1
|
Sun X, Li X, Zhao S, Li C, Lin Y, Shen Q, Ding J, Li T, Yin Y, Tao K. Which surrogate endpoint best predict survival in locally advanced gastric cancer patients undergoing neoadjuvant chemoimmunotherapy followed by surgery? A multicenter retrospective study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 51:109517. [PMID: 39662107 DOI: 10.1016/j.ejso.2024.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Recent clinical researches have reported that neoadjuvant chemoimmunotherapy (NCIT) significantly improve the pathological complete response (pCR) and major pathological response (MPR) rates. However, surrogate endpoints for survival remains controversy for locally advanced gastric cancer (LAGC) after NCIT. METHODS A retrospective analysis was performed on 84 patients with LAGC who had undergone NCIT following radical resection in three medical centers in China, between July 2020 and September 2023. Survival curves for event-free survival (EFS) and overall survival (OS) were estimated using the Kaplan-Meier method, and the log-rank test was used to compare survival outcomes. Univariate and multivariate analyses for prognostic factors were based on Cox regression analysis. RESULTS The rates of ypN0, pCR and MPR were 60.7 % (51/84), 26.2 % (22/84) and 39.3 %(33/84),respectively. Patients with ypN0 had better EFS and OS than those with ypN+ (all p < 0.05). Survival was equivalent between pCR and non-pCR group (all p > 0.05). while patients with MPR had better EFS than those with non-MPR (p = 0.028). Furthermore, a multivariate analysis revealed that the lymph nodes(LNs) status was an independent prognostic factor for the EFS (hazard ratio [HR] 5.533, 95 % confidence interval [CI] 1.186-25.804, p = 0.029) and OS (HR 5.116, 95 % CI 1.357-19.281, p = 0.016), but not pCR and MPR (all p > 0.05). Based on the status of pathologic LNs, ypN0 group showed lower depth of tumor invasion, and lower rate of perineural and vascular invasion (all p < 0.05). CONCLUSION These findings demonstrated that ypN0 may be important as a surrogate of favorable clinical outcome in LAGC patients who received NCIT plus curative surgery.
Collapse
Affiliation(s)
- Xiong Sun
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanfei Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijun Zhao
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Lin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Shen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Ding
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
3
|
Wu Y, Zhao Y, Yu L, Wang R, Feng W, Wu Y, Wang L, Chen H, He Z, Wang Q. Case report: targeted therapy of malignant pleural mesothelioma with anaplastic lymphoma kinase receptor tyrosine kinase gene fusion mutation by crizotinib. J Int Med Res 2024; 52:3000605241287320. [PMID: 39534944 PMCID: PMC11558720 DOI: 10.1177/03000605241287320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Malignant mesothelioma is a rare highly invasive tumour originating from the mesothelial cells of the pleura, peritoneum and pericardium. Malignant pleural mesothelioma (MPM) is the most common type in all malignant mesothelioma. The onset of MPM is associated with exposure to asbestos and it can have an incubation period of up to 40 years. The incidence of MPM has been increasing worldwide in recent years, so more attention has been focused on its diagnosis, treatment and prognosis. Activating mutations, amplifications and fusions/rearrangements of the anaplastic lymphoma kinase receptor tyrosine kinase (ALK) gene are commonly seen in patients with non-small cell lung cancer. However, it is rare in MPM. This current case report describes a female patient with advanced MPM with an ALK gene fusion mutation. In this particular case, treatment with crizotinib demonstrated some initial efficacy, which suggests that this might be a promising strategy for patients with advanced MPM with an ALK gene mutation. This required further research and evaluation in the future.
Collapse
Affiliation(s)
- Yufeng Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Yuhua Zhao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Limeng Yu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Department of Critical Care Medicine, Zhengzhou Orthopaedic Hospital, Zhengzhou, Henan Province, China
| | - Ruilin Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Department of Medical Oncology, Pingdingshan First People’s Hospital, Pingdingshan, Henan Province, China
| | - Wen Feng
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Yingxi Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Lili Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Haiyang Chen
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Zhen He
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Klotz LV, Weigert A, Eichhorn F, Allgäuer M, Muley T, Shah R, Savai R, Eichhorn ME, Winter H. Impact of T Cell Ratios on Survival in Pleural Mesothelioma: Insights from Tumor Microenvironment Analysis. Cancers (Basel) 2024; 16:3418. [PMID: 39410037 PMCID: PMC11476058 DOI: 10.3390/cancers16193418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Immunotherapy has significantly improved overall survival in patients with pleural mesothelioma, yet this benefit does not extend to those with the epithelioid subtype. Tumor growth is believed to be influenced by the immune response. This study aimed to analyze the tumor microenvironment to gain a better understanding of its influence on tumor growth. Methods: The tumor immune cell infiltration of 188 patients with pleural mesothelioma was characterized by multiplex immunofluorescence staining for CD3+ cells (CD3+), CD4+ cells (CD3+/CD4+), CD8+ cells (CD3+/CD8+), Treg (CD3+/CD4+/CD8-/CD163-/Foxp3+), PD1 cells (PD1+), and T helper cells (CD3+/CD4+/CD8-/CD163-/FoxP3-). The distribution of specific immune cells was correlated with clinical parameters. Results: A total of 188 patients with pleural mesothelioma (135 epithelioid, 9 sarcomatoid, 44 biphasic subtypes) were analyzed. The median age was 64.8 years. Overall survival was significantly longer in the epithelioid subtype than in the non-epithelioid subtype (p = 0.016). The presence of PD-L1 expression had a negative effect on overall survival (p = 0.041). A high ratio of CD4+ cells to regulatory T cells was associated with a significantly longer overall survival of more than 12 months (p = 0.015). The ratio of CD4+ cells to regulatory T cells retained its significant effect on overall survival in the multivariate analysis. Conclusions: Distinct differences in the T cell immune infiltrates in mesothelioma are strongly associated with overall survival. The tumor microenvironment could therefore serve as a source of prognostic biomarkers.
Collapse
Affiliation(s)
- Laura V. Klotz
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Michael Allgäuer
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany;
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany;
| | - Rajiv Shah
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, Röntgenstraße 1, 69126 Heidelberg, Germany;
| | - Rajkumar Savai
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health, Justus Liebig University, 35392 Giessen, Germany;
| | - Martin E. Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Costa A, Forte IM, Pentimalli F, Iannuzzi CA, Alfano L, Capone F, Camerlingo R, Calabrese A, von Arx C, Benot Dominguez R, Quintiliani M, De Laurentiis M, Morrione A, Giordano A. Pharmacological inhibition of CDK4/6 impairs diffuse pleural mesothelioma 3D spheroid growth and reduces viability of cisplatin-resistant cells. Front Oncol 2024; 14:1418951. [PMID: 39011477 PMCID: PMC11246887 DOI: 10.3389/fonc.2024.1418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Diffuse pleural mesothelioma (DPM) of the pleura is a highly aggressive and treatment-resistant cancer linked to asbestos exposure. Despite multimodal treatment, the prognosis for DPM patients remains very poor, with an average survival of 2 years from diagnosis. Cisplatin, a platinum-based chemotherapy drug, is commonly used in the treatment of DPM. However, the development of resistance to cisplatin significantly limits its effectiveness, highlighting the urgent need for alternative therapeutic strategies. New selective inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have shown promise in various malignancies by inhibiting cell cycle progression and suppressing tumor growth. Recent studies have indicated the potential of abemaciclib for DPM therapy, and a phase II clinical trial has shown preliminary encouraging results. Methods Here, we tested abemaciclib, palbociclib, and ribociclib on a panel of DPM cell lines and non-tumor mesothelial(MET-5A) cells. Results Specifically, we focused on abemaciclib, which was the mosteffective cytotoxic agent on all the DPM cell lines tested. Abemaciclib reduced DPM cell viability, clonogenic potential, and ability to grow as three-dimensional (3D) spheroids. In addition, abemaciclib induced prolonged effects, thereby impairing second-generation sphere formation and inducing G0/G1 arrest and apoptosis/ necrosis. Interestingly, single silencing of RB family members did not impair cell response to abemaciclib, suggesting that they likely complement each other in triggering abemaciclib's cytostatic effect. Interestingly, abemaciclib reduced the phosphorylation of AKT, which is hyperactive in DPM and synergized with the pharmacological AKT inhibitor (AKTi VIII). Abemaciclib also synergized with cisplatin and reduced the viability of DPM cells with acquired resistance to cisplatin. Discussion Overall, our results suggest that CDK4/6 inhibitors alone or in combination with standard of care should be further explored for DPM therapy.
Collapse
Affiliation(s)
- Aurora Costa
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Iris Maria Forte
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Carmelina Antonella Iannuzzi
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Luigi Alfano
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit-Laboratories of Naples andMercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Alessandra Calabrese
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Claudia von Arx
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | | | - Michelino De Laurentiis
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Hou S, Song D, Hao R, Li L, Zhang Y, Zhu J. Prognostic relevance of prognostic nutritional indices in gastric or gastro-esophageal junction cancer patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2024; 15:1382417. [PMID: 38966640 PMCID: PMC11222392 DOI: 10.3389/fimmu.2024.1382417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Background The Prognostic Nutritional Index (PNI) has become an important predictive tool for assessing patients' nutritional status and immune competence. It is widely used in prognostic evaluations for various cancer patients. However, the prognostic relevance of the Prognostic Nutritional Index (PNI) in gastric or gastro-esophageal junction cancer patients (GC/GEJC) undergoing immune checkpoint inhibitors (ICIs) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PNI in this specific patient cohort. Methods We conducted a thorough literature search, covering prominent databases such as PubMed, Embase, Web of Science, SpringerLink, and the Cochrane Library. The search spanned from the inception of these databases up to December 5, 2023. Employing the 95% confidence interval and Hazard Ratio (HR), the study systematically evaluated the relationship between PNI and key prognostic indicators, including the objective remission rate (ORR), disease control rate (DCR), overall survival (OS) and progression-free survival (PFS) in GC/GEJC patients undergoing ICI treatment. Results Eight studies comprising 813 eligible patients were selected. With 7 studies consistently demonstrating superior Overall Survival (OS) in the high-Prognostic Nutritional Index (PNI) group compared to their low-PNI counterparts (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Furthermore, the results derived from 6 studies pointed out that the significant correlation between he low-PNI and poorer progression-free survival (PFS) (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Subgroup analyses were performed to validate the robustness of the results. In addition, we conducted a meta-analysis of three studies examining the correlation between PNI and objective response rate/disease control rate (ORR/DCR) and found that the ORR/DCR was significantly superior in the high PNI group (ORR: RR: 1.24, P=0.002; DCR: RR: 1.43, P=0.008). Conclusion This meta-analysis indicates that the low-PNI in GC/GEJC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PNI can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration https://inplasy.com/, identifier INPLASY202450133.
Collapse
Affiliation(s)
- Shufu Hou
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dandan Song
- Department of Neurology, Shandong Province Third Hospital, Jinan, China
| | - Ruiqi Hao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Pan Y, Xue Q, Yang Y, Shi T, Wang H, Song X, Luo Y, Liu W, Ren S, Cai Y, Nie Y, Song Z, Liu B, Li JP, Wei J. Glycoengineering-based anti-PD-1-iRGD peptide conjugate boosts antitumor efficacy through T cell engagement. Cell Rep Med 2024; 5:101590. [PMID: 38843844 PMCID: PMC11228665 DOI: 10.1016/j.xcrm.2024.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Despite the important breakthroughs of immune checkpoint inhibitors in recent years, the objective response rates remain limited. Here, we synthesize programmed cell death protein-1 (PD-1) antibody-iRGD cyclic peptide conjugate (αPD-1-(iRGD)2) through glycoengineering methods. In addition to enhancing tissue penetration, αPD-1-(iRGD)2 simultaneously engages tumor cells and PD-1+ T cells via dual targeting, thus mediating tumor-specific T cell activation and proliferation with mild effects on non-specific T cells. In multiple syngeneic mouse models, αPD-1-(iRGD)2 effectively reduces tumor growth with satisfactory biosafety. Moreover, results of flow cytometry and single-cell RNA-seq reveal that αPD-1-(iRGD)2 remodels the tumor microenvironment and expands a population of "better effector" CD8+ tumor infiltrating T cells expressing stem- and memory-associated genes, including Tcf7, Il7r, Lef1, and Bach2. Conclusively, αPD-1-(iRGD)2 is a promising antibody conjugate therapeutic beyond antibody-drug conjugate for cancer immunotherapy.
Collapse
Affiliation(s)
- Yunfeng Pan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Xue
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Yang
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Tao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanbing Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xueru Song
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuting Luo
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shiji Ren
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiran Cai
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Nie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhentao Song
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie P Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Hou S, Song D, Zang Y, Hao R, Li L, Zhu J. Prognostic relevance of platelet lymphocyte ratio (PLR) in gastric cancer patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol 2024; 14:1367990. [PMID: 38912061 PMCID: PMC11190700 DOI: 10.3389/fonc.2024.1367990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Objectives The prognostic relevance of the platelet-to-lymphocyte ratio (PLR) in gastric cancer (GC) patients undergoing immune checkpoint inhibitor (ICI) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PLR in this specific patient cohort. Methods We searched the PubMed, Cochrane Library, CNKI, and EMBASE databases, including literature published up to September 2023, to investigate the prognostic implications of PLR in patients with gastric cancer undergoing immune checkpoint inhibitor therapy. Outcome measures encompassed overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rates (DCR). Results Nine studies from seven articles comprising 948 eligible patients were selected. The results revealed a significant correlation between elevated PLR and poorer OS and progression-free survival (PFS) (OS: HR 1.67, 95% CI 1.39-2.00, p < 0.001; PFS: HR 1.51, 95% CI 1.29-1.76, p < 0.001). Subgroup analyses were performed to validate the robustness of the results. Moreover, a meta-analysis of four studies investigating the correlation between the PLR in gastric cancer (GC) patients and the objective response rate/disease control rate (ORR/DCR), showed no significant association between the PLR and ORR/DCR (ORR: RR = 1.01, p = 0.960; DCR: RR = 0.96, p = 0.319). Conclusions This meta-analysis indicates that elevated PLR in GC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PLR can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration https://inplasy.com/, identifier INPLASY2023120103.
Collapse
Affiliation(s)
- Shufu Hou
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dandan Song
- Department of Neurology, Shandong Province Third Hospital, Jinan, China
| | - Yelei Zang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ruiqi Hao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
10
|
Neilly MD, Pearson J, Thu AW, MacRae C, Blyth KG. Contemporary management of mesothelioma. Breathe (Sheff) 2024; 20:230175. [PMID: 39015660 PMCID: PMC11250169 DOI: 10.1183/20734735.0175-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/12/2024] [Indexed: 07/18/2024] Open
Abstract
Pleural mesothelioma (PM) is an aggressive asbestos-associated thoracic malignancy with a median survival of 12-18 months. Due to continued asbestos use in many nations, global incidence is rising. Causes due to non-occupational, environmental exposure are also rising in many countries despite utilisation bans. For many years, platinum--pemetrexed chemotherapy was the solitary licensed therapy, but first-line combination immune checkpoint blockade has recently demonstrated improved outcomes, with both regimes tested in predominantly late-stage cohorts. In the second-line setting, single-agent nivolumab has been shown to extend survival and is now available for routine use in some regions, while second-line chemotherapy has no proven role and opportunities for clinical trials should be maximised in relapsed disease. Surgery for "technically resectable" disease has been offered for decades in many expert centres, but the recent results from the phase III MARS2 trial have challenged this approach. There remains no robustly proven standard of care for early-stage PM. The clinical trial landscape for PM is complex and increasingly diverse, making further development of specialist PM multidisciplinary teams an important priority in all countries. The observation of improving outcomes in centres that have adopted this service model emphasises the importance of high-quality diagnostics and equitable access to therapies and trials. Novel therapies targeting a range of aberrations are being evaluated; however, a better understanding of the molecular drivers and their associated vulnerabilities is required to identify and prioritise treatment targets.
Collapse
Affiliation(s)
- Mark D.J. Neilly
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Pearson
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Akari Win Thu
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Carolyn MacRae
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kevin G. Blyth
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| |
Collapse
|
11
|
Zhuang W, Liu L, Sun B, Bai H, Wang Z, Duan J, Wan R, Ma Z, Zhong J, Wang J. Evaluation of first-line and salvage therapies for unresectable malignant mesothelioma: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2024; 198:104372. [PMID: 38677356 DOI: 10.1016/j.critrevonc.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Randomized controlled trials (RCTs) of systemic therapies for unresectable malignant mesothelioma have reported conflicting results. It is crucial and urgent to find optimal treatment options for this malignancy, which currently has a poor prognosis. METHODS Databases PubMed, EMBASE, Cochrane Library, ClinicalTrials.gov, and major international conferences were searched until February 29, 2024. The main outcomes of interest were overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and grade ≥3 treatment-related adverse events (TRAEs). RESULTS We analyzed 16 RCTs with a total of 5018 patients. Among first-line therapies, nivolumab and ipilimumab significantly increased OS and resulted in fewer grade ≥3 TRAEs. Bevacizumab plus chemotherapy significantly increased PFS. Among salvage therapies, ramucirumab and chemotherapy was associated with the best OS and PFS, but resulted in more grade ≥3 TRAEs. Subgroup analysis by histologic types suggested that in first-line settings, bevacizumab and chemotherapy increase OS the most for epithelioid type, while the nivolumab plus ipilimumab treatment increases OS the most for non-epithelioid type. In salvage therapies, ramucirumab and chemotherapy increase OS for both epithelioid and non-epithelioid types. CONCLUSION Nivolumab plus ipilimumab was associated with the best OS among first-line treatments. Ramucirumab and chemotherapy was associated with the best clinical outcomes in salvage settings. Treatment for malignant mesothelioma should be tailored based on different clinicopathological characteristics.
Collapse
Affiliation(s)
- Wei Zhuang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lihui Liu
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Boyang Sun
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhijie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zixiao Ma
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia Zhong
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
12
|
Testa JR, Kadariya Y, Friedberg JS. Targeting inflammatory factors for chemoprevention and cancer interception to tackle malignant mesothelioma. Oncoscience 2024; 11:53-57. [PMID: 38784478 PMCID: PMC11115283 DOI: 10.18632/oncoscience.605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Mesothelioma is an incurable cancer of the mesothelial lining often caused by exposure to asbestos. Asbestos-induced inflammation is a significant contributing factor in the development of mesothelioma, and genetic factors also play a role in the susceptibility to this rapidly progressive and treatment-resistant malignancy. Consequently, novel approaches are urgently needed to treat mesothelioma and prevent or reduce the overall incidence of this fatal disease. In this research perspective, we review the current state of chemoprevention and cancer interception progress in asbestos-induced mesothelioma. We discuss the different preclinical mouse models used for these investigations and the inflammatory factors that may be potential targets for mesothelioma prevention. Preliminary studies with naturally occurring phytochemicals and synthetic agents are reviewed. Results of previous clinical chemoprevention trials in populations exposed to asbestos and considerations regarding future trials are also presented.
Collapse
Affiliation(s)
- Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yuwaraj Kadariya
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Joseph S. Friedberg
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
13
|
Hocking AJ, Mortimer LA, Farrall AL, Russell PA, Klebe S. Establishing mesothelioma patient-derived organoid models from malignant pleural effusions. Lung Cancer 2024; 191:107542. [PMID: 38555809 DOI: 10.1016/j.lungcan.2024.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Pleural mesothelioma is a cancer arising in the cells that line the lungs and chest wall with poor survival and poor response to first-line therapy. Organoid models of cancer can faithfully recapitulate the genetic and histopathological characteristics of individualized tumors and have potential to be used for precision medicine, however methods of establishing patient-derived mesothelioma organoids have not been well established in the published literature. MATERIALS AND METHODS Long-term mesothelioma patient-derived organoids were established from ten malignant pleural effusion fluids. Mesothelioma patient-derived organoids were compared to the corresponding biopsy tissue specimens using immunohistochemistry labelling for select diagnostic markers and the TruSight Oncology-500 sequencing assay. Cell viability in response to the chemotherapeutic drug cisplatin was assessed. RESULTS We established five mesothelioma patient-derived organoid cultures from ten malignant pleural effusion fluids collected from nine individuals with pleural mesothelioma. Mesothelioma patient-derived organoids typically reflected the histopathological and genomic features of patients' matched biopsy specimens and displayed cytotoxic sensitivity to cisplatin in vitro. CONCLUSION This is the first study of its kind to establish long-term mesothelioma organoid cultures from malignant pleural effusions and report on their utility to test individuals' chemotherapeutic sensitivities ex vivo.
Collapse
Affiliation(s)
- Ashleigh J Hocking
- College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Lauren A Mortimer
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alexandra L Farrall
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Prudence A Russell
- LifeStrands Genomics and TissuPath Pathology, Mount Waverley, Victoria, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
14
|
Hung YP, Chirieac LR. Molecular and Immunohistochemical Testing in Mesothelioma and Other Mesothelial Lesions. Arch Pathol Lab Med 2024; 148:e77-e89. [PMID: 38190277 DOI: 10.5858/arpa.2023-0213-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 01/10/2024]
Abstract
CONTEXT.— Molecular testing has increasingly been utilized in the evaluation of mesothelioma. Diffuse mesothelioma comprises multiple distinct genetic subgroups. While most diffuse mesotheliomas lack oncogenic kinase mutations and instead harbor alterations involving tumor suppressors and chromatin regulators, a minor subset of tumors is characterized by uncommon alterations such as germline mutations, genomic near-haploidization, ALK rearrangement, ATF1 rearrangement, or EWSR1::YY1 fusion. OBJECTIVE.— To provide updates on the salient molecular features of diffuse mesothelioma, mesothelioma in situ, and other mesothelial lesions: well-differentiated papillary mesothelial tumor, adenomatoid tumor, peritoneal inclusion cyst, and others. We consider the diagnostic, prognostic, and predictive utility of molecular testing in mesothelial lesions. DATA SOURCES.— We performed a literature review of recently described genetic features, molecular approaches, and immunohistochemical tools, including BAP1, MTAP, and merlin in mesothelioma and other mesothelial lesions. CONCLUSIONS.— Our evolving understanding of the molecular diversity of diffuse mesothelioma and other mesothelial lesions has led to considerable changes in pathology diagnostic practice, including the application of immunohistochemical markers such as BAP1, MTAP, and merlin (NF2), which are surrogates of mutation status. In young patients and/or those without significant asbestos exposure, unusual mesothelioma genetics such as germline mutations, ALK rearrangement, and ATF1 rearrangement should be considered.
Collapse
MESH Headings
- Humans
- Mesothelioma/diagnosis
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Immunohistochemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Neoplasms, Mesothelial/diagnosis
- Neoplasms, Mesothelial/genetics
- Neoplasms, Mesothelial/metabolism
- Neoplasms, Mesothelial/pathology
- Mesothelioma, Malignant/diagnosis
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/pathology
- Mesothelioma, Malignant/metabolism
- Mutation
- Tumor Suppressor Proteins
- Ubiquitin Thiolesterase
Collapse
Affiliation(s)
- Yin P Hung
- From the Department of Pathology, Massachusetts General Hospital. Boston (Hung)
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
| | - Lucian R Chirieac
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Chirieac)
| |
Collapse
|
15
|
Yun KM, Bazhenova L. Emerging New Targets in Systemic Therapy for Malignant Pleural Mesothelioma. Cancers (Basel) 2024; 16:1252. [PMID: 38610930 PMCID: PMC11011044 DOI: 10.3390/cancers16071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) is a heterogeneous cancer composed of distinct molecular and pathologic subtypes. Unfortunately, MPM is aggressive, and current therapies for advanced, unresectable disease remain limited to cytotoxic chemotherapy and immunotherapy. Our understanding of the genomic landscape of MPM is steadily growing, while the discovery of effective targeted therapies in MPM has advanced more slowly than in other solid tumors. Given the prevalence of alterations in tumor suppressor genes in MPM, it has been challenging to identify actionable targets. However, efforts to characterize the genetic signatures in MPM over the last decade have led to a range of novel targeted therapeutics entering early-phase clinical trials. In this review, we discuss the advancements made thus far in targeted systemic therapies in MPM and the future direction of targeted strategies in patients with advanced MPM.
Collapse
Affiliation(s)
- Karen M. Yun
- Division of Hematology-Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, CA 92093, USA;
| | | |
Collapse
|
16
|
Okado S, Kato T, Hanamatsu Y, Emoto R, Imamura Y, Watanabe H, Kawasumi Y, Kadomatsu Y, Ueno H, Nakamura S, Mizuno T, Takeuchi T, Matsui S, Chen-Yoshikawa TF. CHST4 Gene as a Potential Predictor of Clinical Outcome in Malignant Pleural Mesothelioma. Int J Mol Sci 2024; 25:2270. [PMID: 38396947 PMCID: PMC10889779 DOI: 10.3390/ijms25042270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) develops primarily from asbestos exposures and has a poor prognosis. In this study, The Cancer Genome Atlas was used to perform a comprehensive survival analysis, which identified the CHST4 gene as a potential predictor of favorable overall survival for patients with MPM. An enrichment analysis of favorable prognostic genes, including CHST4, showed immune-related ontological terms, whereas an analysis of unfavorable prognostic genes indicated cell-cycle-related terms. CHST4 mRNA expression in MPM was significantly correlated with Bindea immune-gene signatures. To validate the relationship between CHST4 expression and prognosis, we performed an immunohistochemical analysis of CHST4 protein expression in 23 surgical specimens from surgically treated patients with MPM who achieved macroscopic complete resection. The score calculated from the proportion and intensity staining was used to compare the intensity of CHST4 gene expression, which showed that CHST4 expression was stronger in patients with a better postoperative prognosis. The median overall postoperative survival was 107.8 months in the high-expression-score group and 38.0 months in the low-score group (p = 0.044, log-rank test). Survival after recurrence was also significantly improved by CHST4 expression. These results suggest that CHST4 is useful as a prognostic biomarker in MPM.
Collapse
Affiliation(s)
- Shoji Okado
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; (Y.H.); (T.T.)
| | - Ryo Emoto
- Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (R.E.); (S.M.)
| | - Yoshito Imamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hiroki Watanabe
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuta Kawasumi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Tetsuya Mizuno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; (Y.H.); (T.T.)
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (R.E.); (S.M.)
| | - Toyofumi Fengshi Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (S.O.); (T.K.); (Y.I.); (H.W.); (Y.K.); (Y.K.); (H.U.); (S.N.); (T.M.)
| |
Collapse
|
17
|
Cao Y, Ding S, Hu Y, Zeng L, Zhou J, Lin L, Zhang X, Ma Q, Cai R, Zhang Y, Duan G, Bian XW, Tian G. An Immunocompetent Hafnium Oxide-Based STING Nanoagonist for Cancer Radio-immunotherapy. ACS NANO 2024; 18:4189-4204. [PMID: 38193384 DOI: 10.1021/acsnano.3c09293] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
cGAS-STING signaling plays a critical role in radiotherapy (RT)-mediated immunomodulation. However, RT alone is insufficient to sustain STING activation in tumors under a safe X-ray dose. Here, we propose a radiosensitization cooperated with cGAS stimulation strategy by engineering a core-shell structured nanosized radiosensitizer-based cGAS-STING agonist, which is constituted with the hafnium oxide (HfO2) core and the manganese oxide (MnO2) shell. HfO2-mediated radiosensitization enhances immunogenic cell death to afford tumor associated antigens and adequate cytosolic dsDNA, while the GSH-degradable MnO2 sustainably releases Mn2+ in tumors to improve the recognition sensitization of cGAS. The synchronization of sustained Mn2+ supply with cumulative cytosolic dsDNA damage synergistically augments the cGAS-STING activation in irradiated tumors, thereby enhancing RT-triggered local and system effects when combined with an immune checkpoint inhibitor. Therefore, the synchronous radiosensitization with sustained STING activation is demonstrated as a potent immunostimulation strategy to optimize cancer radio-immuotherapy.
Collapse
Affiliation(s)
- Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Ling Lin
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Yu Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| |
Collapse
|
18
|
Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis 2024; 23:35. [PMID: 38302980 PMCID: PMC10832245 DOI: 10.1186/s12944-024-02024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Lipid metabolism in cancer cells has garnered increasing attention in recent decades. Cancer cells thrive in hypoxic conditions, nutrient deficiency, and oxidative stress and cannot be separated from alterations in lipid metabolism. Therefore, cancer cells exhibit increased lipid metabolism, lipid uptake, lipogenesis and storage to adapt to a progressively challenging environment, which contribute to their rapid growth. Lipids aid cancer cell activation. Cancer cells absorb lipids with the help of transporter and translocase proteins to obtain energy. Abnormal levels of a series of lipid synthases contribute to the over-accumulation of lipids in the tumor microenvironment (TME). Lipid reprogramming plays an essential role in the TME. Lipids are closely linked to several immune cells and their phenotypic transformation. The reprogramming of tumor lipid metabolism further promotes immunosuppression, which leads to immune escape. This event significantly affects the progression, treatment, recurrence, and metastasis of cancer. Therefore, the present review describes alterations in the lipid metabolism of immune cells in the TME and examines the connection between lipid metabolism and immunotherapy.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xi Pu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
| | - Min Xu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
19
|
Yuce TH, Ak G, Metintas S, Dundar E, Roe OD, Panou V, Metintas M. BAP1, Wilms' tumor 1, and calretinin in predicting survival and response to first-line chemotherapy in patients with pleural mesothelioma. J Cancer Res Clin Oncol 2024; 150:38. [PMID: 38280040 PMCID: PMC10821830 DOI: 10.1007/s00432-023-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/29/2024]
Abstract
PURPOSE There are currently no methods to predict response to chemotherapy in pleural mesothelioma (PM). The aim of this study is to investigate the predictive and prognostic role of BAP1, WT1 and calretinin expression and their combinations in pre-treatment tumor samples by immunohistochemical (IHC) staining. METHODS The study included consecutive PM patients treated with chemotherapy alone at a University hospital between 2009 and 2020. BAP1 analyses were performed on formalin-fixed, paraffin-embedded tumor tissue samples of the patients, while WT1 and calretinin information were obtained from the histopathological diagnosis records. RESULTS Of the total 107 patients included, 64% had loss of BAP1 expression, whereas 77% had WT1 and 86% had calretinin expression. Patients with the presence of BAP1 expression, one or both of the other two markers, or loss of expression of all three markers (unfavorable status) were more likely to not respond to chemotherapy than those with the presence of all three markers or loss of BAP1 expression and expression of one or two other markers (favorable status) (p = 0.001). Median survival time of patients with favorable and unfavorable status was 15 ± 1.7 and 8.0 ± 2.4 months, respectively (p = 0.027). After adjustment for histopathology and stage, loss of BAP1 (HR = 0.54, 95%CI 0.35-0.83), WT1 (1.75, 1.06-2.90), calretinin (2.09, 1.14-3.84) expression and favourable panel (0.50, 0.27-0.92) was associated with prognosis. CONCLUSIONS The IHC biomarkers BAP1, WT1, and calretinin, used in the routine diagnosis of PM and their combinations, are the first biomarkers associated with response to chemotherapy and may be a useful tool to select patients for first-line platinum pemetrexed treatment in PM patients. Validation in a large cohort is ongoing.
Collapse
Affiliation(s)
- Tuna Han Yuce
- Department of Chest Diseases, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - Guntulu Ak
- Department of Chest Diseases, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey
- Lung and Pleural Cancers Research and Clinical Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Selma Metintas
- Lung and Pleural Cancers Research and Clinical Center, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Public Health, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - Emine Dundar
- Lung and Pleural Cancers Research and Clinical Center, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Pathology, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - Oluf Dimitri Roe
- Department of Oncology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Respiratory Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Muzaffer Metintas
- Department of Chest Diseases, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey.
- Lung and Pleural Cancers Research and Clinical Center, Eskisehir Osmangazi University, Eskisehir, Turkey.
| |
Collapse
|
20
|
Briolay T, Fresquet J, Meyer D, Kerfelec B, Chames P, Ishow E, Blanquart C. Specific Targeting of Mesothelin-Expressing Malignant Cells Using Nanobody-Functionalized Magneto-Fluorescent Nanoassemblies. Int J Nanomedicine 2024; 19:633-650. [PMID: 38269255 PMCID: PMC10807453 DOI: 10.2147/ijn.s435787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Most current anti-cancer therapies are associated with major side effects due to a lack of tumor specificity. Appropriate vectorization of drugs using engineered nanovectors is known to increase local concentration of therapeutic molecules in tumors while minimizing their side effects. Mesothelin (MSLN) is a well-known tumor associated antigen overexpressed in many malignancies, in particular in malignant pleural mesothelioma (MPM), and various MSLN-targeting anticancer therapies are currently evaluated in preclinical and clinical assays. In this study, we described, for the first time, the functionalization of fluorescent organic nanoassemblies (NA) with a nanobody (Nb) targeting MSLN for the specific targeting of MSLN expressing MPM cancer cells. Methods Cell lines from different cancer origin expressing or not MSLN were used. An Nb directed against MSLN was coupled to fluorescent NA using click chemistry. A panel of endocytosis inhibitors was used to study targeted NA internalization by cells. Cancer cells were grown in 2D or 3D and under a flow to evaluate the specificity of the targeted NA. Binding and internalization of the targeted NA were studied using flow cytometry, confocal microscopy and transmission electron microscopy. Results We show that the targeted NA specifically bind to MSLN-expressing tumor cells. Moreover, such functionalized NA appear to be internalized more rapidly and in significantly larger proportions compared to naked ones in MSLN+ MPM cells, thereby demonstrating both the functionality and interest of the active targeting strategy. We demonstrated that targeted NA are mainly internalized through a clathrin-independent/dynamin-dependent endocytosis pathway and are directed to lysosomes for degradation. A 3D cell culture model based on MSLN-expressing multicellular tumor spheroids reveals NA penetration in the first superficial layers. Conclusion Altogether, these results open the path to novel anticancer strategies based on MSLN-activated internalization of NA incorporating drugs to promote specific accumulation of active treatments in tumors.
Collapse
Affiliation(s)
- Tina Briolay
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| | - Judith Fresquet
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| | - Damien Meyer
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Brigitte Kerfelec
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Patrick Chames
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France
| | - Christophe Blanquart
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| |
Collapse
|
21
|
Magkouta SF, Vaitsi PC, Iliopoulou MP, Pappas AG, Kosti CN, Psarra K, Kalomenidis IT. MTH1 Inhibition Alleviates Immune Suppression and Enhances the Efficacy of Anti-PD-L1 Immunotherapy in Experimental Mesothelioma. Cancers (Basel) 2023; 15:4962. [PMID: 37894329 PMCID: PMC10605650 DOI: 10.3390/cancers15204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND MTH1 protects tumor cells and their supporting endothelium from lethal DNA damage triggered by oxidative stress in the tumor microenvironment, thus promoting tumor growth. The impact of MTH1 on the tumor-related immune compartment remains unknown. We hypothesized that MTH1 regulates immune fitness and therefore enhances the activity of currently used immunotherapeutic regimens. METHODS Our hypotheses were validated in two syngeneic murine mesothelioma models using the clinically relevant MTH1 inhibitor, karonudib. We also examined the effect of combined MTH1 and PD-L1 blockade in mesothelioma progression, focusing on the main immune players. RESULTS Karonudib administration enhances M1 macrophage polarization, stimulates CD8 expansion and promotes the activation of DC and T cells. Combined administration of PD-L1 and MTH1 inhibitors impairs mesothelioma tumor growth and mesothelioma-associated pleural effusion accumulation more effectively compared to each monotherapy. CONCLUSIONS Combined MTH1 and PD-L1 inhibition holds promise for the successful clinical management of mesothelioma.
Collapse
Affiliation(s)
- Sophia F. Magkouta
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Photene C. Vaitsi
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Marianthi P. Iliopoulou
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Apostolos G. Pappas
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Chrysavgi N. Kosti
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Katherina Psarra
- Department of Immunology-Histocompatibility, Evangelismos Hospital, 10675 Athens, Greece;
| | - Ioannis T. Kalomenidis
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| |
Collapse
|
22
|
Homicsko K, Zygoura P, Norkin M, Tissot S, Shakarishvili N, Popat S, Curioni-Fontecedro A, O'Brien M, Pope A, Shah R, Fisher P, Spicer J, Roy A, Gilligan D, Rusakiewicz S, Fortis E, Marti N, Kammler R, Finn SP, Coukos G, Dafni U, Peters S, Stahel RA. PD-1-expressing macrophages and CD8 T cells are independent predictors of clinical benefit from PD-1 inhibition in advanced mesothelioma. J Immunother Cancer 2023; 11:e007585. [PMID: 37880184 PMCID: PMC10603330 DOI: 10.1136/jitc-2023-007585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Few tissue biomarkers exist to date that could enrich patient with cancer populations to benefit from immune checkpoint blockade by programmed cell death protein 1/ligand-1 (PD-/L-1) inhibitors. PD-L1 expression has value in this context in some tumor types but is an imperfect predictor of clinical benefit. In malignant pleural mesothelioma, PD-L1 expression is not predictive of the benefit from PD-1 blockade. We aimed to identify novel markers in malignant pleural mesothelioma to select patients better. METHODS We performed a multiplex-immune histochemistry analysis of tumor samples from the phase III PROMISE-meso study, which randomized 144 pretreated patients to receive either pembrolizumab or standard second-line chemotherapy. Our panel focused on CD8+T cell, CD68+macrophages, and the expression of PD-1 and PD-L1 on these and cancer cells. We analyzed single and double positive cells within cancer tissues (infiltrating immune cells) and in the stroma. In addition, we performed cell neighborhood analysis. The cell counts were compared with clinical outcomes, including responses, progression-free and overall survivals. RESULTS We confirmed the absence of predictive value for PD-L1 in this cohort of patients. Furthermore, total CD8 T cells, CD68+macrophages, or inflammatory subtypes (desert, excluded, inflamed) did not predict outcomes. In contrast, PD-1-expressing CD8+T cells (exhausted T cells) and PD-1-expressing CD68+macrophages were both independent predictors of progression-free survival benefit from pembrolizumab. Patients with tumors simultaneously harboring PD1+T cells and PD-1+macrophages benefited the most from immune therapy. CONCLUSION We analyzed a large cohort of patients within a phase III study and found that not only PD-1+CD8 T cells but also PD-1+CD68+ macrophages are predictive. This data provides evidence for the first time for the existence of PD-1+macrophages in mesothelioma and their clinical relevance for immune checkpoint blockade.
Collapse
Affiliation(s)
- Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Panagiota Zygoura
- ETOP Statistical Center, Frontier Science Foundation - Hellas, Athens, Greece
| | - Maxim Norkin
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Stephanie Tissot
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital NHS Trust, London, UK
| | - Alessandra Curioni-Fontecedro
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Oncology, Fribourg Hospitals, Fribourg, Switzerland
| | - Mary O'Brien
- Department of Oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - Anthony Pope
- Department of Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - Riyaz Shah
- Department of Medical Oncology, Kent Oncology Centre, Maidstone, UK
| | - Patricia Fisher
- Department of Medical Oncology, Weston Park Hospital, Sheffield, UK
| | - James Spicer
- Comprehensive Cancer Center, King's College London, London, UK
| | - Amy Roy
- Department of Medical Oncology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - David Gilligan
- Department of Medical Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sylvie Rusakiewicz
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ekaterina Fortis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nesa Marti
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Roswitha Kammler
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Stephen P Finn
- Molecular Diagnostics and Histopathology, Trinity College, Dublin, Ireland
| | - Georges Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Urania Dafni
- ETOP Statistical Center, Frontier Science Foundation - Hellas, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Rolf A Stahel
- President, ETOP IBCSG Partners Foundation, Bern, Switzerland
| |
Collapse
|
23
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
24
|
Sahu RK, Ruhi S, Jeppu AK, Al-Goshae HA, Syed A, Nagdev S, Widyowati R, Ekasari W, Khan J, Bhattacharjee B, Goyal M, Bhattacharya S, Jangde RK. Malignant mesothelioma tumours: molecular pathogenesis, diagnosis, and therapies accompanying clinical studies. Front Oncol 2023; 13:1204722. [PMID: 37469419 PMCID: PMC10353315 DOI: 10.3389/fonc.2023.1204722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
The pathetic malignant mesothelioma (MM) is a extremely uncommon and confrontational tumor that evolves in the mesothelium layer of the pleural cavities (inner lining- visceral pleura and outer lining- parietal pleura), peritoneum, pericardium, and tunica vaginalis and is highly resistant to standard treatments. In mesothelioma, the predominant pattern of lesions is a loss of genes that limit tumour growth. Despite the worldwide ban on the manufacture and supply of asbestos, the prevalence of mesothelioma continues to increase. Mesothelioma presents and behaves in a variety of ways, making diagnosis challenging. Most treatments available today for MM are ineffective, and the median life expectancy is between 10 and 12 months. However, in recent years, considerable progress has already been made in understanding the genetics and molecular pathophysiology of mesothelioma by addressing hippo signaling pathway. The development and progression of MM are related to many important genetic alterations. This is related to NF2 and/or LATS2 mutations that activate the transcriptional coactivator YAP. The X-rays, CT scans, MRIs, and PET scans are used to diagnose the MM. The MM are treated with surgery, chemotherapy, first-line combination chemotherapy, second-line treatment, radiation therapy, adoptive T-cell treatment, targeted therapy, and cancer vaccines. Recent clinical trials investigating the function of surgery have led to the development of innovative approaches to the treatment of associated pleural effusions as well as the introduction of targeted medications. An interdisciplinary collaborative approach is needed for the effective care of persons who have mesothelioma because of the rising intricacy of mesothelioma treatment. This article highlights the key findings in the molecular pathogenesis of mesothelioma, diagnosis with special emphasis on the management of mesothelioma.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sakina Ruhi
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ayesha Syed
- Department of Anatomy, Physiology, and Biochemistry, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Sanjay Nagdev
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, Madhya Pradesh, India
| | - Retno Widyowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | | | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, MH, India
| | - Rajendra K. Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
25
|
Tada A, Minami T, Kitai H, Higashiguchi Y, Tokuda M, Higashiyama T, Negi Y, Horio D, Nakajima Y, Otsuki T, Mikami K, Takahashi R, Nakamura A, Kitajima K, Ohmuraya M, Kuribayashi K, Kijima T. Combination therapy with anti-programmed cell death 1 antibody plus angiokinase inhibitor exerts synergistic antitumor effect against malignant mesothelioma via tumor microenvironment modulation. Lung Cancer 2023; 180:107219. [PMID: 37146474 DOI: 10.1016/j.lungcan.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related fatal malignant neoplasm. Although there has been no reliable chemotherapeutic regimen other than combination therapy of cisplatin and pemetrexed for two decades, combination of ipilimumab plus nivolumab brought about a better outcome in patients with MPM. Thus, cancer immunotherapy using immune checkpoint inhibitor (ICI) is expected to play a central role in the treatment of MPM. To maximize the antitumor effect of ICI, we evaluated whether nintedanib, an antiangiogenic agent, could augment the antitumor effect of anti-programmed cell death 1 (PD-1) antibody (Ab). Although nintedanib could not inhibit the proliferation of mesothelioma cells in vitro, it significantly suppressed the growth of mesothelioma allografts in mice. Moreover, combination therapy with anti-PD-1 Ab plus nintedanib reduced tumor burden more dramatically compared with nintedanib monotherapy via inducing remarkable necrosis in MPM allografts. Nintedanib did not promote the infiltration of CD8+ T cells within the tumor when used alone or in combination with anti-PD-1 Ab but it independently decreased the infiltration of tumor-associated macrophages (TAMs). Moreover, immunohistochemical analysis and ex vivo study using bone marrow-derived macrophages (BMDMs) showed that nintedanib could polarize TAMs from M2 to M1 phenotype. These results indicated that nintedanib had a potential to suppress protumor activity of TAMs both numerically and functionally. On the other hand, ex vivo study revealed that nintedanib upregulated the expression of PD-1 and PD-ligand 1 (PD-L1) in BMDMs and mesothelioma cells, respectively, and exhibited the impairment of phagocytic activity of BMDMs against mesothelioma cells. Co-administration of anti-PD-1 Ab may reactivate phagocytic activity of BMDMs by disrupting nintedanib-induced immunosuppressive signal via binding between PD-1 on BMDMs and PD-L1 on mesothelioma cells. Collectively, combination therapy of anti-PD-1 Ab plus nintedanib enhances the antitumor activity compared with respective monotherapy and can become a novel therapeutic option for patients with MPM.
Collapse
Affiliation(s)
- Akio Tada
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| | - Hidemi Kitai
- Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoko Higashiguchi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Mayuko Tokuda
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Tomoki Higashiyama
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoshiki Negi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Daisuke Horio
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yasuhiro Nakajima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Taiichiro Otsuki
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Koji Mikami
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ryo Takahashi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Akifumi Nakamura
- Department of Thoracic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, Nishinomiya, Japan
| | - Kozo Kuribayashi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
26
|
Vannucchi M, Pennati V, Mencaroni C, Defraia C, Bardhi L, Castiglione F, Bellan C, Comin CE. KRAS Mutations Are Associated with Shortened Survival in Patients with Epithelioid Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:cancers15072072. [PMID: 37046732 PMCID: PMC10093256 DOI: 10.3390/cancers15072072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleural surface that includes three major histologic subtypes, epitheliod, sarcomatoid and biphasic. Epithelioid mesothelioma is usually associated with better prognosis. The genetic mechanisms driving MPM, the possible target mutations and the correlation with overall survival remain largely unsettled. We performed target exome sequencing in 29 cases of MPM aimed at identifying somatic mutations and, eventually, their correlation with phenotypic traits and prognostic significance. We found that KRAS mutations, occurring in 13.7% of cases, were associated with shortened median survival (7.6 versus 32.6 months in KRAS wild-type; p = 0.005), as it was the occurrence of any ≥3 mutations (7.6 versus 37.6 months; p = 0.049). Conversely, the presence of KDR single nucleotide polymorphism p.V297I (rs2305948) resulted in a favorable variable for survival (NR versus 23.4 months; p = 0.026). With the intrinsic limitations of a small number of cases and patient heterogeneity, results of this study contribute to the characterization of the mutation profile of MPM and the impact of selected somatic mutations, and possibly KDR polymorphism, on prognosis.
Collapse
Affiliation(s)
- Margherita Vannucchi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence:
| | - Veronica Pennati
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Clelia Mencaroni
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Chiara Defraia
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Ledi Bardhi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Francesca Castiglione
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Cristiana Bellan
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Camilla Eva Comin
- Department of Experimental and Clinical Medicine, Section of Surgery, Histopathology and Molecular Pathology, University of Florence, 50121 Florence, Italy
| |
Collapse
|
27
|
Perrino M, De Vincenzo F, Cordua N, Borea F, Aliprandi M, Santoro A, Zucali PA. Immunotherapy with immune checkpoint inhibitors and predictive biomarkers in malignant mesothelioma: Work still in progress. Front Immunol 2023; 14:1121557. [PMID: 36776840 PMCID: PMC9911663 DOI: 10.3389/fimmu.2023.1121557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Malignant mesothelioma (MM) is a rare and aggressive neoplasm, usually associated with a poor prognosis (5 years survival rate <10%). For unresectable disease, platinum and pemetrexed chemotherapy has been the only standard of care in first line for more than two decades, while no standard treatments have been approved in subsequent lines. Recently, immunotherapy has revolutionized the therapeutic landscape of MM. In fact, the combination of ipilimumab plus nivolumab has been approved in first line setting. Moreover, immune checkpoint inhibitors (ICIs) showed promising results also in second-third line setting after platinum-based chemotherapy. Unfortunately, approximately 20% of patients are primary refractory to ICIs and there is an urgent need for reliable biomarkers to improve patient's selection. Several biological and molecular features have been studied for this goal. In particular, histological subtype (recognized as prognostic factor for MM and predictive factor for chemotherapy response), programmed death ligand 1 (PD-L1) expression, and tumor mutational burden (widely hypothesized as predictive biomarkers for ICIs in several solid tumors) have been evaluated, but with unconclusive results. On the other hand, the deep analysis of tumor infiltrating microenvironment and the improvement in genomic profiling techniques has led to a better knowledge of several mechanisms underlying the MM biology and a greater or poorer immune activation. Consequentially, several potential biomarkers predictive of response to immunotherapy in patients with MM have been identified, also if all these elements need to be further investigated and prospectively validated. In this paper, the main evidences about clinical efficacy of ICIs in MM and the literature data about the most promising predictive biomarkers to immunotherapy are reviewed.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Federica Borea
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy,*Correspondence: Paolo Andrea Zucali,
| |
Collapse
|
28
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
29
|
Cook D, Biancalana M, Liadis N, Lopez Ramos D, Zhang Y, Patel S, Peterson JR, Pfeiffer JR, Cole JA, Antony AK. Next generation immuno-oncology tumor profiling using a rapid, non-invasive, computational biophysics biomarker in early-stage breast cancer. Front Artif Intell 2023; 6:1153083. [PMID: 37138891 PMCID: PMC10149754 DOI: 10.3389/frai.2023.1153083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background Immuno-oncology (IO) therapies targeting the PD-1/PD-L1 axis, such as immune checkpoint inhibitor (ICI) antibodies, have emerged as promising treatments for early-stage breast cancer (ESBC). Despite immunotherapy's clinical significance, the number of benefiting patients remains small, and the therapy can prompt severe immune-related events. Current pathologic and transcriptomic predictions of IO response are limited in terms of accuracy and rely on single-site biopsies, which cannot fully account for tumor heterogeneity. In addition, transcriptomic analyses are costly and time-consuming. We therefore constructed a computational biomarker coupling biophysical simulations and artificial intelligence-based tissue segmentation of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRIs), enabling IO response prediction across the entire tumor. Methods By analyzing both single-cell and whole-tissue RNA-seq data from non-IO-treated ESBC patients, we associated gene expression levels of the PD-1/PD-L1 axis with local tumor biology. PD-L1 expression was then linked to biophysical features derived from DCE-MRIs to generate spatially- and temporally-resolved atlases (virtual tumors) of tumor biology, as well as the TumorIO biomarker of IO response. We quantified TumorIO within patient virtual tumors (n = 63) using integrative modeling to train and develop a corresponding TumorIO Score. Results We validated the TumorIO biomarker and TumorIO Score in a small, independent cohort of IO-treated patients (n = 17) and correctly predicted pathologic complete response (pCR) in 15/17 individuals (88.2% accuracy), comprising 10/12 in triple negative breast cancer (TNBC) and 5/5 in HR+/HER2- tumors. We applied the TumorIO Score in a virtual clinical trial (n = 292) simulating ICI administration in an IO-naïve cohort that underwent standard chemotherapy. Using this approach, we predicted pCR rates of 67.1% for TNBC and 17.9% for HR+/HER2- tumors with addition of IO therapy; comparing favorably to empiric pCR rates derived from published trials utilizing ICI in both cancer subtypes. Conclusion The TumorIO biomarker and TumorIO Score represent a next generation approach using integrative biophysical analysis to assess cancer responsiveness to immunotherapy. This computational biomarker performs as well as PD-L1 transcript levels in identifying a patient's likelihood of pCR following anti-PD-1 IO therapy. The TumorIO biomarker allows for rapid IO profiling of tumors and may confer high clinical decision impact to further enable personalized oncologic care.
Collapse
|
30
|
Liu Z, Wan R, Bai H, Wang J. Damage-associated molecular patterns and sensing receptors based molecular subtypes in malignant pleural mesothelioma and implications for immunotherapy. Front Immunol 2023; 14:1104560. [PMID: 37033966 PMCID: PMC10079989 DOI: 10.3389/fimmu.2023.1104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives Malignant pleural mesothelioma (MPM) is characterized as an incredibly aggressive form of cancer with a dismal diagnosis and a dearth of specific biomarkers and therapeutic options. For MPM patients, the effectiveness of immunotherapy may be influenced by damage-associated molecular pattern (DAMP)-induced immunogenic cell death (ICD).The objective of this work is to create a molecular profile associated with DAMPs to categorize MPM patients and predict their prognosis and response to immunotherapy. Methods The RNA-seq of 397 patients (263 patients with clinical data, 57.2% male, 73.0% over 60 yrs.) were gathered from eight public datasets as a training cohort to identify the DAMPs-associated subgroups of MPMs using K-means analysis. Three validation cohorts of patients or murine were established from TCGA and GEO databases. Comparisons were made across each subtype's immune status, gene mutations, survival prognosis, and predicted response to therapy. Results Based on the DAMPs gene expression, MPMs were categorized into two subtypes: the nuclear DAMPs subtype, which is classified by the upregulation of immune-suppressed pathways, and the inflammatory DAMPs subtype, which is distinguished by the enrichment of proinflammatory cytokine signaling. The inflammatory DAMPs subgroup had a better prognosis, while the nuclear DAMPs subgroup exhibited a worse outcome. In validation cohorts, the subtyping system was effectively verified. We further identified the genetic differences between the two DAMPs subtypes. It was projected that the inflammatory DAMPs subtype will respond to immunotherapy more favorably, suggesting that the developed clustering method may be implemented to predict the effectiveness of immunotherapy. Conclusion We constructed a subtyping model based on ICD-associated DAMPs in MPM, which might serve as a signature to gauge the outcomes of immune checkpoint blockades. Our research may aid in the development of innovative immunomodulators as well as the advancement of precision immunotherapy for MPM.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Meirson T, Nardone V, Pentimalli F, Markel G, Bomze D, D'Apolito M, Correale P, Giordano A, Pirtoli L, Porta C, Gray SG, Mutti L. Analysis of new treatments proposed for malignant pleural mesothelioma raises concerns about the conduction of clinical trials in oncology. J Transl Med 2022; 20:593. [PMID: 36514092 DOI: 10.1186/s12967-022-03744-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/29/2022] [Indexed: 12/15/2022] Open
Abstract
In this commentary, using existing clinical trial data and FDA approvals we propose that there is currently a critical need for an appropriate balancing between the financial impact of new cancer drugs and their actual benefit for patients. By adopting "pleural mesothelioma" as our clinical model we summarize the most relevant pertinent and available literature on this topic, and use an analysis of the reliability of the trials submitted for registration and/or recently published as a case in point to raise concerns with respect to appropriate trial design, biomarker based stratification and to highlight the ongoing need for balancing the benefit/cost ratio for both patients and healthcare providers.
Collapse
Affiliation(s)
- Tomer Meirson
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, 49100, Petah Tikva, Israel
| | - Valerio Nardone
- Department of Precision Oncology, University Hospital of Campania L. Vanvitelli, Naples, Italy
| | - Francesca Pentimalli
- Dipartimento di Medicina e Chirurgia, Libera Università Mediterranea "Giuseppe Degennaro", Bari, Italy
| | - Gal Markel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria D'Apolito
- Unit of Medical Oncology, Oncology Department, Grand Metropolitan Hospital Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Pierpaolo Correale
- Unit of Medical Oncology, Oncology Department, Grand Metropolitan Hospital Bianchi Melacrino Morelli, Reggio Calabria, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro" and A.O.U. Consorziale Policlinico di Bari, Bari, Italy.
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA. .,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| |
Collapse
|
32
|
Chernova T, Grosso S, Sun XM, Tenor AR, Cabeza JZ, Craxton A, Self EL, Nakas A, Cain K, MacFarlane M, Willis AE. Extracellular Vesicles Isolated from Malignant Mesothelioma Cancer-Associated Fibroblasts Induce Pro-Oncogenic Changes in Healthy Mesothelial Cells. Int J Mol Sci 2022; 23:12469. [PMID: 36293328 PMCID: PMC9604431 DOI: 10.3390/ijms232012469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant mesothelioma is an aggressive tumour of the pleura (MPM) or peritoneum with a clinical presentation at an advanced stage of the disease. Current therapies only marginally improve survival and there is an urgent need to identify new treatments. Carcinoma-associated fibroblasts (CAFs) represent the main component of a vast stroma within MPM and play an important role in the tumour microenvironment. The influence of CAFs on cancer progression, aggressiveness and metastasis is well understood; however, the role of CAF-derived extracellular vesicles (CAF-EVs) in the promotion of tumour development and invasiveness is underexplored. We purified CAF-EVs from MPM-associated cells and healthy dermal human fibroblasts and examined their effect on cell proliferation and motility. The data show that exposure of healthy mesothelial cells to EVs derived from CAFs, but not from normal dermal human fibroblasts (NDHF) resulted in activating pro-oncogenic signalling pathways and increased proliferation and motility. Consistent with its role in suppressing Yes-Associated Protein (YAP) activation (which in MPM is a result of Hippo pathway inactivation), treatment with Simvastatin ameliorated the pro-oncogenic effects instigated by CAF-EVs by mechanisms involving both a reduction in EV number and changes in EV cargo. Collectively, these data determine the significance of CAF-derived EVs in mesothelioma development and progression and suggest new targets in cancer therapy.
Collapse
Affiliation(s)
- Tatyana Chernova
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | - Stefano Grosso
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | - Angela Rubio Tenor
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | | | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | - Emily L. Self
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | | | - Kelvin Cain
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| | - Anne E. Willis
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QR, UK
| |
Collapse
|
33
|
Roshini A, Goparaju C, Kundu S, Nandhu MS, Longo SL, Longo JA, Chou J, Middleton FA, Pass HI, Viapiano MS. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front Oncol 2022; 12:1014749. [PMID: 36303838 PMCID: PMC9593058 DOI: 10.3389/fonc.2022.1014749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.
Collapse
Affiliation(s)
- Arivazhagan Roshini
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Somanath Kundu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Mohan S. Nandhu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Sharon L. Longo
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - John A. Longo
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Joan Chou
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Mariano S. Viapiano,
| |
Collapse
|