1
|
Shi J, Xie S, Liu Z, Cai M, Guo CF. Non-hygroscopic ionogel-based humidity-insensitive iontronic sensor arrays for intra-articular pressure sensing. Natl Sci Rev 2024; 11:nwae351. [PMID: 39502679 PMCID: PMC11536762 DOI: 10.1093/nsr/nwae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Implanted pressure sensors can provide pressure information to assess localized health conditions of specific tissues or organs, such as the intra-articular pressure within knee joints. However, the prerequisites for implanted sensors pose greater challenges than those for wearables or for robots: aside from biocompatibility and tissue-like softness, they must also exhibit humidity insensitivity and high-pressure resolution across a broad pressure spectrum. Iontronic sensors can provide superior sensing properties, but they undergo property degradation in wet environments due to the hygroscopic nature of their active component: ionogels. Herein, we introduce a humidity-insensitive iontronic sensor array based on a hydrophobic and tough ionogel polymerized in a hydrophobicity transition yielding two hydrophobic phases: a soft liquid-rich phase that enhances ionic conductivity and ductility, and a stiff polymer-rich phase that contributes to superior toughness. We demonstrate the in vivo implantation of these sensor arrays to monitor real-time intra-articular pressure distribution in a sheep model, while assessing knee flexion with an angular resolution of 0.1° and a pressure resolution of 0.1%. We anticipate that this sensor array will find applications in various orthopedic surgeries and implantable medical devices.
Collapse
Affiliation(s)
- Junli Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sai Xie
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiguang Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minkun Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Trembecka-Wójciga K, Ortyl J. Enhancing 3D printed ceramic components: The function of dispersants, adhesion promoters, and surface-active agents in Photopolymerization-based additive manufacturing. Adv Colloid Interface Sci 2024; 332:103251. [PMID: 39053160 DOI: 10.1016/j.cis.2024.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In the domain of photopolymerization-based additive manufacturing (3D vat printing), ceramic photopolymer resins represent a multifaceted composite, predominantly comprising oligomers, ceramic fillers, and photoinitiators. However, the synergy between the ceramic fillers and polymer matrix, along with the stabilization and homogenization of the composite, is facilitated by specific additives, notably surface-active agents, dispersants, and adhesion promoters. Although these additives constitute a minor fraction in terms of volume, their influence on the final properties of the material is substantial. Consequently, their meticulous selection and integration are crucial, subtly guiding the performance and characteristics of the resultant ceramic matrix composites toward enhancement. This review delves into the array of dispersants and coupling agents utilized in the additive manufacturing of ceramic components. It elucidates the interaction mechanisms between these additives and ceramic fillers and examines how these interactions affect the additive manufacturing process. Furthermore, this review investigates the impact of various additives on the rheological behavior of ceramic slurries and their subsequent effects on the post-manufacturing stages, such as debinding and sintering. It also addresses the challenges and prospects in the optimization of dispersants and coupling agents for advanced ceramic additive manufacturing applications.
Collapse
Affiliation(s)
- Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow, Poland; Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland.
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo4Chem Lea 114, 30-133 Cracow, Poland; Photo HiTech Ltd., Bobrzynskiego 14, 30-348 Cracow, Poland.
| |
Collapse
|
3
|
Bai Y. Single-Nanoparticle Electrochemical Collision for Monitoring Self-Assembly of Thiol Molecules on Au Nanoparticles. BIOSENSORS 2024; 14:393. [PMID: 39194622 DOI: 10.3390/bios14080393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A precise understanding of the self-assembly kinetics of small molecules on nanoparticles (NPs) can give greater control over the size and architecture of the functionalized NPs. Herein, a single-nanoparticle electrochemical collision (SNEC)-based method was developed to monitor the self-assembly processes of 6-mercapto-1-hexanol (6-MCH) and 1-hexanethiol (MCH) on Au NPs at the single-particle level, and to investigate the self-assembly kinetics exactly. Results showed that the self-assembly processes of both consisted of rapid adsorption and slow recombination. However, the adsorption rate of MCH was significantly lower than that of 6-MCH due to the poorer polarity. Also noteworthy is that the rapid adsorption of 6-MCH on Au NPs conformed to the Langmuir model of diffusion control. Hence, the proposed SNEC-based method could serve as a complementary method to research the self-assembly mechanism of functionalized NPs.
Collapse
Affiliation(s)
- Yiyan Bai
- Department of Chemistry, Yuncheng University, Yuncheng 044000, China
| |
Collapse
|
4
|
Hohnsen J, Rryci L, Obretenova D, Friedel J, Jouchaghani S, Klein A. Functionalizing Thiosemicarbazones for Covalent Conjugation. Molecules 2024; 29:3680. [PMID: 39125087 PMCID: PMC11314635 DOI: 10.3390/molecules29153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Thiosemicarbazones (TSCs) with their modular character (thiosemicarbazides + carbonyl compound) allow broad variation of up to four substituents on the main R1R2C=N(1)-NH-C(S)-N(4)R3R4 core and are thus interesting tools for the formation of conjugates or the functionalization of nanoparticles (NPs). In this work, di-2-pyridyl ketone was introduced for the coordination of metals and 9-anthraldehyde for luminescence as R1 and R2 to TSCs. R3 and R4 substituents were varied for the formation of conjugates. Amino acids were introduced at the N4 position to produce [R1R2TSC-spacer-amino acid] conjugates. Further, functions such as phosphonic acid (R-P(O)(OH)2), D-glucose, o-hydroquinone, OH, and thiol (SH) were introduced at the N4 position producing [R1R2TSC-spacer-anchor group] conjugates for direct NP anchoring. Phenyl, cyclohexyl, benzyl, ethyl and methyl were used as spacer units. Both phenyl phosphonic acid TSC derivatives were bound on TiO2 NPs as a first example of direct NP anchoring. [R1R2TSC-spacer-end group] conjugates including OH, S-Bn (Bn = benzyl), NH-Boc (Boc = tert-butyloxycarbonyl), COOtBu, C≡CH, or N3 end groups were synthesized for potential covalent binding to functional molecules or functionalized NPs through amide, ester, or triazole functions. The synthesis of the thiosemicarbazides H2NNH-C(S)-NR3R4 starting from amines, including amino acids, SCCl2 or CS2, and hydrazine and their condensation with dipyridyl ketone and anthraldehyde led to 34 new TSC derivatives. They were synthesized in up to six steps with overall yields ranging from 10 to 85% and were characterized by a combination of nuclear magnetic resonance spectroscopy and mass spectrometry. UV-vis absorption and photoluminescence spectroscopy allowed us to easily trace the dipyridyl imine and anthracene chromophores.
Collapse
Affiliation(s)
| | | | | | | | | | - Axel Klein
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute for Inorganic and Materials Chemistry, Greinstraße 6, 50939 Koeln, Germany; (J.H.); (L.R.); (D.O.); (J.F.); (S.J.)
| |
Collapse
|
5
|
Veloso WB, Meloni GN, Arantes IVS, Pradela-Filho LA, Muñoz RAA, Paixão TRLC. Gold film deposition by infrared laser photothermal treatment on 3D-printed electrodes: electrochemical performance enhancement and application. Analyst 2024; 149:3900-3909. [PMID: 38912921 DOI: 10.1039/d4an00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.
Collapse
Affiliation(s)
- William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Gabriel N Meloni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Chen Y, Liu Y, Zhao P, Liang Y, Ma Y, Liu H, Hou J, Hou C, Huo D. Sulfhydryl-functionalized 3D MXene-AuNPs enabled electrochemical sensors for the selective determination of Pb 2+, Cu 2+ and Hg 2+ in grain. Food Chem 2024; 446:138770. [PMID: 38428079 DOI: 10.1016/j.foodchem.2024.138770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Herein, we made 3D MXene-AuNPs by in situ growth of gold nanoparticles (AuNPs) on the surface of MXene by chemical reduction method, and then introduced three sulfhydryl (-SH) compounds as functionalized modifiers attached to the AuNPs to form a highly selective composite material for the detection of Pb2+, Cu2+, and Hg2+, respectively. The doping of AuNPs changes the microstructure of 2D MXene and generates more active sites. On a sensing platform based on ITO array electrodes, the detection system was optimised with sensitivities up to 1.157, 0.846 and 0.799 μA·μg-1Lcm-2 (Pb2+, Cu2+, and Hg2+). The selectivity of MXene@AuNPs was effectively improved by sulfhydryl group modification. In the range of 1-1300 μg L-1, the detection limits of three ions were 0.07, 0.13 and 0.21 μg L-1. In addition, this method can efficiently and accurately detect heavy metal ions in four cereal samples with consistent results with inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
7
|
Xu W, Werzer O, Spiliopoulos P, Mihhels K, Jiang Q, Meng Z, Tao H, Resel R, Tammelin T, Pettersson T, Kontturi E. Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32874-32885. [PMID: 38863159 PMCID: PMC11212027 DOI: 10.1021/acsami.4c06182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tg and Tm are below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology.
Collapse
Affiliation(s)
- Wenyang Xu
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, FI-20500 Turku, Finland
| | - Oliver Werzer
- Joanneum
Research, Institute for Sensors, Photonics
and Manufacturing Technologies, Franz-Pichler-Strasse 30, 8160 Weiz, Austria
| | - Panagiotis Spiliopoulos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Karl Mihhels
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Qixiang Jiang
- Polymer
and Composite Engineering (PaCE) Group, Institute of Materials Chemistry,
Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria
| | - Zhuojun Meng
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Han Tao
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Roland Resel
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Tekla Tammelin
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., FI-02044 Espoo, Finland
| | - Torbjörn Pettersson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden
- Wallenberg
Wood Science Centre, KTH Royal Institute
of Technology, Teknikringen
56, SE-10044 Stockholm, Sweden
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| |
Collapse
|
8
|
Shan L, Wang W, Qian L, Tang J, Liu J. A Uni-Micelle Approach for the Controlled Synthesis of Monodisperse Gold Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:900. [PMID: 38869525 PMCID: PMC11173505 DOI: 10.3390/nano14110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse gold nanocrystals, in which there is only one kind micelle containing aqueous solution of reductant while the dual soluble Au (III) precursor is dissolved in oil phase. Our synthesis includes the reversible phase transfer of Au (III) and "uni-micelle" synthesis, employing a Au (III)-OA complex as an oil-soluble precursor. Size-controlled monodisperse AuNPs with a size of 4-11 nm are synthesized by tuning the size of the micelles, in which oleylamine (OA) is adsorbed on the shell of micelles and enhances the rigidity of the micelles, depressing micellar coalescence. Monodisperse AuNPs can be obtained through a one-time separation process with a higher yield of 61%. This method also offers a promising way for the controlled synthesis of small-size alloy nanoparticles and semiconductor heterojunction quantum dots.
Collapse
Affiliation(s)
| | | | | | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (L.S.); (W.W.); (L.Q.)
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (L.S.); (W.W.); (L.Q.)
| |
Collapse
|
9
|
Wagner LS, Prymak O, Schaller T, Beuck C, Loza K, Niemeyer F, Gumbiowski N, Kostka K, Bayer P, Heggen M, Oliveira CLP, Epple M. The Molecular Footprint of Peptides on the Surface of Ultrasmall Gold Nanoparticles (2 nm) Is Governed by Steric Demand. J Phys Chem B 2024; 128:4266-4281. [PMID: 38640461 DOI: 10.1021/acs.jpcb.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.
Collapse
Affiliation(s)
- Lisa-Sofie Wagner
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Christine Beuck
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Peter Bayer
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
10
|
Rashid U, Bro-Jørgensen W, Harilal KB, Sreelakshmi PA, Mondal RR, Chittari Pisharam V, Parida KN, Geetharani K, Hamill JM, Kaliginedi V. Chemistry of the Au-Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. J Am Chem Soc 2024; 146:9063-9073. [PMID: 38381861 PMCID: PMC10995995 DOI: 10.1021/jacs.3c14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Chemistry of the Au-S interface at the nanoscale is one of the most complex systems to study, as the nature and strength of the Au-S bond change under different experimental conditions. In this study, using mechanically controlled break junction technique, we probed the conductance and analyzed Flicker noise for several aliphatic and aromatic thiol derivatives and thioethers. We demonstrate that Flicker noise can be used to unambiguously differentiate between stronger chemisorption (Au-SR) and weaker physisorption (Au-SRR') type interactions. The Flicker noise measurements indicate that the gold rearrangement in chemisorbed Au-SR junctions resembles that of the Au rearrangement in pure Au-Au metal contact breaking, which is independent of the molecular backbone structure and the resulting conductance. In contrast, thioethers showed the formation of a weaker physisorbed Au-SRR' type bond, and the Flicker noise measurement indicates the changes in the Au-anchoring group interface but not the Au-Au rearrangement like that in the Au-SR case. Additionally, by employing single-molecular conductance and Flicker noise analysis, we have probed the interfacial electric field-catalyzed ring-opening reaction of cyclic thioether under mild environmental conditions, which otherwise requires harsh chemical conditions for cleavage of the C-S bond. All of our conductance measurements are complemented by NEGF transport calculations. This study illustrates that the single-molecule conductance, together with the Flicker noise measurements can be used to tune and monitor chemical reactions at the single-molecule level.
Collapse
Affiliation(s)
- Umar Rashid
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - William Bro-Jørgensen
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen
Ø, Denmark
| | - KB Harilal
- School
of Chemistry, Indian Institute of Science
Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - PA Sreelakshmi
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Reetu Rani Mondal
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Varun Chittari Pisharam
- School
of Chemistry, Indian Institute of Science
Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - Keshaba N. Parida
- School
of Chemistry, Indian Institute of Science
Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - K. Geetharani
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Joseph M. Hamill
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen
Ø, Denmark
| | - Veerabhadrarao Kaliginedi
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Costa D, Pereira-Silva P, Sousa P, Pinto V, Borges J, Vaz F, Minas G, Sampaio P. Critical Issues on the Surface Functionalization of Plasmonic Au-Ag/TiO 2 Thin Films with Thiolated Oligonucleotide-Based Biorecognition Elements. BIOSENSORS 2024; 14:159. [PMID: 38667152 PMCID: PMC11048063 DOI: 10.3390/bios14040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
This work reports on the surface functionalization of a nanomaterial supporting localized surface plasmon resonances (LSPRs) with (synthetic) thiolated oligonucleotide-based biorecognition elements, envisaging the development of selective LSPR-based DNA biosensors. The LSPR thin-film transducers are composed of noble metal nanoparticles (NPs) embedded in a TiO2 dielectric matrix, produced cost-effectively and sustainably by magnetron sputtering. The study focused on the immobilization kinetics of thiolated oligonucleotide probes as biorecognition elements, followed by the evaluation of hybridization events with the target probe. The interaction between the thiolated oligonucleotide probe and the transducer's surface was assessed by monitoring the LSPR signal with successive additions of probe solution through a microfluidic device. The device was specifically designed and fabricated for this work and adapted to a high-resolution LSPR spectroscopy system with portable characteristics. Benefiting from the synergetic characteristics of Ag and Au in the form of bimetallic nanoparticles, the Au-Ag/TiO2 thin film proved to be more sensitive to thiolated oligonucleotide binding events. Despite the successful surface functionalization with the biorecognition element, the detection of complementary oligonucleotides revealed electrostatic repulsion and steric hindrance, which hindered hybridization with the target oligonucleotide. This study points to an effect that is still poorly described in the literature and affects the design of LSPR biosensors based on nanoplasmonic thin films.
Collapse
Affiliation(s)
- Diogo Costa
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
| | - Patrícia Pereira-Silva
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Paulo Sousa
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Vânia Pinto
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania
| | - Graça Minas
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Paula Sampaio
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
| |
Collapse
|
12
|
Luty-Błocho M, Cyndrowska J, Rutkowski B, Hessel V. Synthesis of Gold Clusters and Nanoparticles Using Cinnamon Extract-A Mechanism and Kinetics Study. Molecules 2024; 29:1426. [PMID: 38611706 PMCID: PMC11013221 DOI: 10.3390/molecules29071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, UV-Vis spectrophotometry, High Resolution Scanning Transmission Electron Microscopes and selected experimental conditions were used to screen the colloidal system. The obtained results complement the established knowledge regarding the mechanism of nanoparticle formation. The process of gold nanoparticles formation involves a two-step reduction of Au ions to Au(0); atom association and metastable cluster formation; autocatalytic cluster growth; ultra-small particle formation (1-2 nm, in diameter); particle growth and larger particles formation; and further autocatalytic crystal growth (D > 100 nm). As a reductant of Au(III) ions, a cinnamon extract was used. It was confirmed that eugenol as one of the cinnamon extract compounds is responsible for fast Au(III) ion reduction, whereas cinnamaldehyde acts as a gold-particle stabilizer. Spectrophotometry studies were carried out to track kinetic traces of gold nanoparticle (D > 2 nm) formation in the colloidal solution. Using the Watzky-Finke model, the rate constants of nucleation and autocatalytic growth were determined. Moreover, the values of energy, enthalpy and entropy of activation for stages related to the process of nanoparticle formation (Index 1 relates to nucleation, and Index 2 relates to the growth) were determined and found to be E1 = 70.6 kJ, E2 = 19.6 kJ, ΔH1 = 67.9 kJ/mol, ΔH2 = 17 kJ/mol, ΔS1 = -76.2 J/(K·mol), ΔS2 = -204.2 J/(K·mol), respectively. In this work the limitation of each technique (spectrophotometry vs. HRSTEM) as a complex tool to understand the dynamic of the colloidal system was discussed.
Collapse
Affiliation(s)
- Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jowita Cyndrowska
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Bogdan Rutkowski
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
13
|
Johannsen S, Gruber M, Barreteau C, Seredyuk M, Antonio Real J, Markussen T, Berndt R. Spin-Crossover and Fragmentation of Fe(neoim) 2 on Silver and Gold. J Phys Chem Lett 2023; 14:7814-7823. [PMID: 37623823 DOI: 10.1021/acs.jpclett.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The neutral spin crossover complex Fe(neoim)2, neoim being the deprotonated form of the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline (neoimH), is investigated on the (111) surfaces of Au and Ag using scanning tunneling microscopy and density functional theory calculations. The complex sublimates and adsorbs intact on Ag(111), where it exhibits an electron-induced spin crossover. However, it fragments on Au. According to density functional theory calculations, the adsorbed complex is drastically distorted by the interactions with the substrates, in particular by van der Waals forces. Dispersion interaction is also decisive for the relative stabilities of the low- and high-spin states of the adsorbed complex. The unexpected instability of the complex on the gold substrate is attributed to enhanced covalent bonding of the fragments to the substrate.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Faculty of Physics and CENIDE, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Cyrille Barreteau
- Université Paris-Saclay CEA, CNRS SPEC, 91191 Gif-sur-Yvette, France
| | - Maksym Seredyuk
- Instituto de Ciencia Molecular (ICMol)/Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street 01601 Kyiv, Ukraine
| | - José Antonio Real
- Instituto de Ciencia Molecular (ICMol)/Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
14
|
Kompanijec V, Repa GM, Fredin LA, Swierk JR. Controlling product selectivity in oxidative desulfurization using an electrodeposited iron oxide film. Dalton Trans 2023. [PMID: 37378435 DOI: 10.1039/d3dt01074k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Sulfur-containing compounds must be removed from raw fuel oils before use and recently, there has been an effort to identify and optimize a more energy efficient method of oil processing. One promising route is electrochemical oxidative desulfurization (ODS), and in this work, we investigate an electrodeposited iron oxide film (FeOx(OH)y) as a working electrode to catalyze the oxidation of dibenzothiophene (DBT). The FeOx(OH)y film displays unexpected selectivity for the DBT sulfoxide (DBTO)-departing from the catalytic behavior of gold, which favors the dimerization of DBT. In addition, we observe a morphological change within our FeOx(OH)y film from γ-FeOOH to γ-Fe2O3. This change provides insight to the activity of each structure for ODS as the rate of oxidation increases after the incorporation of γ-Fe2O3. Our experimental observations are corroborated with DFT calculations, which suggest that the adsorption energy of DBT on Au is significantly greater than on the FeOx(OH)y, favoring the formation of dimeric and oligomeric products. Calculations also demonstrate that DBT binds preferably in a monodentate configuration but that oxidation occurs via DBT bound via a bidentate configuration. Monodentate binding on γ-FeOOH is significantly stronger than binding on γ-Fe2O, resulting in easier conversation to bidentate binding on γ-Fe2O3.
Collapse
Affiliation(s)
| | | | | | - John R Swierk
- Binghamton University, 4400 Vestal Pkwy E Vestal, NY 13850, USA.
| |
Collapse
|
15
|
Kannan SK, Esakkiappa S, Anthonysamy E, Sudalaimuthu S, Sulaiman Y, Khan MM, Chinnaiah J, Krishnan G. Determination of urinary spermine using controlled dissolution of polysulfide modified gold electrode. Mikrochim Acta 2023; 190:87. [PMID: 36759372 DOI: 10.1007/s00604-023-05664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode). PS has been synthesized from elemental sulfur by hydrothermal method and characterized using UV-Vis, fluorescence, FTIR, SEM, and XPS analyses. The PS@Au electrode was employed for electrochemical sensing of SPM. In the presence of SPM, a decrease in gold oxide reduction current was noted which is proportional to the concentration of SPM. The decrease in gold oxide reduction (0.5 V) current was attributed to the complexing nature of SPM-PS at the electrode interface. The reason for the decrease in current has been substantiated using XRF, XPS, and spectroelectrochemical studies. Under the optimized conditions, the PS@Au electrode exhibited a linear range of 1.55-250 µM with LOD of 0.511 ± 0.02 µM (3σ). The electrochemical strategy for SPM sensing exhibited better selectivity even in the presence of possible interferents. The selectivity stems from the selective interaction of SPM with PS on the Au electrode surface; the tested amino acids, and other molecules do not complex with PS and hence they could not interfere. The PS@Au electrode has been subjected to the determination of SPM in artificial urine samples and exhibited outstanding performance in the synthetic sample.
Collapse
Affiliation(s)
- Sanjeev Kumar Kannan
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subramani Esakkiappa
- Electroplating & Metal Finishing Division, CSIR - Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
| | - Esokkiya Anthonysamy
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudalaimani Sudalaimuthu
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Jeyabharathi Chinnaiah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Electroplating & Metal Finishing Division, CSIR - Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
| | - Giribabu Krishnan
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Wang Z, Palma JL, Wang H, Liu J, Zhou G, Ajayakumar MR, Feng X, Wang W, Ulstrup J, Kornyshev AA, Li Y, Tao N. Electrochemically controlled rectification in symmetric single-molecule junctions. Proc Natl Acad Sci U S A 2022; 119:e2122183119. [PMID: 36136968 PMCID: PMC9522371 DOI: 10.1073/pnas.2122183119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.
Collapse
Affiliation(s)
- Zixiao Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- 1To whom correspondence may be addressed. or or or
| | - Julio L. Palma
- bDepartment of Chemistry, Pennsylvania State University, Fayette, The Eberly Campus, Lemont Furnace, PA 15456
| | - Hui Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junzhi Liu
- cDepartment of Chemistry and State Key Laboratory of Synthetic Chemistry, the University of Hong Kong, Hong Kong, China
| | - Gang Zhou
- dLaboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - M. R. Ajayakumar
- eCentre for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische University Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- eCentre for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische University Dresden, 01062 Dresden, Germany
| | - Wei Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jens Ulstrup
- fDepartment of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- 1To whom correspondence may be addressed. or or or
| | - Alexei A. Kornyshev
- gDepartment of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, United Kingdom
- 1To whom correspondence may be addressed. or or or
| | - Yueqi Li
- hCenter for Bioanalytical Chemistry, University of Science and Technology of China, Hefei 230026, China
- 1To whom correspondence may be addressed. or or or
| | - Nongjian Tao
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- iCenter for Bioelectronics and Biosensors, Biodesign Institute and School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
17
|
Chromatographic framework for coffee ring effect-driven separation of small molecules in surface enhanced Raman spectroscopy analysis. Talanta 2022; 250:123688. [PMID: 35759829 DOI: 10.1016/j.talanta.2022.123688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/22/2022]
Abstract
The applications of coffee ring effect (CRE) in analytical chemistry have been increasingly expanded from particles and macromolecules to small molecules, in particular coupled to surface-enhanced Raman spectroscopy (SERS). Despite the theory behind the formation of CRE itself from a single drop evaporation onto the dry surface is well established, the theoretical aspects of CRE-driven separation, especially the analyte-surface interactions involving small molecules, have not been conceived. Herein, we have developed a theoretical framework to describe the CRE-driven separation process of small molecules, using SERS analysis of dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV), and dimethyldithioarsinic acid (DMDTAV) on gold nanofilm (AuNF) as an example. By combining the CRE theory for the radial flow and the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory for mass transfer between solution and AuNF surface, we adapted the conventional chromatographic theory to derive a modified van Deemter equation for the CRE-driven separation. By using this model, we predicted the travel distances of arsenicals based on the different affinity of analytes to the AuNF and evaluated the possibility of separation of unknown analytes by CRE-based SERS, demonstrating the successful adaptation of classic chromatographic theory to CRE-driven nanochromatography.
Collapse
|
18
|
Eddaif L, Felhősi I, Shaban A. In-situ electrochemical and piezogravimetric studies on the application of macrocyclic resorcinarene tetramer in the development of chemically-modified heavy metals ions detection platform in aqueous media. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Ye M, Li H, Zhang X, Zhang H, Wang G, Zhang Y. Simultaneous Separation and Recovery of Gold and Copper from Electronic Waste Enabled by an Asymmetric Electrochemical System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9544-9556. [PMID: 35137585 DOI: 10.1021/acsami.1c24822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Exploiting efficient strategies for the selective separation and extraction of valuable metals from e-waste is in urgent demand to offset the ever-increasing depletion of metal resources, satisfy the sustainable supply of metal resources, and reduce the environmental impact from toxic metals. Herein, an asymmetric electrochemical system, constructed by polyaniline (PANI) nanofibers grown on carbon cloth (CC) and CC as the respective counter and working electrodes, is presented for the simultaneous and selective extraction of gold and copper from e-waste leachate solution. Harnessing the established CC/PANI//CC system, CC/PANI as the anode electrode is capable of selectively and rapidly extracting gold with high efficiency, accompanied by excellent reusability. Meanwhile, cathodic CC electrode is found to achieve almost 100% recovery of copper at a voltage of -1.2 V. Furthermore, the feasibility of the proposed asymmetric electrochemical system is further exemplified in waste central processing unit (CPU) leaching solution, enabling to recover simultaneously gold and copper with high purity. This work will provide meaningful guidance for simultaneous separation and recovery of multiple valuable metals from real e-waste.
Collapse
Affiliation(s)
- Mengxiang Ye
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Huaimeng Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xi Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
20
|
Reimers JR, Yang J, Darwish N, Kosov DS. Silicon - single molecule - silicon circuits. Chem Sci 2021; 12:15870-15881. [PMID: 35024111 PMCID: PMC8672724 DOI: 10.1039/d1sc04943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
In 2020, silicon - molecule - silicon junctions were fabricated and shown to be on average one third as conductive as traditional junctions made using gold electrodes, but in some instances to be even more conductive, and significantly 3 times more extendable and 5 times more mechanically stable. Herein, calculations are performed of single-molecule junction structure and conductivity pertaining to blinking and scanning-tunnelling-microscopy (STM) break junction (STMBJ) experiments performed using chemisorbed 1,6-hexanedithiol linkers. Some strikingly different characteristics are found compared to analogous junctions formed using the metals which, to date, have dominated the field of molecular electronics. In the STMBJ experiment, following retraction of the STM tip after collision with the substrate, unterminated silicon surface dangling bonds are predicted to remain after reaction of the fresh tips with the dithiol solute. These dangling bonds occupy the silicon band gap and are predicted to facilitate extraordinary single-molecule conductivity. Enhanced junction extendibility is attributed to junction flexibility and the translation of adsorbed molecules between silicon dangling bonds. The calculations investigate a range of junction atomic-structural models using density-functional-theory (DFT) calculations of structure, often explored at 300 K using molecular dynamics (MD) simulations. These are aided by DFT calculations of barriers for passivation reactions of the dangling bonds. Thermally averaged conductivities are then evaluated using non-equilibrium Green's function (NEGF) methods. Countless applications through electronics, nanotechnology, photonics, and sensing are envisaged for this technology.
Collapse
Affiliation(s)
- Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and School of Physics, Shanghai University Shanghai 200444 China
- School of Mathematical and Physical Sciences, University of Technology Sydney NSW 2007 Australia
| | - Junhao Yang
- International Centre for Quantum and Molecular Structures and School of Physics, Shanghai University Shanghai 200444 China
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Daniel S Kosov
- College of Science and Engineering, James Cook University Townsville QLD 4811 Australia
| |
Collapse
|
21
|
Engelbrekt C, Nazmutdinov RR, Shermukhamedov S, Ulstrup J, Zinkicheva TT, Xiao X. Complex single‐molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Renat R. Nazmutdinov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Shokirbek Shermukhamedov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Tamara T. Zinkicheva
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| |
Collapse
|
22
|
Skipper HE, May CV, Rheingold AL, Doerrer LH, Kamenetska M. Hard-Soft Chemistry Design Principles for Predictive Assembly of Single Molecule-Metal Junctions. J Am Chem Soc 2021; 143:16439-16447. [PMID: 34582679 DOI: 10.1021/jacs.1c05142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The achievement of atomic control over the organic-inorganic interface is key to engineering electronic and spintronic properties of molecular devices. We leverage insights from inorganic chemistry to create hard-soft acid-base (HSAB) theory-derived design principles for incorporation of single molecules onto metal electrodes. A single molecule circuit is assembled via a bond between an organic backbone and an under-coordinated metal atom of the electrode surface, typically Au. Here, we study molecular composition factors affecting the junction assembly of coordination complexes containing transition metals atoms on Au electrodes. We employ hetero- and homobimetallic lantern complexes and systematically change the coordination environment to vary the character of the intramolecular bonds relative to the electrode-molecule interaction. We observe that trends in the robustness and chemical selectivity of single molecule junctions formed with a range of linkers correlate with HSAB principles, which have traditionally been used to guide atomic arrangements in the synthesis of coordination complexes. We find that this similarity between the intermolecular electrode-molecule bonding in a molecular circuit and the intramolecular bonds within a coordination complex has implications for the design of metal-containing complexes compatible with electrical measurements on metal electrodes. Our results here show that HSAB principles determine which intramolecular interactions can be compromised by inter molecule-electrode coordination; in particular on Au electrodes, soft-soft metal-ligand bonding is vulnerable to competition from soft-soft Au-linker bonding in the junction. Neutral donor-acceptor intramolecular bonds can be tuned by the Lewis acidity of the transition metal ion, suggesting future synthetic routes toward incorporation of transition metal atoms into molecular junctions for increased functionality of single molecule devices.
Collapse
Affiliation(s)
- Hannah E Skipper
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Claire V May
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0332, La Jolla, California 92093, United States
| | - Linda H Doerrer
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.,Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Maria Kamenetska
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.,Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
23
|
Yan X, Ma S, Tang J, Tanner D, Ulstrup J, Xiao X, Zhang J. Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Wang E, Gao Y. Elucidating the stabilities and properties of the thiolate-protected Au nanoclusters with detaching the staple motifs. J Chem Phys 2021; 155:044302. [PMID: 34340381 DOI: 10.1063/5.0056933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Thiolate-protected Au nanoclusters (AuNCs) have been widely studied in areas of catalysis, biosensors, and bioengineering. In real applications, e.g., catalytic reactions, the thiolate groups are normally partially detached. However, which of the thiolate groups are easily detached and how the detachment of the ligands affects the geometries and electronic structures of the Au nanoclusters have been rarely studied. In this work, we employed the density functional theory calculations as well as the molecular orbital analysis to explore the detachment effect of the ligands using nine thiolate-protected AuNCs as examples. Our results showed that there existed a nearly linear relationship between the averaged detachment energies and the numbers of Au atoms in the motifs. Detaching longer motifs normally required more energies owing to the stronger aurophilic effects. For detaching a full motif, based on the structure decomposition via the grand unified model, analysis on the inner Au core indicated that the change in Au-Au bond length was more sensitive for the inter-block compared to the intra-block. The detachment of the -SH fragment generally needs less energy and brings less structural deformations when compared to the removal of a full motif. Molecular orbital analysis showed that the relative energies of the HOMO orbitals were elevated, which led to the narrow down of the HOMO-LUMO gap. This work provides a primary description of the correlation of the ligands' detachment with the relative stabilities and structures of the AuNCs, which would be beneficial for establishing the structure-property relationship of AuNCs in real applications.
Collapse
Affiliation(s)
- Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
25
|
Backx BP, Dos Santos MS, Dos Santos OAL, Filho SA. The Role of Biosynthesized Silver Nanoparticles in Antimicrobial Mechanisms. Curr Pharm Biotechnol 2021; 22:762-772. [PMID: 33530905 DOI: 10.2174/1389201022666210202143755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Nanotechnology is an area of science in which new materials are developed. The correlation between nanotechnology and microbiology is essential for the development of new drugs and vaccines. The main advantage of combining these areas is to associate the latest technology in order to obtain new ways for solving problems related to microorganisms. This review seeks to investigate nanoparticle formation's antimicrobial properties, primarily when connected to the green synthesis of silver nanoparticles. The development of new sustainable methods for nanoparticle production has been instrumental in designing alternative, non-toxic, energy-friendly, and environmentally friendly routes. In this sense, it is necessary to study silver nanoparticles' green synthesis concerning their antimicrobial properties. Antimicrobial silver nanoparticles' mechanisms demonstrate efficiency to gram-positive bacteria, gram-negative bacteria, fungi, viruses, and parasites. However, attention is needed with the emergence of resistance to these antimicrobials. This article seeks to relate the parameters of green silver- based nanosystems with the efficiency of antimicrobial activity.
Collapse
Affiliation(s)
- Bianca P Backx
- Numpex-Bio, Universidade Federal do Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, Brazil
| | - Mayara S Dos Santos
- Numpex-Bio, Universidade Federal do Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, Brazil
| | - Otávio A L Dos Santos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo Andre, Brazil
| | - Sérgio A Filho
- Numpex-Bio, Universidade Federal do Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, Brazil
| |
Collapse
|
26
|
Han S, Zal T, Sokolov KV. Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake. ACS NANO 2021; 15:9495-9508. [PMID: 34011152 PMCID: PMC8223898 DOI: 10.1021/acsnano.0c08128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles with ultrasmall sizes (less than 10 nm) offer many advantages in biomedical applications compared to their bigger counterparts, including better intratumoral distribution, improved pharmacokinetics (PK), and efficient body clearance. When functionalized with a biocompatible coating and a target-specific antibody, ultrasmall nanoparticles represent an attractive clinical translation platform. Although there is a tremendous body of work dedicated to PK and the biological effects of various nanoparticles, little is known about the fate of different components of functionalized nanoparticles in a biological environment such as in live cells. Here, we used luminescence properties of 5 nm gold nanoparticles (AuNPs) to study the intracellular trafficking and fate of the AuNPs functionalized with an organic layer consisting of a polyethylene glycol (PEG) coating and epidermal growth factor receptor (EGFR)-targeting antibody. We showed that intracellular uptake of the targeted 5 nm AuNPs results in a strong two-photon luminescence (TPL) that is characterized by broad emission and very short lifetimes compared to the fluorescence of the nanoparticle-conjugated fluorophore-tagged antibody, thereby allowing selective imaging of these components using TPL and two-photon excited fluorescence lifetime microscopy (2P-FLIM). Our results indicate that the nanoparticle's coating is detached from the particle's surface inside cells, leading to formation of nanoparticle clusters with a strong TPL. Furthermore, we observed an optically resolved spatial separation of the gold core and the antibody coating of the particles inside cells. We used data from two-photon microscopy, 2P-FLIM, electron microscopy, and in vitro assays to propose a model of interactions of functionalized 5 nm AuNPs with live cells.
Collapse
Affiliation(s)
- Sangheon Han
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| | - Tomasz Zal
- Department of Leukemia, The University of
Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas
77030, United States
| | - Konstantin V. Sokolov
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| |
Collapse
|
27
|
Seong H, Efremov V, Park G, Kim H, Yoo JS, Lee D. Atomically Precise Gold Nanoclusters as Model Catalysts for Identifying Active Sites for Electroreduction of CO 2. Angew Chem Int Ed Engl 2021; 60:14563-14570. [PMID: 33877721 DOI: 10.1002/anie.202102887] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Accurate identification of active sites is critical for elucidating catalytic reaction mechanisms and developing highly efficient and selective electrocatalysts. Herein, we report the atomic-level identification of active sites using atomically well-defined gold nanoclusters (Au NCs) Au25 , Au38 , and Au144 as model catalysts in the electrochemical CO2 reduction reaction (CO2 RR). The studied Au NCs exhibited remarkably high CO2 RR activity, which increased with increasing NC size. Electrochemical and X-ray photoelectron spectroscopy analyses revealed that the Au NCs were activated by removing one thiolate group from each staple motif at the beginning of CO2 RR. In addition, density functional theory calculations revealed higher charge densities and upshifts of d-states for dethiolated Au sites. The structure-activity properties of the studied Au NCs confirmed that dethiolated Au sites were the active sites and that CO2 RR activity was determined by the number of active sites on the cluster surface.
Collapse
Affiliation(s)
- Hoeun Seong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vladimir Efremov
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Gibeom Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
28
|
Seong H, Efremov V, Park G, Kim H, Yoo JS, Lee D. Atomically Precise Gold Nanoclusters as Model Catalysts for Identifying Active Sites for Electroreduction of CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hoeun Seong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Vladimir Efremov
- Department of Chemical Engineering University of Seoul Seoul 02504 Republic of Korea
| | - Gibeom Park
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering University of Seoul Seoul 02504 Republic of Korea
| | - Dongil Lee
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
29
|
Moazzami Gudarzi M, Aboutalebi SH. Self-consistent dielectric functions of materials: Toward accurate computation of Casimir-van der Waals forces. SCIENCE ADVANCES 2021; 7:7/22/eabg2272. [PMID: 34039608 PMCID: PMC8153719 DOI: 10.1126/sciadv.abg2272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Research on theoretical calculation of Casimir-van der Waals (vdW) forces is characterized by a great number of inconsistencies and conflicting reports with widely differing results for many known materials, including water, contradicting experimental measurements. Despite its importance for conceptual advances in both fundamental aspects and practical applications, a universal framework for the accurate determination of Casimir-vdW forces is lacking. Here, we propose a universal theoretical platform for computing Casimir-vdW forces, accounting for the electronic dielectric constant, optical bandgap, density, and chemical composition. Using this methodology, we determine the dielectric function for 55 materials, over a wide range of photon energies, covering an extensive list of common metals, organic and inorganic semiconductors, and insulators. Internal consistency of the compiled data is validated using optical sum rules and Kramers-Kronig relations. We demonstrate that the calculated vdW forces based on these data match remarkably well with the experimentally measured vdW forces.
Collapse
Affiliation(s)
| | - Seyed Hamed Aboutalebi
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran.
| |
Collapse
|
30
|
Cheng HW, Wang S, Porter MD, Zhong CJ. Molecularly-tunable nanoelectrode arrays created by harnessing intermolecular interactions. Chem Sci 2021; 12:6081-6090. [PMID: 33996004 PMCID: PMC8098684 DOI: 10.1039/d0sc06955h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermolecular interactions play a critical role in the binding strength of molecular assemblies on surfaces. The ability to harness them enables molecularly-tunable interfacial structures and properties. Herein we report the tuning of the intermolecular interactions in monolayer assemblies derived from organothiols of different structures for the creation of nanoelectrode arrays or ensembles with effective mass transport by a molecular-level perforation strategy. The homo- and hetero-intermolecular interactions can be fully controlled, which is demonstrated not only by thermodynamic analysis of the fractional coverage but also by surface infrared reflection absorption and X-ray photoelectron spectroscopic characterizations. This understanding enables controllable electrochemical perforation for the creation of ensembles or arrays of channels across the monolayer thickness with molecular and nanoscale dimensions. Redox reactions on the nanoelectrode array display molecular tunability with a radial diffusion characteristic in good agreement with theoretical simulation results. These findings have implications for designing membrane-type ion-gating, electrochemical sensing, and electrochemical energy storage devices with molecular level tunability. Intermolecular interactions in monolayer assembly are harnessed for creating molecularly-tunable nanoelectrode arrays or ensembles.![]()
Collapse
Affiliation(s)
- Han-Wen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China .,Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Marc D Porter
- Department of Chemistry and Chemical Engineering, University of Utah Salt Lake City Utah 84112 USA
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| |
Collapse
|
31
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
32
|
Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020. [DOI: 10.3390/catal10121458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Self-assembled molecular monolayers (SAMs) have long been recognized as crucial “bridges” between redox enzymes and solid electrode surfaces, on which the enzymes undergo direct electron transfer (DET)—for example, in enzymatic biofuel cells (EBFCs) and biosensors. SAMs possess a wide range of terminal groups that enable productive enzyme adsorption and fine-tuning in favorable orientations on the electrode. The tunneling distance and SAM chain length, and the contacting terminal SAM groups, are the most significant controlling factors in DET-type bioelectrocatalysis. In particular, SAM-modified nanostructured electrode materials have recently been extensively explored to improve the catalytic activity and stability of redox proteins immobilized on electrochemical surfaces. In this report, we present an overview of recent investigations of electrochemical enzyme DET processes on SAMs with a focus on single-crystal and nanoporous gold electrodes. Specifically, we consider the preparation and characterization methods of SAMs, as well as SAM applications in promoting interfacial electrochemical electron transfer of redox proteins and enzymes. The strategic selection of SAMs to accord with the properties of the core redox protein/enzymes is also highlighted.
Collapse
|
33
|
Karthäuser S, Peter S, Simon U. Integration of Individual Functionalized Gold Nanoparticles into Nanoelectrode Configurations: Recent Advances. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvia Karthäuser
- Peter Grünberg Institut (PGI‐7) and JARA‐FIT Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Sophia Peter
- Institute of Inorganic Chemistry and JARA‐FIT RWTH Aachen University 52074 Aachen Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry and JARA‐FIT RWTH Aachen University 52074 Aachen Germany
| |
Collapse
|
34
|
Pavloudis T, Kioseoglou J, Palmer RE. Bonding of Gold Nanoclusters on Graphene with and without Point Defects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2109. [PMID: 33114099 PMCID: PMC7690776 DOI: 10.3390/nano10112109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Hybrid nanostructures of size-selected nanoparticles (NPs) and 2D materials exhibit striking physical and chemical properties and are attractive for many technology applications. A major issue for the performance of these applications is device stability. In this work, we investigate the bonding of cuboctahedral, decahedral and icosahedral Au NPs comprising 561 atoms on graphene sheets via 103-atom scale ab initio spin-polarized calculations. Two distinct cases we considered: (i) the Au NPs sit with their (111) facets on graphene and (ii) the NPs are oriented with a vertex on graphene. In both cases, we compare the binding energies with and without a graphene vacancy under the NP. We find that in all cases, the presence of the graphene vacancy enhances the bonding of the NPs. Significantly, in the vertex-on-graphene case, the binding energy is considerably increased by several eVs and becomes similar to the (111) facet-on-graphene case. The strain in the NPs is found to be minimal and the displacement of the carbon atoms in the immediate neighborhood of the vacancy is on the 0.1 Å scale. The work suggests the creation of stable NP-graphene systems for a variety of electronic, chemical and photonic applications.
Collapse
Affiliation(s)
- Theodoros Pavloudis
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK;
| | - Joseph Kioseoglou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Richard E. Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK;
| |
Collapse
|
35
|
Mendizabal F, Miranda-Rojas S. Electronic and optical properties of [Au(CH 3CSS)] 4 cluster. A quantum chemistry study. RSC Adv 2020; 10:33549-33557. [PMID: 35515021 PMCID: PMC9056745 DOI: 10.1039/d0ra06982e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
The uses of the sulfur-gold bond in the design of new molecular clusters have gained increasing attention in recent years. Their size and shape are diverse providing a wide variety of optical and electronic properties. Here we present a computational study of the absorption and emission properties of a small [Au(dithioacetate)]4 cluster as a model for these systems. The electronic structure of the Au4S8 core of this cluster permits rationalization of the source of the optical properties and how these are connected with that specific structural scaffold. Due to the complex nature of the aurophilic intramolecular interactions taking place in this system, several methods were used, such as the MP2, SCS-MP2, PBE-D3, and TPSS-D3 levels; both in gas and solvent phases. The absorption spectra of the cluster were calculated by the single excitation time-dependent-DFT (TD-DFT) method, CC2, SCS-CC2, and ADC(2) levels. The ab initio correlated calculations and previously reported experimental data have been used to assess the performance of our calculations. Moreover, the emission T1-So transition was calculated, where the SCS-CC2 level showed an excellent agreement with the experimental results. The core Au4S8 was identified as mainly responsible for the absorption and emission transitions according to the theoretical model.
Collapse
Affiliation(s)
- Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile P.O. Box 653, Las Palmeras 3425, Ñuñoa Santiago Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello Avenida República 275 Santiago Chile
| |
Collapse
|
36
|
Bhattacharya S, Speyer G, Ferry DK, Bumm LA. A Comprehensive Study of the Bridge Site and Substrate Relaxation Asymmetry for Methanethiol Adsorption on Au(111) at Low Coverage. ACS OMEGA 2020; 5:20874-20881. [PMID: 32875222 PMCID: PMC7450628 DOI: 10.1021/acsomega.0c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
We use dispersion-corrected density functional theory to explore the bridge-site asymmetry for methanethiol adsorbed on Au(111) with two different S-C bond orientations. We attribute the asymmetry to the intrinsic character of the Au(111) surface rather than the adsorbate. The preference for bridge-fcc versus bridge-hcp SCH3 adsorption sites is controlled by the S-C bond orientation. The system energy difference favors the bridge-fcc site by 8.1 meV on the unrelaxed Au(111) surface. Relaxing the Au substrate increased this energy difference to 26.1 meV. This asymmetry is also reflected in the atomic displacement of the relaxed Au surface. Although in both cases, the bridge-site Au atoms shift away from the fcc 3-fold hollow site, the motion is greater for the bridge-fcc allowing a more favorable geometry for the sulfur atom to bond to the bridging atoms. We confirm that the adsorption energy is strongly dependent on the S-C bond orientation and position, which can be understood in terms of a simple coordination geometry model. This work has important implications for alkanethiol surface diffusion and the structure of their self-assembled monolayers.
Collapse
Affiliation(s)
- Soumya Bhattacharya
- Homer
L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Gil Speyer
- Research
Computing, Arizona State University, Tempe, Arizona 85287, United States
| | - David K. Ferry
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Lloyd A. Bumm
- Homer
L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
37
|
Wang W, Mattoussi H. Engineering the Bio-Nano Interface Using a Multifunctional Coordinating Polymer Coating. Acc Chem Res 2020; 53:1124-1138. [PMID: 32427464 DOI: 10.1021/acs.accounts.9b00641] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past three decades, interest in using nanoparticles as diagnostic tools to interrogate various biosystems has witnessed remarkable growth. For instance, it has been shown that nanoparticle probes enable the study of cellular processes at the single molecule level. These advances provide new opportunities for understanding fundamental problems in biology, innovation in medicine, and the treatment of diseases. A multitude of nanoparticles have been designed to facilitate in vitro or in vivo sensing, imaging, and diagnostics. Some of those nanoparticle platforms are currently in clinical trials or have been approved by the U.S. Food and Drug Administration. Nonetheless, using nanoparticles in biology is still facing several obstacles, such as poor colloidal stability under physiological conditions, nonspecific interactions with serum proteins, and low targeting efficiency in biological fluids, in addition to issues of uncontrolled biodistribution and cytotoxicity. All these problems are primarily controlled by the surface stabilizing coating used.In this Account, we summarize recent progress made in our laboratory focused on the development of multifunctional polymers as coordinating ligands, to tailor the surface properties of nanoparticles and facilitate their application in biology. We first detail the advantageous features of the coating strategy, followed by a discussion of the key parameters in the ligand design. We then describe the synthesis and use of a series of multicoordinating polymers as ligands optimized for coating quantum dots (QDs), gold nanoparticles (AuNPs), and magnetic nanoparticles (MNPs), with a focus on (i) how to improve the colloidal stability and antifouling performance of materials in biological conditions; (ii) how to design highly compact coating, without compromising colloidal stability; and (iii) how to tailor the surface functionalities to achieve conjugation to target biomolecules. We also highlight the ability of a phase transfer strategy, mediated by UV irradiation, to promote rapid ligand exchange while preserving the integrity of key functional groups. We then summarize the bioconjugation approaches applied to polymer-coated nanoparticles, with emphasis on the ability of metal-histidine self-assembly and click chemistry, to control the final nanoparticle bioconjugates. Finally, we demonstrate the use of polymer-coated nanoparticles for sensor design based on redox-active interactions and peptide-mediated intracellular delivery. We anticipate that the coating design presented in this Account would advance the integration of nanoparticles into biology and medicine.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
38
|
Shermukhamedov SA, Nazmutdinov RR, Zinkicheva TT, Bronshtein MD, Zhang J, Mao B, Tian Z, Yan J, Wu DY, Ulstrup J. Electronic Spillover from a Metallic Nanoparticle: Can Simple Electrochemical Electron Transfer Processes Be Catalyzed by Electronic Coupling of a Molecular Scale Gold Nanoparticle Simultaneously to the Redox Molecule and the Electrode? J Am Chem Soc 2020; 142:10646-10658. [DOI: 10.1021/jacs.9b09362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shokirbek A. Shermukhamedov
- Kazan National Research Technological University, K. Marx Street, 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Renat R. Nazmutdinov
- Kazan National Research Technological University, K. Marx Street, 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Tamara T. Zinkicheva
- Kazan National Research Technological University, K. Marx Street, 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Michael D. Bronshtein
- Kazan National Research Technological University, K. Marx Street, 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Jingdong Zhang
- Department of Chemistry, Bldg. 207, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Jens Ulstrup
- Kazan National Research Technological University, K. Marx Street, 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
- Department of Chemistry, Bldg. 207, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
39
|
Zhou G, Liu C, Bumm LA, Huang L. Force Field Parameter Development for the Thiolate/Defective Au(111) Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4098-4107. [PMID: 32200638 DOI: 10.1021/acs.langmuir.0c00530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A molecular-level understanding of the interplay between self-assembled monolayers (SAMs) of thiolates and gold surface is of great importance to a wide range of applications in surface science and nanotechnology. Despite theoretical research progress of the past decade, an atomistic model, capable of describing key features of SAMs at reconstructed gold surfaces, is still missing. In this work, periodic ab initio density functional theory (DFT) calculations were utilized to develop a new atomistic force field model for alkanethiolate (AT) SAMs on a reconstructed Au(111) surface. The new force field parameters were carefully trained to reproduce the key features, including vibrational spectra and torsion energy profiles of ethylthiolate (C2S) in the bridge or staple motif model on the Au(111) surface, wherein, the force constants of the bond and angle terms were trained by matching the vibrational spectra, while the torsion parameters of the dihedral angles were trained via fitting the torsion energy profiles from DFT calculations. To validate the developed force field parameters, we performed classical molecular dynamics (MD) simulations for both pristine and reconstructed Au-S interface models with a (2√3 × 3) unit cell, which includes four dodecanethiolate (C10S) molecules on the Au(111) surface. The simulation results showed that the geometrical features of the investigated Au-S interface models and structural properties of the C10S SAMs are in good agreement with the ab initio MD studies. The newly developed atomistic force field model provides new fundamental insights into AT SAMs on the reconstructed Au(111) surface and adds advancement to the existing interface research knowledge.
Collapse
Affiliation(s)
- Guobing Zhou
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lloyd A Bumm
- Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Liangliang Huang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
40
|
Cimafonte M, Fulgione A, Gaglione R, Papaianni M, Capparelli R, Arciello A, Bolletti Censi S, Borriello G, Velotta R, Della Ventura B. Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. SENSORS 2020; 20:s20010274. [PMID: 31947810 PMCID: PMC6982893 DOI: 10.3390/s20010274] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63−/Fe(CN)64− as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL−1 while preserving the rapidity of the method that requires only 1 h to provide a “yes/no” response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the “effective” electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (M.C.); (R.V.)
| | - Andrea Fulgione
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici Naples, Italy; (A.F.); (G.B.)
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (R.G.); (A.A.)
| | - Marina Papaianni
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (R.G.); (A.A.)
| | | | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici Naples, Italy; (A.F.); (G.B.)
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (M.C.); (R.V.)
| | - Bartolomeo Della Ventura
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
41
|
Liu Y, Sun W, Wang K, Xu JJ, Chen HY, Xia XH. End Group Properties of Thiols Affecting the Self-Assembly Mechanism at Gold Nanoparticles Film As Evidenced by Water Infrared Probe. Anal Chem 2019; 91:14508-14513. [PMID: 31610652 DOI: 10.1021/acs.analchem.9b03332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water infrared probe has been employed for in situ monitoring of the detailed self-assembly processes of four thiol molecules with different end groups (-CH3, -NH2, -COOH, and -OH) on gold nanoparticles (Au NPs) film in aqueous solution. Based on the change of water IR signal, the significant influence of end group properties on the kinetics and thermodynamics of thiols self-assembly can be estimated. It is found that the assembly kinetics of thiols decreases with the increase of the hydrophobicity of the end groups. In addition, the charges carried by the end groups (-COOH and -NH2 terminated thiols) will also slow down the self-assembly kinetics owing to the electrostatic repulsions. However, the isothermal adsorption is only affected by the wettability of the end groups of thiols. The higher hydrophilicity of the end groups results in larger equilibrium constant of the self-assembly process. Results show that water infrared probe offers an additional approach to the monitoring of thiols self-assembly processes with higher sensitivity and more detailed information as compared to traditional molecule fingerprints.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
42
|
Zhan C, Wang G, Zhang XG, Li ZH, Wei JY, Si Y, Yang Y, Hong W, Tian ZQ. Single-Molecule Measurement of Adsorption Free Energy at the Solid-Liquid Interface. Angew Chem Int Ed Engl 2019; 58:14534-14538. [PMID: 31373130 DOI: 10.1002/anie.201907966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 11/10/2022]
Abstract
Adsorption plays a critical role in surface and interface processes. Fractional surface coverage and adsorption free energy are two essential parameters of molecular adsorption. However, although adsorption at the solid-gas interface has been well-studied, and some adsorption models were proposed more than a century ago, challenges remain for the experimental investigation of molecular adsorption at the solid-liquid interface. Herein, we report the statistical and quantitative single-molecule measurement of adsorption at the solid-liquid interface by using the single-molecule break junction technique. The fractional surface coverage was extracted from the analysis of junction formation probability so that the adsorption free energy could be calculated by referring to the Langmuir isotherm. In the case of three prototypical molecules with terminal methylthio, pyridyl, and amino groups, the adsorption free energies were found to be 32.5, 33.9, and 28.3 kJ mol-1 , respectively, which are consistent with DFT calculations.
Collapse
Affiliation(s)
- Chao Zhan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Gan Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Xia-Guang Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Zhi-Hao Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Jun-Ying Wei
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Yu Si
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering,iChEM, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
43
|
Engelbrekt C, Nazmutdinov RR, Zinkicheva TT, Glukhov DV, Yan J, Mao B, Ulstrup J, Zhang J. Chemistry of cysteine assembly on Au(100): electrochemistry, in situ STM and molecular modeling. NANOSCALE 2019; 11:17235-17251. [PMID: 31418761 DOI: 10.1039/c9nr02477h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cysteine (Cys) is an essential amino acid with a carboxylic acid, an amine and a thiol group. We have studied the surface structure and adsorption dynamics of l-cysteine adlayers on Au(100) from aqueous solution using electrochemistry, high-resolution electrochemical scanning tunnelling microscopy (in situ STM), and molecular modelling. Cys adsorption on this low-index Au-surface has been much less studied than Cys adsorption on Au(111)- and Au(110)-electrode surfaces. Chronopotentiometry was employed to monitor the adsorption dynamics at sub-second resolution and showed that adsorption is completed in 30 minutes at Cys concentrations above 100 μM. Two consecutive steps could be fitted to these data. Two separate reductive desorption peaks of Cys adlayers on Au(100) with a total coverage of 2.52 (±0.15) × 10-10 mol cm-2 were observed. In situ STM showed that the adsorbed Cys is organized in stripes with "fork-like" features which co-exist in (11 × 2)-2Cys and (7 × 2)-2Cys lattices, quite differently from Cys adsorption on Au(111)-electrode surfaces. Stripe structures with bright STM contrast in the center suggest that a second Cys adlayer on top of a first adlayer is formed, supporting the dual-peak reductive desorption of Cys adlayers. In addition, monolayers of both pure l-Cys and pure d-Cys and a 1 : 1 racemic mixture of l- and d-Cys on Au(100) were studied. Virtually identical macroscopic electrochemical features were found, but in situ STM discloses many more defects for the racemic mixture than for the pure enantiomers due to structural mismatch of l- and d-Cys. Density functional theory (DFT) calculations combined with a cluster model for the Au(100) surface were carried out to investigate the adsorption energy and geometry of the adsorbed monomer and dimer Cys species in different orientations, with detailed attention to the chirality effects. Optimized DFT geometries were used to construct model STM images, and kinetic Monte Carlo simulations undertaken to illuminate the growth of adsorbate rows and the mechanism of the adlayer formation as well as the Cys adsorption patterns specific to the Au(100)-electrode surface.
Collapse
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry, Building 207, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cai S, Ma H, Shi H, Wang H, Wang X, Xiao L, Ye W, Huang K, Cao X, Gan N, Ma C, Gu M, Song L, Xu H, Tao Y, Zhang C, Yao W, An Z, Huang W. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nat Commun 2019; 10:4247. [PMID: 31534166 PMCID: PMC6751207 DOI: 10.1038/s41467-019-11749-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Long-lived room temperature phosphorescence (LRTP) is an attractive optical phenomenon in organic electronics and photonics. Despite the rapid advance, it is still a formidable challenge to explore a universal approach to obtain LRTP in amorphous polymers. Based on the traditional polyethylene derivatives, we herein present a facile and concise chemical strategy to achieve ultralong phosphorescence in polymers by ionic bonding cross-linking. Impressively, a record LRTP lifetime of up to 2.1 s in amorphous polymers under ambient conditions is set up. Moreover, multicolor long-lived phosphorescent emission can be procured by tuning the excitation wavelength in single-component polymer materials. These results outline a fundamental principle for the construction of polymer materials with LRTP, endowing traditional polymers with fresh features for potential applications. Long-lived room temperature phosphorescence (LRTP) is important in organic photonics but exploring a universal approach to obtain LRTP in amorphous polymers is challenging. Here the authors present a facile chemical strategy to achieve ultralong phosphorescence in polymers by ionic bonding cross-linking.
Collapse
Affiliation(s)
- Suzhi Cai
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - He Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xuan Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Leixin Xiao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Kaiwei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xudong Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Nan Gan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chaoqun Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Mingxing Gu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lulu Song
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Hai Xu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Youtian Tao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wei Yao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China. .,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China. .,Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
45
|
Zhan C, Wang G, Zhang X, Li Z, Wei J, Si Y, Yang Y, Hong W, Tian Z. Single‐Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Zhan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Gan Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Xia‐Guang Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Zhi‐Hao Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Jun‐Ying Wei
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Yu Si
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Yang Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Wenjing Hong
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| | - Zhong‐Qun Tian
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering,iChEM Xiamen University Xiamen 361005 China
| |
Collapse
|
46
|
Cheng HW, Wu ZP, Yan S, Li J, Shan S, Wang L, Porter MD, Zhong CJ. A simple vaporous probe with atomic-scale sensitivity to structural ordering and orientation of molecular assembly. Chem Sci 2019; 10:7104-7110. [PMID: 31588278 PMCID: PMC6677115 DOI: 10.1039/c9sc01656b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022] Open
Abstract
Understanding the structural ordering and orientation of interfacial molecular assemblies requires an insight into the penetration depth of the probe molecules which determines the interfacial reactivity. In contrast to the conventional liquid probe-based contact angle measurement in which penetration depth is complicated by the liquid cohesive interaction, we report here a new approach that features a simple combination of vaporous hexane, which involves only van der Waals interaction, and quartz crystal microbalance operated at the third harmonic resonance, which is sensitive to sub-monolayer (0.2%) adsorption. Using this combination, we demonstrated the ability of probing the structural ordering and orientation of the self-assembled monolayers with a sensitivity from penetrating the top portion of the monolayers to interacting with the very top atomic structure at the interface. The determination of the dependence of the adsorption energy of vaporous hexane on the penetration depth in the molecular assembly allowed us to further reveal the atomic-scale origin of the odd-even oscillation, which is also substantiated by density functional theory calculations. The findings have broader implications for designing interfacial reactivities of molecular assemblies with atomic-scale depth precision.
Collapse
Affiliation(s)
- Han-Wen Cheng
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , China .
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , USA .
| | - Zhi-Peng Wu
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , USA .
| | - Shan Yan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , USA .
| | - Jing Li
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , USA .
| | - Shiyao Shan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , USA .
| | - Lichang Wang
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , USA
| | - Marc D Porter
- Department of Chemistry and Chemical Engineering , University of Utah , Salt Lake City , Utah 84112 , USA .
| | - Chuan-Jian Zhong
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , USA .
| |
Collapse
|
47
|
Tetrel Interactions from an Interacting Quantum Atoms Perspective. Molecules 2019; 24:molecules24122204. [PMID: 31212835 PMCID: PMC6632095 DOI: 10.3390/molecules24122204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tetrel bonds, the purportedly non-covalent interaction between a molecule that contains an atom of group 14 and an anion or (more generally) an atom or molecule with lone electron pairs, are under intense scrutiny. In this work, we perform an interacting quantum atoms (IQA) analysis of several simple complexes formed between an electrophilic fragment (A) (CH3F, CH4, CO2, CS2, SiO2, SiH3F, SiH4, GeH3F, GeO2, and GeH4) and an electron-pair-rich system (B) (NCH, NCO-, OCN-, F-, Br-, CN-, CO, CS, Kr, NC-, NH3, OC, OH2, SH-, and N3-) at the aug-cc-pvtz coupled cluster singles and doubles (CCSD) level of calculation. The binding energy ( E bind AB ) is separated into intrafragment and inter-fragment components, and the latter in turn split into classical and covalent contributions. It is shown that the three terms are important in determining E bind AB , with absolute values that increase in passing from electrophilic fragments containing C, Ge, and Si. The degree of covalency between A and B is measured through the real space bond order known as the delocalization index ( δ AB ). Finally, a good linear correlation is found between δ AB and E xc AB , the exchange correlation (xc) or covalent contribution to E bind AB .
Collapse
|
48
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
49
|
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J. Understanding Regium Bonds and their Competition with Hydrogen Bonds in Au 2 :HX Complexes. Chemphyschem 2019; 20:1572-1580. [PMID: 30974036 DOI: 10.1002/cphc.201900354] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 01/08/2023]
Abstract
A theoretical study of the regium and hydrogen bonds (RB and HB, respectively) in Au2 :HX complexes has been carried out by means of CCSD(T) calculations. The theoretical study shows as overall outcome that in all cases the complexes exhibiting RB are more stable that those with HB. The binding energies for RB complexes range between -24 and -180 kJ ⋅ mol-1, whereas those of the HB complexes are between -6 and -19 kJ ⋅ mol-1 . DFT-SAPT also indicated that HB complexes are governed by electrostatics, but RB complexes present larger contribution of the induction term to the total attractive forces. 197 Au chemical shifts have been calculated using the relativistic ZORA Hamiltonian.
Collapse
Affiliation(s)
- Goar Sánchez-Sanz
- Irish Centre of High-End Computing, Grand Canal Quay, Dublin, 2, Ireland.,School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Cristina Trujillo
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin, 2, Ireland
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| |
Collapse
|
50
|
Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers. Nat Chem 2019; 11:351-358. [PMID: 30833721 DOI: 10.1038/s41557-019-0216-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022]
Abstract
Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.
Collapse
|