1
|
Ando Y, Horiuchi Y, Hatazawa S, Mataki M, Nakamura A, Murakami T. Hyperdifferentiated murine melanoma cells promote adaptive anti-tumor immunity but activate the immune checkpoint system. Oncoimmunology 2025; 14:2437211. [PMID: 39648330 PMCID: PMC11633153 DOI: 10.1080/2162402x.2024.2437211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Accumulating evidence suggests that phenotype switching of cancer cells is essential for therapeutic resistance. However, the immunological characteristics of drug-induced phenotype-switching melanoma cells (PSMCs) are unknown. We investigated PSMC elimination by host immunity using hyperdifferentiated melanoma model cells derived from murine B16F10 melanoma cells. Exposure of B16F10 cells to staurosporine induced a hyperdifferentiated phenotype associated with transient drug tolerance. Staurosporine-induced hyperdifferentiated B16F10 (sB16F10) cells expressed calreticulin on their surface and were phagocytosed efficiently. Furthermore, the inoculation of mice with sB16F10 cells induced immune responses against tumor-derived antigens. Despite the immunogenicity of sB16F10 cells, they activated the PD-1/PD-L1 immune checkpoint system and strongly resisted T cell-mediated tumor destruction. However, in vivo treatment with immune checkpoint inhibitors successfully eliminated the tumor. Thus, hyperdifferentiated melanoma cells have conflicting immunological properties - enhanced immunogenicity and immune evasion. Inhibiting the ability of PSMCs to evade T cell-mediated elimination might lead to complete melanoma eradication.
Collapse
Affiliation(s)
- Yukie Ando
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Sara Hatazawa
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Momo Mataki
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| |
Collapse
|
2
|
Voloshin YZ. Alternative Approach to Avoid Drug Resistance: Polyhedral Inorganic and Metallomacrobicyclic 3D-Shaped Guests Strongly Binding to Allosteric Sites and/or Macromolecular Interfaces. Chem Asian J 2025:e01842. [PMID: 40492317 DOI: 10.1002/asia.202401842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 06/12/2025]
Abstract
The emergence of drug resistance is one of the global problems. Prospective approach for its solution is based on the development of new and improved pharmacological principles, including the use of allosteric inhibitors of biomacromolecules and the generation of those unfolded or misfolded. Allosteric sites as hosts can be sterically blocked by rigid 3D-shaped effectors as guests. Because host bioreceptors recognize only their external surface, the nature of abiotic and artificial 3D-molecular platforms plays no important role in the supramolecular host-guest binding. Another of their modus operandi is based on blocking a surface of supramolecular interactions between biomacromolecules to cause the appearance of misfolded macromolecular assemblies or their disaggregation. 3D-shaped polyhedral inorganic and metallocomplex molecules, the periphery of which is decorated with terminal biorelevant or vector group(s), seem to be promising antitumor and antiviral drug candidates, in the case of which the emergence of drug resistance is not observed.
Collapse
Affiliation(s)
- Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow, 119991, Russia
| |
Collapse
|
3
|
Liu S, Jiang A, Tang F, Duan M, Li B. Drug-induced tolerant persisters in tumor: mechanism, vulnerability and perspective implication for clinical treatment. Mol Cancer 2025; 24:150. [PMID: 40413503 DOI: 10.1186/s12943-025-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/04/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer remains a significant global health burden due to its high morbidity and mortality. Oncogene-targeted therapy and immunotherapy have markedly improved the 5-year survival rate in the patients with advanced or metastatic tumors compared to outcomes in the era of chemotherapy/radiation. Nevertheless, the majority of patients remain incurable. Initial therapies eliminate the bulk of tumor cells, yet residual populations termed drug-tolerant persister cells (DTPs) survive, regenerate tumor and even drive distant metastases. Notably, DTPs frequently render tumor cross-resistance, a detrimental phenomenon observed in the patients with suboptimal responses to subsequent therapies. Analogous to species evolution, DTPs emerge as adaptative products at the cellular level, instigated by integrated intracellular stress responses to therapeutic pressures. These cells exhibit profound heterogeneity and adaptability shaped by the intricate feedforward loops among tumor cells, surrounding microenvironments and host ecology, which vary across tumor types and therapeutic regimens. In this review, we revisit the concept of DTPs, with a focus on their generation process upon targeted therapy or immunotherapy. We dissect the critical phenotypes and molecule mechanisms underlying DTPs to therapy from multiple aspects, including intracellular events, intercellular crosstalk and the distant ecologic pre-metastatic niches. We further spotlight therapeutic strategies to target DTP vulnerabilities, including synthetic lethality approaches, adaptive dosing regimens informed by mathematical modeling, and immune-mediated eradication. Additionally, we highlight synergistic interventions such as lifestyle modifications (e.g., exercise, stress reduction) to suppress pro-tumorigenic inflammation. By integrating mechanistic insights with translational perspectives, this work bridges the gap between DTP biology and clinical strategies, aiming for optimal efficacy and preventing relapse.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China
| | - Anfeng Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Minghao Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
4
|
Wang D, Lei J. Optimal adaptive therapeutic schedules for metastatic castrate-resistant prostate cancer based on bilevel optimization problem. J Math Biol 2025; 90:60. [PMID: 40377664 DOI: 10.1007/s00285-025-02220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/18/2025]
Abstract
Abiraterone acetate has established itself as an effective treatment for metastatic castrate-resistant prostate cancer (mCRPC). However, disease progression remains inevitable with conventional long-term maximum tolerated dose (MTD) therapy due to the development of drug resistance. Adaptive therapy (AT), rooted in Darwinian evolutionary dynamics, offers a novel approach to combat drug resistance. By dynamically adjusting drug doses, AT aims to enhance treatment outcomes. Despite successful clinical trials and extensive theoretical studies on AT, significant challenges persist in determining optimal adaptive therapeutic schedules tailored to individual patients. This study presents a biochemically motivated mathematical model incorporating competition between drug-sensitive and drug-resistant cancer cells, incorporating mutated migration factors identified through prostate-specific antigen (PSA) data. Theoretical analyses, including the stability of equilibrium states and the existence of periodic solutions, validate the model's interpretability and support the feasibility of adapted periodic therapy. We propose an optimal adaptive periodic therapy framework, formulating a bilevel dynamic optimization problem with constraints to establish personalized adaptive therapeutic schedules for prostate cancer. Optimal solutions identify therapeutic switches and doses under adaptive therapy. We compare our proposed framework with other adaptive strategies regarding overall survival and total drug doses through numerical simulations and quantitative analysis, demonstrating superior performance. Our model presents a promising tool for integration into clinical research trials, offering individualized adaptive therapeutic schedules to enhance precision management of mCRPC.
Collapse
Affiliation(s)
- Dujuan Wang
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
5
|
Tian Y, Bhattacharya R, Yoo S, Jiang F, Park E, Lara Granados G, Shen Y, Park KS, Kaniskan HU, Jin J, Hopkins BD, Zhu J, Watanabe H. Epigenomic analysis identifies DTP subpopulation using HOPX to develop targeted therapy resistance in lung adenocarcinoma. iScience 2025; 28:112387. [PMID: 40352726 PMCID: PMC12063144 DOI: 10.1016/j.isci.2025.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Genomic studies have identified oncogenic drivers in lung cancer, enabling effective targeted therapies. However, patients who initially respond inevitably experience regrowth. The drug-tolerant persister (DTP) stage is a key source of non-genetic resistance, yet its epigenetic regulation remains unclear. Using single-cell chromatin accessibility profiling (scATAC-seq), we identified two distinct DTP subpopulations in EGFR- and KRAS-inhibited models. The integrative network and pathway analysis revealed that one subpopulation is associated with cell cycle, while the other is enriched in developmental pathways. HOPX was the most enriched alveolar signature gene in the latter. It was transiently upregulated with cytoplasmic-to-nuclear translocation, and its deletion significantly delayed DTP regrowth. Mechanistically, HOPX regulates NF-κB activation and repressive histone modifications. Combining targeted therapy with NF-κB or histone-methyltransferase inhibitors nearly abolished DTP regrowth. These findings highlight a potential anti-relapse strategy by targeting developmental pathways to modulate key lineage factors during lung regeneration in patients relapsing on targeted therapy.
Collapse
Affiliation(s)
- Yang Tian
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reshmee Bhattacharya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
- GeneDx, Stamford, CT, USA
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Park
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Genesis Lara Granados
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yudao Shen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwang-Su Park
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Husnu Umit Kaniskan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D. Hopkins
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
- GeneDx, Stamford, CT, USA
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Li P, Zhao Y, Lu M, Chen C, Li Y, Wang L, Zeng S, Peng Y, Liang H, Zhang G. Pharmacological inhibition of PLK1/PRC1 triggers mitotic catastrophe and sensitizes lung cancers to chemotherapy. Cell Death Dis 2025; 16:374. [PMID: 40355412 PMCID: PMC12069692 DOI: 10.1038/s41419-025-07708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Polo-like kinase 1 (PLK1) signaling drives tumor malignancy and chemotherapy resistance, which is an unmet clinical need. Recruiting PLK1 to the central spindle during anaphase is necessary for its function in promoting cancer cell proliferation, which is achieved by binding to microtubule-associated protein regulating of cytokinesis (PRC1) located in the spindle. However, the role of PLK1/PRC1 signaling in chemotherapy resistance is unknown. In this study, we identified a small molecule B4 which inhibited PLK1/PRC1 signaling through disrupting the formation of PLK1/PRC1 protein complexes. In the presence of blocking PLK1/PRC1 signaling, enhanced sensitivity of drug-resistant tumors to traditional chemotherapy was found. Suppression of PLK1 activity by B4 inhibited disease progression in allograft models, and combination with cisplatin elicited dramatic regression of drug-resistant tumors. Our findings provide a promising strategy to target the PLK1 signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Pingping Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yufei Zhao
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Minghan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Chengfei Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yongkun Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Lingling Wang
- School of Comprehensive Health Management, Xihua University, Chengdu, China
| | - Shulan Zeng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yan Peng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Guohai Zhang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
- Joint Medical Research Center of Guangxi Normal University & Guilin Hospital of Chinese Traditional and Western Medicine, Guilin, China.
| |
Collapse
|
7
|
Barroux M, Househam J, Lakatos E, Ronel T, Baker AM, Salié H, Mossner M, Smith K, Kimberley C, Nowinski S, Berner A, Gunasri V, Borgmann M, Liffers S, Jansen M, Caravagna G, Steiger K, Slotta-Huspenina J, Weichert W, Zapata L, Giota E, Lorenzen S, Alberstmeier M, Chain B, Friess H, Bengsch B, Schmid RM, Siveke JT, Quante M, Graham TA. Evolutionary and immune microenvironment dynamics during neoadjuvant treatment of esophageal adenocarcinoma. NATURE CANCER 2025; 6:820-837. [PMID: 40369175 PMCID: PMC12122370 DOI: 10.1038/s43018-025-00955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/21/2025] [Indexed: 05/16/2025]
Abstract
Locally advanced esophageal adenocarcinoma remains difficult to treat and the ecological and evolutionary dynamics responsible for resistance and recurrence are incompletely understood. Here, we performed longitudinal multiomic analysis of patients with esophageal adenocarcinoma in the MEMORI trial. Multi-region multi-timepoint whole-exome and paired transcriptome sequencing was performed on 27 patients before, during and after neoadjuvant treatment. We found major transcriptomic changes during treatment with upregulation of immune, stromal and oncogenic pathways. Genetic data revealed that clonal sweeps through treatment were rare. Imaging mass cytometry and T cell receptor sequencing revealed remodeling of the tumor microenvironment during treatment. The presence of genetic immune escape, a less-cytotoxic T cell phenotype and a lack of clonal T cell expansions were linked to poor treatment response. In summary, there were widespread transcriptional and environmental changes through treatment, with limited clonal replacement, suggestive of phenotypic plasticity.
Collapse
Affiliation(s)
- Melissa Barroux
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Munich, Munich, Germany.
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Data Science Team, The Institute of Cancer Research, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Tahel Ronel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Henrike Salié
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Mossner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Kane Smith
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Chris Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Salpie Nowinski
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Vinaya Gunasri
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Martin Borgmann
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Sven Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Marnix Jansen
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Triest, Triest, Italy
| | - Katja Steiger
- iBioTUM - Tissue, Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Technical University of Munich, Munich, Germany
- Department of Nephrology, School of Medicine, Technical University Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Eleftheria Giota
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sylvie Lorenzen
- Department of Internal Medicine III (Haematology/Medical Oncology), Technical University of Munich Hospital Rechts der Isar, Munich, Germany
| | - Markus Alberstmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Helmut Friess
- Department of Surgery, TUM University Hospital, rechts der Isar, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany
| | - Roland M Schmid
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Munich, Munich, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Michael Quante
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
8
|
Jiang C, Bai R, Somavarapu S. Inhalable TPGS/DPPC Micelles Coloaded with Curcumin and Icariin for Targeted Lung Cancer Therapy. ACS OMEGA 2025; 10:15400-15411. [PMID: 40290948 PMCID: PMC12019740 DOI: 10.1021/acsomega.5c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Lung cancer, particularly NSCLC, poses a major therapeutic challenge due to drug resistance and the poor aqueous solubility of chemotherapeutic agents, limiting treatment efficacy. This study investigates inhalable micelles for the codelivery of curcumin (CUR) and icariin (ICA), two hydrophobic bioactive compounds with anticancer potential, as a targeted therapeutic approach for NSCLC. The optimized micellar formulation (9:1 TPGS/DPPC) yielded nanomicelles (∼18 nm) with high encapsulation efficiency (∼90%) and a zeta potential of -1.24 mV, demonstrating stability for pulmonary administration. In vitro cytotoxicity studies demonstrated enhanced anticancer activity of CUR- and ICA-loaded micelles against A549 lung cancer cells (IC50 = 3.0 μg/mL), lower than doxorubicin (30 μg/mL), suggesting enhanced cytotoxic potential. Additionally, DPPH assays confirmed that encapsulation preserved curcumin's functionality. Aerosolization studies demonstrated a high fine particle fraction (67 ± 3%) and emitted fraction (95 ± 1.0%), confirming the micelles' suitability for deep lung deposition and effective pulmonary drug delivery. These findings highlight the potential of CUR- and ICA-loaded micelles as an inhalable NSCLC treatment, requiring further preclinical investigation.
Collapse
Affiliation(s)
- Chengwei Jiang
- Department of Pharmaceutics,
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Rongjun Bai
- Department of Pharmaceutics,
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics,
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| |
Collapse
|
9
|
Scholten D, El-Shennawy L, Jia Y, Zhang Y, Hyun E, Reduzzi C, Hoffmann AD, Almubarak HF, Tong F, Dashzeveg N, Sun Y, Squires JR, Lu J, Platanias LC, Wasserfall CH, Gradishar WJ, Cristofanilli M, Fang D, Liu H. Rare Subset of T Cells Form Heterotypic Clusters with Circulating Tumor Cells to Foster Cancer Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646421. [PMID: 40236049 PMCID: PMC11996511 DOI: 10.1101/2025.04.01.646421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The immune ecosystem is central to maintaining effective defensive responses. However, how immune cells in the periphery blood interact with circulating tumor cells (CTCs) - seeds of metastasis - remains largely understudied. Here, our analysis of the blood specimens (N=1,529) from patients with advanced breast cancer revealed that over 75% of the CTC-positive blood specimens contained heterotypic CTC clusters with CD45 + white blood cells (WBCs). Detection of CTC-WBC clusters correlates with breast cancer subtypes (triple negative and luminal B), racial groups (Black), and decreased survival rates. Flow cytometry and ImageStream analyses revealed diverse WBC composition of heterotypic CTC-WBC clusters, including overrepresented T cells and underrepresented neutrophils. Most strikingly, a rare subset of CD4 and CD8 double positive T (DPT) cells showed an up to 140-fold enrichment in the CTC clusters versus its frequency in WBCs. DPT cells shared part of the profiles with CD4 + T cells and others with CD8 + T cells but exhibited unique features of T cell exhaustion and immune suppression with higher expression of TIM-3 and PD-1. Single-cell RNA sequencing and genetic perturbation studies further pinpointed the integrin VLA4 (α4β1) in DPT cells and its ligand VCAM1 in tumor cells as essential mediators of heterotypic WBC-CTC clusters. Neoadjuvant administration of anti-α4 (VLA4) neutralizing antibodies markedly blocked CTC-DPT cell clustering and inhibited metastasis for extended survival in preclinical mouse models in vivo . These findings uncover a pivotal role of rare DPT cells with immune suppressive features in fostering cancer dissemination through direct interactive clustering with CTCs. It lays a foundation for developing innovative biomarkers and therapeutic strategies to prevent and target cancer metastasis, ultimately benefiting cancer care. Brief summary Our findings uncover a fostering role of immune-suppressive T cells in contact with circulating tumor cells and identify therapeutic approaches to eliminate devastating cancer metastasis.
Collapse
|
10
|
He S, Ji J, Zhu K, Chen Y, Xu X. Therapeutic potential and mechanistic insights of silibinin targeting cancer-associated fibroblasts in colorectal cancer. Front Pharmacol 2025; 16:1527871. [PMID: 40242441 PMCID: PMC12000085 DOI: 10.3389/fphar.2025.1527871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Objective This study aims to elucidate the role of SB in inhibiting CRC progression by targeting CAFs and elucidating the underlying mechanisms. Methods In this study, a spontaneous CRC model induced by AOM/DSS was used to evaluate the effects of SB on CAFs. Mice were treated with SB, and tumor burden was assessed by colon length. CAFs were isolated post-treatment for transcriptomic analysis to identify differentially expressed genes, with molecular docking providing in silico evidence of SB's binding to target proteins. CAFs changes were further examined through HE staining, IHC, and assays for cell viability, colony formation, and migration. Integrated bioinformatic analysis elucidated the mechanistic role of SB in CAFs-mediated CRC progression. Results In vivo studies showed that SB effectively reduced POSTN and α-SMA protein levels in CAFs in AOM/DSS-induced CRC mice. Consistently, in vitro experiments demonstrated that SB significantly decreased both protein and mRNA levels of α-SMA and POSTN in fibroblasts (colonic myofibroblast CCD-18Co cell lines.) co-cultured with CRC cell lines (human colorectal adenocarcinoma SW480 and RKO cell lines). SB also inhibited proliferation, colony formation, and migration of CCD-18Co cells. Transcriptomic and integrated bioinformatic analyses further suggested that SB exerts therapeutic effects on CAFs in CRC by modulating key target pathways. Conclusion These results demonstrated that SB holds promise as a therapeutic agent for targeting CAFs in CRC. This study advances our understanding of SB's mechanisms, particularly its inhibitory effects on CAFs proliferation, colony formation, and migration.
Collapse
Affiliation(s)
- Shenglan He
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianmei Ji
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaisi Zhu
- Department of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowen Xu
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Wang J, Wang Y, Zhou H, Yu G, Xu H, Gao D, Li M, Wang Y, Xu B. Identification of the specific characteristics of neuroendocrine prostate cancer: Immune status, hub genes and treatment. Transl Oncol 2025; 54:102320. [PMID: 39999729 PMCID: PMC11908612 DOI: 10.1016/j.tranon.2025.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Castration-resistant prostate cancer (CRPC) marks the advanced phase of prostate malignancy, manifested through two principal subtypes: castration-resistant adenocarcinoma (CRPC-adeno) and neuroendocrine prostate cancer (NEPC). This study aims to identify unique central regulatory genes, assess the immunological landscape, and explore potential therapeutic strategies specifically tailored to NEPC. We discovered 1444 differentially expressed genes (DEGs) distinguishing between the two cancer types and identified 12 critical hub genes. Notably, CHST1, MPPED2, and RIPPLY3 emerged as closely associated with the immune cell infiltration pattern, establishing them as top candidates. Prognostic analysis highlighted the potential critical roles of CHST1 and MPPED2 in prostate cancer development, findings corroborated through in vitro and in vivo assays. Moreover, we validated the functions and expression levels of CHST1, MPPED2, and RIPPLY3 in NEPC using cell lines, animal models and human tissues. In the final step, we found that imatinib might be the drug specific to NEPC, which was further confirmed by in vitro cell assay. Our results revealed the clinical characteristics, molecular features, immune cell infiltration pattern in CRPC-adeno and NEPC, and identified and confirmed CHST1, MPPED2, and RIPPLY3 as the critical genes in the development in prostate cancer and NEPC. We also predicted and validated imatinib as the potential specific drugs to NEPC.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yu Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Minglun Li
- Urologic and Hematologic Oncology, Department of Radiation Oncology, LMU, University Hospital, Munich, Germany.
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China.
| |
Collapse
|
12
|
Chrzan N, Hartman ML. Copper in melanoma: At the crossroad of protumorigenic and anticancer roles. Redox Biol 2025; 81:103552. [PMID: 39970778 PMCID: PMC11880738 DOI: 10.1016/j.redox.2025.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Copper is an essential micronutrient that is a cofactor for various enzymes involved in multiple cellular processes. Melanoma patients have high serum copper levels, and elevated copper concentrations are found in melanoma tumors. Copper influences the activity of several melanoma-related proteins involved in cell survival, proliferation, pigmentation, angiogenesis, and metastasis. Targeting these processes with copper chelators has shown efficacy in reducing tumor growth and overcoming drug resistance. In contrast, excessive copper can also have detrimental effects when imported into melanoma cells. Multiple distinct cellular effects of copper overload, including the induction of different types of cell death, have been reported. Cuproptosis, a novel type of copper-dependent cell death, has been recently described and is associated with the metabolic phenotype. Melanoma cells can switch between glycolysis and oxidative phosphorylation, which are crucial for tumor growth and drug resistance. In this respect, metabolic plasticity might be exploited for the use of copper-delivery strategies, including repurposing of disulfiram, which is approved for the treatment of noncancer patients. In addition, the development of nanomedicines can improve the targeted delivery of copper to melanoma cells and enable the use of these drugs alone or in combination as copper has been shown to complement targeted therapy and immunotherapy in melanoma cells. However, further research is needed to explore the specific mechanisms of both copper restriction and excess copper-induced processes and determine effective biomarkers for predicting treatment sensitivity in melanoma patients. In this review, we discuss the dual role of copper in melanoma biology.
Collapse
Affiliation(s)
- Natalia Chrzan
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
13
|
Wang R, Wang S, Mi Y, Huang T, Wang J, Ni J, Wang J, Yin J, Li M, Ran X, Fan S, Sun Q, Tan SY, Phillip Koeffler H, Ding L, Chen YQ, Feng N. Elevated serum levels of GPX4, NDUFS4, PRDX5, and TXNRD2 as predictive biomarkers for castration resistance in prostate cancer patients: an exploratory study. Br J Cancer 2025; 132:543-557. [PMID: 39900986 PMCID: PMC11920399 DOI: 10.1038/s41416-025-02947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a heterogeneous disease affecting over 14% of the male population worldwide. Although patients often respond positively to initial treatments within the first 2-3 years, many eventually develop a more lethal form of the disease known as castration-resistant PCa (CRPC). At present, no biomarkers that predict the onset of CRPC are available. This study aims to provide insights into the diagnosis and prediction of CRPC emergence. METHODS Protein expression dynamics were analysed in drug (androgen receptor inhibitor)-tolerant persister (DTP) and drug withdrawal cells using proteomics to identify potential biomarkers. These biomarkers were subsequently validated using a mouse model, 180-paired carcinoma/benign tissues, and 482 serum samples. Five machine learning algorithms were employed to build clinical prediction models, wherein the SHapley Additive exPlanation (SHAP) framework was used to interpret the best-performing model. Moreover, three regression models were developed to determine the Time from initial PCa diagnosis to CRPC development (TPC) in patients. RESULTS We identified that the protein expression levels of GPX4, NDUFS4, PRDX5, and TXNRD2 were significantly upregulated in PCa patients, particularly in those with CRPC. Among the tested machine learning models, the random forest and extreme gradient boosting models performed best on tissue and serum cohorts, achieving AUCs of 0.958 and 0.988, respectively. In addition, a significant inverse correlation was observed between TPC and serum levels of these four biomarkers. This correlation was formulated in three regression models, which achieved the smallest mean absolute error of 1.903 on independent datasets for predicting CRPC emergence. CONCLUSION Our study provides new insights into the role of DTP cells in CRPC development. The quad protein panel identified in our study, along with the post hoc and intrinsically explainable prediction models, may serve as a convenient and real-time prognostic tool, addressing the current lack of clinical biomarkers for CRPC.
Collapse
Affiliation(s)
- Rong Wang
- Jiangnan University Medical Center, Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shaopeng Wang
- Jiangnan University Medical Center, Jiangnan University, Wuxi, China
| | - Yuanyuan Mi
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Tianyi Huang
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Jun Wang
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jiang Ni
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jian Wang
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Menglu Li
- Jiangnan University Medical Center, Jiangnan University, Wuxi, China
- Department of Urology, Wuxi No.2 People's Hospital, Nanjing Medical University, Wuxi, China
| | - Xuebin Ran
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiaoyang Sun
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, California, Los Angeles, CA, USA
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yong Q Chen
- Jiangnan University Medical Center, Jiangnan University, Wuxi, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Ninghan Feng
- Jiangnan University Medical Center, Jiangnan University, Wuxi, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Department of Urology, Wuxi No.2 People's Hospital, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
14
|
Zhai Y, Li G, Pan C, Yu M, Hu H, Wang D, Shi Z, Jiang T, Zhang W. The development and potent antitumor efficacy of CD44/CD133 dual-targeting IL7Rα-armored CAR-T cells against glioblastoma. Cancer Lett 2025; 614:217541. [PMID: 39952598 DOI: 10.1016/j.canlet.2025.217541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Tumor heterogeneity and an immunosuppressive microenvironment pose significant challenges for immunotherapy against solid tumors, particularly glioblastoma multiforme (GBM). Recent studies have highlighted the crucial role of glioma stem cells (GSCs) in tumor recurrence and therapeutic resistance. In this context, we developed a tandem chimeric antigen receptor (CAR)-T cell targeting CD44 and CD133 (PROM1), containing a truncated IL-7 receptor alpha intracellular domain (Δ7R) between the CD28 costimulatory receptor and the CD3ζ signaling chain (Tanζ-T28-Δ7R). Our target identification and validation were carried out using GSCs, samples from GBM patients, and the corresponding sequencing data. The antitumor efficacy of CAR-T cells was evaluated in patient-derived GSCs, intracranial xenograft models, patient-derived xenograft models, and glioblastoma organoids (GBOs). Single-cell RNA sequencing and mass cytometry were used to determine the immune phenotypes of CAR-T cells. We showed that locoregionally administered Tanζ-T28-Δ7R CAR-T cells induced long-term tumor regression with the desired safety outcomes. Patient-derived autologous Tanζ-T28-Δ7R CAR-T cells showed robust antitumor activity against GBOs. Our pre-clinical data has demonstrated the translational potential of Tanζ-T28-Δ7R CAR-T cell against GBM.
Collapse
Affiliation(s)
- You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China; Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China; Beijing Engineering Research Center of Targeted Drugs and Cell Therapy for CNS Tumors, Beijing, PR China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China; Beijing Engineering Research Center of Targeted Drugs and Cell Therapy for CNS Tumors, Beijing, PR China.
| |
Collapse
|
15
|
Zhang L, Li Y, Qian Y, Xie R, Peng W, Zhou W. Advances in the Development of Ferroptosis-Inducing Agents for Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202500010. [PMID: 40178208 DOI: 10.1002/ardp.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cancer is the main leading cause of death worldwide and poses a great threat to human life and health. Although pharmacological treatment with chemotherapy and immunotherapy is the main therapeutic strategy for cancer patients, there are still many shortcomings during the treatment such as incomplete killing of cancer cells and development of drug resistance. Emerging evidence indicates the promise of inducing ferroptosis for cancer treatment, particularly for eliminating aggressive malignancies that are resistant to conventional therapies. This review covers recent advances in important regulatory targets in the ferroptosis metabolic pathway and ferroptosis inducers (focusing mainly on the last 3 years) to delineate their design, mechanisms of action, and anticancer applications. To date, many compounds, including inhibitors, degraders, and active molecules from traditional Chinese medicine, have been demonstrated to have ferroptosis-inducing activity by targeting the different biomolecules in the ferroptosis pathway. However, strictly defined ferroptosis inducers have not yet been approved for clinical use; therefore, the discovery of new highly active, less toxic, and selective compounds remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Li Zhang
- Maternal and Child Health Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang Province, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Qian
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Ruliang Xie
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
16
|
Ito N, Nabil A, Uto K, Ebara M. Poly(ARTEMA), a novel artesunate-based polymer induces ferroptosis in breast cancer cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2482514. [PMID: 40241849 PMCID: PMC12001860 DOI: 10.1080/14686996.2025.2482514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Ferroptosis, a form of non-apoptotic cell death, is emerging as a promising strategy for cancer therapy. Artesunate (ART), an extract obtained from the traditional Chinese medicine Qinghaosu, has been shown to exhibit anti-cancer activity by inducing ferroptosis in cancer cells. While previous research has focused on incorporating ART monomer into drug delivery systems for enhanced cancer targeting, this study presents 2-methacryloyloxyethyl ART polymer (poly(ARTEMA)), a novel polymer synthesized from ART for the first time. Our goal was evaluation of poly(ARTEMA) anticancer potential on breast cancer cells. First, we synthesized ARTEMA using esterification followed by its polymerization using the reversible addition-fragmentation chain transfer (RAFT) polymerization method. We evaluated its mechanism of action, focusing on two key pathways: temperature-triggered singlet oxygen generation and ferrous ions (Fe2+) release, both of which contribute to ferroptosis. Our results demonstrate that poly(ARTEMA) selectively generates singlet oxygen and Fe2+ due to the endoperoxide crosslinks, leading to cell death in breast cancer cells. We also investigated the anti-cancer potential of poly(ARTEMA) on breast cancer cells with and without a ferroptosis inhibitor. The IC50 values were 125 µM for the MCF-7 cancer cell line and 300 µM for the normal MCF-10 cell line, indicating enhanced toxicity toward cancer cell lines. These findings suggested that poly(ARTEMA) induces ferroptosis in cancer cells and may serve as a promising candidate for cancer therapy with minimal cytotoxicity. To the best of our knowledge, this report may be the first that successfully synthesized poly(ARTEMA) using ART, with its anticancer potential evaluation.
Collapse
Affiliation(s)
- Natsumi Ito
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Advanced Engineering, Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Japan
| |
Collapse
|
17
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
18
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
19
|
Izzo LT, Reyes T, Meesala S, Ireland AS, Yang S, Sunil HS, Cheng XC, Tserentsoodol N, Hawgood SB, Patz EF, Witt BL, Tyson DR, O’Donnell KA, Oliver TG. KLF4 promotes a KRT13+ hillock-like state in squamous lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.641898. [PMID: 40161723 PMCID: PMC11952405 DOI: 10.1101/2025.03.10.641898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Lung squamous cell carcinoma (LUSC) is basal-like subtype of lung cancer with limited treatment options. While prior studies have identified tumor-propagating cell states in squamous tumors, the broader landscape of intra-tumoral heterogeneity within LUSC remains poorly understood. Here, we employ Sox2-driven mouse models, organoid cultures, and single-cell transcriptomic analyses to uncover previously unrecognized levels of cell fate diversity within LUSC. Specifically, we identify a KRT13+ hillock-like population of slower-dividing tumor cells characterized by immunomodulatory gene expression signatures. The tumor hillock-like state is conserved across multiple animal models and is present in the majority of human LUSCs as well as head and neck and esophageal squamous tumors. Our findings shed light on the cellular origins of lung hillock-like states: normal club cells give rise to tumors with luminal hillock-like populations, while basal-like tumor-propagating cells transition into basal hillock-like states, resembling homeostatic cellular responses to lung injury. Mechanistically, we identify KLF4 as a key transcriptional regulator of the hillock-like state, both necessary and sufficient to induce KRT13 expression. Together, these results provide new molecular insights into cell fate plasticity that underlies intra-tumoral heterogeneity in LUSC, offering potential avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Luke T. Izzo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Tony Reyes
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srijan Meesala
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Steven Yang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Hari Shankar Sunil
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao Chun Cheng
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nomi Tserentsoodol
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Edward F. Patz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kathryn A. O’Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Lead contact: Trudy G. Oliver
| |
Collapse
|
20
|
He B, Zhao R, Zhang B, Pan H, Liu J, Huang L, Wei Y, Yang D, Liang J, Wang M, Zhao M, Wang S, Dong F, Zhang J, Zhang Y, Zhang X, Zhang X, Dong G, Xiong H, Bie Q, Zhang B. Endothelial OX40 activation facilitates tumor cell escape from T cell surveillance through S1P/YAP-mediated angiogenesis. J Clin Invest 2025; 135:e186291. [PMID: 40026246 PMCID: PMC11870743 DOI: 10.1172/jci186291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Understanding the complexity of the tumor microenvironment is vital for improving immunotherapy outcomes. Here, we report that the T cell costimulatory molecule OX40 was highly expressed in tumor endothelial cells (ECs) and was negatively associated with the prognosis of patients, which is irrelevant to T cell activation. Analysis of conditional OX40 loss- and gain-of-function transgenic mice showed that OX40 signal in ECs counteracted the antitumor effects produced in T cells by promoting angiogenesis. Mechanistically, leucine-rich repeat-containing GPCR5 (Lgr5+ ) cancer stem cells induced OX40 expression in tumor ECs via EGF/STAT3 signaling. Activated OX40 interacted with Spns lysolipid transporter 2 (Spns2), obstructing the export of sphingosine 1-phosphate (S1P) and resulting in S1P intracellular accumulation. Increased S1P directly bound to Yes 1-associated protein (YAP), disrupting its interaction with large tumor suppressor kinase 1 (LATS1) and promoting YAP nuclear translocation. Finally, the YAP inhibitor verteporfin enhanced the antitumor effects of the OX40 agonist. Together, these findings reveal an unexpected protumor role of OX40 in ECs, highlighting the effect of nonimmune cell compartments on immunotherapy.
Collapse
MESH Headings
- Lysophospholipids/immunology
- Lysophospholipids/genetics
- Lysophospholipids/metabolism
- Animals
- Humans
- Mice
- Sphingosine/analogs & derivatives
- Sphingosine/genetics
- Sphingosine/metabolism
- Sphingosine/immunology
- YAP-Signaling Proteins
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Receptors, OX40/immunology
- Receptors, OX40/genetics
- Receptors, OX40/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cell Line, Tumor
- Tumor Escape
- Mice, Transgenic
- Transcription Factors/genetics
- Cell Cycle Proteins
- Endothelial Cells/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Signal Transduction/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Mice, Knockout
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/genetics
- Angiogenesis
- OX40 Ligand
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine
| | - Rou Zhao
- Department of Laboratory Medicine
| | | | | | | | | | | | - Dong Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | | | - Mingyi Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine
| | | | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yanhua Zhang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xu Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | | | | |
Collapse
|
21
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
22
|
Jan A, Sofi S, Jan N, Mir MA. An update on cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 2025; 21:715-735. [PMID: 39936282 PMCID: PMC11881842 DOI: 10.1080/14796694.2025.2461443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents a formidable global health challenge, marked by its aggressive behavior and significant treatment resistance. This subtype, devoid of estrogen, progesterone, and HER2 receptors, largely relies on breast cancer stem cells (BCSCs) for its progression, metastasis, and recurrence. BCSCs, characterized by their self-renewal capacity and resistance to conventional therapies, exploit key surface markers and critical signaling pathways like Wnt, Hedgehog, Notch, TGF-β, PI3K/AKT/mTOR and Hippo-YAP/TAZ to thrive. Their adaptability is underscored by mechanisms including drug efflux and enhanced DNA repair, contributing to poor prognosis and high recurrence rates. The tumor microenvironment (TME) further facilitates BCSC survival through complex interactions with stromal and immune cells. Emerging therapeutic strategies targeting BCSCs - ranging from immunotherapy and nanoparticle-based drug delivery systems to gene-editing technologies - aim to disrupt these resistant cells. Additionally, innovative approaches focusing on exosome-mediated signaling and metabolic reprogramming show promise in overcoming chemoresistance. By elucidating the distinct characteristics of BCSCs and their role in TNBC, researchers are paving the way for novel treatments that may effectively eradicate these resilient cells, mitigate metastasis, and ultimately improve patient outcomes. This review highlights the urgent need for targeted strategies that address the unique biology of BCSCs in the pursuit of more effective therapeutic interventions for TNBC.
Collapse
Affiliation(s)
- Asma Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nusrat Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Manzoor Ahmad Mir
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
23
|
Zhang C, Wang K, Wang H. The emerging landscape and future perspective of SCLC transformation: From molecular mechanisms to therapeutic strategies. Crit Rev Oncol Hematol 2025; 207:104616. [PMID: 39805410 DOI: 10.1016/j.critrevonc.2025.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Small-cell lung cancer (SCLC) is featured by high malignancy and undesirable prognosis. Transformed SCLC shares several common grounds but differ in biological behavior, molecular mechanism and therapeutic options from typical SCLC. SCLC transformation exerts indispensable role in drug resistance among patients with non-small cell lung cancer (NSCLC) upon various treatment modalities. Two hypotheses have been raised to account for SCLC transformation. It develops mostly in EGFR-mutant adenocarcinoma, and can also occur in ALK or ROS1 mutant patients, and EGFR-wildtype adenocarcinoma. Effective biomarkers for early detection, and therapeutic strategies are vital for improving survival for patients undergoing SCLC transformation. This review summarizes the emerging landscape in transformed SCLC, including its origin, molecular mechanisms, approaches for early detection and corresponding therapeutic options, in a bid to gain a comprehensive insight of this recalcitrant and tricky disease. More importantly, we also discuss challenges that lie ahead and future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
24
|
Liu Y, Liu H, Xiong Y. Metabolic pathway activation and immune microenvironment features in non-small cell lung cancer: insights from single-cell transcriptomics. Front Immunol 2025; 16:1546764. [PMID: 40092988 PMCID: PMC11906459 DOI: 10.3389/fimmu.2025.1546764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction In this study, we aim to provide a deep understanding of the tumor microenvironment (TME) and its metabolic characteristics in non-small cell lung cancer (NSCLC) through single-cell RNA sequencing (scRNAseq) data obtained from public databases. Given that lung cancer is a leading cause of cancer-related deaths globally and NSCLC accounts for the majority of lung cancer cases, understanding the relationship between TME and metabolic pathways in NSCLC is crucial for developing new treatment strategies. Methods Finally, machine learning algorithms were employed to construct a risk signature with strong predictive power across multiple independent cohorts. After quality control, 29,053 cells were retained, and PCA along with UMAP techniques were used to distinguish 13 primary cell subpopulations. Four highly activated metabolic pathways were identified within malignant cell subpopulations, which were further divided into seven distinct subgroups showing significant differences in differentiation potential and metabolic activity. WGCNA was utilized to identify gene modules and hub genes closely associated with these four metabolic pathways. Results Our analysis showed that DEGs between tumor and normal tissues were predominantly enriched in immune response and cell adhesion pathways. The comprehensive examination of our model revealed substantial variations in clinical and pathological characteristics, enriched pathways, cancer hallmarks, and immune infiltration scores between high-risk and low-risk groups. Wet lab experiments validated the role of KRT6B in NSCLC, demonstrating that KRT6B expression is elevated and it stimulates the proliferation of cancer cells. Discussion These observations not only enhance our understanding of metabolic reprogramming and its biological functions in NSCLC but also provide new perspectives for early detection, prognostic evaluation, and targeted therapy. However, future research should further explore the specific mechanisms of these metabolic pathways and their application potentials in clinical practice.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Pediatric Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ying Xiong
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
25
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
26
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
López-Collazo E, Hurtado-Navarro L. Cell fusion as a driver of metastasis: re-evaluating an old hypothesis in the age of cancer heterogeneity. Front Immunol 2025; 16:1524781. [PMID: 39967663 PMCID: PMC11832717 DOI: 10.3389/fimmu.2025.1524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Numerous studies have investigated the molecular mechanisms and signalling pathways underlying cancer metastasis, as there is still no effective treatment for this terminal stage of the disease. However, the exact processes that enable primary cancer cells to acquire a metastatic phenotype remain unclear. Increasing attention has been focused on the fusion of cancer cells with myeloid cells, a phenomenon that may result in hybrid cells, so-called Tumour Hybrid Cells (THCs), with enhanced migratory, angiogenic, immune evasion, colonisation, and metastatic properties. This process has been shown to potentially drive tumour progression, drug resistance, and cancer recurrence. In this review, we explore the potential mechanisms that govern cancer cell fusion, the molecular mediators involved, the metastatic characteristics acquired by fusion-derived hybrids, and their clinical significance in human cancer. Additionally, we discuss emerging pharmacological strategies aimed at targeting fusogenic molecules as a means to prevent metastatic dissemination.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
- UNIE University, Madrid, Spain
| | - Laura Hurtado-Navarro
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
28
|
Gillis K, Orellana WA, Wilson E, Parnell TJ, Fort G, Fang P, Essel Dadzie H, Murphy BM, Zhang X, Snyder EL. FoxA1/2-dependent epigenomic reprogramming drives lineage switching in lung adenocarcinoma. Dev Cell 2025; 60:472-489.e8. [PMID: 39515329 PMCID: PMC11794038 DOI: 10.1016/j.devcel.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/21/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The ability of cancer cells to undergo identity changes (i.e., lineage plasticity) plays a key role in tumor progression and response to therapy. Loss of the pulmonary lineage specifier NKX2-1 in KRAS-driven lung adenocarcinoma (LUAD) enhances tumor progression and causes a FoxA1/2-dependent pulmonary-to-gastric lineage switch. However, the mechanisms by which FoxA1/2 activate a latent gastric identity in the lung remain largely unknown. Here, we show that FoxA1/2 reprogram the epigenetic landscape of gastric-specific genes after NKX2-1 loss in mouse models by facilitating ten-eleven translocation (TET)2/3 recruitment, DNA demethylation, histone 3 lysine 27 acetylation (H3K27ac) deposition, and three-dimensional (3D) chromatin interactions. FoxA1/2-mediated DNA methylation changes are highly conserved in human endodermal development and in progression of human lung and pancreatic neoplasia. Furthermore, oncogenic signaling is required for specific elements of FoxA1/2-dependent epigenetic reprogramming. This work demonstrates the role of FoxA1/2 in rewiring the DNA methylation and 3D chromatin landscape of NKX2-1-negative LUAD to drive cancer cell lineage switching.
Collapse
Affiliation(s)
- Katherine Gillis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Walter A Orellana
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Emily Wilson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gabriela Fort
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Pengshu Fang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Headtlove Essel Dadzie
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Brandon M Murphy
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Eric L Snyder
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Sone N, Gotoh S. Micro-physiological system of human lung: The current status and application to drug discovery. Drug Metab Pharmacokinet 2025; 60:101050. [PMID: 39847976 DOI: 10.1016/j.dmpk.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025]
Abstract
Various attempts have been made to elucidate the mechanisms of human lung development, its physiological functions, and diseases, in the hope of new drug discovery. Recent technological advancements in experimental animals, cell culture, gene editing, and analytical methods have provided new insights and therapeutic strategies. However, the results obtained from animal experiments are often inconsistent with those obtained from human data because of reproducibility issues caused by structural and physiological differences between mice and humans. In addition, it is not possible to accurately reproduce the internal environment of the human lung structure using conventional two-dimensional (2D) or three-dimensional (3D) cell culture methods. As a result, the micro-physiological system (MPS) technology, such as "lung-on-a-chip" that can culture human cells in a state close to human body environment have been developed, and its applications to disease models, toxicological studies, and drug discovery are accelerated worldwide. Here, we focus on the mimetics of the lung, including "lung-on-a-chip" technology, and review their recent progress, achievements and challenges. Finally, we discuss the role of these chips in drug discovery for refractory lung diseases.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shimpei Gotoh
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
30
|
Tost J, Ak-Aksoy S, Campa D, Corradi C, Farinella R, Ibáñez-Costa A, Dubrot J, Earl J, Melian EB, Kataki A, Kolnikova G, Madjarov G, Chaushevska M, Strnadel J, Tanić M, Tomas M, Dubovan P, Urbanova M, Buocikova V, Smolkova B. Leveraging epigenetic alterations in pancreatic ductal adenocarcinoma for clinical applications. Semin Cancer Biol 2025; 109:101-124. [PMID: 39863139 DOI: 10.1016/j.semcancer.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alterations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease. Specific modifications in DNA methylation, histone marks, and non-coding RNAs are emerging as robust predictors of disease progression and patient survival, offering the potential for more precise prognostic tools compared to conventional clinical staging. Moreover, the detection of epigenetic alterations in blood and other non-invasive samples holds promise for earlier diagnosis and improved management of PDAC. This review comprehensively summarises current epigenetic research in PDAC and identifies persisting challenges. These include the complex nature of epigenetic profiles, tumour heterogeneity, limited access to early-stage samples, and the need for highly sensitive liquid biopsy technologies. Addressing these challenges requires the standardisation of methodologies, integration of multi-omics data, and leveraging advanced computational tools such as machine learning and artificial intelligence. While resource-intensive, these efforts are essential for unravelling the functional consequences of epigenetic changes and translating this knowledge into clinical applications. By overcoming these hurdles, epigenetic research has the potential to revolutionise the management of PDAC and improve patient outcomes.
Collapse
Affiliation(s)
- Jorg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris - Saclay, Evry, France.
| | - Secil Ak-Aksoy
- Bursa Uludag University Faculty of Medicine, Medical Microbiology, Bursa 16059, Turkey.
| | - Daniele Campa
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Chiara Corradi
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Riccardo Farinella
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Edificio IMIBIC, Avenida Men´endez Pidal s/n, Cordoba 14004, Spain.
| | - Juan Dubrot
- Solid Tumors Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| | - Julie Earl
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Institute for Health Research (IRYCIS), Ctra Colmenar Viejo Km 9.100, CIBERONC, Madrid 28034, Spain.
| | - Emma Barreto Melian
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Institute for Health Research (IRYCIS), Ctra Colmenar Viejo Km 9.100, CIBERONC, Madrid 28034, Spain
| | - Agapi Kataki
- A' Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vas. Sofias 114, Athens 11527, Greece.
| | - Georgina Kolnikova
- Department of Pathology, National Cancer Institute in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Gjorgji Madjarov
- Ss. Cyril and Methodius University - Faculty of Computer Science and Engineering, Rudjer Boshkovikj 16, Skopje 1000, Macedonia.
| | - Marija Chaushevska
- Ss. Cyril and Methodius University - Faculty of Computer Science and Engineering, Rudjer Boshkovikj 16, Skopje 1000, Macedonia; gMendel ApS, Fruebjergvej 3, Copenhagen 2100, Denmark.
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia.
| | - Miljana Tanić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Serbia; UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| | - Miroslav Tomas
- Department of Surgical Oncology, National Cancer Institute in Bratislava and Slovak Medical University in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Peter Dubovan
- Department of Surgical Oncology, National Cancer Institute in Bratislava and Slovak Medical University in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Maria Urbanova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Verona Buocikova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Bozena Smolkova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| |
Collapse
|
31
|
Tang Y, Wang H, Zhang J, Yang C, Xu F, Song Y, Li T, Zhang Q. FLT3 is associated with dendritic cell infiltration, tertiary lymphoid structure construction, and predict response to checkpoint inhibitors immunotherapy in solid cancers. Sci Rep 2025; 15:2477. [PMID: 39833282 PMCID: PMC11747321 DOI: 10.1038/s41598-025-86185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
The crosstalk between cancers and the immune microenvironment plays a critical role in malignant progression. FMS-like tyrosine kinase 3 (FLT3) is a frequently mutated gene in acute myeloid leukemia (AML). However, its role in solid cancers remains poorly understood. We analyzed the frequency of FLT3 alterations, its mRNA expression levels, and its prognostic implications across multiple cancer types. Additionally, we explored genes co-expressed with FLT3 and performed gene ontology analysis to identify associated biological processes. We also examined the relationship between FLT3 expression and markers of various immune cells, tertiary lymphoid structures (TLSs), and epithelial-mesenchymal transition. Furthermore, we validated these findings in our own cohort of hepatocellular carcinoma (HCC) patients. We found that FLT3 alteration and expression were both significantly upregulated in AML and were associated with poor prognosis, which is opposite to its role in solid cancers. The genes co-expressed with FLT3 in solid cancers were correlated with the regulation of the immune microenvironment. FLT3 was positively correlated with the formation of TLSs in only solid cancers, which was especially relevant to central memory T cells. We also found that FLT3 was positively correlated with the infiltration of NK cells, B cells, and DCs. It also positively correlated with the occurrence of apoptosis in solid cancers, but exhibited opposite roles in AML. The structural factors of the TLSs were positively correlated with FLT3 in solid cancers, but exhibited a negative correlation in AML. Meanwhile, we further validated the above conclusions in our own HCC cohort and demonstrated that FLT3 could serve as a predictive indicator of PD-1 treatment efficacy in HCC. In summary, the role of FLT3 is different in AML and solid cancers. FLT3 is associated with dendritic cell infiltration, tertiary lymphoid structure construction, and predict response to checkpoint inhibitors immunotherapy in HCC.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Dendritic Cells/immunology
- Tertiary Lymphoid Structures/immunology
- Tertiary Lymphoid Structures/pathology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Tumor Microenvironment/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Prognosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Immunotherapy/methods
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/therapy
- Neoplasms/pathology
- Male
Collapse
Affiliation(s)
- Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Hong Wang
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong Province, China
| | - Jiankun Zhang
- Department of General Surgery, The People's Hospital of Zhaoyuan City, Yantai, 265400, Shandong Province, China
| | - Chunhui Yang
- Department of General Surgery, The People's Hospital of Zhaoyuan City, Yantai, 265400, Shandong Province, China
| | - Fei Xu
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong Province, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Tianen Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Qiangbo Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
32
|
Balderson B, Fane M, Harvey TJ, Piper M, Smith A, Bodén M. Systematic analysis of the transcriptional landscape of melanoma reveals drug-target expression plasticity. Brief Funct Genomics 2025; 24:elad055. [PMID: 38183207 PMCID: PMC11979751 DOI: 10.1093/bfgp/elad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Metastatic melanoma originates from melanocytes of the skin. Melanoma metastasis results in poor treatment prognosis for patients and is associated with epigenetic and transcriptional changes that reflect the developmental program of melanocyte differentiation from neural crest stem cells. Several studies have explored melanoma transcriptional heterogeneity using microarray, bulk and single-cell RNA-sequencing technologies to derive data-driven models of the transcriptional-state change which occurs during melanoma progression. No study has systematically examined how different models of melanoma progression derived from different data types, technologies and biological conditions compare. Here, we perform a cross-sectional study to identify averaging effects of bulk-based studies that mask and distort apparent melanoma transcriptional heterogeneity; we describe new transcriptionally distinct melanoma cell states, identify differential co-expression of genes between studies and examine the effects of predicted drug susceptibilities of different cell states between studies. Importantly, we observe considerable variability in drug-target gene expression between studies, indicating potential transcriptional plasticity of melanoma to down-regulate these drug targets and thereby circumvent treatment. Overall, observed differences in gene co-expression and predicted drug susceptibility between studies suggest bulk-based transcriptional measurements do not reliably gauge heterogeneity and that melanoma transcriptional plasticity is greater than described when studies are considered in isolation.
Collapse
Affiliation(s)
- Brad Balderson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Mitchell Fane
- Fox Chase Cancer Centre, Philadelphia, 19019 Pennsylvania, United States of America
| | - Tracey J Harvey
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Michael Piper
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Aaron Smith
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4072 Queensland, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
33
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
34
|
Zhang Z, Hu Y, Ding Y, Zhang X, Dong X, Xie L, Yang Z, Hu ZW. Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy. ACS NANO 2025; 19:488-503. [PMID: 39754594 DOI: 10.1021/acsnano.4c10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of CPMC (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection. Although CPT and Caps respectively prevent tumor progression by inhibiting type-I DNA topoisomerase and activating transient receptor potential cation channel subfamily V member 1 (TRPV1) for intracellular calcium overload, neither alone effectively stimulates sufficient ICD signaling to meet immunotherapeutic needs. CPMC, sequentially allowing an active Caps derivative of VRK-Caps and CPT to release extracellularly and intracellularly, can synergize two distinct apoptosis pathways stimulated by Caps and CPT to increase tumor immunogenicity and elicit systemic T-cell-based immunity. Consequently, CPMC facilitates the generation of improved tumor-specific cytotoxic T-cell responses and sustained immunological memory, successfully suppressing both primary and distant tumors. Moreover, CPMC can render tumors susceptible to PD-L1 blockade and synergize with an antiprogrammed cell death-ligand 1 (aPDL1) antibody for tumor inhibition. Combining two cancer chemotherapeutic drugs with low ICD-stimulating capacity using a peptide self-assembly strategy was demonstrated to boost ICD responses and potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuhan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Dong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Limin Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
35
|
Zhang J, Yang S, Chen X, Zhang F, Guo S, Wu C, Wang T, Wang H, Lu S, Qiao C, Sheng X, Liu S, Zhang X, Luo H, Li Q, Wu J. Aidi injection inhibits the migration and invasion of gefitinib-resistant lung adenocarcinoma cells by regulating the PLAT/FAK/AKT pathway. Chin Med 2025; 20:2. [PMID: 39754146 PMCID: PMC11699780 DOI: 10.1186/s13020-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells. METHODS In vitro and in vivo pharmacological experiments were conducted in PC9GR cells and NSG mice with PC9GR cell-derived tumors, respectively. The molecular mechanism of ADI was further studied using whole-transcriptome sequencing technology. Bioinformatics and molecular biology methods were employed to validate the critical targets of ADI. RESULTS Firstly, ADI treatment alone and combined with gefitinib significantly inhibited the proliferation, migration, and invasion of PC9GR cells. Then, whole-transcriptome sequencing and bioinformatics analysis revealed that PLAT is a key target for the increased efficacy of ADI combined with gefitinib. Additionally, ADI downregulates the expression of PLAT, TNC, ITGB3, p-AKT, p-PI3K, and p-FAK. ADI inhibits the migration and invasion of PC9GR cells by regulating the PLAT/FAK/AKT pathway. CONCLUSIONS Aidi injection inhibits the migration and invasion of gefitinib-resistant lung adenocarcinoma cells by regulating the PLAT/FAK/AKT pathway. This study provides essential evidence for elucidating the mechanism of ADI in synergistic therapy for lung cancer.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Siyun Yang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaodong Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chuanqi Qiao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoguang Sheng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China.
| | - Qinglin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
36
|
Alsaed B, Lin L, Son J, Li J, Smolander J, Lopez T, Eser PÖ, Ogino A, Ambrogio C, Eum Y, Thai T, Wang H, Sutinen E, Mutanen H, Duàn H, Bobik N, Borenius K, Feng WW, Nabet B, Mustjoki S, Laaksonen S, Eschle BK, Poitras MJ, Barbie D, Ilonen I, Gokhale P, Jänne PA, Haikala HM. Intratumor heterogeneity of EGFR expression mediates targeted therapy resistance and formation of drug tolerant microenvironment. Nat Commun 2025; 16:28. [PMID: 39747003 PMCID: PMC11695629 DOI: 10.1038/s41467-024-55378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used to treat non-small cell lung cancers with EGFR mutations, but drug resistance often emerges. Intratumor heterogeneity is a known cause of targeted therapy resistance and is considered a major factor in treatment failure. This study identifies clones of EGFR-mutant non-small cell lung tumors expressing low levels of both wild-type and mutant EGFR protein. These EGFR-low cells are intrinsically more tolerant to EGFR inhibitors, more invasive, and exhibit an epithelial-to-mesenchymal-like phenotype compared to their EGFR-high counterparts. The EGFR-low cells secrete Transforming growth factor beta (TGFβ) family cytokines, leading to increased recruitment of cancer-associated fibroblasts and immune suppression, thus contributing to the drug-tolerant tumor microenvironment. Notably, pharmacological induction of EGFR using epigenetic inhibitors sensitizes the resistant cells to EGFR inhibition. These findings suggest that intrinsic drug resistance can be prevented or reversed using combination therapies.
Collapse
Affiliation(s)
- Bassel Alsaed
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Linh Lin
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jieun Son
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Johannes Smolander
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Timothy Lopez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinar Ö Eser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Atsuko Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Yoonji Eum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Hilma Mutanen
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Hanna Duàn
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Nina Bobik
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Kristian Borenius
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Satu Mustjoki
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Sanna Laaksonen
- Department of Pathology, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - Benjamin K Eschle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J Poitras
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ilkka Ilonen
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - Prafulla Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Heidi M Haikala
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
38
|
Li F, Dai P, Shi H, Zhang Y, He J, Gopalan A, Li D, Chen Y, Du Y, Xu G, Yang W, Liang C, Gao D. LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer. Cell Res 2025; 35:59-71. [PMID: 39743630 PMCID: PMC11701123 DOI: 10.1038/s41422-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 01/04/2025] Open
Abstract
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.
Collapse
MESH Headings
- Male
- Animals
- Humans
- Epigenesis, Genetic/drug effects
- Mice
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- AMP-Activated Protein Kinase Kinases
- DNA Methylation/drug effects
- Cell Line, Tumor
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Cell Lineage
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Plasticity/drug effects
- AMP-Activated Protein Kinases
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Dai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huili Shi
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajuan Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan He
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yarui Du
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
39
|
Li X, Ruan P, Jiang G, Zhang W. Screening and in vitro Biological Evaluation of Novel Multiple Tyrosine Kinases Inhibitors as Promising Anticancer Agents. Anticancer Agents Med Chem 2025; 25:555-562. [PMID: 37016516 DOI: 10.2174/1871520623666230403104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Tyrosine kinases have emerged as key stimulatory drivers in several cancer-related pathways. This is particularly evident in non-small cell lung cancer with regulating cell growth and apoptosis and so on. Tyrosine kinase inhibitors (TKI) are one breakthrough option that could improve the life quality of cancer patients. OBJECTIVE This study aims to find more effective tyrosine kinase inhibitors. METHODS In this study, natural products from TargetMol that may be the potential TKI for lung cancer were screened through structure-based virtual screening and experimental validation. Moreover, the binding between the hit compounds and tyrosine kinase was explored. RESULTS From the study findings, Gramicidin and Tannic acid have strong interactions with the four tyrosine kinases (ALK, TRK, MET, and ABL), and this could significantly inhibit the viability of A549 cells in a concentrationdependent manner. CONCLUSION These findings indicated that Gramicidin and Tannic acid might be potential multiple TKI and are promising anticancer agents that call for further study.
Collapse
Affiliation(s)
- Xiuying Li
- Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Gang Jiang
- Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Weidong Zhang
- Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
40
|
Ill CR, Marikar NC, Nguyen V, Nangia V, Darnell AM, Vander Heiden MG, Reigan P, Spencer SL. BRAF V600 and ErbB inhibitors directly activate GCN2 in an off-target manner to limit cancer cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629301. [PMID: 39763857 PMCID: PMC11702603 DOI: 10.1101/2024.12.19.629301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Targeted kinase inhibitors are well known for their promiscuity and off-target effects. Herein, we define an off-target effect in which several clinical BRAFV600 inhibitors, including the widely used dabrafenib and encorafenib, interact directly with GCN2 to activate the Integrated Stress Response and ATF4. Blocking this off-target effect by co-drugging with a GCN2 inhibitor in A375 melanoma cells causes enhancement rather than suppression of cancer cell outgrowth, suggesting that the off-target activation of GCN2 is detrimental to these cells. This result is mirrored in PC9 lung cancer cells treated with erlotinib, an EGFR inhibitor, that shares the same off-target activation of GCN2. Using an in silico kinase inhibitor screen, we identified dozens of FDA-approved drugs that appear to share this off-target activation of GCN2 and ATF4. Thus, GCN2 activation may modulate the therapeutic efficacy of some kinase inhibitors, depending on the cancer context.
Collapse
Affiliation(s)
- C Ryland Ill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nasreen C Marikar
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Vu Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Varuna Nangia
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado School of Medicine, University of Colorado Anschutz, Aurora, CO, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Dana-Farber Cancer Institute, MA, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
41
|
İlhan H, Kabakcı D, Seçme M. Cytotoxic effects of bee venom-loaded ZIF-8 nanoparticles on thyroid cancer cells: a promising strategy for targeted therapy. Med Oncol 2024; 42:32. [PMID: 39699709 DOI: 10.1007/s12032-024-02584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Thyroid cancer continues to be a notable health issue, requiring the creation of novel treatment methods to enhance patient results. The objective of this study is to investigate the potential of utilizing bee venom (BV)-loaded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as a novel strategy for specifically targeting and treating medullary thyroid cancer cells. Due to their wide surface area and configurable pore size, ZIF-8 nanoparticles are ideal for drug delivery. Bee venom's cytotoxic capabilities are used in ZIF-8 nanoparticles to target thyroid cancer cells more effectively. ZIF-8 nanoparticles containing bee venom were tested on TT medullary thyroid cancer cell lines. The effects of these nanoparticles on cell viability, proliferation, and apoptosis were investigated. IC50 value at 24 h for BV-ZIF-8 nanoparticles in TT medullary thyroid carcinoma cells was determined to be 17.19 µg/mL, while the IC50 value at 48 h was determined to be 16.39 µg/mL. It has been demonstrated that nanoparticle treatment upregulates the Bax and caspase-3 genes while downregulating the Bcl-2, CCND1, and CDK4 genes. Additionally, it was observed that oxidative stress was triggered in the nanoparticle-treated group. Furthermore, an examination of its mechanisms was conducted, with a specific emphasis on the modulation of critical signaling pathways that are implicated in the progression of cancer. In thyroid cancer cells, ZIF-8 nanoparticles infused with bee venom promote programmed cell death and impair key biological processes.
Collapse
Affiliation(s)
- Hasan İlhan
- Department of Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Dilek Kabakcı
- Department of Animal Production and Technologies, Faculty of Applied Sciences, Muş Alparslan University, Muş, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey.
| |
Collapse
|
42
|
Chen W, Mao Y, Zhan Y, Li W, Wu J, Mao X, Xu B, Shu F. Exosome-delivered NR2F1-AS1 and NR2F1 drive phenotypic transition from dormancy to proliferation in treatment-resistant prostate cancer via stabilizing hormonal receptors. J Nanobiotechnology 2024; 22:761. [PMID: 39695778 DOI: 10.1186/s12951-024-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer cells acquire the ability to reprogram their phenotype in response to targeted therapies, yet the transition from dormancy to proliferation in drug-resistant cancers remains poorly understood. In prostate cancer, we utilized high-plasticity mouse models and enzalutamide-resistant (ENZ-R) cellular models to elucidate NR2F1 as a key factor in lineage transition and ENZ resistance. Depletion of NR2F1 drives ENZ-R cells into a relative dormancy state, characterized by reduced proliferation and heightened drug resistance, while NR2F1 overexpression yields contrasting outcomes. Transcriptional sequencing analysis of NR2F1-silenced prostate cancer cells and tissues from the Cancer Genome Atlas-prostate cancer and SU2C cohorts indicated exosomes as the most enriched cell component, with pathways implicated in steroid hormone biosynthesis and drug metabolism. Moreover, NR2F1-AS1 forms a complex with SRSF1 to upregulate NR2F1 expression, facilitating its binding with ESR1 to sustain hormonal receptor expression and enhance proliferation in ENZ-R cells. Furthermore, HnRNPA2B1 interacts with NR2F1 and NR2F1-AS1, assisting their packaging into exosomes, wherein exosomal NR2F1 and NR2F1-AS1 promote the proliferation of dormant ENZ-R cells. Our works offer novel insights into the reawaking of dormant drug-resistant cancer cells governed by NR2F1 upregulation triggered by exosome-derived NR2F1-AS1 and NR2F1, suggesting therapeutic potential for phenotype reversal.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yiyou Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YiYuan Zhan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Papargyriou A, Najajreh M, Cook DP, Maurer CH, Bärthel S, Messal HA, Ravichandran SK, Richter T, Knolle M, Metzler T, Shastri AR, Öllinger R, Jasper J, Schmidleitner L, Wang S, Schneeweis C, Ishikawa-Ankerhold H, Engleitner T, Mataite L, Semina M, Trabulssi H, Lange S, Ravichandra A, Schuster M, Mueller S, Peschke K, Schäfer A, Dobiasch S, Combs SE, Schmid RM, Bausch AR, Braren R, Heid I, Scheel CH, Schneider G, Zeigerer A, Luecken MD, Steiger K, Kaissis G, van Rheenen J, Theis FJ, Saur D, Rad R, Reichert M. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma. Nat Biomed Eng 2024:10.1038/s41551-024-01273-9. [PMID: 39658630 DOI: 10.1038/s41551-024-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.
Collapse
Affiliation(s)
- Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Mulham Najajreh
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carlo H Maurer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sakthi K Ravichandran
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Till Richter
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Moritz Knolle
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Akul R Shastri
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jacob Jasper
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Laura Schmidleitner
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Schneeweis
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Mataite
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Mariia Semina
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Hussein Trabulssi
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aashreya Ravichandra
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Schuster
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sebastian Mueller
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Arlett Schäfer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Andreas R Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Lehrstuhl für Zell Biophysik E27, Physik Department, Technische Universität München, Garching, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), München, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
- Institute for Machine Learning in Biomedical Imaging, Helmholtz Zentrum München, München, Germany
- Department of Computing, Imperial College London, London, UK
- Munich Center for Machine Learning (MCML), München, Germany
- School of Computation, Information and Technology, Technische Universität München, München, Germany
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany.
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Munich, Germany.
| |
Collapse
|
44
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
45
|
He X, Deng H, Liu W, Hu L, Tan X. Advances in Understanding Drug Resistance Mechanisms and Innovative Clinical Treatments for Melanoma. Curr Treat Options Oncol 2024; 25:1615-1633. [PMID: 39633237 DOI: 10.1007/s11864-024-01279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
OPINION STATEMENT Melanoma, a highly invasive skin cancer resulting from melanocyte malignant transformation, is the third most common skin malignancy. Despite accounting for only 4% to 5% of all skin malignancies, it is responsible for 80% of skin cancer-related deaths. Targeted therapies and immune checkpoint inhibitors have improved survival rates, yet drug resistance remains a major challenge. In this review, I explore the latest research progress on melanoma drug resistance mechanisms and clinical treatment methods. This aims to provide insights for more effective treatment strategies and improve patient prognosis and quality of life. I also discuss potential strategies to overcome drug resistance based on the latest scientific findings, with a particular focus on the complex and multi-factorial drug resistance mechanisms of melanomas, including genetic mutations, epigenetic changes, and tumor microenvironment factors. Understanding these mechanisms is crucial for developing new drugs and combination therapies targeting drug-resistant tumors. Analyzing complex drug resistance pathways paves the way for personalized medical approaches, which is expected to provide enlightenment on breaking through drug resistance barriers and enhancing the effectiveness of melanoma treatment.
Collapse
Affiliation(s)
- Xiaoya He
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Liling Hu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| |
Collapse
|
46
|
Jiang Y, Gao X, Zheng X, Lu Y, Zhang M, Yan W, Pan W, Li H, Zhang Y. Recent research progress on microRNAs from mesenchymal stem cell-derived exosomes for tumor therapy: A review. J Cancer Res Ther 2024; 20:1974-1982. [PMID: 39792406 DOI: 10.4103/jcrt.jcrt_540_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/28/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo). However, the role of MSC-Exo vesicles in tumors remains controversial. This review discusses the potential applications of microRNAs in exosomes derived from MSCs in treating tumors.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Gao
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xuezhen Zheng
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Lu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Minghan Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenxuan Yan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wentao Pan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hengli Li
- Emergency Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yueying Zhang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
47
|
Schmiege P, Li X. Clues into Wnt cell surface signalosomes and its biogenesis. Trends Biochem Sci 2024; 49:1042-1045. [PMID: 39443209 PMCID: PMC11624986 DOI: 10.1016/j.tibs.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
49
|
Lamb HO, Benfield AH, Henriques ST. Peptides as innovative strategies to combat drug resistance in cancer therapy. Drug Discov Today 2024; 29:104206. [PMID: 39395530 DOI: 10.1016/j.drudis.2024.104206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Drug resistance is the leading cause of treatment failure in patients with cancer. Thus, innovative therapeutic strategies are required to overcome this critical challenge and improve patient outcomes. In this review, we examine the potential of peptide-based therapies to combat drug resistance in cancer. We highlight the unique strategies and mechanisms that can be explored by using peptides, including their ability to selectively target tumours, facilitate drug delivery into cancer cells, and inhibit key intracellular proteins that drive cancer progression and resistance. Peptides offer a promising approach to overcoming both intrinsic and adaptative cancer resistance against chemotherapy, targeted therapies, and biologics.
Collapse
Affiliation(s)
- Henry O Lamb
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
50
|
Tan XD, Luo CF, Liang SY. Antihyperlipidemic drug rosuvastatin suppressed tumor progression and potentiated chemosensitivity by downregulating CCNA2 in lung adenocarcinoma. J Chemother 2024; 36:662-674. [PMID: 38288951 DOI: 10.1080/1120009x.2024.2308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 11/22/2024]
Abstract
Rosuvastatin (RSV) is widely used to treat hyperlipidemia and hypercholesterolemia and is recommended for the primary and secondary prevention of cardiovascular diseases (CVD). In this study, we aimed to explore its action and mechanism in lung adenocarcinoma (LUAD) therapy. Lewis and CMT64 cell-based murine subcutaneous LUAD models were employed to explore the effects of RSV monotherapy combined with cisplatin and gemcitabine. Human lung fibroblasts and human LUAD cell lines were used to assess the effects of RSV on normal and LUAD cells. Bioinformatics and RNA interference were used to observe the contribution of cyclin A2 (CCNA2) knockdown to RSV inhibition and to improve chemosensitivity in LUAD. RSV significantly suppressed grafted tumor growth in a murine subcutaneous LUAD model and exhibited synergistic anti-tumor activity with cisplatin and gemcitabine. In vitro and in vivo experiments demonstrated that RSV impaired the proliferation and migration of cancer cells while showing little inhibition of normal lung cells. RNA interference and CCK8 detection preliminarily indicated that RSV inhibited tumor growth and enhanced the chemosensitivity to cisplatin and gemcitabine by downregulating CCNA2. RSV suppressed LUAD progression and enhanced chemosensitivity to cisplatin and gemcitabine by downregulating CCNA2, which should be prior consideration for the treatment of LUAD, especially for patients co-diagnosed with hyperlipidemia and hypercholesterolemia.
Collapse
Affiliation(s)
- Xiang-Di Tan
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| | - Cui-Fang Luo
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| | - Si-Yu Liang
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| |
Collapse
|