1
|
Zhang J, Lu L, Zhang W, Miao Y, Du H, Xia H, Tao Z, Du Z, Tang Y, Fang Q. Gadolinium ion-loaded mesoporous organosilica nanoplatform for enhanced radiotherapy in breast tumor treatment. Colloids Surf B Biointerfaces 2025; 246:114374. [PMID: 39541910 DOI: 10.1016/j.colsurfb.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited therapeutic options, often exhibiting resistance to standard radiotherapy (RT) and chemotherapy. Recent advancements in nanomedicine provide an opportunity to enhance treatment efficacy through innovative drug delivery systems and radiosensitizers. In this study, we present a novel nanotheranostic platform, MOs-G@DOX, engineered to enhance the therapeutic efficacy of RT in the treatment of TNBC. This platform consists of gadolinium-containing mesoporous organosilica nanoparticles (MOs-G) that serve a dual function as a drug carrier and a radiosensitizer. The MOs-G were synthesized via a surfactant-mediated sol-gel process, followed by gadolinium incorporation through nanoprecipitation. The antitumor drug doxorubicin (DOX) was subsequently loaded into the mesoporous structure, forming the MOs-G@DOX nanoplatform. Comprehensive in vitro and in vivo studies demonstrated that MOs-G@DOX exhibits excellent biocompatibility and significantly enhances the radiosensitivity of TNBC cells, leading to superior tumor growth inhibition compared to conventional treatments. The stability of MOs-G, with minimal gadolinium ion leakage, further underscores its potential as a safe and effective nanomedicine. Additionally, the combination of MOs-G@DOX with RT showed a marked increase in reactive oxygen species (ROS) generation and tumor cell apoptosis, which were confirmed through histological analyses. These findings suggest that MOs-G@DOX is a promising candidate for advancing cancer therapy, particularly in the context of RT for TNBC.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China.
| | - Li Lu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Wenqing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Yuchen Miao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Hengda Du
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Zhiyong Tao
- Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Zhaofeng Du
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Yulong Tang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China.
| |
Collapse
|
2
|
Pünchera J, Vuagnat H, Laubach HJ. Radiation-induced chronic ulcerations and fistulae successfully treated with photobiomodulation. J Eur Acad Dermatol Venereol 2025; 39:e8-e9. [PMID: 38572802 DOI: 10.1111/jdv.20009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Affiliation(s)
- Jöri Pünchera
- Department of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Hubert Vuagnat
- Wound and Wound-Healing Unit, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
3
|
Xiong Y, Li J, Jiang X, Zhen W, Ma X, Lin W. Nitric Oxide-Releasing Nanoscale Metal-Organic Layer Overcomes Hypoxia and Reactive Oxygen Species Diffusion Barriers to Enhance Cancer Radiotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413518. [PMID: 39742392 DOI: 10.1002/advs.202413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Indexed: 01/03/2025]
Abstract
Hafnium (Hf)-based nanoscale metal-organic layers (MOLs) enhance radiotherapeutic effects of tissue-penetrating X-rays via a unique radiotherapy-radiodynamic therapy (RT-RDT) process through efficient generation of hydroxy radical (RT) and singlet oxygen (RDT). However, their radiotherapeutic efficacy is limited by hypoxia in deep-seated tumors and short half-lives of reactive oxygen species (ROS). Herein the conjugation of a nitric oxide (NO) donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), to the Hf12 secondary building units (SBUs) of Hf-5,5'-di-p-benzoatoporphyrin MOL is reported to afford SNAP/MOL for enhanced cancer radiotherapy. Under X-ray irradiation, SNAP/MOL efficiently generates superoxide anion (O2 -.) and releases nitric oxide (NO) in a spatio-temporally synchronized fashion. The released NO rapidly reacts with O2 -. to form long-lived and highly cytotoxic peroxynitrite which diffuses freely to the cell nucleus and efficiently causes DNA double-strand breaks. Meanwhile, the sustained release of NO from SNAP/MOL in the tumor microenvironment relieves tumor hypoxia to reduce radioresistance of tumor cells. Consequently, SNAP/MOL plus low-dose X-ray irradiation efficiently inhibits tumor growth and reduces metastasis in colorectal and triple-negative breast cancer models.
Collapse
Affiliation(s)
- Yuxuan Xiong
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xin Ma
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Catanzaro E, Beltrán-Visiedo M, Galluzzi L, Krysko DV. Immunogenicity of cell death and cancer immunotherapy with immune checkpoint inhibitors. Cell Mol Immunol 2025; 22:24-39. [PMID: 39653769 DOI: 10.1038/s41423-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
While immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the clinical management of various malignancies, a large fraction of patients are refractory to ICIs employed as standalone therapeutics, necessitating the development of combinatorial treatment strategies. Immunogenic cell death (ICD) inducers have attracted considerable interest as combinatorial partners for ICIs, at least in part owing to their ability to initiate a tumor-targeting adaptive immune response. However, compared with either approach alone, combinatorial regimens involving ICD inducers and ICIs have not always shown superior clinical activity. Here, we discuss accumulating evidence on the therapeutic interactions between ICD inducers and immunotherapy with ICIs in oncological settings, identify key factors that may explain discrepancies between preclinical and clinical findings, and propose strategies that address existing challenges to increase the efficacy of these combinations in patients with cancer.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Manuel Beltrán-Visiedo
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Chen H, Li Y, Shen Q, Guo G, Wang Z, Pan H, Wu M, Yan X, Yang G. Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes. Mol Med 2024; 30:284. [PMID: 39736508 DOI: 10.1186/s10020-024-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them. METHODS In mouse breast cancer models, we compared the anti-tumor effects of RTRT and conventional radiotherapy (CNRT) by assessing tumor growth, metastasis, and survival rates. Additionally, we evaluated the peritumoral tissue damage and the immune microenvironment. The maturation of dendritic cells (DCs) and DNA damage induced by irradiated tumor cells were also assessed in vitro. RESULTS In pre-clinical models, both RTRT and CNRT significantly inhibited primary tumor growth when compared to non-irradiated controls, with no significant difference between RTRT and CNRT. However, RTRT significantly extended survival times in mice, and increased the likelihood of inducing abscopal effects, thereby providing potential for better control of distant metastases. Further investigations revealed that the enhanced efficacy of RTRT may be attributed to the preservation of lymphocytes within the peritumoral tissue, as well as reduced damage to the surrounding skin and circulating lymphocytes. In vitro assays demonstrated that RTRT induced DNA damage and dsDNA in tumor cells, activating the cGAS-STING pathway. RTRT also triggered the release of damage-associated molecular patterns (DAMPs), which synergistically amplified the anti-tumor immune response. CONCLUSIONS Our findings suggested that appropriately narrowing the irradiation target volume effectively killed tumor cells while reducing damage to surrounding tissues, and preserving peritumoral lymphocytes. This approach improved the safety of radiotherapy while maintaining its efficacy in tumor control and provided an opportunity for combining high-dose radiotherapy with immunotherapy.
Collapse
Affiliation(s)
- Huiqin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, 325014, China
| | - Yuan Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Qiaofeng Shen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guanqun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhigang Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanyu Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xueqing Yan
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325003, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
El-Tanani M, Rabbani SA, Ali AA, Alfaouri IGA, Al Nsairat H, Al-Ani IH, Aljabali AA, Rizzo M, Patoulias D, Khan MA, Parvez S, El-Tanani Y. Circadian rhythms and cancer: implications for timing in therapy. Discov Oncol 2024; 15:767. [PMID: 39692981 DOI: 10.1007/s12672-024-01643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Circadian rhythms, intrinsic cycles spanning approximately 24 h, regulate numerous physiological processes, including sleep-wake cycles, hormone release, and metabolism. These rhythms are orchestrated by the circadian clock, primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Disruptions in circadian rhythms, whether due to genetic mutations, environmental factors, or lifestyle choices, can significantly impact health, contributing to disorders such as sleep disturbances, metabolic syndrome, and cardiovascular diseases. Additionally, there is a profound link between the disruption of circadian rhythms and development of various cancer, the influence on disease incidence and progression. This incurred regulation by circadian clock on pathways has its implication in tumorigenesis, such as cell cycle control, DNA damage response, apoptosis, and metabolism. Furthermore, the circadian timing system modulates the efficacy and toxicity of cancer treatments. In cancer treatment, the use of chronotherapy to optimize the timing of medical treatments, involves administering chemotherapy, radiation, or other therapeutic interventions at specific intervals to enhance efficacy and minimize side effects. This approach capitalizes on the circadian variations in cellular processes, including DNA repair, cell cycle progression, and drug metabolism. Preclinical and clinical studies have demonstrated that chronotherapy can significantly improve the therapeutic index of chemotherapeutic agents like cisplatin and 5-fluorouracil by enhancing anticancer activity and reducing toxicity. Further research is needed to elucidate the mechanisms underlying circadian regulation of cancer and to develop robust chronotherapeutic protocols tailored to individual patients' circadian profiles, potentially transforming cancer care into more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areeg Anwer Ali
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Ghaleb Ali Alfaouri
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Hamdi Al Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Israa Hamid Al-Ani
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Dimitrios Patoulias
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
7
|
Yue J, Li T, Xu J, Chen Z, Li Y, Liang S, Liu Z, Wang Y. Discovery of anticancer peptides from natural and generated sequences using deep learning. Int J Biol Macromol 2024; 290:138880. [PMID: 39706427 DOI: 10.1016/j.ijbiomac.2024.138880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However, many predictive methods lack sufficient wet lab validation, thereby constraining the progress of models and impeding the discovery of novel ACPs. This study proposes a comprehensive research strategy by introducing CNBT-ACPred, an ACP prediction model based on a three-channel deep learning architecture, supported by extensive in vitro and in vivo experiments. CNBT-ACPred achieved an accuracy of 0.9554 and a Matthews Correlation Coefficient (MCC) of 0.8602. Compared to existing excellent models, CNBT-ACPred increased accuracy by at least 5 % and improved MCC by 15 %. Predictions were conducted on over 3.8 million sequences from Uniprot, along with 100,000 sequences generated by a deep generative model, ultimately identifying 37 out of 41 candidate peptides from >30 species that exhibited effective in vitro tumor inhibitory activity. Among these, tPep14 demonstrated significant anticancer effects in two mouse xenograft models without detectable toxicity. Finally, the study revealed correlations between the amino acid composition, structure, and function of the identified ACP candidates.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
8
|
Yu J, Tang X, Lei Y, Zhang Z, Li B, Bai H, Li L. A review on functional lung avoidance radiotherapy plan for lung cancer. Front Oncol 2024; 14:1429837. [PMID: 39703855 PMCID: PMC11656049 DOI: 10.3389/fonc.2024.1429837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Lung cancer is the most common malignant tumor in China. Its incidence and mortality rate increase year by year. In the synthesis treatment of lung cancer, radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has become the major limiting factor in prescription dose escalation. Conventional RT is designed to minimize radiation exposure to healthy lungs without considering the inhomogeneity of lung function, which is significantly non-uniform in most patients. In accordance with the functional and structural heterogeneity of lung tissue, functional lung avoidance RT (FLART) can reduce radiation exposure to functional lung (FL), thus reducing RILI. Meanwhile, a dose-function histogram (DFH) was proposed to describe the dose parameters of the optimized image-guided RT plan. This paper reviews lung function imaging for lung cancer RT plans. It also reviews the clinical applications of function-guided RT plans and their current problems and research directions to provide better guidance for clinical selection.
Collapse
Affiliation(s)
- Jinhui Yu
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaofeng Tang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| | - Yifan Lei
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Bo Li
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Han Bai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
- Department of Physics and Astronomy, Yunnan University, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| |
Collapse
|
9
|
Luo N, Zhu W, Li X, Fu M, Zhang Y, Yang F, Zhang Y, Chen Z, Zhang Q, Peng B, Li Q, Chen X, Liu Y, Hu G, Peng X. Defective autophagy of pericytes enhances radiation-induced senescence promoting radiation brain injury. Neuro Oncol 2024; 26:2288-2304. [PMID: 39110121 PMCID: PMC11630511 DOI: 10.1093/neuonc/noae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RBI) represents a major challenge for cancer patients undergoing cranial radiotherapy. However, the molecular mechanisms and therapeutic strategies of RBI remain inconclusive. With the continuous exploration of the mechanisms of RBI, an increasing number of studies have implicated cerebrovascular dysfunction as a key factor in RBI-related cognitive impairment. As pericytes are a component of the neurovascular unit, there is still a lack of understanding in current research about the specific role and function of pericytes in RBI. METHODS We constructed a mouse model of RBI-associated cognitive dysfunction in vivo and an in vitro radiation-induced pericyte model to explore the effects of senescent pericytes on the blood-brain barrier (BBB) and normal central nervous system cells, even glioma cells. To further clarify the effects of pericyte autophagy on senescence, molecular mechanisms were explored at the animal and cellular levels. Finally, we validated the clearance of pericyte senescence by using a senolytic drug and all-trans retinoic acid to investigate the role of radiation-induced pericyte senescence. RESULTS Our findings indicated that radiation-induced pericyte senescence plays a key role in BBB dysfunction, leading to RBI and subsequent cognitive decline. Strikingly, pericyte senescence also contributed to the growth and invasion of glioma cells. We further demonstrated that defective autophagy in pericytes is a vital regulatory mechanism for pericyte senescence. Moreover, autophagy activated by rapamycin could reverse pericyte senescence. Notably, the elimination of senescent cells by senolytic drugs significantly mitigated radiation-induced cognitive dysfunction. CONCLUSIONS Our results demonstrated that pericyte senescence may be a promising therapeutic target for RBI and glioma progression.
Collapse
Affiliation(s)
- Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wang K, Yuan B, Zhang F, Li Z, Jia X, Hu Y, Chen Z, Hong J, Du L, Jin Y. A bioadhesive antioxidase-overexpressed probiotic prevents radiation enteritis by scavenging the excess reactive oxygen species. Free Radic Biol Med 2024; 227:485-498. [PMID: 39643134 DOI: 10.1016/j.freeradbiomed.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The scavenging of the excess reactive oxygen species (ROS) induced by radiation is fundamental for radiation protection. However, directly applying antioxidants results in low bioavailability and side effects. Superoxide dismutase (SOD) and catalase (CAT) have high ROS clearance efficiency, whereas their application is limited by the enzyme inactivation, making it difficult to exhibit significant therapeutic effects. Here, we engineered a probiotic Escherichia coli Nissle 1917 (EcN), i.e., AAEcN, serving as a SOD/CAT vehicle to scavenge ROS for the prevention and treatment of radiation enteritis (RE). The overexpressed Drsod and katE in AAEcN showed 5-fold ROS elimination efficiency compared to the wild EcN. Furthermore, the intestinal retention time of engineered EcN was prolonged through trefoil factor 3 gene (TFF3) modification of curli fibers on the bacterial surface, which contributed to the persistence of antioxidant enzyme activity. We found that AAEcN rapidly eliminated the intracellular ROS induced by radiation. Only a single oral dosing of AAEcN was satisfied to alleviate the radiation damage to the small intestine, colon, and spleen. Moreover, the homeostasis of pro-/anti-inflammatory cytokines was realized. The proliferation of the intestinal stem cells and spleen hematopoietic stem cells was enhanced, while the apoptosis of mucosal cells was inhibited. Our findings suggest valuable insights into the ROS scavenging way in RE, and establish an empirical basis for developing probiotics as an antioxidant enzyme vehicle for the bacteriotherapy of RE.
Collapse
Affiliation(s)
- Ke Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Feng Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Zhangyu Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xueli Jia
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yadan Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jinyun Hong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
11
|
Xu T, Liu F, He J, Xu P, Qu J, Wang H, Yue J, Yang Q, Wu W, Zeng G, Sun D, Chen X. Leveraging zebrafish models for advancing radiobiology: Mechanisms, applications, and future prospects in radiation exposure research. ENVIRONMENTAL RESEARCH 2024; 266:120504. [PMID: 39638026 DOI: 10.1016/j.envres.2024.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Ionizing radiation (IR) represents a significant risk to human health and societal stability. To effectively analyze the mechanisms of IR and enhance protective strategies, the development of more sophisticated animal models is imperative. The zebrafish, with its high degree of genomic homology to humans and the capacity for whole-body optical visualization and high-throughput screening, represents an invaluable model for the study of IR. This review examines the benefits of utilizing zebrafish as a model organism for research on IR, emphasizing recent advancements and applications. It presents a comprehensive overview of the methodologies for establishing IR models in zebrafish, addresses current challenges, and discusses future development trends. This paper provide theoretical support for elucidating the mechanisms of IR injury and developing effective treatment strategies.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China
| | - Fan Liu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Junying Qu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinghui Yue
- Nuclear Power Institute of China, Chengdu, 610200, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing, 402160, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China.
| |
Collapse
|
12
|
Wang Y, Zhang J, Shao C. Cytological changes in radiation-induced lung injury. Life Sci 2024; 358:123188. [PMID: 39481833 DOI: 10.1016/j.lfs.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication associated with radiotherapy for thoracic tumors. Based on the pathological progression, it can be categorized into two stages: early radiation pneumonitis and late radiation pulmonary fibrosis. The occurrence of RILI not only constrains the therapeutic dose that can be administered to the tumor target area but also significantly impairs patients' health and quality of life, thereby limiting the efficacy and applicability of radiotherapy. To effectively prevent and mitigate the development of RILI, it is crucial to disclose its underlying mechanisms. This review aims to elucidate the specific mechanisms involved in RILI and to examine the roles of various cell types, including lung parenchymal cells and different immune cells. The functions and interactions of lung epithelial cells, pulmonary vascular endothelial cells, a variety of immune cells, and fibroblasts during different stages of inflammation, tissue repair, and fibrosis following radiation-induced lung injury are analyzed. A comprehensive understanding of the dynamic changes in these cellular components is anticipated to offer new strategies for the prevention of RILI.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Kim T, Millares RH, Kim T, Eom M, Kim J, Ye SJ. Nanoscale dosimetry for a radioisotope-labeled metal nanoparticle using MCNP6.2 and Geant4. Med Phys 2024; 51:9290-9302. [PMID: 39225623 DOI: 10.1002/mp.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Metal nanoparticles (MNPs) labeled with radioisotopes (RIs) are utilized as radio-enhancers due to their ability to amplify the radiation dose in their immediate vicinity. A thorough understanding of nanoscale dosimetry around MNPs enables their effective application in radiotherapy. However, nanoscale dosimetry around MNPs still requires further investigation. PURPOSE This study aims to provide insight into the radio-enhancement effects of MNPs by elucidating nanoscale dosimetry surrounding MNPs labeled with Auger-emitting RIs. We particularly focus on distinguishing the respective dose contributions of photons and electrons emitted by Auger-emitting RIs in the context of dose enhancement. METHODS A 50 nm diameter NP of silver (Ag) core and gold (Au) shell (Ag@Au NP) was assumed to emit mono-energetic electrons and photons (3, 5, 10, 20, and 30 keV), or the energy spectrum corresponding to one of three Auger-emitting RIs (103Pd, 125I, and 131Cs) from the Ag core. Nanoscale radial dose distributions around a single radioactive Ag@Au NP were evaluated in spherical shells of water. Monte Carlo simulations were conducted using single-event and track structure transport methods implemented in MCNP6.2 and Geant4-DNA-Au physics, respectively. To evaluate the extent of radio-enhancement by the Ag@Au NP, two scenarios were considered: Ag@Au NPs (Au shell included) and Ag@water NPs (Au shell replaced by water). RESULTS The radial doses of 10, 20, and 30 keV electrons estimated by both codes were comparable. However, the radial doses of 3 and 5 keV electrons by MCNP6.2 were much larger near the NP surface than those by Geant4. There was a dose enhancement of a few % to tens % by the Au shell in the region of the NP surface to 10 µm, depending on the electron energy. The radial doses of photons with the Au shell were higher up to their secondary electron ranges than those without the Au shell. The maximum dose enhancement factor of photons occurred at 20 keV and was 63.4 by MCNP6.2 and 50.5 by Geant4. The overall radial doses of electrons were 1-2 orders of magnitude larger than those of photons. As a result, in cases of RIs emitting both electrons and photons, the radial doses up to electron ranges were dominantly governed by electrons. The dose enhancement estimated by both codes for the RIs ranged from a few % except in the immediate vicinity of the NP surface. CONCLUSION Given the dominant contribution of electrons to radial doses of MNP labeled with Auger-emitting RIs, physical dose enhancement expected by interactions with photons was hindered. Since there are no available RIs emitting exclusively photons, achieving enhanced physical doses within a cell through a combination of MNPs and RIs appears currently unattainable. The radial doses of photons near the NP surface exhibited considerable discrepancies between the codes, primarily attributed to low-energy electrons. The difference may arise from higher cross-sections of Au inelastic scattering in Geant4-DNA-Au compared to MCNP6.2.
Collapse
Affiliation(s)
- Taeyun Kim
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Rodrigo Hernández Millares
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Taewan Kim
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Mingi Eom
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024; 21:880-898. [PMID: 38987578 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
15
|
Aman A, Akram A, Akram B, Husnain A, Akram A, Akram S, Ahmad E, Nadeem A. Salvage Stereotactic Radiotherapy for Nodal Oligo-Recurrent Prostate Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Genitourin Cancer 2024; 22:102239. [PMID: 39561634 DOI: 10.1016/j.clgc.2024.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Prostate cancer has a high frequency of relapse, and the relapse is usually associated with a nodal recurrence pattern spreading predominantly to fewer pelvic or extra-pelvic lymph nodes. This meta-analysis sought to determine the safety and survival outcomes of salvage body stereotactic radiotherapy (SBRT) in oligo-recurrent nodal prostate cancer patients. METHODS We searched the Cochrane Central Register of Controlled Trials, PubMed, ClinicalTrials.gov, and Google Scholar to retrieve all the relevant randomized controlled trials (RCTs) from inception to May 2024. Dichotomous outcomes were pooled using risk ratios (RR) with a 95% confidence interval (CI), whereas survival outcomes were reported using hazard ratios (HR) with a 95% CI. RESULTS Three RCTs with a total of 312 patients (median age range of >18-79) were included. Of 312 patients, 135 received SBRT with medical therapy, while 122 underwent either observation, medical therapy, or elective nodal radiotherapy. SBRT significantly increased the biochemical recurrence-free survival (HR: 0.45; 95% CI, 0.28-0.73) with minimal inter-study heterogeneity (I2 = 0%). SBRT did not affect the grade 2 genitourinary (GU) toxicity levels (Common Terminology Criteria for Adverse Events [CTCAE] v4.0) (RR: 0.74; 95% CI, 0.32-1.70; (I2 = 0%) nor the grade 2 gastrointestinal (GI) toxicity levels (CTCAE v4.0) (RR: 1.05; 95% CI, 0.26-4.31; I2 = 0%). SBRT was not associated with any significant change in the grade 1 toxicity levels (CTCAE v4.0) (RR, 1.08; 95% CI, 0.62-1.89) with moderate heterogeneity (I2 = 63%). CONCLUSION SBRT improves biochemical recurrence-free survival in patients with oligo-recurrent prostate cancer without increasing grade 1 and grade 2 GU/GI toxicity levels.
Collapse
Affiliation(s)
- Ayesha Aman
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Arfa Akram
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Bisma Akram
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Ali Husnain
- Department of Radiology, Section of Interventional Radiology, Northwestern University, Chicago, IL
| | - Aleena Akram
- Department of Medicine, Shalamar Medical and Dental College, Lahore, Pakistan
| | - Sania Akram
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Eeman Ahmad
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, Pakistan
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan.
| |
Collapse
|
16
|
Misawa K, Bhat H, Adusumilli PS, Hou Z. Combinational CAR T-cell therapy for solid tumors: Requisites, rationales, and trials. Pharmacol Ther 2024; 266:108763. [PMID: 39617146 DOI: 10.1016/j.pharmthera.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved potent antitumor efficacy in hematological malignancies; however, because of limitations in CAR T-cell recruitment, infiltration, activation, and functional persistence in the tumor, its efficacy in solid tumors has been suboptimal. To overcome these challenges, combinational strategies that include chemotherapy, radiation therapy, or immune checkpoint inhibitor agent therapy with CAR T-cell therapy are being investigated. The established functional characteristics of the abovementioned therapies provide a rationale for the use of a combinational approach with CAR T cells. Chemotherapy reshapes the peritumoral stroma, decreases the immunosuppressive cell population, and promotes a proinflammatory milieu, all of which allow for increased recruitment, infiltration, and accumulation of CAR T cells. Radiation therapy promotes a chemokine gradient, which augments tumor infiltration by CAR T cells and further increases expression of tumor-associated antigens, allowing for increased activation of CAR T cells. Immune checkpoint inhibitor agent therapy inactivates T-cell exhaustion pathways-most notably, the PD1/PDL1 pathway-thereby improving the functional persistence of CAR T cells and promoting endogenous immunity. In this review, we discuss the requisites and rationales for combinational therapy, and we review 25 ongoing phase I and II clinical trials, of which 4 use chemotherapy, 3 use radiation therapy, 11 use immunotherapy, and 7 use another agent. While safety, efficacy, and improved outcomes are the primary goals of these ongoing studies, the knowledge gained from them will help pave the way for subsequent studies focused on optimizing combinational regimens and identifying predictive biomarkers.
Collapse
Affiliation(s)
- Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Hina Bhat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
17
|
Neadley K, Smith A, Martin S, Boyd M, Hocking C, Shoubridge C. Health Navigator intervention to address the unmet social needs of populations living with cancer attending outpatient treatment at a major metropolitan hospital in Australia: protocol for a mixed-methods feasibility trial. BMJ Open 2024; 14:e080403. [PMID: 39613435 PMCID: PMC11605821 DOI: 10.1136/bmjopen-2023-080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION Integrating health and social care to address unmet social needs is an emerging priority for health systems worldwide. Screening and referral interventions for unmet social needs, also known as Health Navigator (HN) interventions, in healthcare settings have shown mixed but promising results, mostly due to a large variability in intervention design and outcomes assessed. Most HN interventions are implemented in primary care, despite evidence that disadvantaged populations face substantial barriers to accessing such care, and these interventions are limited in Australia. To address this gap, we designed a HN intervention to address the unmet social needs of a disadvantaged population living with cancer presenting at an outpatient cancer treatment facility in South Australia. To our knowledge, this paper presents a protocol for one of the first feasibility and acceptability studies of an HN intervention in an Australian healthcare setting. METHODS AND ANALYSIS We will conduct a single-centre study to explore the feasibility and acceptability of screening and referral for unmet social needs for patients attending an outpatient cancer clinic at a major metropolitan hospital serving a disadvantaged population in South Australia. Eligible participants are 18 years of age or older receiving treatment at the Northern Adelaide Cancer Centre, with an expected prognosis of minimum 6 months. During recruitment, a researcher will ask eligible participants to complete unmet social needs screening and baseline assessments. Participants with unmet social needs who request assistance will be connected with an HN. The HN will work with participants to prioritise their needs and provide referrals to community and government services with follow-up of over 6 months from enrolment. Post-HN intervention, all participants will be asked to complete repeat unmet social needs screening and repeat assessments. The primary criteria for determining feasibility success are: (1) recruitment rates, where 80% of eligible participants agree to unmet needs screening; (2) intervention uptake, where 80% of participants who report unmet social needs consent to assistance from a HN; (3) intervention completion, where 80% of participants receive HN assistance complete follow-up; (4) reasons for not completing intervention; and (5) participant and clinician acceptability of the intervention. Secondary outcomes include changes to unmet social needs and coping with cancer ability, quality of life and patient-reported experience measures. Thematic analysis will be applied to focus groups with clinicians and participants to assess intervention acceptability. Secondary clinical outcomes will be reported as effect size estimates for future trials. Based on previous work in this area, we will aim to recruit 350 participants. Study findings will be used to optimise recruitment and intervention components and develop suitable outcome measures for larger, randomised studies. ETHICS AND DISSEMINATION The protocol has ethical approval from the Central Adelaide Local Health Network Human Research Ethics Committee (approval ID: 16448). Findings will be disseminated in research publications and non-academic formats for a variety of audiences. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trial Registry (ACTRN12622000802707p).Protocol date and version: 07 June 2022, V1.
Collapse
Affiliation(s)
- Kate Neadley
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
| | - Annabel Smith
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sean Martin
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
| | - Mark Boyd
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Christopher Hocking
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Chen J, Wang Z, Huang J, Zhang Y, Zhang X, Zhu Y, Chu J. Experimental study on radiational characteristics and nursing care of a novel radioisotope 188Re memory alloy esophageal stent. Dis Esophagus 2024; 37:doae088. [PMID: 39387392 DOI: 10.1093/dote/doae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Radioactive esophageal stent, known for inhibiting tumor growth and delaying restenosis in malignant esophageal tumors, presents challenges due to potent radiation, leading to side effects. This study aims to support the clinical use of 188Re radioactive esophageal stent. The 188Re stent with 128 MBq initial activity was placed in a biomimetic esophageal membrane. Radiation absorption doses were measured by thermoluminescence and calculated using mathematical software. Under simulated positioning, the stent was implanted in the esophagus of an experimental pig, followed by the feeding of Kangfuxin solution and nursing care (KFX-RT). Non-implanted and implanted-only pigs served as normal (CR) and experimental (RT) controls. Blood samples collected on days 7 and 21 were analyzed for inflammatory factors (TGF-β1, TNF-α, IL-6) using enzyme-linked immunosorbent assay. Esophageal tissue cells were assessed for deoxyribonucleic acid index (DI) and subdiploid content through flow cytometry. Absorbed doses at 0.5 mm and 5 mm reference points were 223.91 cGy and 20.55 cGy, respectively, with 92.64% absorbed within a 1 mm thickness. Radiation dose significantly decreased at 6.5 mm, with only 4.72% absorbed at depths ≥6.5 mm. On days 7 and 21, levels of inflammatory factors, DI and subdiploid content were significantly increased in the KFX-RT and RT groups compared to the CR group, while all levels in the KFX-RT group were significantly lower than in the RT group. The 188Re esophageal stent exhibits high radiation absorption in superficial tissues and low absorption in deeper tissues. Kangfuxin solution combined with nursing care alleviates radiation-induced inflammatory damage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Imaging, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhiqiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianfeng Huang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yunxia Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaojun Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Zhu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianjun Chu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Wang X, Wang Y, Li Y, Lu H, Mo D, Liu Z, Gao L, Zhao Y, Zhao L, Huang Y, Fan Y, Wang D. The initial implementation of the transverse bone transport technique in the post-radiation region of the mandible. A pre-clinical in vivo study. BMC Oral Health 2024; 24:1434. [PMID: 39587575 PMCID: PMC11587573 DOI: 10.1186/s12903-024-05175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND To link the treatment of radiation injury with angiogenesis, and to design and seek a new therapeutic technique for the prevention and treatment of radiation injury. METHODS The transverse bone transport device for rabbit mandible was designed and manufactured. Eighteen New Zealand white rabbits were randomly divided into a radiotherapy group and a normal group. The radiotherapy group received 18 Gy of radiation, and the device was implanted two weeks later. After a 7-day incubation period, transverse transportation was performed at a speed of 0.5 circles (0.4 mm) per day, with an 8-day cycle and a total traction distance of 3.2 mm. CBCT, Micro CT, and histological staining were employed to assess the dynamics of movement, osteogenesis, and angiogenesis. RESULTS The transverse bone transport model of rabbit mandible was successfully established. CBCT revealed that the transport height in the normal and radiotherapy groups were 3.24 ± 0.17 mm and 3.22 ± 0.19 mm respectively. Micro CT analysis showed an increase in BV/TV and Tb.N over time, while Tb.Sp decreased; differences in BV/TV existed at 2 weeks but disappeared thereafter; differences in Tb.N and Tb.Sp persisted at 2 and 4 weeks. Histological staining using HE, Masson, and IHC demonstrated good bone maturity accompanied by rich neovascularization, and this was also confirmed by ImageJ software analysis. CONCLUSIONS The transverse bone transport was employed for the first time in the radiation-induced mandibular damage, thereby establishing a basis for further investigation into its clinical efficacy, application value, and underlying mechanisms. This breakthrough offers novel prospects for clinical interventions.
Collapse
Affiliation(s)
- Xian Wang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yuetong Wang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yuetao Li
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Haoyu Lu
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Dongqin Mo
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Zhiqing Liu
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Linjing Gao
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yanfei Zhao
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Lixiang Zhao
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yude Huang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yiyang Fan
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Daiyou Wang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China.
| |
Collapse
|
20
|
Ji S, Du Y, Leng J, Zhang Y, Hu W. Planar-Twisted Molecular Engineering for Modulating the Fluorescence Brightness of NIR-II Fluorophores with a Donor-Acceptor-Donor Skeleton. Int J Mol Sci 2024; 25:12365. [PMID: 39596431 PMCID: PMC11595074 DOI: 10.3390/ijms252212365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Organic molecular fluorophores have been extensively utilized for biological imaging in the visible and the first near-infrared windows. However, their applications in the second near-infrared (NIR-II) window remain constrained, primarily due to the insufficient fluorescence brightness. Herein, we employ a theoretical protocol combining the thermal vibration correlation function with the time-dependent density functional theory method to investigate the mechanism of the planar-twisted strategy for developing fluorophores with balanced NIR-II emission and fluorescence brightness. Based on a planar donor-acceptor-donor molecular skeleton, various ortho-positioned alkyl side chains with steric hindrances are tactfully incorporated into the backbone to construct a series of twisted fluorophores. Photophysical characterizations of the studied fluorophores demonstrate that the emission spectra located in the NIR-II region exhibited a hypsochromic shift with the structural distortion. Notably, conformational twisting significantly accelerated the radiative decay rate while simultaneously suppressing the nonradiative decay rate, resulting in an improved fluorescence quantum efficiency (FQE). This enhancement can be mainly attributed to both the enlarged adiabatic excitation energy and reduced nonadiabatic electronic coupling between the first excited state and the ground state. Compared with the planar fluorophore, the twisted structures possessed a more than fivefold increase in FQE. In particular, the optimal twisted fluorophore BBTD-4 demonstrated a desirable fluorescence brightness (16.59 M-1 cm-1) on the premise of typical NIR-II emission (980 nm), making it a promising candidate for NIR-II fluorescence imaging in biomedical applications. The findings in this study elucidate the available experimental observations on the analogues, highlighting a feasible approach to modulating the photophysical performances of NIR-II chromophores for developing more highly efficient fluorophores toward optical imaging applications.
Collapse
Affiliation(s)
| | | | | | - Yujin Zhang
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.J.); (Y.D.); (J.L.)
| | - Wei Hu
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.J.); (Y.D.); (J.L.)
| |
Collapse
|
21
|
Li L, Zhao Q, Chen Z, Zhao Z, Du B, Wang M, Bai P, Wang X, Ren X, Li L, Zhang R. Size-Tunable Boron Nanoreactors for Boron Neutron Capture Synergistic Chemodynamic Therapy of Tumor. Adv Healthc Mater 2024:e2402307. [PMID: 39555631 DOI: 10.1002/adhm.202402307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Boron neutron capture therapy (BNCT) stands out as a noninvasive potential modality for invasive malignant tumors, with boron drugs playing a crucial role in its efficacy. Nevertheless, the development of boron drugs with biodegradability, as well as high permeability and retention effects, continues to present significant challenges. Here, we fabricate a size-tunable boron nanoreactor (TBNR) via assembling boron nitride quantum dots (BNQDs) and Fe3+ for tumor BNCT and chemodynamic (CDT) synergistic treatment. The obtained TBNR with an appropriate size exhibits superior tumor accumulation and retention. Upon stimulation by the tumor microenvironment (TME), the contained Fe3+ undergo redox reactions with glutathione (GSH) to produce Fe2+ Fenton reagents, which in turn activate CDT function and simultaneously induce TBNR depolymerization. Subsequently, the released ultrasmall BNQDs exhibit intra-deep penetration characteristic and are fully enriched at the tumor site. The in vivo experiments reveal that TBNR possesses excellent biocompatibility and superior synergistic anti-tumor ability post neutron irradiation, resulting in significant shrinkage of subcutaneous 4T1 tumors. Moreover, the TBNR-mediated BNCT has triggered an obvious immune response, which contributes to the long-term suppression of tumors after neutron irradiation. To conclude, this study provides a new approach for constructing more efficient versatile nanocarriers for BNCT-induced combination cancer therapies.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qian Zhao
- Department of Chemistry, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhiqing Chen
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zican Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baojie Du
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mixue Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaozhe Wang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaofeng Ren
- Department of Chemistry, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Liping Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Department of Chemistry, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
22
|
García-Cardosa M, Meiriño R, Calvo FA, Antolín E, Aguilar B, Vidorreta M, Cuevas R, Barbés B, Huesa-Berral C, Azcona JD, Burguete J. FLIP: a novel method for patient-specific dose quantification in circulating blood in large vessels during proton or photon external beam radiotherapy treatments. Phys Med Biol 2024; 69:225017. [PMID: 39498521 DOI: 10.1088/1361-6560/ad8ea5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Purpose.To provide a novel and personalized method (FLIP, FLowand Irradiation Personalized) using patient-specific circulating blood flows and individualized time-dependent irradiation distributions, to quantify the dose delivered to blood in large vessels during proton or photon external beam radiotherapy.Methods.Patient-specific data were obtained from ten cancer patients undergoing radiotherapy, including the blood velocity field in large vessels and the temporal irradiation scheme using photons or protons. The large vessels and the corresponding blood flow velocities are obtained from phase-contrast MRI sequences. The blood dose is obtained discretizing the fluid into individual blood particles (BPs). A Lagrangian approach was applied to simulate the BPs trajectories along the vascular velocity field flowlines. Beam delivery dynamics was obtained from beam delivery machine measurements. The whole IS is split into a sequence of successive IEs, each one with its constant dose rate, as well as its corresponding initial and final time. Calculating the dose rate and knowing the spatiotemporal distribution of BPs, the dose is computed by accumulating the energy received by each BP as the time-dependent irradiation beams take place during the treatment.Results.Blood dose volume histograms from proton therapy and photon radiotherapy patients were assessed. The irradiation times distribution is obtained for BPs in both modalities. Two dosimetric parameters are presented: (i)D3%, representing the minimum dose received by the 3% of BPs receiving the highest doses, and (ii)V0.5 Gy, denoting the blood volume percentage that has received at least 0.5 Gy.Conclusion.A novel methodology is proposed for quantifying the circulating blood dose along large vessels. This methodology involves the use of patient-specific vasculature, blood flow velocity field, and dose delivery dynamics recovered from the irradiation machine. Relevant parameters that affect the dose received, as the distance between large vessels and CTV, are identified.
Collapse
Affiliation(s)
- Marina García-Cardosa
- Department of Physics and Applied Mathematics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Rosa Meiriño
- Department of Radiation Oncology, Clínica Universidad de Navarra, Marquesado de Santa Marta 1, 28027 Madrid, Spain
| | - Felipe A Calvo
- Department of Radiation Oncology, Clínica Universidad de Navarra, Marquesado de Santa Marta 1, 28027 Madrid, Spain
| | - Elena Antolín
- Service of Medical Physics and Radiation Protection, Clínica Universidad de Navarra, Marquesado de Santa Marta 1, 28027 Madrid, Spain
| | - Borja Aguilar
- Service of Medical Physics and Radiation Protection, Clínica Universidad de Navarra, Marquesado de Santa Marta 1, 28027 Madrid, Spain
| | | | - Roberto Cuevas
- Service of Medical Physics and Radiation Protection, Clínica Universidad de Navarra, Av. De Pío XII 36, 31008 Pamplona, Spain
| | - Benigno Barbés
- Service of Medical Physics and Radiation Protection, Clínica Universidad de Navarra, Av. De Pío XII 36, 31008 Pamplona, Spain
| | - Carlos Huesa-Berral
- Department of Physics and Applied Mathematics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Juan Diego Azcona
- Service of Medical Physics and Radiation Protection, Clínica Universidad de Navarra, Marquesado de Santa Marta 1, 28027 Madrid, Spain
| | - Javier Burguete
- Department of Physics and Applied Mathematics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
23
|
Ahmad R, Cantwell J, Borrelli C, Lim P, D'Souza D, Gaze MN, Moinuddin S, Gains J, Veiga C. Development of age-specific population-based paediatric computational phantoms for image-based data mining and other radiotherapy applications. Biomed Phys Eng Express 2024; 11:015011. [PMID: 39535763 DOI: 10.1088/2057-1976/ad8c4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Objective.Computational anatomical models have many applications in paediatric radiotherapy. Age-specific computational anatomical models were historically developed to represent average and/or healthy individuals, where cancer patients may present with anatomical variations caused by the disease and/or treatment effects. We developed RT-PAL, a library of computational age-specific voxelized anatomical models tailored to represent the paediatric radiotherapy population.Approach.Data from patients undergoing craniospinal irradiation (CSI) were used (n = 74, median age 7.3y, range: 1-17y). The RT-PAL phantoms were generated using groupwise deformable image registration to spatially normalize and average a sub-set of twenty clinical CTs and contours (n = 74, median age 7.7y, range: 3-14 y). To assess their anatomical and age-dependency plausibility, the RT-PAL models were compared against clinical cancer patient data and two healthy population based libraries of phantoms: the International Commission on Radiological Protection (ICRP) pediatric reference computational phantoms (n = 8, median age 7.5y, range: 1-15y) and a range of 4D paediatric extended cardiac torso (XCAT) phantoms (n = 75, median age 9.1y, range: 1-18y). For each dataset, nineteen organs were segmented on all age models to determine their volume. Each set was evaluated through a linear fit of organ volume with age, where comparisons were made relative to the linear fit of the clinical data.Main Results.Overall good anatomical plausibility was found for the RT-PAL phantoms. The age-dependency reported was comparable to both the clinical data and other phantoms, demonstrating their efficacy as a library of age-specific phantoms. Larger discrepancies with the clinical, ICRP and XCAT organ data were attributable to differences in organ filling, segmentation strategy and age distribution of the datasets, limitations of RT-PAL generation methodology, and/or possible anatomical differences between healthy and cancer populations.Significance.The RT-PAL models showed potential in representing the paediatric radiotherapy cohort, who are most likely to benefit from dedicated, age-specific anatomical phantoms.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jessica Cantwell
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Carolina Borrelli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Pei Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Derek D'Souza
- Radiotherapy Physics Services, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Syed Moinuddin
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jennifer Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catarina Veiga
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
24
|
Sánchez-Castillo A, Kampen KR. Understanding serine and glycine metabolism in cancer: a path towards precision medicine to improve patient's outcomes. Discov Oncol 2024; 15:652. [PMID: 39538085 PMCID: PMC11561223 DOI: 10.1007/s12672-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In this perspective, we highlight and reflect on the current knowledge with respect to serine/glycine metabolism in cancer, therapeutic resistance, and precision medicine opportunities for therapeutic targeting and treatment follow-up. Cancer subtypes with high mortality rates include lung cancer and glioblastomas. In order to improve future therapeutic opportunities, patient stratification need to be performed to select patients that might benefit from adjuvant serine/glycine targeting compounds. In an effort to identify the group of patients for stratification purposes, we analyzed publicly available TCGA patient datasets to test associations between serine/glycine metabolism enzyme expression and important cancer drivers in lung cancer and glioblastoma. These patients presenting serine/glycine pathway overexpression might benefit from adjuvant sertraline treatment in the future.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Louvain, Belgium.
| |
Collapse
|
25
|
Smolders A, Czerska K, Celicanin Z, Lomax A, Albertini F. The influence of daily imaging and target margin reduction on secondary cancer risk in image-guided and adaptive proton therapy. Phys Med Biol 2024; 69:225004. [PMID: 39481231 DOI: 10.1088/1361-6560/ad8da3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
Objective. Image-guided and adaptive proton therapy rely on daily CBCT or CT imaging, which increases radiation dose and radiation-induced cancer risk. Online adaptation however also reduces setup uncertainty, and the additional risk might be compensated by reducing the setup robustness margin. This work developed a framework to investigate how much this robustness margin should be reduced to offset the secondary cancer risk from additional imaging dose and applied it to proton therapy for head-and-neck cancer.Approach. For five patients with head-and-neck cancer, voxel-wise CT and CBCT imaging doses were estimated with Monte Carlo radiation transport simulations, calibrated with air and PMMA phantom measurements. The total dose of several image-guided and adaptive treatments protocols was calculated by summing the planning CT dose, daily and weekly CBCT or CT dose, and therapy dose, robustly optimized with setup margins between 0 and 4 mm. These were compared to a reference protocol with 4 mm setup margin without daily imaging. All plans further used 3% range robustness. Organ-wise excess absolute risk (EAR) of cancer was calculated with three models to determine at which setup margin the total EAR of image-guided and adaptive treatment protocols was equal to the total EAR of the reference.Results. The difference between the simulated and measured CT and CBCT doses was within 10%. Using the Monte Carlo models, we found that a 1 mm setup margin reduction was sufficient for most patients, treatment protocols, and cancer risk models to compensate the additional risk imposed by daily and weekly imaging. For some protocols, even a smaller reduction sufficed, depending on the imaging frequency and type. The risk reduction by reducing the margin was mainly due to reducing the risk for carcinomas in the brain and, for some patients, the oral cavity.Significance. Our framework allows to compare an increased imaging dose with the reduced treatment dose from margin reductions in terms of radiation-induced cancer risk. It is extendable to different treatment sites, modalities, and imaging protocols, in clinic-specific or even patient-specific assessments.
Collapse
Affiliation(s)
- A Smolders
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - K Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Z Celicanin
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - A Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - F Albertini
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
26
|
Zhu R, Li M, Wang D, Liu C, Xie L, Yang Y, Gu X, Zhao K, Tian Y, Cai S. USP15 regulates radiation-induced DNA damage and intestinal injury through K48-linked deubiquitination and stabilisation of ATM. Mol Med 2024; 30:205. [PMID: 39522000 PMCID: PMC11549776 DOI: 10.1186/s10020-024-00984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Radiation-induced intestinal injury (RIII) interrupts the scheduled processes of abdominal and pelvic radiotherapy (RT) and compromises the quality of life of cancer survivors. However, the specific regulators and mechanisms underlying the effects of RIII remain unknown. The biological effects of RT are caused primarily by DNA damage, and ataxia telangiectasia mutated (ATM) is a core protein of the DNA damage response (DDR). However, whether ATM is regulated by deubiquitination signaling remains unclear. METHODS We established animal and cellular models of RIII. The effects of ubiquitin-specific protease 15 (USP15) on DNA damage and radion-induced intestinal injury were evaluated. Mass spectrometry analysis, truncation tests, and immunoprecipitation were used to identify USP15 as a binding partner of ATM and to investigate the ubiquitination of ATM. Finally, the relationship between the USP15/ATM axes was further determined via subsequent experiments. RESULTS In this study, we identified the deubiquitylating enzyme USP15 as a regulator of DNA damage and the pathological progression of RIII. Irradiation upregulates the expression of USP15, whereas pharmacological inhibition of USP15 exacerbates radiation-induced DNA damage and RIII both in vivo and in vitro. Mechanistically, USP15 interacts with, deubiquitinates, and stabilises ATM via K48-linked deubiquitination. Notably, ATM overexpression blocks the effect of USP15 genetic inhibition on DNA damage and RIII progression. CONCLUSIONS These findings describe ATM as a novel deubiquitination target of USP15 upon radiation-induced DNA damage and intestinal injury, and provides experimental support for USP15/ATM axis as a potential target for developing strategies that mitigate RIII.
Collapse
Affiliation(s)
- Ruiqiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mingyue Li
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Difan Wang
- Suzhou Medical College of Soochow University, Suzhou, 215000, China
| | - Chengzhi Liu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Liwei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yinyin Yang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xuhao Gu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kui Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- PRaG Therapy Center, Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
27
|
Prasanna PGS. Harnessing Senescence for Antitumor Immunity to Advance Cancer Treatment. Radiat Res 2024; 202:727-733. [PMID: 39191430 PMCID: PMC11620177 DOI: 10.1667/rade-24-00098.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Considering the limitations and complexities of the cell-killing-based cancer treatment approaches, one could aim to integrate symbiotic advances in many energy delivery technologies and transformational pieces of evidence in research on senescence and immunomodulators to advance cancer treatment. Although senescent cells contribute to drug tolerance, resistance to therapy, tumorigenesis, maladapting cancer phenotypes, tumor relapse, recurrence, and metastasis, emerging pieces of evidence also demonstrate that acutely induced senescent cells in tumors can elicit a strong and lasting antitumor immune response juxtaposed to the immunologically silent apoptotic cells. This commentary is to help develop an unconventional conceptual framework to advance cancer treatment. Accordingly, it will involve transiently inducing senescent cells in tumors at optimal levels to prime the immune system with radiation, then eliminating senescent cells with senolytics (drugs that specifically eliminate senescent cells) to disrupt their positive feedback accumulation (to prevent tumor maladaptation and adverse effects in healthy cells) and unleash long-lasting antitumor immunity with immunomodulators. The approach is reasonably speculative and will require scientifically rigorous "fit-for-purpose," well-controlled preclinical research and development involving dose and schedule optimization of radiation and drugs, using representative in vitro and in vivo cancer models to obtain high-quality data to proceed to clinical studies.
Collapse
Affiliation(s)
- Pataje G. S. Prasanna
- The National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| |
Collapse
|
28
|
Jiao Y, Ye J, Zhao W, Fan Z, Kou Y, Guo S, Chao M, Fan C, Ji P, Liu J, Zhai Y, Wang Y, Wang N, Wang L. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Comput Biol Med 2024; 182:109185. [PMID: 39341114 DOI: 10.1016/j.compbiomed.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk. STUDY DESIGN The study involved pediatric glioma patients from the Surveillance, Epidemiology, and End Results (SEER) Registry (2000-2018) and Tangdu Hospital in China (2010-2018) within specific time frames. For training, we selected two neural network-based algorithms (DeepSurv, neural multi-task logistic regression [N-MTLR]) and one ensemble learning-based algorithm (random survival forest [RSF]). Additionally, a multivariable Cox proportional hazard (CoxPH) model was developed for comparison purposes. The SEER dataset was randomly divided into 80 % for training and 20 % for testing, while the Tangdu Hospital dataset served as an external validation cohort. Super-parameters were fine-tuned through 1000 repeated random searches and 5-fold cross-validation on the training cohort. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). Furthermore, the accuracy of predicting survival at 1, 3, and 5 years was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and the area under the ROC curves (AUC). The generalization ability of the model was assessed using the C-index of the Tangdu Hospital data, ROC curves for 1, 3, and 5 years, and AUC values. Lastly, decision curve analysis (DCA) curves for 1, 3, and 5-year time frames are provided to assess the net benefits across different models. RESULTS A total of 9532 patients with pediatric glioma were included in this study, comprising 9274 patients from the SEER database and 258 patients from Tangdu Hospital in China. The average age at diagnosis was 9.4 ± 6.2 years, and the average survival time was 96 ± 66 months. Through comprehensive performance comparison, the DeepSurv model demonstrated the highest effectiveness, with a C-index of 0.881 on the training cohort. Furthermore, it exhibited excellent accuracy in predicting the 1-year, 3-year, and 5-year survival rates (AUC: 0.903-0.939). Notably, the DeepSurv model also achieved remarkable performance and accuracy on the Chinese dataset (C-index: 0.782, AUC: 0.761-0.852). Comprehensive analysis of DeepSurv, N-MTLR, and RSF revealed that tumor stage, radiotherapy, histological type, tumor size, chemotherapy, age, and surgical method are all significant factors influencing the prognosis of pediatric glioma. Finally, an online version of the pediatric glioma survival predictor based on the DeepSurv model has been established and can be accessed through https://pediatricglioma-tangdu.streamlit.app. CONCLUSIONS The DeepSurv model exhibits exceptional efficacy in predicting the survival of pediatric glioma patients, demonstrating strong performance in discrimination, calibration, stability, and generalization. By utilizing the online version of the pediatric glioma survival predictor, which is based on the DeepSurv model, clinicians can accurately predict patient survival and offer personalized treatment options.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Jianan Ye
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenjian Zhao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Zhicheng Fan
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yunpeng Kou
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Chao Fan
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
29
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
30
|
Yang H, Lin P, Zhang B, Li F, Ling D. A Nucleophilicity-Engineered DNA Ligation Blockade Nanoradiosensitizer Induces Irreversible DNA Damage to Overcome Cancer Radioresistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410031. [PMID: 39246208 DOI: 10.1002/adma.202410031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
During fractionated radiotherapy, DNA damage repair intensifies in tumor cells, culminating in cancer radioresistance and subsequent radiotherapy failure. Despite the recent development of nanoradiosensitizers targeting specific DNA damage repair pathways, the persistence of repair mechanisms involving multiple pathways remains inevitable. To address this challenge, a nucleophilicity-engineered DNA ligation blockade nanoradiosensitizer (DLBN) comprising Au/CeO2 heteronanostructure modified with trans-acting activator of transcription peptides is reported, which targets and inhibits the DNA ligation inside cancer cell nuclei via heterointerface-mediated dephosphorylation of DNA, a crucial step in overcoming cancer radioresistance. First, the Schottky-type heteronanostructure of cancer cell nucleus-targeting DLBN effectively intensifies radiation-induced DNA damage via catalase-mimetic activity and radiation-triggered catalytic reactions. Notably, by leveraging Au/CeO2 heterointerface, DLBN spontaneously dissociates H2O to hydroxide, a nucleophile with higher nucleophilicity, thereby exhibiting remarkable dephosphorylation capability at DNA nicks through facilitated nucleophilic attack. This enables the blockade of DNA ligation, a pivotal step in all DNA damage repair pathways, effectively interrupting the repair process. Consequently, DLBN resensitizes radioresistant cells by overcoming therapy-induced radioresistance, leading to a substantial accumulation of unrepaired DNA damage. These findings offer insight into the dephosphorylation of DNA within nuclei, and underscore the potential of heteronanostructure-based nanoradiosensitizer to block DNA ligation against therapy-induced radioresistance.
Collapse
Affiliation(s)
- Hongli Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Fu Q, Zhang S, Shen S, Gu Z, Chen J, Song D, Sun P, Wang C, Guo Z, Xiao Y, Gao YQ, Guo Z, Liu Z. Radiotherapy-triggered reduction of platinum-based chemotherapeutic prodrugs in tumours. Nat Biomed Eng 2024; 8:1425-1435. [PMID: 39025943 DOI: 10.1038/s41551-024-01239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody-trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibin Guo
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yunlong Xiao
- Beijing National Laboratory of Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory of Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Administration Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
32
|
D’Auria F, Valvano L, Calice G, D’Esposito V, Cabaro S, Formisano P, Bianchino G, Traficante A, Bianculli A, Lazzari G, Statuto T, Rago L. Hypofractionated radiotherapy with simultaneous integrated boost for localized prostate cancer patients: effects on immune system and prediction of toxicity. Front Immunol 2024; 15:1457839. [PMID: 39530099 PMCID: PMC11550950 DOI: 10.3389/fimmu.2024.1457839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background The other side of radiotherapy (RT), in addition to the cytotoxic effect, is the ability to modulate the immune system in terms of activation or suppression, also depending on the dose and fractionation delivered. This immune RT effect can be detected both locally in the irradiated tumor site and in the peripheral blood. The aim of this study was to assess the consequence of pelvic irradiation on peripheral immune cells and cytokine secretions in localized prostate cancer (PC) patients undergoing pelvic irradiation with a simultaneous moderately hypofractionated prostate/prostate bed boost by Volumetric Modulated Arc Therapy (VMAT). Furthermore, we analyzed whether there was a correlation between these peripheral immune parameters and acute and late genitourinary (GU) and gastrointestinal (GI) toxicity. Methods Thirty-eight PC patients were treated with pelvis irradiation (dose per fraction 1.8 Gy) and simultaneous hypofractionated (median dose per fraction: 2.7 Gy) prostate/prostate bed boost. A longitudinal analysis was performed for 12 months on peripheral blood to assess changes in 9 different lymphocyte subpopulations by flow cytometry and 10 circulating cytokines by Multiplex Luminex assay and ELISA. Results Our analysis revealed that basal IFN-γ serum values were significantly lower in the definitive (curative intent for patients with prostate) patient group respect to the post-operative one. All the lymphocyte subsets and IFN-α, IFN-β and Il-2 peripheral concentrations displayed significant variations between the different time points considered. The immune cell population that suffers the greatest RT toxicity in the blood was B lymphocyte. We found an interesting correlation between basal TGF-β1 and late GU toxicity. In particular, TGF-β1 concentrations before RT were significantly higher in patients that experienced grade 2-3 of late GU toxicity, respect to grade 0-1. Exploring possible correlations between some clinical/biological findings and radiation planning parameters, we found no statistical significance. Conclusions Our study analyzed, in the context of hypofractionated radiotherapy in prostate cancer, different parameters of the peripheral immune system. We have highlighted longitudinally the peripheral behavior of the different lymphocyte subpopulations and of a group of 10 cytokines during the first year after RT. One of the analyzed cytokines, such as TGF-β1, has proven to be promising predictive factor of severe late GU toxicity.
Collapse
Affiliation(s)
- Fiorella D’Auria
- Laboratory of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Luciana Valvano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Vittoria D’Esposito
- Università degli Studi di Napoli “Federico II”, Department of Translational Medical Sciences, Napoli, Italy
| | - Serena Cabaro
- Università degli Studi di Napoli “Federico II”, Department of Translational Medical Sciences, Napoli, Italy
| | - Pietro Formisano
- Università degli Studi di Napoli “Federico II”, Department of Translational Medical Sciences, Napoli, Italy
| | - Gabriella Bianchino
- Laboratory of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Antonio Traficante
- Laboratory of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Antonella Bianculli
- Radiotherapy Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Grazia Lazzari
- Radiotherapy Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Teodora Statuto
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Luciana Rago
- Radiotherapy Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
33
|
Han S, Zou J, Xiao F, Xian J, Liu Z, Li M, Luo W, Feng C, Kong N. Nanobiotechnology boosts ferroptosis: opportunities and challenges. J Nanobiotechnology 2024; 22:606. [PMID: 39379969 PMCID: PMC11460037 DOI: 10.1186/s12951-024-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, and autophagy, is a unique type of cell death driven by iron-dependent phospholipid peroxidation. Since ferroptosis was defined in 2012, it has received widespread attention from researchers worldwide. From a biochemical perspective, the regulation of ferroptosis is strongly associated with cellular metabolism, primarily including iron metabolism, lipid metabolism, and redox metabolism. The distinctive regulatory mechanism of ferroptosis holds great potential for overcoming drug resistance-a major challenge in treating cancer. The considerable role of nanobiotechnology in disease treatment has been widely reported, but further and more systematic discussion on how nanobiotechnology enhances the therapeutic efficacy on ferroptosis-associated diseases still needs to be improved. Moreover, while the exciting therapeutic potential of ferroptosis in cancer has been relatively well summarized, its applications in other diseases, such as neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and kidney disease, remain underreported. Consequently, it is necessary to fill these gaps to further complete the applications of nanobiotechnology in ferroptosis. In this review, we provide an extensive introduction to the background of ferroptosis and elaborate its regulatory network. Subsequently, we discuss the various advantages of combining nanobiotechnology with ferroptosis to enhance therapeutic efficacy and reduce the side effects of ferroptosis-associated diseases. Finally, we analyze and discuss the feasibility of nanobiotechnology and ferroptosis in improving clinical treatment outcomes based on clinical needs, as well as the current limitations and future directions of nanobiotechnology in the applications of ferroptosis, which will not only provide significant guidance for the clinical applications of ferroptosis and nanobiotechnology but also accelerate their clinical translations.
Collapse
Affiliation(s)
- Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jianhua Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jing Xian
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chan Feng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
34
|
Kuo PL, Yeh YC, Chang K, Tsai TT, Lai PL, Tsuang FY. Spinal chordoma and chondrosarcoma treatment experiences - a 20-year retrospective study from databases of two medical centers. Sci Rep 2024; 14:23012. [PMID: 39362937 PMCID: PMC11450190 DOI: 10.1038/s41598-024-74317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The research retrospectively analyzed cases of spinal chordoma and chondrosarcoma involving patients who received treatment at the two hospitals between 2001 and 2023. Among the 48 patients studied (39 chordoma and 9 chondrosarcoma cases), the average age was 53.9 ± 15.8 years, with a range of 17 to 86 years. Out of these patients, 43 underwent excision surgery and were categorized based on tumor margin into negative (R0) or microscopically positive (R1) margin (n = 14) and macroscopically positive (R2) margin (n = 29) groups. The mean overall survival (OS) for R0/R1 and R2 groups was 156.5 ± 19.3 and 79.2 ± 11.9 months, respectively (p value = 0.012). The mean progression-free survival (PFS) for R0/R1 and R2 was 112.9 ± 24.4 and 25.5 ± 5.5 months (p value < 0.001). The study showed that regardless of whether patients in the R0/R1 or R2 groups received radiation therapy (RT) or not, there was no significant improvement in OS or PFS. Specifically, the OS and PFS for the RT only group were 75.9 ± 16.6 and 73.3 ± 18.0 months. In conclusion, the recommended treatment approach for spinal chordoma and chondrosarcoma remains en bloc resection surgery with an appropriate margin. Patients who are unsuitable for or decline surgery may find a beneficial disease control rate with traditional external beam photon/proton therapy.
Collapse
Affiliation(s)
- Pin-Lin Kuo
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
| | - Yu-Cheng Yeh
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
| | - Koping Chang
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, No.7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei, 100225, Taiwan (R.O.C.)
| | - Tsung-Ting Tsai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan, 33305, Taiwan (R.O.C.)
| | - Fon-Yih Tsuang
- Divison of Neurosurgery, Departmet of Surgery, National Taiwan University Hospital, No.7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei, 100225, Taiwan (R.O.C.).
- Spine Tumor Center, National Taiwan University Hospital, No.7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei, 100225, Taiwan (R.O.C.).
| |
Collapse
|
35
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Cornillon P, Bouleftour W, Reynaud T, Pigne G, Maillet D, Hamizi S, Beguinot M. Immunogenicity of radiotherapy on bone metastases from prostate adenocarcinoma: What is the future for the combination with radiotherapy/immunotherapy? TUMORI JOURNAL 2024; 110:319-326. [PMID: 38745528 DOI: 10.1177/03008916241249366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bone metastatic prostate cancers (PCa) are resistant to usual immunotherapies such as checkpoint inhibitors. The main hypothesis related to this immunoresistance is the lack of antigens to stimulate anti-tumor immunity. External radiation is a potential inducer antigens presentation and thus to immunotherapy proprieties. The aim of this review is to describe the tumor microenvironment specificities, especially in bone metastasis and the immune modifications after radiation therapy on a metastatic castration-resistant PCa population. PCa microenvironment is immunosuppressive because of many tumor factors. The complex interplay between PCa cells and bone microenvironment leads to a 'vicious circle' promoting bone metastasis. Furthermore, the immune and bone systems, are connected through an osteoclastogenic cytokine: the Receptor Activator Nuclear Factor Kappa B ligand. Adapted doses of ionizing radiation play a dual role on the tumor. Indeed, radiotherapy leads to immunogenicity by inducing damage associated with molecular patterns. However, it also induces an immunosuppressive effect by increasing the number of immunosuppressive cells. Interestingly, the abscopal effect could be used to optimize immunotherapy potential, especially on bone metastasis. Radiotherapy and immunotherapy combination is a promising strategy, however further studies are necessary to determine the more efficient types of radiation and to control the abscopal effect.
Collapse
Affiliation(s)
- Pierre Cornillon
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Wafa Bouleftour
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thomas Reynaud
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Gregoire Pigne
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Denis Maillet
- Department of Medical Oncology, IMMUCARE, Centre Hospitalier Lyon Sud, Institut de Cancérologie des Hospices de Lyon, Pierre-Bénite, France
| | - Salima Hamizi
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie Beguinot
- Department of Medical Oncology, Medipole Lyon Villeurbanne Mutualist Clinic, Lyon, France
| |
Collapse
|
37
|
Penabeï S, Meesungnoen J, Jay-Gerin JP. Comparative Analysis of Cystamine and Cysteamine as Radioprotectors and Antioxidants: Insights from Monte Carlo Chemical Modeling under High Linear Energy Transfer Radiation and High Dose Rates. Int J Mol Sci 2024; 25:10490. [PMID: 39408820 PMCID: PMC11477154 DOI: 10.3390/ijms251910490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species produced during the radiolysis of the aqueous ferrous sulfate (Fricke) dosimeter, offering insights into the mechanisms of radioprotection and highlighting their potential to enhance the therapeutic index of radiation therapy, particularly in advanced techniques like FLASH radiotherapy. Using Monte Carlo multi-track chemical modeling to simulate the radiolytic oxidation of ferrous to ferric ions in Fricke-cystamine and Fricke-cysteamine solutions, this study assesses the radioprotective and antioxidant properties of these compounds across a variety of irradiation conditions. Concentrations were varied in both aerated (oxygen-rich) and deaerated (hypoxic) environments, simulating conditions akin to healthy tissue and tumors. Both cystamine and cysteamine demonstrate radioprotective and strong antioxidant properties. However, their effectiveness varies significantly depending on the concentration employed, the conditions of irradiation, and whether or not environmental oxygen is present. Specifically, excluding potential in vivo toxicity, cysteamine substantially reduces the adverse effects of ionizing radiation under aerated, low-LET conditions at concentrations above ~1 mM. However, its efficacy is minimal in hypoxic environments, irrespective of the concentration used. Conversely, cystamine consistently offers robust protective effects in both oxygen-rich and oxygen-poor conditions. The distinct protective capacities of cysteamine and cystamine underscore cysteamine's enhanced potential in radiotherapeutic settings aimed at safeguarding healthy tissues from radiation-induced damage while effectively targeting tumor tissues. This differential effectiveness emphasizes the need for personalized radioprotective strategies, tailored to the specific environmental conditions of the tissue involved. Implementing such approaches is crucial for optimizing therapeutic outcomes and minimizing collateral damage in cancer treatment.
Collapse
Affiliation(s)
| | | | - Jean-Paul Jay-Gerin
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (S.P.); (J.M.)
| |
Collapse
|
38
|
Yau CE, Low CE, Ong WS, Khoo LP, Hoe JTM, Tan YH, Chang EWY, Yang VS, Poon EYL, Chan JY, Sin IH, Yeoh KW, Somasundaram N, Harunal Rashid MFB, Tao M, Lim ST, Chiang J. Using Deauville Scoring to Guide Consolidative Radiotherapy in Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2024; 16:3311. [PMID: 39409931 PMCID: PMC11475697 DOI: 10.3390/cancers16193311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The most common aggressive lymphoma in adults is diffuse large B-cell lymphoma (DLBCL). Consolidative radiotherapy (RT) is often administered to DLBCL patients but guidelines remain unclear, which could lead to unnecessary RT. We aimed to evaluate the value of end-of-treatment PET-CT scans, interpreted using the Deauville score (DV), to guide the utilization of consolidative RT, which may help spare low-risk DLBCL patients from unnecessary RT. METHODS We included all DLBCL patients diagnosed between 2010 and 2022 at the National Cancer Centre Singapore with DV measured at the end of the first-line chemoimmunotherapy. The outcome measure was time-to-progression (TTP). The predictive value of DV for RT was assessed based on the interaction effect between the receipt of RT and DV in Cox regression models. RESULTS The data of 349 patients were analyzed. The median follow-up time was 38.1 months (interquartile range 34.0-42.3 months). RT was associated with a significant improvement in TTP amongst the DV4-5 patients (HR 0.33; 95%CI 0.13-0.88; p = 0.027) but not the DV1-3 patients (HR 0.85; 95%CI 0.40-1.81; p = 0.671) (interaction's p = 0.133). Multivariable analysis reported that RT was again significantly associated with improved TTP among the DV4-5 patients (adjusted HR 0.29; 95%CI 0.10-0.80; p = 0.017) but not the DV1-3 group (HR 0.86; 95%CI 0.40-1.86; p = 0.707) (interaction's p = 0.087). CONCLUSION Our results suggests that DLBCL patients with end-of-treatment PET-CT DV1-3 may not need consolidative RT. Longer follow-up and prospective randomized trials are still necessary to investigate long-term outcomes.
Collapse
Affiliation(s)
- Chun En Yau
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore; (C.E.Y.); (C.E.L.)
| | - Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore; (C.E.Y.); (C.E.L.)
| | - Whee Sze Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore;
| | - Lay Poh Khoo
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
| | - Joshua Tian Ming Hoe
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
| | - Ya Hwee Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
| | - Esther Wei Yin Chang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
| | - Valerie Shiwen Yang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Eileen Yi Ling Poon
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Iris Huili Sin
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (I.H.S.); (K.W.Y.)
| | - Kheng Wei Yeoh
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (I.H.S.); (K.W.Y.)
| | - Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Mohamed Farid Bin Harunal Rashid
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Miriam Tao
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| | - Jianbang Chiang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; (L.P.K.); (J.T.M.H.); (Y.H.T.); (E.W.Y.C.); (V.S.Y.); (E.Y.L.P.); (J.Y.C.); (N.S.); (M.F.B.H.R.); (M.T.); (S.T.L.)
- Duke-NUS Medical School, Oncology Academic Clinical Program, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
39
|
Bernardo T, Heuchel L, Heinzelmann F, Esser J, Lüdemann L, Timmermann B, Lühr A, von Neubeck C. Linear energy transfer dependent variation in viability and proliferation along the Bragg peak curve in sarcoma and normal tissue cells. Phys Med Biol 2024; 69:195005. [PMID: 39137807 DOI: 10.1088/1361-6560/ad6edc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.The energy deposition of photons and protons differs. It depends on the position in the proton Bragg peak (BP) and the linear energy transfer (LET) leading to a variable relative biological effectiveness (RBE). Here, we investigate LET dependent alterations on metabolic viability and proliferation of sarcoma and endothelium cell lines following proton irradiation in comparison to photon exposure.Approach.Using a multi-step range shifter, each column of a 96-well plate was positioned in a different depth along four BP curves with increasing intensities. The high-throughput experimental setup covers dose, LET, and RBE changes seen in a treatment field. Photon irradiation was performed to calculate the RBE along the BP curve. Two biological information out of one experiment were extracted allowing a correlation between metabolic viability and proliferation of the cells.Main results.The metabolic viability and cellular proliferation were column-wise altered showing a depth-dose profile. Endothelium cell viability recovers within 96 h post BP irradiation while sarcoma cell viability remains reduced. Highest RBE values were observed at the BP distal fall-off regarding proliferation of the sarcoma and endothelial cells.Significance.The high-throughput experimental setup introduced here (I) covers dose, LET, and RBE changes seen in a treatment field, (II) measures short-term effects within 48 h to 96 h post irradiation, and (III) can additionally be transferred to various cell types without time consuming experimental adaptations. Traditionally, RBE values are calculated from clonogenic cell survival. Measured RBE profiles strongly depend on physical characteristics such as dose and LET and biological characteristics for example cell type and time point. Metabolic viability and proliferation proofed to be in a similar effect range compared to clonogenic survival results. Based on limited data of combined irradiation with doxorubicin, future experiments will test combined treatment with systemic therapies applied in clinics e.g. cyclin-dependent inhibitors.
Collapse
Affiliation(s)
- Teresa Bernardo
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Lena Heuchel
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
| | - Feline Heinzelmann
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
- University Hospital Essen, West German Cancer Center (WTZ), Hufelandstr. 55, Essen, DE 45147, Germany
| | - Johannes Esser
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
| | - Lutz Lüdemann
- University Hospital Essen, Clinic and Polyclinic for Radiotherapy/Medical Physics, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
- University Hospital Essen, West German Cancer Center (WTZ), Hufelandstr. 55, Essen, DE 45147, Germany
- German Cancer Consortium, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
| |
Collapse
|
40
|
Arcambal A, Septembre-Malaterre A, Pesnel S, Morel AL, Gasque P, Begue M, Slama Y. The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study. Cancers (Basel) 2024; 16:3239. [PMID: 39335210 PMCID: PMC11430180 DOI: 10.3390/cancers16183239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metallic nanoparticles (NPs) exhibit interesting radiosensitizing effects, and finding a way to accurately deliver them appears to be crucial. Due to their tumor tropism, mesenchymal stem cells (MSCs) represent a strategic approach. Therefore, we aimed to evaluate the impact of core-shell Fe3O4@Au NPs on the functionality of human pulmonary MSCs (HPMSCs). METHODS/RESULTS The results showed that 100 µg/mL Fe3O4@Au NPs, accumulated in HPMSCs (revealed by Prussian blue staining), did not alter cell viability as assessed by cell counting, MTT, and LDH assays. However, caspase 9 and Bcl2 gene expression, evaluated by RT-qPCR, was regulated 72 h after exposure to the NPs. Moreover, the NPs also decreased proinflammatory cytokine/chemokine secretions, except for CXCL8 (ELISA). These modulations were associated with the downregulation of AMPK gene expression at 24 h. In contrast, the NPs did not modulate VEGF, PI3K, or PDGF gene expression. Nevertheless, a decrease in VEGF secretion was observed after 24 h of exposure to the NPs. Interestingly, the Fe3O4@Au NPs did not modulate Nrf2 gene expression, but they did regulate the expression of the genes encoding Nox4 and HMOX-1. Additionally, the NPs increased ROS production, suggesting a redox imbalance. CONCLUSIONS Finally, the Fe3O4@Au NPs did not affect the HPMSCs' viability or proangiogenic/tumorigenic markers. These findings are encouraging for investigating the effects of Fe3O4@Au NPs delivered by HPMSCs to tumor sites in combination with radiation.
Collapse
Affiliation(s)
- Angélique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Axelle Septembre-Malaterre
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Sabrina Pesnel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Anne-Laure Morel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Mickael Begue
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Youssef Slama
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| |
Collapse
|
41
|
Chen S, Wan Z, Hu S, Bu W, Lu Y, Zhao Z. Effect of radiation after surgery on the prognosis of children with Wilms tumor. PLoS One 2024; 19:e0308824. [PMID: 39298401 DOI: 10.1371/journal.pone.0308824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND To explore the association between radiation after surgery and the 5-year overall survival (OS) and 5-year cancer-specific survival (CSS) in patients with Wilms tumor. METHODS In this cohort study, 1564 participants were identified from the Surveillance, Epidemiology, and End Results (SEER) database. The univariate and multivariable COX proportional risk model as well as competitive risk model were used to explore the covariates associated with 5-year OS and 5-year CSS of patients with Wilms tumor and the correlation between radiation after surgery and 5-year OS or 5-year CSS of patients with Wilms tumor, respectively. The Kaplan-Meier curves of participants were plotted. RESULTS The median follow-up was 126.00 (84.00, 178.00) months. Patients receiving surgery had higher 5-year survival probability than those not receiving surgery, while participants receiving radiation after surgery showed poor 5-year survival than those not. After adjusting for covariates including age and SEER stage, increased risk of 5-year overall mortality in patients with Wilms tumor [hazard ratio (HR) = 1.62, 95% confidence interval (CI): 1.10-2.41). After the adjustment for confounding factors including age, SEER stage and ethnicity, increased risk of 5-year cancer-specific mortality of patients with Wilms tumor was observed in those receiving radiation after surgery (HR = 1.77, 95%CI: 1.13-2.79). CONCLUSION Radiation after surgery was associated with poor prognosis of patients with Wilms tumor, which indicated that the clinicians should assess whether the patient was suitable for using radiation after surgery.
Collapse
Affiliation(s)
- Songqiang Chen
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Zhisheng Wan
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Shaohua Hu
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Weizhen Bu
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Yiqun Lu
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhenli Zhao
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| |
Collapse
|
42
|
Acharya M, Venkidesh BS, Mumbrekar KD. Bacterial supplementation in mitigation of radiation-induced gastrointestinal damage. Life Sci 2024; 353:122921. [PMID: 39032692 DOI: 10.1016/j.lfs.2024.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Pelvic irradiation, a crucial treatment for pelvic malignancies, is associated with the risk of gastrointestinal (GI) damage due to the high proliferation rate of epithelial cells. The radiosensitive gastrointestinal tract acts as a dose-limiting organ. High doses of ionizing radiation can cause inflammation and rupture of mucosal barriers and can also lead to intestinal fibrosis. Intestinal damage can cause acute to chronic complications, reducing patients' quality of life. The gut microbiota plays a vital role in maintaining gut health, and any changes in the gut microbial composition can worsen damage, emphasizing the importance of therapies that target and sustain the gut microbiota during radiotherapy. One potential strategy to prevent radiation-induced GI damage is to use bacterial supplements. Research suggests that probiotic supplementation may alleviate radiation-induced gastrointestinal damage, maintaining intestinal morphology and decreasing epithelial injury in cancer patients. The observed protective effects occur through various mechanisms, including antioxidant activities, modulation of the immune response, and preservation of gut barrier function. To optimize probiotic therapies, it is imperative to elucidate these mechanisms. The efficiency of probiotics as radioprotectors is highly dependent on the time and dose of administration, and their interaction with the host immune system is a key facet of their therapeutic potential. This review explores the potential benefits of bacterial supplementation in mitigating radiation-induced GI damage and the underlying mechanism. This highlights the need for further research to establish standardized protocols and refine probiotic supplementation strategies, underscoring the potential for enhancing therapeutic outcomes in patients undergoing pelvic radiotherapy.
Collapse
Affiliation(s)
- Meghana Acharya
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
43
|
Loscertales E, Mateo J, España S. A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. J Liposome Res 2024:1-12. [PMID: 39258993 DOI: 10.1080/08982104.2024.2401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
This study investigates drug-loaded liposomes designed for controlled release under ionizing radiation to refine cancer treatment precision. Liposomes as carriers enable targeted chemotherapy delivery, reducing healthy tissue damage risk. Liposomes containing poly- or mono-unsaturated fatty acids and various sensitizing agents were assessed for responsiveness to UV light and γ photon irradiation including rose bengal (RB), protoporphyrin IX (PPIX), verteporfin (VP), cercosporin (CERC) and hypericin (HYP). Carboxyfluorescein (CF) was used as a surrogate for drug release measurements. VP and PPIX induced rapid drug release and lipid peroxidation under UV light, while RB prompted quick drug release under UV light and a modest immediate release under γ irradiation, eventually reaching full release a few hours after irradiation, demonstrating dose-dependent effects. Smaller liposomes displayed accelerated release, emphasizing size-dependent kinetics. In vitro analyses evaluated radiosensitizing effects of RB-loaded liposomes. Clonogenic assays indicated that RB-filled liposomes had minimal direct radiobiological effects but increased indirect radiation damage, as shown by the curvature of the cell survival curve. Our study sheds light on factors influencing liposomal drug release under ionizing radiation, spotlighting RB as a promising radiosensitizer requiring further investigation for cancer therapy potential.
Collapse
Affiliation(s)
- E Loscertales
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - J Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - S España
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Institute for Physical and Information Technologies "Leonardo Torres Quevedo", ITEFI, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
44
|
Giuranno L, Piepers JAF, Korsten E, Borman R, van de Kamp G, De Ruysscher D, Essers J, Vooijs MA. Enhanced radiation sensitivity, decreased DNA damage repair, and differentiation defects in airway stem cells derived from patients with chronic obstructive pulmonary disease. Stem Cells Transl Med 2024; 13:927-939. [PMID: 38946043 PMCID: PMC11386216 DOI: 10.1093/stcltm/szae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications. Because lung stem cells are crucial for the regeneration of lung tissue following injury, we hypothesized that airway stem cells from patients with COPD with lung cancer might contribute to increased radiation sensitivity. We used the air-liquid interface model, a three-dimensional (3D) culture system, to compare the radiation response of primary human airway stem cells from healthy and patients with COPD. We found that COPD-derived airway stem cells, compared to healthy airway stem cell cultures, exhibited disproportionate pathological mucociliary differentiation, aberrant cell cycle checkpoints, residual DNA damage, reduced survival of stem cells and self-renewal, and terminally differentiated cells post-irradiation, which could be reversed by blocking the Notch pathway using small-molecule γ-secretase inhibitors. Our findings shed light on the mechanisms underlying the increased radiation sensitivity of COPD and suggest that airway stem cells reflect part of the pathological remodeling seen in lung tissue from patients with lung cancer receiving thoracic RT.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Jolanda A F Piepers
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Evelien Korsten
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Reitske Borman
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
45
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
46
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
47
|
Haas R, Frame G, Khan S, Neilsen BK, Hong BH, Yeo CPX, Yamaguchi TN, Ong EHW, Zhao W, Carlin B, Yeo ELL, Tan KM, Bugh YZ, Zhu C, Hugh-White R, Livingstone J, Poon DJJ, Chu PL, Patel Y, Tao S, Ignatchenko V, Kurganovs NJ, Higgins GS, Downes MR, Loblaw A, Vesprini D, Kishan AU, Chua MLK, Kislinger T, Boutros PC, Liu SK. The Proteogenomics of Prostate Cancer Radioresistance. CANCER RESEARCH COMMUNICATIONS 2024; 4:2463-2479. [PMID: 39166898 PMCID: PMC11411600 DOI: 10.1158/2767-9764.crc-24-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Prostate cancer is frequently treated with radiotherapy. Unfortunately, aggressive radioresistant relapses can arise, and the molecular underpinnings of radioresistance are unknown. Modern clinical radiotherapy is evolving to deliver higher doses of radiation in fewer fractions (hypofractionation). We therefore analyzed genomic, transcriptomic, and proteomic data to characterize prostate cancer radioresistance in cells treated with both conventionally fractionated and hypofractionated radiotherapy. Independent of fractionation schedule, resistance to radiotherapy involved massive genomic instability and abrogation of DNA mismatch repair. Specific prostate cancer driver genes were modulated at the RNA and protein levels, with distinct protein subcellular responses to radiotherapy. Conventional fractionation led to a far more aggressive biomolecular response than hypofractionation. Testing preclinical candidates identified in cell lines, we revealed POLQ (DNA Polymerase Theta) as a radiosensitizer. POLQ-modulated radioresistance in model systems and was predictive of it in large patient cohorts. The molecular response to radiation is highly multimodal and sheds light on prostate cancer lethality. SIGNIFICANCE Radiation is standard of care in prostate cancer. Yet, we have little understanding of its failure. We demonstrate a new paradigm that radioresistance is fractionation specific and identified POLQ as a radioresistance modulator.
Collapse
Affiliation(s)
- Roni Haas
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Beth K Neilsen
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Boon Hao Hong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Celestia P X Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Wenyan Zhao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Benjamin Carlin
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Eugenia L L Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Kah Min Tan
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Yuan Zhe Bugh
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Rupert Hugh-White
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Dennis J J Poon
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Pek Lim Chu
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Shu Tao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | | | | | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michelle R Downes
- Division of Anatomic Pathology, Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Loblaw
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Danny Vesprini
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Melvin L K Chua
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Cao LM, Zhong NN, Chen Y, Li ZZ, Wang GR, Xiao Y, Liu XH, Jia J, Liu B, Bu LL. Less is more: Exploring neoadjuvant immunotherapy as a de-escalation strategy in head and neck squamous cell carcinoma treatment. Cancer Lett 2024; 598:217095. [PMID: 38964728 DOI: 10.1016/j.canlet.2024.217095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) constitutes a significant global cancer burden, given its high prevalence and associated mortality. Despite substantial progress in survival rates due to the enhanced multidisciplinary approach to treatment, these methods often lead to severe tissue damage, compromised function, and potential toxicity. Thus, there is an imperative need for novel, effective, and minimally damaging treatment modalities. Neoadjuvant treatment, an emerging therapeutic strategy, is designed to reduce tumor size and curtail distant metastasis prior to definitive intervention. Currently, neoadjuvant chemotherapy (NACT) has optimized the treatment approach for a subset of HNSCC patients, yet it has not produced a noticeable enhancement in overall survival (OS). In the contemporary cancer therapeutics landscape, immunotherapy is gaining traction at an accelerated pace. Notably, neoadjuvant immunotherapy (NAIT) has shown promising radiological and pathological responses, coupled with encouraging efficacy in several clinical trials. This potentially paves the way for a myriad of possibilities in treatment de-escalation of HNSCC, which warrants further exploration. This paper reviews the existing strategies and efficacies of neoadjuvant immune checkpoint inhibitors (ICIs), along with potential de-escalation strategies. Furthermore, the challenges encountered in the context of the de-escalation strategies of NAIT are explored. The aim is to inform future research directions that strive to improve the quality of life (QoL) for patients battling HNSCC.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
49
|
Sun JT, Pan CL, Mao YH, Wang Z, Sun JL, Zhang XX, Yang Y, Wei ZT, Xu YD. Exploring the protective effect and mechanism of icariside II on the bladder in a rat model of radiation cystitis based on transcriptome sequencing. Int J Radiat Biol 2024; 100:1493-1504. [PMID: 39166981 DOI: 10.1080/09553002.2024.2386982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Radiation cystitis (RC) is a complex and common complication after radiotherapy for pelvic cancer. Icariside II (ICAII) is a flavonoid compound extracted from Epimedium, a traditional Chinese medicine, with various pharmacological activities. The aim of the present study was to investigate the cysto-protective effects of ICAII in RC rats and its possible mechanisms. MATERIALS AND METHODS A rat model of induced radiation cystitis using pelvic X-ray irradiation was used, and bladder function was assessed by bladder volume and bladder leakage point pressure (LPP) after ICAII treatment. HE and Masson stains were used to assess the histopathological changes in the bladder. IL-6, TNF-α, IL-10, IL-4 and IL-1β were measured by ELISA to assess the level of inflammation. The gene-level changes in ICAII-treated RC were observed by transcriptome sequencing, and then the potential targets of action and biological mechanisms were explored by PPI, GO and KEGG enrichment analysis of the differentially expressed genes. Finally, the predicted targets of action were experimentally validated using immunohistochemistry, RT-qPCR, molecular docking and CETSA. RESULTS ICAII significantly increased bladder volume and the LPP, ameliorated pathological damage to bladder tissues, decreased the levels of IL-6, TNF-α, and IL-1β, and increased the levels of IL-10 and IL-4 in radiation-injured rats. A total of 90 differentially expressed genes were obtained by transcriptome sequencing, and PPI analysis identified H3F3C, ISG15, SPP1, and LCN2 as possible potential targets of action. GO and KEGG analyses revealed that these differentially expressed genes were mainly enriched in the pathways metabolism of xenobiotics by cytochrome P450, arachidonic acid metabolism, Staphylococcus aureus infection and chemical carcinogenesis - reactive oxygen species. Experimental validation showed that ICAII could significantly increase the expression of H3F3C and ISG15 and inhibit the expression of SPP1 and LCN2. ICAII binds well to H3F3C, ISG15, SPP1 and LCN2, with the best binding ability to H3F3C. Furthermore, ICAII inhibited the protein degradation of H3F3C in bladder epithelial cells. CONCLUSIONS ICAII may alleviate the bladder inflammatory response and inhibit the fibrosis process of bladder tissues through the regulation of H3F3C, ISG15, SPP1, and LCN2 targets and has a protective effect on the bladder of radioinjured rats. In particular, H3F3C may be one of the most promising therapeutic targets.
Collapse
Affiliation(s)
- Jun-Tao Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Chen-Li Pan
- Changchun University of Chinese Medicine, Changchun, China
| | - Yin-Hui Mao
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ji-Lei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | | | - Yong Yang
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhi-Tao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yong-De Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|