct bibliometric and visualized analysis. Key metrics such as country, institution, author co-authorships, cited references, journal citations, and keyword co-occurrences were selected for analytical emphasis. Results The United States of America and China emerged as the top two contributing countries, with significantly higher publication compared to other countries/regions. Chinese Acad Sci and Sensors are the institution and journal with the largest number of publications, respectively. Najafi, Bijan is the most active author. Research hotspots of wearable technology were divided into four clusters based on the co-occurrence analysis of keywords: (1) Wearable Technology for Detecting and Monitoring Human Physiological Parameters; (2) Wearable Technology for Human Chronic Disease Detection and Management; (3) Wearable Technology Exercise Health and Sports Rehabilitation Therapy under Intervention; and (4) The Technical Realization of Accuracy Enhancement in Wearable Technology. Conclusions The number of annual publications on wearable technology applications in healthcare has increased over the past 20 years. This analysis identified the status, trends, hot topics, and frontiers of wearable technology applications in healthcare. These findings will help researchers quickly identify emerging themes and offer new insights into the future development of wearable technology in healthcare.
Collapse
Affiliation(s)
- Fanyu Meng
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
- College of Health Management, China Medical University, Shenyang,
China
| | - Zhiying Cui
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
- College of Health Management, China Medical University, Shenyang,
China
| | - Haoxin Guo
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
- College of Health Management, China Medical University, Shenyang,
China
| | - Ye Zhang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
- College of Health Management, China Medical University, Shenyang,
China
| | - Zhengmin Gu
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Li J, Che Z, Wan X, Manshaii F, Xu J, Chen J. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials 2024; 304:122421. [PMID: 38065037 DOI: 10.1016/j.biomaterials.2023.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Self-powered neurostimulation via biomaterials and bioelectronics innovation has emerged as a compelling approach to explore, repair, and modulate neural systems. This review examines the application of self-powered bioelectronics for electrical stimulation of both the central and peripheral nervous systems, as well as isolated neurons. Contemporary research has adeptly harnessed biomechanical and biochemical energy from the human body, through various mechanisms such as triboelectricity, piezoelectricity, magnetoelasticity, and biofuel cells, to power these advanced bioelectronics. Notably, these self-powered bioelectronics hold substantial potential for delivering neural stimulations that are customized for the treatment of neurological diseases, facilitation of neural regeneration, and the development of neuroprosthetics. Looking ahead, we expect that the ongoing advancements in biomaterials and bioelectronics will drive the field of self-powered neurostimulation toward the realization of more advanced, closed-loop therapeutic solutions, paving the way for personalized and adaptable neurostimulators in the coming decades.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ziyuan Che
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Wan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Wang Y, Wang X, Nie S, Meng K, Lin Z. Recent Progress of Wearable Triboelectric Nanogenerator-Based Sensor for Pulse Wave Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 24:36. [PMID: 38202897 PMCID: PMC10780409 DOI: 10.3390/s24010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Today, cardiovascular diseases threaten human health worldwide. In clinical practice, it has been concluded that analyzing the pulse waveform can provide clinically valuable information for the diagnosis of cardiovascular diseases. Accordingly, continuous and accurate monitoring of the pulse wave is essential for the prevention and detection of cardiovascular diseases. Wearable triboelectric nanogenerators (TENGs) are emerging as a pulse wave monitoring biotechnology due to their compelling characteristics, including being self-powered, light-weight, and wear-resistant, as well as featuring user-friendliness and superior sensitivity. Herein, a comprehensive review is conducted on the progress of wearable TENGs for pulse wave monitoring. Firstly, the four modes of operation of TENG are briefly described. Secondly, TENGs for pulse wave monitoring are classified into two categories, namely wearable flexible film-based TENG sensors and textile-based TENG sensors. Next, the materials, fabrication methods, working mechanisms, and experimental performance of various TENG-based sensors are summarized. It concludes by comparing the characteristics of the two types of TENGs and discussing the potential development and challenges of TENG-based sensors in the diagnosis of cardiovascular diseases and personalized healthcare.
Collapse
Affiliation(s)
- Yiming Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Xiaoke Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Shijin Nie
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Keyu Meng
- School of Electronic and Information Engineering, Changchun University, Changchun 130022, China;
| | - Zhiming Lin
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| |
Collapse
|
34
|
Liu W, Wang X. Recent Advances of Nanogenerator Technology for Cardiovascular Sensing and Monitoring. NANO ENERGY 2023; 117:108910. [PMID: 39183759 PMCID: PMC11343574 DOI: 10.1016/j.nanoen.2023.108910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cardiovascular sensing and monitoring is a widely used function in cardiovascular devices. Nowadays, achieving desired flexibility, wearability and implantability becomes a major design goal for the advancement of this family of devices. As an emerging technology, nanogenerator (NG) offers an intriguing promise for replacing the battery, an essential obstacle toward tissue-like soft electronics. This article reviews most recent advancements in NG technology for advanced cardiovascular sensing and monitoring. Based on the application targets, the discuss covers implantable NGs on hearts, implantable NGs for blood vessel grafts and patches, and wearable NGs with various sensing functions. The applications of NGs as a power source and as an electromechanical sensing element are both discussed. At the end, current challenges in this direction and future research perspectives are elaborated. This emerging and impactful application direction reviewed in this article is expected to inspire many new research and commercialization opportunities in the field of NG technology.
Collapse
Affiliation(s)
- Wenjian Liu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
35
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
36
|
Che Z, O'Donovan S, Xiao X, Wan X, Chen G, Zhao X, Zhou Y, Yin J, Chen J. Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207600. [PMID: 36759957 DOI: 10.1002/smll.202207600] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Triboelectric nanogenerators (TENGs) have gained significant traction in recent years in the bioengineering community. With the potential for expansive applications for biomedical use, many individuals and research groups have furthered their studies on the topic, in order to gain an understanding of how TENGs can contribute to healthcare. More specifically, there have been a number of recent studies focusing on implantable triboelectric nanogenerators (I-TENGs) toward self-powered cardiac systems healthcare. In this review, the progression of implantable TENGs for self-powered cardiovascular healthcare, including self-powered cardiac monitoring devices, self-powered therapeutic devices, and power sources for cardiac pacemakers, will be systematically reviewed. Long-term expectations of these implantable TENG devices through their biocompatibility and other utilization strategies will also be discussed.
Collapse
Affiliation(s)
- Ziyuan Che
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sarah O'Donovan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Wan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
37
|
He E, Ren J, Wang L, Li F, Li L, Ye T, Jiao Y, Li D, Wang J, Wang Y, Gao R, Zhang Y. A Mitochondrion-Inspired Magnesium-Oxygen Biobattery with High Energy Density In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304141. [PMID: 37478834 DOI: 10.1002/adma.202304141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.
Collapse
Affiliation(s)
- Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Junye Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
38
|
Wang S, Cui Q, Abiri P, Roustaei M, Zhu E, Li YR, Wang K, Duarte S, Yang L, Ebrahimi R, Bersohn M, Chen J, Hsiai TK. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. SCIENCE ADVANCES 2023; 9:eadj0540. [PMID: 37851816 PMCID: PMC10584332 DOI: 10.1126/sciadv.adj0540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
The current cardiac pacemakers are battery dependent, and the pacing leads are prone to introduce valve damage and infection, plus a complete pacemaker retrieval is needed for battery replacement. Despite the reported wireless bioelectronics to pace the epicardium, open-chest surgery (thoracotomy) is required to implant the device, and the procedure is invasive, requiring prolonged wound healing and health care burden. We hereby demonstrate a fully biocompatible wireless microelectronics with a self-assembled design that can be rolled into a lightweight microtubular pacemaker for intravascular implantation and pacing. The radio frequency was used to transfer energy to the microtubular pacemaker for electrical stimulation. We show that this pacemaker provides effective pacing to restore cardiac contraction from a nonbeating heart and have the capacity to perform overdrive pacing to augment blood circulation in an anesthetized pig model. Thus, this microtubular pacemaker paves the way for the minimally invasive implantation of leadless and battery-free microelectronics.
Collapse
Affiliation(s)
- Shaolei Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qingyu Cui
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Parinaz Abiri
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Enbo Zhu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kaidong Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Great Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Sandra Duarte
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ramin Ebrahimi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Great Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Malcolm Bersohn
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Great Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Great Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
39
|
Priyadarshini BS, Mitra R, Manju U. Titania Nanoparticle-Stimulated Ultralow Frequency Detection and High-Pass Filter Behavior of a Flexible Piezoelectric Nanogenerator: A Self-Sustaining Energy Harvester for Active Motion Tracking. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45812-45822. [PMID: 37733300 DOI: 10.1021/acsami.3c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A significant driving force for the fabrication of IoT-compatible smart health gear integrated with multifunctional sensors is the growing trend in fitness and the overall wellness of the human body. In this work, we present an autonomous motion and activity-sensing device based on the efficacious nucleation of the polar β-phase in an electroactive polymer. Representatively, we investigate the nucleating effect of TiO2 nanoparticles on weight-modulated PVDF-HFP films (PT-5, PT-10, and PT-15) and subsequently prototype a sensing device with the film that demonstrates superior β-phase nucleation. The PT-10 film, with an optimal polar β-phase, shows the highest remnant polarization (2Pr) and energy density of 0.36 μC/cm2 and 22.3 mJ/cm3, respectively, at 60 kV/cm. The films mimic a high pass filter at frequencies above 10 KHz with very low impedance and high ac conductivity values. The frequency-dependent impedance studies reveal an effective interfacial polarization between TiO2 nanoparticles and PVDF-HFP, explicitly observed in the low-frequency region. Consequently, the sensor fabricated with PT-10 as the sensing layer exhibits ultralow frequency detection (25 Hz) resulting from the blood flow muscle oxygenation. The device successfully senses voluntary joint movements of the human body and actively tracks a range of motions, from brisk walking to running. Additionally, through repetitive human finger-tapping motion, the nanogenerator lights up multiple light-emitting diodes in series and charges capacitors of varying magnitudes under 50 s. The real-time human motion sensing and movement tracking modalities of the sensor hold promise in the arena of smart wearables, sports biomechanics, and contact-based medical devices.
Collapse
Affiliation(s)
- B Sheetal Priyadarshini
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rahul Mitra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Unnikrishnan Manju
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
40
|
Yan B, Zhao Y, Peng H. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications. SMALL METHODS 2023; 7:e2300501. [PMID: 37469190 DOI: 10.1002/smtd.202300501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Implantable electronic devices can realize real-time and reliable health monitoring, diagnosis, and treatment of human body, which are expected to overcome important bottlenecks in the biomedical field. However, the commonly used energy supply devices for them are implantable batteries based on conventional rigid device design with toxic components, which both mechanically and biologically mismatch soft biological tissues. Therefore, the development of highly soft, safe, and implantable tissue-matchable flexible batteries is of great significance and urgency for implantable bioelectronics. In this work, the recent advances of tissue-matchable and implantable flexible batteries are overviewed, focusing on the design strategies of electrodes/batteries and their biomedical applications. The mechanical flexibility, biocompatibility, and electrochemical performance in vitro and in vivo of these flexible electrodes/batteries are then discussed. Finally, perspectives are provided on the current challenges and possible directions of this field in the future.
Collapse
Affiliation(s)
- Bing Yan
- Institute of Flexible Electronics and Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yang Zhao
- Institute of Flexible Electronics and Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
41
|
Lyu S, He Y, Li X, Wang H, Yao Y, Peng Z, Ding Y, Wang Y. Skin Thermal Management for Subcutaneous Photoelectric Conversion Reaching 500 mW. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306903. [PMID: 37535425 DOI: 10.1002/adma.202306903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Despite possessing higher tissue transmittance and maximum permissible exposure power density for skin relative to other electromagnetic waves, second near-infrared light (1000-1350 nm) is scarcely applicable to subcutaneous photoelectric conversion, owing to the companion photothermal effect. Here, skin thermal management is conceived to utmostly utilize the photothermal effect of a photovoltaic cell, which not only improves the photoelectric conversion efficiency but also eliminates skin hyperthermia. In vivo, the output power can be higher than 500 mW with a photoelectric conversion efficiency of 9.4%. This output power is promising to recharge all the clinically applied implantable devices via wireless power transmission, that is, clinical pacemakers (6-200 µW), drug pumps (0.5-2 mW), cochlear (5-40 mW), and wireless endo-photo cameras (≈100 mW).
Collapse
Affiliation(s)
- Shanzhi Lyu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinlei Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - HaoYi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yuge Yao
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhimin Peng
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanjun Ding
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
42
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
43
|
Tufan Y, Öztatlı H, Doganay D, Buyuksungur A, Cicek MO, Döş İT, Berberoğlu Ç, Unalan HE, Garipcan B, Ercan B. Multifunctional Silk Fibroin/Carbon Nanofiber Scaffolds for In Vitro Cardiomyogenic Differentiation of Induced Pluripotent Stem Cells and Energy Harvesting from Simulated Cardiac Motion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42271-42283. [PMID: 37643896 PMCID: PMC10510024 DOI: 10.1021/acsami.3c08601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
In this proof-of-concept study, cardiomyogenic differentiation of induced pluripotent stem cells (iPSCs) is combined with energy harvesting from simulated cardiac motion in vitro. To achieve this, silk fibroin (SF)-based porous scaffolds are designed to mimic the mechanical and physical properties of cardiac tissue and used as triboelectric nanogenerator (TENG) electrodes. The load-carrying mechanism, β-sheet content, degradation characteristics, and iPSC interactions of the scaffolds are observed to be interrelated and regulated by their pore architecture. The SF scaffolds with a pore size of 379 ± 34 μm, a porosity of 79 ± 1%, and a pore interconnectivity of 67 ± 1% upregulated the expression of cardiac-specific gene markers TNNT2 and NKX2.5 from iPSCs. Incorporating carbon nanofibers (CNFs) enhances the elastic modulus of the scaffolds to 45 ± 3 kPa and results in an electrical conductivity of 0.021 ± 0.006 S/cm. The SF and SF/CNF scaffolds are used as conjugate TENG electrodes and generate a maximum power output of 0.37 × 10-3 mW/m2, with an open-circuit voltage and a short circuit current of 0.46 V and 4.5 nA, respectively, under simulated cardiac motion. A novel approach is demonstrated for fabricating scaffold-based cardiac patches that can serve as tissue scaffolds and simultaneously allow energy harvesting.
Collapse
Affiliation(s)
- Yiğithan Tufan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Hayriye Öztatlı
- Institute
of Biomedical Engineering, Boğaziçi
University, 34684 İstanbul, Turkey
| | - Doga Doganay
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Arda Buyuksungur
- Department
of Basic Medical Sciences, Faculty of Dentistry, Ankara University, 06560 Ankara, Turkey
| | - Melih Ogeday Cicek
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - İpek Tuğçe Döş
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Çağla Berberoğlu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Husnu Emrah Unalan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Bora Garipcan
- Institute
of Biomedical Engineering, Boğaziçi
University, 34684 İstanbul, Turkey
| | - Batur Ercan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
- Biomedical
Engineering Program, Middle East Technical
University, Çankaya, 06800 Ankara, Turkey
- BIOMATEN,
Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| |
Collapse
|
44
|
Ding H, Jiang D, Du X, Zhang Z, Jiang J, Shan X, Wang W, Shiigi H, Chen Z. Hydrovoltaic Effect Coupling with Capacitor Amplification: A Mode for Sensitive Self-Powered Electrochemical Sensing. Anal Chem 2023; 95:12595-12599. [PMID: 37522904 DOI: 10.1021/acs.analchem.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Self-powered electrochemical sensors, which can function without external electricity, are incredibly valuable in the realm of sensing. However, most of the present testing methods are normally confined to high environmental requirements, restricted lighting conditions, and temperature differences. Herein, an innovative self-powered electrochemical sensor was successfully developed based on hydrovoltaic effect coupling with capacitor amplification. Due to the combined merits from the two-dimensional transition metal carbides and nitrides (MXene)-polyaniline (PANI) with high surface potential and good hydrophilicity, and the capacitor amplification strategy, the device could harvest electric energy from water evaporation and displayed a high short circuit current value. Under optimal conditions, the proposed self-powered electrochemical sensor presented excellent sensitivity and high specificity for enrofloxacin (ENR) detection in the concentration range from 1 fM to 1 nM with a detection limit of 0.585 fM. Such a proposed sensor also has the advantages of environmental friendliness and ease of use, which is an ideal choice for accurately and precisely detecting ENR in real samples. The mode of such electrochemical detection outlined in this technical note implements a breakthrough in designing self-powered electrochemical sensors, providing a rational basis for development of a diversified sensing platform.
Collapse
Affiliation(s)
- Hanling Ding
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P. R. China
| | - Zilian Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jinghan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu 213032, P. R. China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
45
|
Luo X, Luo Z, Li S, Fang Q, Xu W, Wang H, Wang Y, Bao GM, Gu W, Zhu C. Nanozymatic Biofuel Cell-Enabled Self-Powered Sensing System for a Sensitive Immunoassay. Anal Chem 2023; 95:12306-12312. [PMID: 37556591 DOI: 10.1021/acs.analchem.3c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Self-powered sensing system (SPSS) integrating the enzymatic biofuel cell and biosensing platform has attracted tremendous interest. However, natural enzymes suffer from the intrinsic drawbacks of enzymes and enzymatic proteins. Nanozymes with enzyme-like activities are the ideal alternatives to enzymes, and it is greatly challenging to explore high-performance nanozymatic biofuel cell for SPSS. Herein, the advanced nanozymatic biofuel cell-enabled SPSS is developed for the sensitive detection of the prostate-specific antigen (PSA), where Ir single atoms supported by nitrogen-doped carbon and Au nanozymes serve as the cathode and anode, respectively. Based on the excellent electrochemical activity and stability, the resultant nanozymatic biofuel cell exhibits a higher power output and open-circuit potential than the Pt/C-based counterpart, which is beneficial for the application of SPSS. As a proof of concept, the nanozymatic biofuel cell-enabled SPSS shows a wide detection range of 0.2-500 ng mL-1 with a detection limit of 62 pg mL-1 for PSA, which provides new insight into broadening the application scenarios of nanozymes.
Collapse
Affiliation(s)
- Xin Luo
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Zhen Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shentian Li
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Qie Fang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yongze Wang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Guang-Ming Bao
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
46
|
Wang C, He T, Zhou H, Zhang Z, Lee C. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med 2023; 9:17. [PMID: 37528436 PMCID: PMC10394931 DOI: 10.1186/s42234-023-00118-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
The fourth industrial revolution has led to the development and application of health monitoring sensors that are characterized by digitalization and intelligence. These sensors have extensive applications in medical care, personal health management, elderly care, sports, and other fields, providing people with more convenient and real-time health services. However, these sensors face limitations such as noise and drift, difficulty in extracting useful information from large amounts of data, and lack of feedback or control signals. The development of artificial intelligence has provided powerful tools and algorithms for data processing and analysis, enabling intelligent health monitoring, and achieving high-precision predictions and decisions. By integrating the Internet of Things, artificial intelligence, and health monitoring sensors, it becomes possible to realize a closed-loop system with the functions of real-time monitoring, data collection, online analysis, diagnosis, and treatment recommendations. This review focuses on the development of healthcare artificial sensors enhanced by intelligent technologies from the aspects of materials, device structure, system integration, and application scenarios. Specifically, this review first introduces the great advances in wearable sensors for monitoring respiration rate, heart rate, pulse, sweat, and tears; implantable sensors for cardiovascular care, nerve signal acquisition, and neurotransmitter monitoring; soft wearable electronics for precise therapy. Then, the recent advances in volatile organic compound detection are highlighted. Next, the current developments of human-machine interfaces, AI-enhanced multimode sensors, and AI-enhanced self-sustainable systems are reviewed. Last, a perspective on future directions for further research development is also provided. In summary, the fusion of artificial intelligence and artificial sensors will provide more intelligent, convenient, and secure services for next-generation healthcare and biomedical applications.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
47
|
Mirzaei M, Rowshanfarzad P, Gill S, Ebert MA, Dass J. Risk of cardiac implantable device malfunction in cancer patients receiving proton therapy: an overview. Front Oncol 2023; 13:1181450. [PMID: 37469405 PMCID: PMC10352826 DOI: 10.3389/fonc.2023.1181450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Age is a risk factor for both cardiovascular disease and cancer, and as such radiation oncologists frequently see a number of patients with cardiac implantable electronic devices (CIEDs) receiving proton therapy (PT). CIED malfunctions induced by PT are nonnegligible and can occur in both passive scattering and pencil beam scanning modes. In the absence of an evidence-based protocol, the authors emphasise that this patient cohort should be managed differently to electron- and photon- external beam radiation therapy (EBRT) patients due to distinct properties of proton beams. Given the lack of a PT-specific guideline for managing this cohort and limited studies on this important topic; the process was initiated by evaluating all PT-related CIED malfunctions to provide a baseline for future reporting and research. In this review, different modes of PT and their interactions with a variety of CIEDs and pacing leads are discussed. Effects of PT on CIEDs were classified into a variety of hardware and software malfunctions. Apart from secondary neutrons, cumulative radiation dose, dose rate, CIED model/manufacturer, distance from CIED to proton field, and materials used in CIEDs/pacing leads were all evaluated to determine the probability of malfunctions. The importance of proton beam arrangements is highlighted in this study. Manufacturers should specify recommended dose limits for patients undergoing PT. The establishment of an international multidisciplinary team dedicated to CIED-bearing patients receiving PT may be beneficial.
Collapse
Affiliation(s)
- Milad Mirzaei
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Department of Medical Imaging and Radiation Sciences, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - Suki Gill
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - Martin A. Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - Joshua Dass
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
48
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
49
|
Pereira AT, Rodrigues CRS, Silva AC, Vidal R, Ventura JO, Gonçalves IC, Pereira AM. Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. ACS Biomater Sci Eng 2023. [PMID: 37256830 DOI: 10.1021/acsbiomaterials.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 μA, and 0.68 W/m2 for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 μA, and 1.28 W/m2 due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 μA, and 0.17 W/m2 less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 μF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.
Collapse
Affiliation(s)
- Andreia T Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia R S Rodrigues
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana C Silva
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - João O Ventura
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
50
|
Zheng X, Chen L, Wang B, Yang S, Zhou S. Fabrication and Analysis of Microcapsule Electrets with a Tunable Flexoelectric-like Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17301-17308. [PMID: 36951713 DOI: 10.1021/acsami.3c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electret has drawn considerable attention as an emerging flexible energy collector. In this work, a charged microcapsule is designed which can provide a stable storage space for electric charge in the electret. The flexoelectric-like response is achieved by embedding a layer of charged microcapsules in the middle plane of the flexible polymer to form an electret. The results of Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy verified the successful preparation of microcapsules. Zeta potential analysis showed the negative electrical properties of the microcapsules. The prepared microcapsule electret has a significant flexoelectric effect under loading conditions. This work presents a preliminary theoretical study of the microcapsule electret to optimize the output characteristics of the electret by varying the parameters, including the number of microcapsules, the size of the electret, and the external load. Good agreement was achieved with the experimental results, which verified the validity of the theoretical study. This work provides a new method for preparing electret and further promotes its application in electromechanical transducers.
Collapse
Affiliation(s)
- Xu Zheng
- School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Lingling Chen
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Binglei Wang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Shengyou Yang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Shenjie Zhou
- School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|