1
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Hughes-Fulford M, Carroll DJ, Allaway HCM, Dunbar BJ, Sawyer AJ. Women in space: A review of known physiological adaptations and health perspectives. Exp Physiol 2024. [PMID: 39487998 DOI: 10.1113/ep091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
Exposure to the spaceflight environment causes adaptations in most human physiological systems, many of which are thought to affect women differently from men. Since only 11.5% of astronauts worldwide have been female, these issues are largely understudied. The physiological nuances affecting the female body in the spaceflight environment remain inadequately defined since the last thorough published review on the subject. A PubMed literature search yielded over 2200 publications. Using NASA's 2014 review series 'The effects of sex and gender on adaptation to space' as a benchmark, we identified substantive advancements and persistent knowledge gaps in need of further study from the nearly 600 related articles that have been published since the initial review. This review highlights the most critical issues to mitigate medical risk and promote the success of missions to the Moon and Mars. Salient sex-linked differences observed terrestrially should be studied during upcoming missions, including increased levels of inflammatory markers, coagulation factors and leptin levels following sleep deprivation; correlation between body mass and the severity of spaceflight-associated neuro-ocular syndrome; increased incidence of orthostatic intolerance; increased severity of muscle atrophy and bone loss; differences in the incidence of urinary tract infections; and susceptibility to specific cancers after exposure to ionizing radiation. To optimize health and well-being among all astronauts, it is imperative to prioritize research that considers the physiological nuances of the female body. A more robust understanding of female physiology in the spaceflight environment will support crew readiness for Artemis missions and beyond.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Danielle J Carroll
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Surgery, UCSF, San Francisco, California, USA
- Department of Bioastronautics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather C M Allaway
- Department of Kinesiology, Texas A&M University, College Station, Texas, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bonnie J Dunbar
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Texas A&M University, College Station, Texas, USA
| | - Aenor J Sawyer
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Orthopaedic Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
3
|
Corti G, Kim J, Enguita FJ, Guarnieri JW, Grossman LI, Costes SV, Fuentealba M, Scott RT, Magrini A, Sanders LM, Singh K, Sen CK, Juran CM, Paul AM, Furman D, Calleja-Agius J, Mason CE, Galeano D, Bottini M, Beheshti A. To boldly go where no microRNAs have gone before: spaceflight impact on risk for small-for-gestational-age infants. Commun Biol 2024; 7:1268. [PMID: 39369042 PMCID: PMC11455966 DOI: 10.1038/s42003-024-06944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses. To address this, we identify a shared microRNA (miRNA) signature between SGA and the space environment, conserved across humans and mice. These miRNAs target genes and pathways relevant to diseases and development. Employing a machine learning approach, we identify potential FDA-approved drugs to mitigate these risks, including estrogen and progesterone receptor antagonists, vitamin D receptor antagonists, and DNA polymerase inhibitors. This study underscores potential pregnancy-related health risks for female astronauts and proposes pharmaceutical interventions to counteract the impact of space travel on female health.
Collapse
Affiliation(s)
- Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra M Juran
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, MF9M + 958, San Lorenzo, Paraguay
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Space Biomedicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Abdelfattah F, Schulz H, Wehland M, Corydon TJ, Sahana J, Kraus A, Krüger M, González-Torres LF, Cortés-Sánchez JL, Wise PM, Mushunuri A, Hemmersbach R, Liemersdorf C, Infanger M, Grimm D. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:10014. [PMID: 39337501 PMCID: PMC11431953 DOI: 10.3390/ijms251810014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Ashwini Mushunuri
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Ruth Hemmersbach
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
5
|
Kikina AY, Matrosova MS, Gorbacheva EY, Gogichaeva KK, Toniyan KA, Boyarintsev VV, Kotov OV, Ogneva IV. Weightlessness leads to an increase granulosa cells in the growing follicle. NPJ Microgravity 2024; 10:70. [PMID: 38909072 PMCID: PMC11193763 DOI: 10.1038/s41526-024-00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The participation of women in space programs of increasing flight duration requires research of their reproductive system from the perspective of subsequent childbearing and healthy aging. For the first time, we present hormonal and structural data on the dynamics of recovery after a 157-day space flight in a woman of reproductive age. There were no clinically significant changes in the reproductive system, but detailed analysis shows that weightlessness leads to an increase in the proportion of early antral follicles and granulosa cells in large antral follicles. Returning to Earth's gravity reduces the number and diameter of early antral follicles.
Collapse
Affiliation(s)
- Anna Yu Kikina
- Gagarin Research and Test Cosmonaut Training Center, 141160, Star City, Moscow Region, Russia
| | - Mariia S Matrosova
- Radiology Department, European Medical Center, 129090, Moscow, Russia
- Research Center of Neurology, 125367, Moscow, Russia
| | - Elena Yu Gorbacheva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Moscow, Russia
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352, Moscow, Russia
| | - Ksenia K Gogichaeva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Moscow, Russia
| | - Konstantin A Toniyan
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Moscow, Russia
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352, Moscow, Russia
| | - Valery V Boyarintsev
- Emergency and Extreme Medicine Department, Central State Medical Academy UDP RF, 121359, Moscow, Russia
| | - Oleg V Kotov
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Moscow, Russia
| | - Irina V Ogneva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Moscow, Russia.
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| |
Collapse
|
6
|
Guo C, Wang Q, Shuai P, Wang T, Wu W, Li Y, Huang S, Yu J, Yi L. Radiation and male reproductive system: Damage and protection. CHEMOSPHERE 2024; 357:142030. [PMID: 38626814 DOI: 10.1016/j.chemosphere.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.
Collapse
Affiliation(s)
- Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Lang A, Binneboessel S, Nienhaus F, Bruno RR, Wolff G, Piayda K, Pfeiler S, Ezzahoini H, Oehler D, Kelm M, Winkels H, Gerdes N, Jung C. Acute and short-term fluctuations in gravity are associated with changes in circulatory plasma protein levels. NPJ Microgravity 2024; 10:25. [PMID: 38438462 PMCID: PMC10912449 DOI: 10.1038/s41526-024-00370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Gravitational changes between micro- and hypergravity cause several adaptations and alterations in the human body. Besides muscular atrophy and immune system impairment, effects on the circulatory system have been described, which can be associated with a wide range of blood biomarker changes. This study examined nine individuals (seven males, two females) during a parabolic flight campaign (PFC). Thirty-one parabolas were performed in one flight day, resulting in ~22 s of microgravity during each parabola. Each participant was subjected to a single flight day with a total of 31 parabolas, totaling 11 min of microgravity during one parabolic flight. Before and after (1 hour (h) and 24 h), the flights blood was sampled to examine potential gravity-induced changes of circulating plasma proteins. Proximity Extension Assay (PEA) offers a proteomic solution, enabling the simultaneous analysis of a wide variety of plasma proteins. From 2925 unique proteins analyzed, 251 (8.58%) proteins demonstrated a differential regulation between baseline, 1 h and 24 h post flight. Pathway analysis indicated that parabolic flights led to altered levels of proteins associated with vesicle organization and apoptosis up to 24 h post microgravity exposure. Varying gravity conditions are associated with poorly understood physiological changes, including stress responses and fluid shifts. We provide a publicly available library of gravity-modulated circulating protein levels illustrating numerous changes in cellular pathways relevant for inter-organ function and communication.
Collapse
Affiliation(s)
- Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Stephan Binneboessel
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Fabian Nienhaus
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Raphael Romano Bruno
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Georg Wolff
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Kerstin Piayda
- Department of Cardiology and Vascular Medicine, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hakima Ezzahoini
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Daniel Oehler
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Holger Winkels
- Clinic III for Internal Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
8
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
9
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Su X, Lu R, Qu Y, Mu D. Methyltransferase-like 3 mediated RNA m 6 A modifications in the reproductive system: Potentials for diagnosis and therapy. J Cell Mol Med 2024; 28:e18128. [PMID: 38332508 PMCID: PMC10853593 DOI: 10.1111/jcmm.18128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| |
Collapse
|
11
|
Yang J, Ou X, Shu M, Wang J, Zhang X, Wu Z, Hao W, Zeng H, Shao L. Inhibition of p38MAPK signalling pathway alleviates radiation-induced testicular damage through improving spermatogenesis. Br J Pharmacol 2024; 181:393-412. [PMID: 37580308 DOI: 10.1111/bph.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Damage to the testis following exposure to ionizing radiation has become an urgent problem to be solved. Here we have investigated if inhibition of p38 mitogen-activated protein kinase (p38MAPK) signalling could alleviate radiation-induced testicular damage. EXPERIMENTAL APPROACH In mice exposed to whole body radiation (2-6 Gy), morphological changes of the epididymis and testis was measured by histochemical staining. immunohistochemical and immunofluorescence procedures and western blotting were used to monitor expression and cellular location of proteins. Expression of genes was assessed by qPCR and RNA-Seq was used to profile gene expression. KEY RESULTS Exposure to ionizing radiation induced dose-dependent damage to mouse testis. The sperm quality decreased at 6 and 8 weeks after 6 Gy X-ray radiation. Radiation decreased PLZF+ cells and increased SOX9+ cells, and affected the expression of 969 genes, compared with data from non-irradiated mice. Expression of genes related to p38MAPK were enriched by GO analysis and were increased in the irradiated testis, and confirmed by qPCR. Levels of phospho-p38MAPK protein increased at 28 days after irradiation. In irradiated mice, SB203580 treatment increased spermatozoa, SOX9+ cells, the area and diameter of seminiferous tubules, sperm movement rate and density. Furthermore, SB203580 treatment increased SCP3+ cells, accelerating the process of spermatogenesis. CONCLUSION AND IMPLICATIONS Exposure to ionizing radiation clearly changed gene expression in mouse testis, involving activation of p38MAPK signalling pathways. Inhibition of p38MAPK by SB203580 partly alleviated the testicular damage caused by radiation and accelerated the recovery of sperms through promoting spermatogenesis.
Collapse
Affiliation(s)
- Juan Yang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Xiangying Ou
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Manling Shu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jie Wang
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Xuan Zhang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Zhenyu Wu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Wei Hao
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Huihong Zeng
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Yin Y, Yang J, Gao G, Zhou H, Chi B, Yang HY, Li J, Wang Y. Enhancing cell-scale performance via sustained release of the varicella-zoster virus antigen from a microneedle patch under simulated microgravity. Biomater Sci 2024; 12:763-775. [PMID: 38164004 DOI: 10.1039/d3bm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system of astronauts might become weakened in the microgravity environment in space, and the dormant varicella-zoster virus (VZV) in the body might be reactivated, seriously affecting their work and safety. For working in orbit for the long term, there is currently no efficient and durable delivery system of general vaccines in a microgravity environment. Accordingly, based on the previous foundation, we designed, modified, and synthesized a biodegradable and biocompatible copolymer, polyethylene glycol-polysulfamethazine carbonate urethane (PEG-PSCU) that could be mainly adopted to fabricate a novel sustained-release microneedle (S-R MN) patch. Compared with conventional biodegradable microneedles, this S-R MN patch could not only efficiently encapsulate protein vaccines (varicella-zoster virus glycoprotein E, VZV gE) but also further prolong the release time of VZV gE in a simulated microgravity (SMG) environment. Eventually, we verified the activation of dendritic cells by VZV gE released from the S-R MN patch in an SMG environment and the positive bioeffect of activated dendritic cells on lymphocytes using an in vitro lymph node model. This study is of great significance for the exploration of long-term specific immune responses to the VZV in an SMG environment.
Collapse
Affiliation(s)
- Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Junyuan Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
13
|
Gimunová M, Paludo AC, Bernaciková M, Bienertova-Vasku J. The effect of space travel on human reproductive health: a systematic review. NPJ Microgravity 2024; 10:10. [PMID: 38238348 PMCID: PMC10796912 DOI: 10.1038/s41526-024-00351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
With increasing possibilities of multi-year missions in deep space, colonizing other planets, and space tourism, it is important to investigate the effects of space travel on human reproduction. This study aimed to systematically review and summarize the results of available literature on space travel, microgravity, and space radiation, or Earth-based spaceflight analogues impact on female and male reproductive functions in humans. This systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Space Biomedicine Systematic Review methods. The search was performed using three databases: PubMed, Web of Science, and Medline Complete. During the database search, 364 studies were identified. After the study selection process, 16 studies were included in the review. Five studies included female participants, and the findings show an increased risk of thromboembolism in combined oral contraceptive users, decreased decidualization, functional insufficiency of corpus luteum, and decreased progesterone and LH levels related to space travel or its simulation. Male participants were included in 13 studies. In males, reproductive health considerations focused on the decrease in testosterone and sex hormone-binding globulin levels, the ratio of male offspring, sperm motility, sperm vitality, and the increase in sperm DNA fragmentation related to space travel or its simulation. Results of this systematic review highlight the need to focus more on the astronaut's reproductive health in future research, as only 16 studies were found during the literature search, and many more research questions related to reproductive health in astronauts still need to be answered.
Collapse
Affiliation(s)
- Marta Gimunová
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic.
| | - Ana Carolina Paludo
- Department of Sport Performance and Exercise Testing, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Martina Bernaciková
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Ibrahim Z, Khan NA, Qaisar R, Saleh MA, Siddiqui R, Al-Hroub HM, Giddey AD, Semreen MH, Soares NC, Elmoselhi AB. Serum multi-omics analysis in hindlimb unloading mice model: Insights into systemic molecular changes and potential diagnostic and therapeutic biomarkers. Heliyon 2024; 10:e23592. [PMID: 38187258 PMCID: PMC10770503 DOI: 10.1016/j.heliyon.2023.e23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Microgravity, in space travel and prolonged bed rest conditions, induces cardiovascular deconditioning along with skeletal muscle mass loss and weakness. The findings of microgravity research may also aid in the understanding and treatment of human health conditions on Earth such as muscle atrophy, and cardiovascular diseases. Due to the paucity of biomarkers and the unknown underlying mechanisms of cardiovascular and skeletal muscle deconditioning in these environments, there are insufficient diagnostic and preventative measures. In this study, we employed hindlimb unloading (HU) mouse model, which mimics astronauts in space and bedridden patients, to first evaluate cardiovascular and skeletal muscle function, followed by proteomics and metabolomics LC-MS/MS-based analysis using serum samples. Three weeks of unloading caused changes in the function of the cardiovascular system in c57/Bl6 mice, as seen by a decrease in mean arterial pressure and heart weight. Unloading for three weeks also changed skeletal muscle function, causing a loss in grip strength in HU mice and atrophy of skeletal muscle indicated by a reduction in muscle mass. These modifications were partially reversed by a two-week recovery period of reloading condition, emphasizing the significance of the recovery process. Proteomics analysis revealed 12 dysregulated proteins among the groups, such as phospholipid transfer protein, Carbonic anhydrase 3, Parvalbumin alpha, Major urinary protein 20 (Mup20), Thrombospondin-1, and Apolipoprotein C-IV. On the other hand, metabolomics analysis showed altered metabolites among the groups such as inosine, hypoxanthine, xanthosine, sphinganine, l-valine, 3,4-Dihydroxyphenylglycol, and l-Glutamic acid. The joint data analysis revealed that HU conditions mainly impacted pathways such as ABC transporters, complement and coagulation cascades, nitrogen metabolism, and purine metabolism. Overall, our results indicate that microgravity environment induces significant alterations in the function, proteins, and metabolites of these mice. These observations suggest the potential utilization of these proteins and metabolites as novel biomarkers for assessing and mitigating cardiovascular and skeletal muscle deconditioning associated with such conditions.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed A. Khan
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, EH14 4AS UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Hamza M. Al-Hroub
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alexander D. Giddey
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammad Harb Semreen
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, Lisbon, 1649-016, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA School/ Faculdade de Lisboa, Lisbon, Portugal
| | - Adel B. Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
15
|
Garcia CA, Suárez-Meade P, Brooks M, Bhargav AG, Freeman ML, Harvey LM, Quinn J, Quiñones-Hinojosa A. Behavior of glioblastoma brain tumor stem cells following a suborbital rocket flight: reaching the "edge" of outer space. NPJ Microgravity 2023; 9:92. [PMID: 38110398 PMCID: PMC10728190 DOI: 10.1038/s41526-023-00341-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The emerging arena of space exploration has created opportunities to study cancer cell biology in the environments of microgravity and hypergravity. Studying cellular behavior in altered gravity conditions has allowed researchers to make observations of cell function that would otherwise remain unnoticed. The patient-derived QNS108 brain tumor initiating cell line (BTIC), isolated from glioblastoma (GBM) tissue, was launched on a suborbital, parabolic rocket flight conducted by EXOS Aerospace Systems & Technologies. All biologicals and appropriate ground controls were secured post-launch and transported back to our research facility. Cells from the rocket-flight and ground-based controls were isolated from the culture containers and expanded on adherent flasks for two weeks. In vitro migration, proliferation, and stemness assays were performed. Following cell expansion, male nude mice were intracranially injected with either ground-control (GC) or rocket-flight (RF) exposed cells to assess tumorigenic capacity (n = 5 per group). Patient-derived QNS108 BTICs exposed to RF displayed more aggressive tumor growth than the GC cells in vitro and in vivo. RF cells showed significantly higher migration (p < 0.0000) and stemness profiles (p < 0.01) when compared to GC cells. Further, RF cells, when implanted in vivo in the brain of rodents had larger tumor-associated cystic growth areas (p = 0.00029) and decreased survival (p = 0.0172) as compared to those animals that had GC cells implanted.
Collapse
Affiliation(s)
- Cesar A Garcia
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Mieu Brooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | - Adip G Bhargav
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michelle L Freeman
- Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - John Quinn
- EXOS Aerospace Systems and Technologies, Greenville, TX, USA
| | | |
Collapse
|
16
|
Gorbacheva EY, Sventitskaya MA, Biryukov NS, Ogneva IV. The Oxidative Phosphorylation and Cytoskeleton Proteins of Mouse Ovaries after 96 Hours of Hindlimb Suspension. Life (Basel) 2023; 13:2332. [PMID: 38137934 PMCID: PMC10744499 DOI: 10.3390/life13122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of this study was to assess oxidative phosphorylation (OXPHOS) in mouse ovaries, determine the relative content of proteins that form the respiratory chain complexes and the main structures of the cytoskeleton, and determine the mRNA of the corresponding genes after hindlimb suspension for 96 h. After hindlimb suspension, the maximum rate of oxygen uptake increased by 133% (p < 0.05) compared to the control due to the complex I of the respiratory chain. The content of mRNA of genes encoding the main components of the respiratory chain increased (cyt c by 78%, cox IV by 56%, ATPase by 69%, p < 0.05 compared with the control). The relative content of cytoskeletal proteins that can participate in the processes of transport and localization of mitochondria does not change, with the exception of an increase in the content of alpha-tubulin by 25% (p < 0.05) and its acetylated isoform (by 36%, p < 0.05); however, the mRNA content of these cytoskeletal genes did not differ from the control. The content of GDF9 mRNA does not change after hindlimb suspension. The data obtained show that short-term exposure to simulated weightlessness leads to intensification of metabolism in the ovaries.
Collapse
Affiliation(s)
- Elena Yu. Gorbacheva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 10, Starovolynskaya Str., Moscow 121352, Russia
| | - Maria A. Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
17
|
Wakayama S, Kikuchi Y, Soejima M, Hayashi E, Ushigome N, Yamazaki C, Suzuki T, Shimazu T, Yamamori T, Osada I, Sano H, Umehara M, Hasegawa A, Mochida K, Yang LL, Emura R, Kazama K, Imase K, Kurokawa Y, Sato Y, Higashibata A, Matsunari H, Nagashima H, Ogura A, Kohda T, Wakayama T. Effect of microgravity on mammalian embryo development evaluated at the International Space Station. iScience 2023; 26:108177. [PMID: 38107876 PMCID: PMC10725056 DOI: 10.1016/j.isci.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 12/19/2023] Open
Abstract
Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Mariko Soejima
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Natsuki Ushigome
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | | | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tohru Yamamori
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Hiromi Sano
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Masumi Umehara
- Advanced Engineering Services Co., Ltd, Tsukuba, Ibaraki 305-0032, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Li Ly Yang
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kenta Imase
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yuna Kurokawa
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yoshimasa Sato
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | | | - Hitomi Matsunari
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
18
|
Bonetto V, Magnelli V, Sabbatini M, Caprì F, van Loon JJWA, Tavella S, Masini MA. The importance of gravity vector on adult mammalian organisms: Effects of hypergravity on mouse testis. PLoS One 2023; 18:e0282625. [PMID: 37773950 PMCID: PMC10540970 DOI: 10.1371/journal.pone.0282625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/17/2023] [Indexed: 10/01/2023] Open
Abstract
In the age of space exploration, the effect of hypergravity on human physiology is a relatively neglected topic. However, astronauts have several experiences of hypergravity during their missions. The main disturbance of altered gravity can be imputed to cell cytoskeleton alteration and physiologic homeostasis of the body. Testis has proved to be a particularly sensible organ, subject to environmental alteration and physiological disturbance. This makes testis an organ eligible for investigating the alteration following exposure to altered gravity. In our study, mice were exposed to hypergravity (3g for 14 days) in the Large Diameter Centrifuge machine (ESA, Netherland). We have observed a morphological alteration of the regular architecture of the seminiferous tubules of testis as well as an altered expression of factors involved in the junctional complexes of Sertoli cells, responsible for ensuring the morpho-functional integrity of the organ. The expression of key receptors in physiological performance, such as Androgen Receptors and Interstitial Cells Stimulating Hormone receptors, was found lower expressed. All these findings indicate the occurrence of altered physiological organ performance such as the reduction of the spermatozoa number and altered endocrine parameters following hypergravity exposure.
Collapse
Affiliation(s)
- Valentina Bonetto
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Valeria Magnelli
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Maurizio Sabbatini
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Flavia Caprì
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Jack J. W. A. van Loon
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam UMC Location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Life Support and Physical Sciences Section (TEC-MMG), European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, The Netherland
| | - Sara Tavella
- Department of Experimental Medicine, University of Genoa, Genoa (GE), Italy
| | - Maria Angela Masini
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| |
Collapse
|
19
|
Patel OV, Partridge C, Plaut K. Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes. Biomolecules 2023; 13:biom13050872. [PMID: 37238741 DOI: 10.3390/biom13050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane transporters and ion channels that play an indispensable role in metabolite trafficking have evolved to operate in Earth's gravity. Dysregulation of the transportome expression profile at normogravity not only affects homeostasis along with drug uptake and distribution but also plays a key role in the pathogenesis of diverse localized to systemic diseases including cancer. The profound physiological and biochemical perturbations experienced by astronauts during space expeditions are well-documented. However, there is a paucity of information on the effect of the space environment on the transportome profile at an organ level. Thus, the goal of this study was to analyze the effect of spaceflight on ion channels and membrane substrate transporter genes in the periparturient rat mammary gland. Comparative gene expression analysis revealed an upregulation (p < 0.01) of amino acid, Ca2+, K+, Na+, Zn2+, Cl-, PO43-, glucose, citrate, pyruvate, succinate, cholesterol, and water transporter genes in rats exposed to spaceflight. Genes associated with the trafficking of proton-coupled amino acids, Mg2+, Fe2+, voltage-gated K+-Na+, cation-coupled chloride, as well as Na+/Ca2+ and ATP-Mg/Pi exchangers were suppressed (p < 0.01) in these spaceflight-exposed rats. These findings suggest that an altered transportome profile contributes to the metabolic modulations observed in the rats exposed to the space environment.
Collapse
Affiliation(s)
- Osman V Patel
- Cell and Molecular Biology Department, Grand Valley State University, Allendale, MI 49401, USA
| | - Charlyn Partridge
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
20
|
Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola SA. Effects of Simulated Microgravity In Vitro on Human Metaphase II Oocytes: An Electron Microscopy-Based Study. Cells 2023; 12:1346. [PMID: 37408181 DOI: 10.3390/cells12101346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The Gravity Force to which living beings are subjected on Earth rules the functionality of most biological processes in many tissues. It has been reported that a situation of Microgravity (such as that occurring in space) causes negative effects on living beings. Astronauts returning from space shuttle missions or from the International Space Station have been diagnosed with various health problems, such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance, including impaired visual acuity, altered metabolic and nutritional status, and immune system dysregulation. Microgravity has profound effects also on reproductive functions. Female astronauts, in fact, suppress their cycles during space travels, and effects at the cellular level in the early embryo development and on female gamete maturation have also been observed. The opportunities to use space flights to study the effects of gravity variations are limited because of the high costs and lack of repeatability of the experiments. For these reasons, the use of microgravity simulators for studying, at the cellular level, the effects, such as those, obtained during/after a spatial trip, are developed to confirm that these models can be used in the study of body responses under conditions different from those found in a unitary Gravity environment (1 g). In view of this, this study aimed to investigate in vitro the effects of simulated microgravity on the ultrastructural features of human metaphase II oocytes using a Random Positioning Machine (RPM). We demonstrated for the first time, by Transmission Electron Microscopy analysis, that microgravity might compromise oocyte quality by affecting not only the localization of mitochondria and cortical granules due to a possible alteration of the cytoskeleton but also the function of mitochondria and endoplasmic reticulum since in RPM oocytes we observed a switch in the morphology of smooth endoplasmic reticulum (SER) and associated mitochondria from mitochondria-SER aggregates to mitochondria-vesicle complexes. We concluded that microgravity might negatively affect oocyte quality by interfering in vitro with the normal sequence of morphodynamic events essential for acquiring and maintaining a proper competence to fertilization in human oocytes.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Salomé B Espinola
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Maria Grazia Masiello
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Giulietta Micara
- Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Antonella Linari
- Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Cesare Aragona
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefania A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| |
Collapse
|
21
|
Lindberg B, Rerucha C, Givens M. Occupational and Environmental Challenges for Women. Curr Sports Med Rep 2023; 22:120-125. [PMID: 37036460 DOI: 10.1249/jsr.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
ABSTRACT The prevalence of women in the global workforce is increasing. Women increasingly participate in nontraditional employment settings in previously male-dominated industries and manually intensive professions, such as military service, emergency response, health care, aviation, space, agriculture, and technical trades. Limited occupational and environmental hazard data specific to women exist for these work environments. Physiologic and biomechanical differences between sexes create unique workplace challenges specific to women. This article will summarize challenges confronting women working in nontraditional employment and identify strategies to mitigate risk within these populations.
Collapse
Affiliation(s)
- Briana Lindberg
- National Capital Consortium Primary Care Sports Medicine Fellowship, Fort Belvoir, VA
| | - Caitlyn Rerucha
- National Capital Consortium Primary Care Sports Medicine Fellowship, Fort Belvoir, VA
| | - Melissa Givens
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD
| |
Collapse
|
22
|
Jain V, Chuva de Sousa Lopes SM, Benotmane MA, Verratti V, Mitchell RT, Stukenborg JB. Human development and reproduction in space-a European perspective. NPJ Microgravity 2023; 9:24. [PMID: 36973260 PMCID: PMC10042989 DOI: 10.1038/s41526-023-00272-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
This review summarises key aspects of the first reproductive and developmental systems Science Community White Paper, supported by the European Space Agency (ESA). Current knowledge regarding human development and reproduction in space is mapped to the roadmap. It acknowledges that sex and gender have implications on all physiological systems, however, gender identity falls outside the scope of the document included in the white paper collection supported by ESA. The ESA SciSpacE white papers on human developmental and reproductive functions in space aim to reflect on the implications of space travel on the male and female reproductive systems, including the hypothalamic-pituitary-gonadal (HPG) reproductive hormone axis, and considerations for conception, gestation and birth. Finally, parallels are drawn as to how this may impact society as a whole on Earth.
Collapse
Affiliation(s)
- Varsha Jain
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | | | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
23
|
Bharindwal S, Goswami N, Jha P, Pandey S, Jobby R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life (Basel) 2023; 13:life13030727. [PMID: 36983881 PMCID: PMC10058446 DOI: 10.3390/life13030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining an astronaut's health during space travel is crucial. Multiple studies have observed various changes in the gut microbiome and physiological health. Astronauts on board the International Space Station (ISS) had changes in the microbial communities in their gut, nose, and skin. Additionally, immune system cell alterations have been observed in astronauts with changes in neutrophils, monocytes, and T-cells. Probiotics help tackle these health issues caused during spaceflight by inhibiting pathogen adherence, enhancing epithelial barrier function by reducing permeability, and producing an anti-inflammatory effect. When exposed to microgravity, probiotics demonstrated a shorter lag phase, faster growth, improved acid tolerance, and bile resistance. A freeze-dried Lactobacillus casei strain Shirota capsule was tested for its stability on ISS for a month and has been shown to enhance innate immunity and balance intestinal microbiota. The usage of freeze-dried spores of B. subtilis proves to be advantageous to long-term spaceflight because it qualifies for all the aspects tested for commercial probiotics under simulated conditions. These results demonstrate a need to further study the effect of probiotics in simulated microgravity and spaceflight conditions and to apply them to overcome the effects caused by gut microbiome dysbiosis and issues that might occur during spaceflight.
Collapse
Affiliation(s)
- Sahaj Bharindwal
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Department of Biology, University of Naples Federico II, 80131 Naples, Italy
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Nidhi Goswami
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Sunandan Divatia School of Science, NMIMS University Mumbai, Mumbai 400056, Maharashtra, India
| | - Siddharth Pandey
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
| | - Renitta Jobby
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
24
|
Theotokis P, Manthou ME, Deftereou TE, Miliaras D, Meditskou S. Addressing Spaceflight Biology through the Lens of a Histologist-Embryologist. Life (Basel) 2023; 13:life13020588. [PMID: 36836946 PMCID: PMC9965490 DOI: 10.3390/life13020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Embryogenesis and fetal development are highly delicate and error-prone processes in their core physiology, let alone if stress-associated factors and conditions are involved. Space radiation and altered gravity are factors that could radically affect fertility and pregnancy and compromise a physiological organogenesis. Unfortunately, there is a dearth of information examining the effects of cosmic exposures on reproductive and proliferating outcomes with regard to mammalian embryonic development. However, explicit attention has been given to investigations exploring discrete structures and neural networks such as the vestibular system, an entity that is viewed as the sixth sense and organically controls gravity beginning with the prenatal period. The role of the gut microbiome, a newly acknowledged field of research in the space community, is also being challenged to be added in forthcoming experimental protocols. This review discusses the data that have surfaced from simulations or actual space expeditions and addresses developmental adaptations at the histological level induced by an extraterrestrial milieu.
Collapse
Affiliation(s)
- Paschalis Theotokis
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Dimosthenis Miliaras
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
25
|
The State of the Organs of the Female Reproductive System after a 5-Day "Dry" Immersion. Int J Mol Sci 2023; 24:ijms24044160. [PMID: 36835572 PMCID: PMC9966354 DOI: 10.3390/ijms24044160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
The impact of weightlessness on the female reproductive system remains poorly understood, although deep space exploration is impossible without the development of effective measures to protect women's health. The purpose of this work was to study the effect of a 5-day "dry" immersion on the state of the reproductive system of female subjects. On the fourth day of the menstrual cycle after immersion, we observed an increase in inhibin B of 35% (p < 0.05) and a decrease in luteinizing hormone of 12% (p < 0.05) and progesterone of 52% (p < 0.05) compared with the same day before immersion. The size of the uterus and the thickness of the endometrium did not change. On the ninth day of the menstrual cycle after immersion, the average diameters of the antral follicles and the dominant follicle were, respectively, 14% and 22% (p < 0.05) higher than before. The duration of the menstrual cycle did not change. The obtained results may indicate that the stay in the 5-day "dry" immersion, on the one hand, can stimulate the growth of the dominant follicle, but, on the other hand, can cause functional insufficiency of the corpus lutea.
Collapse
|
26
|
Dubé S, Santaguida M, Anctil D, Giaccari L, Lapierre J. The Case for Space Sexology. JOURNAL OF SEX RESEARCH 2023; 60:165-176. [PMID: 34878963 DOI: 10.1080/00224499.2021.2012639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Space poses significant challenges for human intimacy and sexuality. Life in space habitats during long-term travel, exploration, or settlement may: detrimentally impact the sexual and reproductive functions of astronauts, restrict privacy and access to intimate partners, impose hygiene protocols and abstinence policies, and heighten risks of interpersonal conflicts and sexual violence. Together, this may jeopardize the health and well-being of space inhabitants, crew performance, and mission success. Yet, little attention has been given to the sexological issues of human life in space. This situation is untenable considering our upcoming space missions and expansion. It is time for space organizations to embrace a new discipline, space sexology: the scientific study of extraterrestrial intimacy and sexuality. To make this case, we draw attention to the lack of research on space intimacy and sexuality; discuss the risks and benefits of extraterrestrial eroticism; and propose an initial biopsychosocial framework to envision a broad, collaborative scientific agenda on space sexology. We also underline key anticipated challenges faced by this innovative field and suggest paths to solutions. We conclude that space programs and exploration require a new perspective - one that holistically addresses the intimate and sexual needs of humans - in our pursuit of a spacefaring civilization.
Collapse
Affiliation(s)
- S Dubé
- Department of Psychology, Concordia University
| | | | - D Anctil
- Department of Philosophy, Jean-de-Brébeuf College
- International Observatory on the Societal Impacts of Artificial Intelligence and Digital Technology, Laval University
| | - L Giaccari
- Department of Psychology, Concordia University
| | - J Lapierre
- Faculty of Nursing Science, Laval University
| |
Collapse
|
27
|
Simulated microgravity reduces quality of ovarian follicles and oocytes by disrupting communications of follicle cells. NPJ Microgravity 2023; 9:7. [PMID: 36690655 PMCID: PMC9870914 DOI: 10.1038/s41526-023-00248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Ovarian follicles are the fundamental structures that support oocyte development, and communications between oocytes and follicle somatic cells are crucial for oogenesis. However, it is unknown that whether exposure to microgravity influences cellular communications and ovarian follicle development, which might be harmful for female fertility. By 3D culturing of ovarian follicles under simulated microgravity (SMG) conditions in a rotating cell culture system, we found that SMG treatment did not affect the survival or general growth of follicles but decreased the quality of cultured follicles released oocytes. Ultrastructure detections by high-resolution imaging showed that the development of cellular communicating structures, including granulosa cell transzonal projections and oocyte microvilli, were markedly disrupted. These abnormalities caused chaotic polarity of granulosa cells (GCs) and a decrease in oocyte-secreted factors, such as Growth Differentiation Factor 9 (GDF9), which led to decreased quality of oocytes in these follicles. Therefore, the quality of oocytes was dramatically improved by the supplementations of GDF9 and NADPH-oxidase inhibitor apocynin. Together, our results suggest that exposure to simulated microgravity impairs the ultrastructure of ovarian follicles. Such impairment may affect female fertility in space environment.
Collapse
|
28
|
Ogneva IV, Golubkova MA, Biryukov NS, Kotov OV. Drosophila melanogaster Oocytes after Space Flight: The Early Period of Adaptation to the Force of Gravity. Cells 2022; 11:cells11233871. [PMID: 36497128 PMCID: PMC9736949 DOI: 10.3390/cells11233871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of space flight factors and the subsequent adaptation to the Earth's gravity on oocytes is still poorly understood. Studies of mammalian oocytes in space present significant technical difficulties; therefore, the fruit fly Drosophila melanogaster is a convenient test subject. In this study, we analyzed the structure of the oocytes of the fruit fly Drosophila melanogaster, the maturation of which took place under space flight conditions (the "Cytomehanarium" experiment on the Russian Segment of the ISS during the ISS-67 expedition). The collection of the oocytes began immediately after landing and continued for 12 h. The flies were then transferred onto fresh agar plates and oocyte collection continued for the subsequent 12 h. The stiffness of oocytes was determined by atomic force microscopy and the content of the cytoskeletal proteins by Western blotting. The results demonstrated a significant decrease in the stiffness of oocytes in the flight group compared to the control (26.5 ± 1.1 pN/nm vs. 31.0 ± 1.8 pN/nm) against the background of a decrease in the content of some cytoskeletal proteins involved in the formation of microtubules and microfilaments. This pattern of oocyte structure leads to the disruption of cytokinesis during the cleavage of early embryos.
Collapse
|
29
|
Mu X, He W, Rivera VAM, De Alba RAD, Newman DJ, Zhang YS. Small tissue chips with big opportunities for space medicine. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:150-157. [PMID: 36336360 PMCID: PMC11016463 DOI: 10.1016/j.lssr.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The spaceflight environment, including microgravity and radiation, may have considerable effects on the health and performance of astronauts, especially for long-duration and Martian missions. Conventional on-ground and in-space experimental approaches have been employed to investigate the comprehensive biological effects of the spaceflight environment. As a class of recently emerging bioengineered in vitro models, tissue chips are characterized by a small footprint, potential automation, and the recapitulation of tissue-level physiology, thus promising to help provide molecular and cellular insights into space medicine. Here, we briefly review the technical advantages of tissue chips and discuss specific on-chip physiological recapitulations. Several tissue chips have been launched into space, and more are poised to come through multi-agency collaborations, implying an increasingly important role of tissue chips in space medicine.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, IA 52242, USA
| | - Weishen He
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Raul Armando Duran De Alba
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dava J Newman
- MIT Media Lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
30
|
Wakayama S, Soejima M, Kikuchi Y, Hayashi E, Ushigome N, Hasegawa A, Mochida K, Suzuki T, Yamazaki C, Shimazu T, Sano H, Umehara M, Matsunari H, Ogura A, Nagashima H, Wakayama T. Development of a new device for manipulating frozen mouse 2-cell embryos on the International Space Station. PLoS One 2022; 17:e0270781. [PMID: 36206235 PMCID: PMC9543944 DOI: 10.1371/journal.pone.0270781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Whether mammalian embryos develop normally under microgravity remains to be determined. However, embryos are too small to be handled by inexperienced astronauts who orbit Earth on the International Space Station (ISS). Here we describe the development of a new device that allows astronauts to thaw and culture frozen mouse 2-cell embryos on the ISS without directly contacting the embryos. First, we developed several new devices using a hollow fiber tube that allows thawing embryo without practice and observations of embryonic development. The recovery rate of embryos was over 90%, and its developmental rate to the blastocyst were over 80%. However, the general vitrification method requires liquid nitrogen, which is not available on the ISS. Therefore, we developed another new device, Embryo Thawing and Culturing unit (ETC) employing a high osmolarity vitrification method, which preserves frozen embryos at −80°C for several months. Embryos flushed out of the ETC during thawing and washing were protected using a mesh sheet. Although the recovery rate of embryos after thawing were not high (24%-78%) and embryonic development in ETC could not be observed, thawed embryos formed blastocysts after 4 days of culture (29%-100%) without direct contact. Thus, this ETC could be used for untrained astronauts to thaw and culture frozen embryos on the ISS. In addition, this ETC will be an important advance in fields such as clinical infertility and animal biotechnology when recovery rate of embryos were improved nearly 100%.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
- * E-mail: (SW); (TW)
| | - Mariko Soejima
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Natsuki Ushigome
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | | | | | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Tokyo, Japan
| | - Hiromi Sano
- Japan Manned Space Systems Corporation, Tokyo, Japan
| | - Masumi Umehara
- Advanced Engineering Services Co., Ltd, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsunari
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
- * E-mail: (SW); (TW)
| |
Collapse
|
31
|
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. Int J Mol Sci 2022; 23:ijms23137465. [PMID: 35806469 PMCID: PMC9267413 DOI: 10.3390/ijms23137465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Collapse
|
32
|
Rai AK, Rajan KS, Bisserier M, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Mills PJ, Arakelyan A, Uchida S, Hadri L, Goukassian DA, Garikipati VNS. Spaceflight-Associated Changes of snoRNAs in Peripheral Blood Mononuclear Cells and Plasma Exosomes-A Pilot Study. Front Cardiovasc Med 2022; 9:886689. [PMID: 35811715 PMCID: PMC9267956 DOI: 10.3389/fcvm.2022.886689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
During spaceflight, astronauts are exposed to various physiological and psychological stressors that have been associated with adverse health effects. Therefore, there is an unmet need to develop novel diagnostic tools to predict early alterations in astronauts' health. Small nucleolar RNA (snoRNA) is a type of short non-coding RNA (60-300 nucleotides) known to guide 2'-O-methylation (Nm) or pseudouridine (ψ) of ribosomal RNA (rRNA), small nuclear RNA (snRNA), or messenger RNA (mRNA). Emerging evidence suggests that dysregulated snoRNAs may be key players in regulating fundamental cellular mechanisms and in the pathogenesis of cancer, heart, and neurological disease. Therefore, we sought to determine whether the spaceflight-induced snoRNA changes in astronaut's peripheral blood (PB) plasma extracellular vesicles (PB-EV) and peripheral blood mononuclear cells (PBMCs). Using unbiased small RNA sequencing (sRNAseq), we evaluated changes in PB-EV snoRNA content isolated from astronauts (n = 5/group) who underwent median 12-day long Shuttle missions between 1998 and 2001. Using stringent cutoff (fold change > 2 or log2-fold change >1, FDR < 0.05), we detected 21 down-and 9-up-regulated snoRNAs in PB-EVs 3 days after return (R + 3) compared to 10 days before launch (L-10). qPCR validation revealed that SNORA74A was significantly down-regulated at R + 3 compared to L-10. We next determined snoRNA expression levels in astronauts' PBMCs at R + 3 and L-10 (n = 6/group). qPCR analysis further confirmed a significant increase in SNORA19 and SNORA47 in astronauts' PBMCs at R + 3 compared to L-10. Notably, many downregulated snoRNA-guided rRNA modifications, including four Nms and five ψs. Our findings revealed that spaceflight induced changes in PB-EV and PBMCs snoRNA expression, thus suggesting snoRNAs may serve as potential novel biomarkers for monitoring astronauts' health.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, La Jolla, CA, United States
| | - Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
33
|
Juran CM, Zvirblyte J, Almeida E. Differential Single Cell Responses of Embryonic Stem Cells Versus Embryoid Bodies to Gravity Mechanostimulation. Stem Cells Dev 2022; 31:346-356. [PMID: 35570697 PMCID: PMC9293686 DOI: 10.1089/scd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forces generated by gravity have shaped life on Earth and impact gene expression and morphogenesis during early development. Conversely, disuse on Earth or during spaceflight, reduces normal mechanical loading of organisms, resulting in altered cell and tissue function. Although gravity mechanical loading in adult mammals is known to promote increased cell proliferation and differentiation, little is known about how distinct cell types respond to gravity mechanostimulation during early development. In this study we sought to understand, with single cell RNA-sequencing resolution, how a 60-min pulse of 50 g hypergravity (HG)/5 kPa hydrostatic pressure, influences transcriptomic regulation of developmental processes in the embryoid body (EB) model. Our study included both day-9 EBs and progenitor mouse embryonic stem cells (ESCs) with or without the HG pulse. Single cell t-distributed stochastic neighbor mapping shows limited transcriptome shifts in response to the HG pulse in either ESCs or EBs; this pulse however, induces greater positional shifts in EB mapping compared to ESCs, indicating the influence of mechanotransduction is more pronounced in later states of cell commitment within the developmental program. More specifically, HG resulted in upregulation of self-renewal and angiogenesis genes in ESCs, while in EBs, HG loading was associated with upregulation of Gene Ontology-pathways for multicellular development, mechanical signal transduction, and DNA damage repair. Cluster transcriptome analysis of the EBs show HG promotes maintenance of transitory cell phenotypes in early development; including EB cluster co-expression of markers for progenitor, post-implant epiblast, and primitive endoderm phenotypes with HG pulse but expression exclusivity in the non-pulsed clusters. Pseudotime analysis identified three branching cell types susceptible to HG induction of cell fate decisions. In totality, this study provides novel evidence that ESC maintenance and EB development can be regulated by gravity mechanostimulation and that stem cells committed to a differentiation program are more sensitive to gravity-induced changes to their transcriptome.
Collapse
Affiliation(s)
| | - Justina Zvirblyte
- Vilnius University, 54694, Sector of Microtechnologies, Institute of Biotechnology, Life Sciences Center,, Vilnius, Vilnius, Lithuania
| | - Eduardo Almeida
- NASA AMES Research Center, Space Biosciences Division, Bldg 236 rm 217, Moffett Field , California, United States, 94035-1000, ,
| |
Collapse
|
34
|
Sawyers L, Anderson C, Boyd MJ, Hessel V, Wotring V, Williams PM, Toh LS. Astropharmacy: Pushing the boundaries of the pharmacists’ role for sustainable space exploration. Res Social Adm Pharm 2022; 18:3612-3621. [DOI: 10.1016/j.sapharm.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023]
|
35
|
Li F, Ye Y, Lei X, Zhang W. Effects of Microgravity on Early Embryonic Development and Embryonic Stem Cell Differentiation: Phenotypic Characterization and Potential Mechanisms. Front Cell Dev Biol 2021; 9:797167. [PMID: 34926474 PMCID: PMC8675004 DOI: 10.3389/fcell.2021.797167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
With the development of science and technology, mankind’s exploration of outer space has increased tremendously. Settling in outer space or on other planets could help solve the Earth’s resource crisis, but such settlement will first face the problem of reproduction. There are considerable differences between outer space and the Earth’s environment, with the effects of gravity being one of the most significant. Studying the possible effects and underlying mechanisms of microgravity on embryonic stem cell (ESC) differentiation and embryonic development could help provide solutions to healthy living and reproduction in deep space. This article summarizes recent research progress on the effects of microgravity on ESCs and early embryonic development and proposes hypotheses regarding the potential mechanisms. In addition, we discuss the controversies and key questions in the field and indicate directions for future research.
Collapse
Affiliation(s)
- Feng Li
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.,Department of Physiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
36
|
Simulated Microgravity Induces the Proliferative Inhibition and Morphological Changes in Porcine Granulosa Cells. Curr Issues Mol Biol 2021; 43:2210-2219. [PMID: 34940129 PMCID: PMC8929043 DOI: 10.3390/cimb43030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Astronauts are always faced with serious health problems during prolonged spaceflights. Previous studies have shown that weightlessness significantly affects the physiological function of female astronauts, including a change in reproductive hormones and ovarian cells, such as granulosa and theca cells. However, the effects of microgravity on these cells have not been well characterized, especially in granulosa cells. This study aimed to investigate the effects of simulated microgravity (SMG) on the proliferation and morphology of porcine granulosa cells (pGCs). pGC proliferation from the SMG group was inhibited, demonstrated by the reduced O.D. value and cell density in the WST-1 assay and cell number counting. SMG-induced pGCs exhibited an increased ratio of cells in the G0/G1 phase and a decreased ratio of cells in the S and G2/M phase. Western blot analysis indicated a down-regulation of cyclin D1, cyclin-dependent kinase 4 (cdk4), and cyclin-dependent kinase 6 (cdk6), leading to the prevention of the G1-S transition and inducing the arrest phase. pGCs under the SMG condition showed an increase in nuclear area. This caused a reduction in nuclear shape value in pGCs under the SMG condition. SMG-induced pGCs exhibited different morphologies, including fibroblast-like shape, rhomboid shape, and pebble-like shape. These results revealed that SMG inhibited proliferation and induced morphological changes in pGCs.
Collapse
|
37
|
Boutros SW, Zimmerman B, Nagy SC, Lee JS, Perez R, Raber J. Amifostine (WR-2721) Mitigates Cognitive Injury Induced by Heavy Ion Radiation in Male Mice and Alters Behavior and Brain Connectivity. Front Physiol 2021; 12:770502. [PMID: 34867479 PMCID: PMC8637850 DOI: 10.3389/fphys.2021.770502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The deep space environment contains many risks to astronauts during space missions, such as galactic cosmic rays (GCRs) comprised of naturally occurring heavy ions. Heavy ion radiation is increasingly being used in cancer therapy, including novel regimens involving carbon therapy. Previous investigations involving simulated space radiation have indicated a host of detrimental cognitive and behavioral effects. Therefore, there is an increasing need to counteract these deleterious effects of heavy ion radiation. Here, we assessed the ability of amifostine to mitigate cognitive injury induced by simulated GCRs in C57Bl/6J male and female mice. Six-month-old mice received an intraperitoneal injection of saline, 107 mg/kg, or 214 mg/kg of amifostine 1 h prior to exposure to a simplified five-ion radiation (protons, 28Si, 4He, 16O, and 56Fe) at 500 mGy or sham radiation. Mice were behaviorally tested 2-3 months later. Male mice that received saline and radiation exposure failed to show novel object recognition, which was reversed by both doses of amifostine. Conversely, female mice that received saline and radiation exposure displayed intact object recognition, but those that received amifostine prior to radiation did not. Amifostine and radiation also had distinct effects on males and females in the open field, with amifostine affecting distance moved over time in both sexes, and radiation affecting time spent in the center in females only. Whole-brain analysis of cFos immunoreactivity in male mice indicated that amifostine and radiation altered regional connectivity in areas involved in novel object recognition. These data support that amifostine has potential as a countermeasure against cognitive injury following proton and heavy ion irradiation in males.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sydney C. Nagy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne S. Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, United States
| |
Collapse
|
38
|
Qin F, Liu N, Nie J, Shen T, Xu Y, Pan S, Pei H, Zhou G. Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse. Environ Health Prev Med 2021; 26:103. [PMID: 34635049 PMCID: PMC8507176 DOI: 10.1186/s12199-021-01021-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/24/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far. METHODS Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ. RESULTS Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters. CONCLUSION These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Acid Phosphatase
- Animals
- CLOCK Proteins/genetics
- Circadian Rhythm/radiation effects
- Epididymis/radiation effects
- Gene Expression/radiation effects
- Genitalia, Male/radiation effects
- Glucosephosphate Dehydrogenase
- L-Iditol 2-Dehydrogenase
- L-Lactate Dehydrogenase
- Male
- Mice
- Mice, Inbred C57BL
- Models, Animal
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 2/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- RNA, Messenger/genetics
- Radiation Exposure
- Radiation, Ionizing
- Reproductive Physiological Phenomena/radiation effects
- Sperm Motility/radiation effects
- Spermatozoa/radiation effects
- Testis/enzymology
- Testis/radiation effects
Collapse
Affiliation(s)
- Fenju Qin
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China.
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.
| | - Ningang Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Jing Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Tao Shen
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yingjie Xu
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shuxian Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
39
|
Huang CS, Qiu LZ, Yue L, Wang NN, Liu H, Deng HF, Ni YH, Ma ZC, Zhou W, Gao Y. Low-dose radiation-induced demethylation of 3β-HSD participated in the regulation of testosterone content. J Appl Toxicol 2021; 42:529-539. [PMID: 34550611 DOI: 10.1002/jat.4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022]
Abstract
The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3β-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3β-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3β-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3β-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.
Collapse
Affiliation(s)
- Cong-Shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Zhen Qiu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lanxin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng-Chun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
40
|
Zhang S, Dong J, Li Y, Xiao H, Shang Y, Wang B, Chen Z, Zhang M, Fan S, Cui M. Gamma-irradiation fluctuates the mRNA N 6-methyladenosine (m 6A) spectrum of bone marrow in hematopoietic injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117509. [PMID: 34380217 DOI: 10.1016/j.envpol.2021.117509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/25/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Humans benefit from nuclear technologies but consequently experience nuclear disasters or side effects of iatrogenic radiation. Hematopoietic system injury first arises upon radiation exposure. As an intricate new layer of genetic control, the posttranscriptional m6A modification of RNA has recently come under investigation and has been demonstrated to play pivotal roles in multiple physiological and pathological processes. However, how the m6A methylome functions in the hematopoietic system after irradiation remains ambiguous. Here, we uncovered the time-varying epitranscriptome-wide m6A methylome and transcriptome alterations in γ-ray-exposed mouse bone marrow. 4 Gy γ-irradiation rapidly (5 min and 2 h) and severely impaired the mouse hematopoietic system, including spleen and thymus weight, blood components, tissue inflammation and malondialdehyde (MDA) levels. The m6A content and expression of m6A related enzymes were altered. Gamma-irradiation triggered dynamic and reversible m6A modification profiles and altered mRNA expression, where both m6A fold-enrichment and mRNA expression most followed the (5 min_up/2 h_down) pattern. The CDS enrichment region preferentially upregulated m6A peaks at 5 min. Moreover, the main GO and KEGG pathways were closely related to metabolism and the classical radiation response. Finally, m6A modifications correlated with transcriptional regulation of genes in multiple aspects. Blocking the expression of m6A demethylases FTO and ALKBH5 mitigated radiation hematopoietic toxicity. Together, our findings present the comprehensive landscape of mRNA m6A methylation in the mouse hematopoietic system in response to γ-irradiation, shedding light on the significance of m6A modifications in mammalian radiobiology. Regulation of the epitranscriptome may be exploited as a strategy against radiation damage.
Collapse
Affiliation(s)
- Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Mengran Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China.
| |
Collapse
|
41
|
Perez-Gelvez YNC, Camus AC, Bridger R, Wells L, Rhodes OE, Bergmann CW. Effects of chronic exposure to low levels of IR on Medaka ( Oryzias latipes): a proteomic and bioinformatic approach. Int J Radiat Biol 2021; 97:1485-1501. [PMID: 34355643 DOI: 10.1080/09553002.2021.1962570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Chronic exposure to ionizing radiation (IR) at low doses (<100 mGy) has been insufficiently studied to understand fully the risk to health. Relatively little knowledge exists regarding how species and healthy tissues respond at the protein level to chronic exposure to low doses of IR, and mass spectrometric-based profiling of protein expression is a powerful tool for studying changes in protein abundance. MATERIALS AND METHODS SDS gel electrophoresis, LC-MS/MS mass spectrometry-based approaches and bioinformatic data analytics were used to detect proteomic changes following chronic exposure to moderate/low doses of radiation in adults and normally developed Medaka fish (Oryzias latipes). RESULTS Significant variations in the abundance of proteins involved in thyroid hormone signaling and lipid metabolism were detected, which could be related to the gonadal regression phenotype observed after 21.04 mGy and 204.3 mGy/day exposure. The global proteomic change was towards overexpression of proteins in muscle and skin, while the opposite effect was observed in internal organs. CONCLUSION The present study provides information on the impacts of biologically relevant low doses of IR, which will be useful in future research for the identification of potential biomarkers of IR exposure and allow for a better assessment of radiation biosafety regulations.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Alvin C Camus
- College of Veterinary Medicine, Department of Pathology, The University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Lance Wells
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
42
|
Wakayama S, Ito D, Kamada Y, Shimazu T, Suzuki T, Nagamatsu A, Araki R, Ishikawa T, Kamimura S, Hirose N, Kazama K, Yang L, Inoue R, Kikuchi Y, Hayashi E, Emura R, Watanabe R, Nagatomo H, Suzuki H, Yamamori T, Tada MN, Osada I, Umehara M, Sano H, Kasahara H, Higashibata A, Yano S, Abe M, Kishigami S, Kohda T, Ooga M, Wakayama T. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station. SCIENCE ADVANCES 2021; 7:7/24/eabg5554. [PMID: 34117068 PMCID: PMC8195474 DOI: 10.1126/sciadv.abg5554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Takahiro Ishikawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Li Yang
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rei Inoue
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Ren Watanabe
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroaki Nagatomo
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiromi Suzuki
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tohru Yamamori
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Motoki N Tada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Masumi Umehara
- Advanced Engineering Services Co. Ltd, Tsukuba, Ibaraki 305-0032, Japan
| | - Hiromi Sano
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Haruo Kasahara
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
43
|
Hong X, Ratri A, Choi SY, Tash JS, Ronca AE, Alwood JS, Christenson LK. Effects of spaceflight aboard the International Space Station on mouse estrous cycle and ovarian gene expression. NPJ Microgravity 2021; 7:11. [PMID: 33712627 PMCID: PMC7954810 DOI: 10.1038/s41526-021-00139-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian steroids dramatically impact normal homeostatic and metabolic processes of most tissues within the body, including muscle, bone, neural, immune, cardiovascular, and reproductive systems. Determining the effects of spaceflight on the ovary and estrous cycle is, therefore, critical to our understanding of all spaceflight experiments using female mice. Adult female mice (n = 10) were exposed to and sacrificed on-orbit after 37 days of spaceflight in microgravity. Contemporary control (preflight baseline, vivarium, and habitat; n = 10/group) groups were maintained at the Kennedy Space Center, prior to sacrifice and similar tissue collection at the NASA Ames Research Center. Ovarian tissues were collected and processed for RNA and steroid analyses at initial carcass thaw. Vaginal wall tissue collected from twice frozen/thawed carcasses was fixed for estrous cycle stage determinations. The proportion of animals in each phase of the estrous cycle (i.e., proestrus, estrus, metestrus, and diestrus) did not appreciably differ between baseline, vivarium, and flight mice, while habitat control mice exhibited greater numbers in diestrus. Ovarian tissue steroid concentrations indicated no differences in estradiol across groups, while progesterone levels were lower (p < 0.05) in habitat and flight compared to baseline females. Genes involved in ovarian steroidogenic function were not differentially expressed across groups. As ovarian estrogen can dramatically impact multiple non-reproductive tissues, these data support vaginal wall estrous cycle classification of all female mice flown in space. Additionally, since females exposed to long-term spaceflight were observed at different estrous cycle stages, this indicates females are likely undergoing ovarian cyclicity and may yet be fertile.
Collapse
Affiliation(s)
- Xiaoman Hong
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anamika Ratri
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Joseph S Tash
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - April E Ronca
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, CA, USA.,Department of Obstetrics & Gynecology, Wake Forest Medical School, Winston-Salem, NC, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, CA, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
44
|
Proshchina A, Gulimova V, Kharlamova A, Krivova Y, Besova N, Berdiev R, Saveliev S. Reproduction and the Early Development of Vertebrates in Space: Problems, Results, Opportunities. Life (Basel) 2021; 11:109. [PMID: 33572526 PMCID: PMC7911118 DOI: 10.3390/life11020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
Humans and animals adapt to space flight conditions. However, the adaptive changes of fully formed organisms differ radically from the responses of vertebrate embryos, foetuses, and larvae to space flight. Development is associated with active cell proliferation and the formation of organs and systems. The instability of these processes is well known. Over 20 years has passed since the last systematic experiments on vertebrate reproduction and development in space flight. At the same time, programs are being prepared for the exploration of Mars and the Moon, which justifies further investigations into space flight's impact on vertebrate development. This review focuses on various aspects of reproduction and early development of vertebrates in space flights. The results of various experiments on fishes, amphibians, reptiles, birds and mammals are described. The experiments in which our team took part and ontogeny of the vertebrate nervous and special sensory systems are considered in more detail. Possible causes of morphological changes are also discussed. Research on evolutionarily and taxonomically different models can advance the understanding of reproduction in microgravity. Reptiles, in particular, geckos, due to their special features, can be a promising object of space developmental biology.
Collapse
Affiliation(s)
- Alexandra Proshchina
- Research Institute of Human Morphology, Ministry of Science and Higher Education RF, Tsurupi Street, 3, 117418 Moscow, Russia; (V.G.); (A.K.); (Y.K.); (N.B.); (S.S.)
| | - Victoria Gulimova
- Research Institute of Human Morphology, Ministry of Science and Higher Education RF, Tsurupi Street, 3, 117418 Moscow, Russia; (V.G.); (A.K.); (Y.K.); (N.B.); (S.S.)
| | - Anastasia Kharlamova
- Research Institute of Human Morphology, Ministry of Science and Higher Education RF, Tsurupi Street, 3, 117418 Moscow, Russia; (V.G.); (A.K.); (Y.K.); (N.B.); (S.S.)
| | - Yuliya Krivova
- Research Institute of Human Morphology, Ministry of Science and Higher Education RF, Tsurupi Street, 3, 117418 Moscow, Russia; (V.G.); (A.K.); (Y.K.); (N.B.); (S.S.)
| | - Nadezhda Besova
- Research Institute of Human Morphology, Ministry of Science and Higher Education RF, Tsurupi Street, 3, 117418 Moscow, Russia; (V.G.); (A.K.); (Y.K.); (N.B.); (S.S.)
| | - Rustam Berdiev
- Research and Educational Center for Wild Animal Rehabilitation, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Sergey Saveliev
- Research Institute of Human Morphology, Ministry of Science and Higher Education RF, Tsurupi Street, 3, 117418 Moscow, Russia; (V.G.); (A.K.); (Y.K.); (N.B.); (S.S.)
| |
Collapse
|
45
|
Wang B, Yasuda H. Relative Biological Effectiveness of High LET Particles on the Reproductive System and Fetal Development. Life (Basel) 2020; 10:E298. [PMID: 33233778 PMCID: PMC7699951 DOI: 10.3390/life10110298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
During a space mission, astronauts are inevitably exposed to space radiation, mainly composed of the particles having high values of linear energy transfer (LET), such as protons, helium nuclei, and other heavier ions. Those high-LET particles could induce severer health damages than low-LET particles such as photons and electrons. While it is known that the biological effectiveness of a specified type of radiation depends on the distribution of dose in time, type of the cell, and the biological endpoint in respect, there are still large uncertainties regarding the effects of high-LET particles on the reproductive system, gamete, embryo, and fetal development because of the limitation of relevant data from epidemiological and experimental studies. To safely achieve the planned deep space missions to the moon and Mars that would involve young astronauts having reproductive functions, it is crucial to know exactly the relevant radiological effects, such as infertility of the parent and various diseases of the child, and then to conduct proper countermeasures. Thus, in this review, the authors present currently available information regarding the relative biological effectiveness (RBE) of high-LET particles on the deterministic effects related to the reproductive system and embryonic/fetal development for further discussions about the safety of being pregnant after or during a long-term interplanetary mission.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Hiroshi Yasuda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
46
|
Zhao L, Bao C, Wang W, Mi D. New evidence and insight for abnormalities in early embryonic development after short-term spaceflight onboard the Chinese SJ-10 satellite. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:107-110. [PMID: 34756224 DOI: 10.1016/j.lssr.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/26/2020] [Indexed: 06/13/2023]
Abstract
During space travel, radiation and microgravity are recognized to be major hazardous factors in the overall health and well-being of astronauts. Although some efforts have been made to elucidate the effects of short-term space travel on the reproductive health of astronauts and multiple other species in a variety of in vitro and in vivo studies, it is still unclear whether space travel can cause abnormal embryonic development or if it poses any reproductive risks. Recently, Lei et al. (2020) investigated the effects of short-term spaceflight onboard the Chinese SJ-10 satellite on murine preimplantation embryonic development. In the article, the authors claimed that the developmental abnormalities after short-term spaceflight onboard the SJ-10 satellite were attributed to space radiation and that these alterations in space was equivalent to those induced by a 2 mGy dose of gamma-rays in a ground-based facility. In this commentary, we discuss the possible space environmental factors and associated mechanisms that contribute to abnormalities in early embryonic development, and the potential health risks to mammals after short-term space travel. This commentary provides new evidence and a fresh perspective on whether and how short-term space travel poses potential reproductive risks in mammals.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Chengyu Bao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China.
| |
Collapse
|
47
|
Badran BW, Caulfield KA, Cox C, Lopez JW, Borckardt JJ, DeVries WH, Summers P, Kerns S, Hanlon CA, McTeague LM, George MS, Roberts DR. Brain stimulation in zero gravity: transcranial magnetic stimulation (TMS) motor threshold decreases during zero gravity induced by parabolic flight. NPJ Microgravity 2020; 6:26. [PMID: 33024819 PMCID: PMC7505837 DOI: 10.1038/s41526-020-00116-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
We are just beginning to understand how spaceflight may impact brain function. As NASA proceeds with plans to send astronauts to the Moon and commercial space travel interest increases, it is critical to understand how the human brain and peripheral nervous system respond to zero gravity. Here, we developed and refined head-worn transcranial magnetic stimulation (TMS) systems capable of reliably and quickly determining the amount of electromagnetism each individual needs to detect electromyographic (EMG) threshold levels in the thumb (called the resting motor threshold (rMT)). We then collected rMTs in 10 healthy adult participants in the laboratory at baseline, and subsequently at three time points onboard an airplane: (T1) pre-flight at Earth gravity, (T2) during zero gravity periods induced by parabolic flight and (T3) post-flight at Earth gravity. Overall, the subjects required 12.6% less electromagnetism applied to the brain to cause thumb muscle activation during weightlessness compared to Earth gravity, suggesting neurophysiological changes occur during brief periods of zero gravity. We discuss several candidate explanations for this finding, including upward shift of the brain within the skull, acute increases in cortical excitability, changes in intracranial pressure, and diffuse spinal or neuromuscular system effects. All of these possible explanations warrant further study. In summary, we documented neurophysiological changes during brief episodes of zero gravity and thus highlighting the need for further studies of human brain function in altered gravity conditions to optimally prepare for prolonged microgravity exposure during spaceflight.
Collapse
Affiliation(s)
- Bashar W Badran
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Claire Cox
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - James W Lopez
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jeffrey J Borckardt
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA.,Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA.,Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - William H DeVries
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Philipp Summers
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Suzanne Kerns
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Colleen A Hanlon
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Lisa M McTeague
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA.,Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA.,Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA
| | - Donna R Roberts
- Department of Radiology, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
48
|
Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu C, Jin Y, Li H, Cui M, Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer 2020; 11:1801-1816. [PMID: 32374522 PMCID: PMC7327697 DOI: 10.1111/1759-7714.13450] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the leading cause of cancer-related death in women worldwide. Pre- and postoperative radiotherapy play a pivotal role in BRCA treatment but its efficacy remains limited and plagued by the emergence of radiation resistance, which aggravates patient prognosis. The long noncoding RNA (lncRNA)-implicated mechanisms underlying radiation resistance are rarely reported. The aim of this study was to determine whether lncRNA HOX transcript antisense RNA (HOTAIR) modulated the radiosensitivity of breast cancer through HSPA1A. METHODS A Gammacell 40 Exactor was used for irradiation treatment. Bioinformatic tools and luciferase reporter assay were adopted to explore gene expression profile and demonstrate the interactions between lncRNA, miRNA and target mRNA 3'-untranslated region (3'-UTR). The expression levels of certain genes were determined by real-time PCR and western-blot analyses. in vitro and in vivo functional assays were conducted by cell viability and tumorigenicity assays. RESULTS The levels of oncogenic lncRNA HOTAIR were positively correlated with the malignancy of BRCA but reversely correlated with the radiosensitivity of breast cancer cells. Moreover, the expression levels of HOTAIR were positively associated with those of heat shock protein family A (Hsp70) member 1A (HSPA1A) in clinical BRCA tissues and HOTAIR upregulated HSPA1A at the mRNA and protein levels in irradiated BRCA cells. Mechanistically, miR-449b-5p restrained HSPA1A expression through targeting the 3'-UTR of HSPA1A mRNA, whereas HOTAIR acted as a competing sponge to sequester miR-449b-5p and thereby relieved the miR-449b-5p-mediated HSPA1A repression. Functionally, HOTAIR conferred decreased radiosensitivity on BRCA cells, while miR-449b-5p overexpression or HSPA1A knockdown abrogated the HOTAIR-enhanced BRCA growth under the irradiation exposure both in vitro and in vivo. CONCLUSIONS LncRNA HOTAIR facilitates the expression of HSPA1A by sequestering miR-449b-5p post-transcriptionally and thereby endows BRCA with radiation resistance. KEY POINTS Therapeutically, HOTAIR and HSPA1A may be employed as potential targets for BRCA radiotherapy. Our findings shed new light into the mechanism by which lncRNAs modulate the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuxiao Jin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
49
|
Microgravity versus Microgravity and Irradiation: Investigating the Change of Neuroendocrine-Immune System and the Antagonistic Effect of Traditional Chinese Medicine Formula. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2641324. [PMID: 32566675 PMCID: PMC7273471 DOI: 10.1155/2020/2641324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022]
Abstract
During spaceflight, the homeostasis of the living body is threatened with cosmic environment including microgravity and irradiation. Traditional Chinese medicine could ameliorate the internal imbalance during spaceflight, but its mechanism is still unclear. In this article, we compared the difference of neuroendocrine-immune balance between simulated microgravity (S) and simulated microgravity and irradiation (SAI) environment. We also observed the antagonistic effect of SAI using a traditional Chinese medicine formula (TCMF). Wistar rats were, respectively, exposed under S using tail suspending and SAI using tail suspending and 60Co-gama irradiation exposure. The SAI rats were intervened with TCMF. The changes of hypothalamic–pituitary–adrenal (HPA) axis, splenic T-cell, celiac macrophages, and related cytokines were observed after 21 days. Compared with the normal group, the hyperfunction of HPA axis and celiac macrophages, as well as the hypofunction of splenic T-cells, was observed in both the S and SAI group. Compared with the S group, the levels of plasmatic corticotropin-releasing hormone (CRH), macrophage activity, and serous interleukin-6 (IL-6) in the SAI group were significantly reduced. The dysfunctional targets were mostly reversed in the TCMF group. Both S and SAI could lead to NEI imbalance. Irradiation could aggravate the negative feedback inhibition of HPA axis and macrophages caused by S. TCMF could ameliorate the NEI dysfunction caused by SAI.
Collapse
|
50
|
Lei X, Cao Y, Ma B, Zhang Y, Ning L, Qian J, Zhang L, Qu Y, Zhang T, Li D, Chen Q, Shi J, Zhang X, Ma C, Zhang Y, Duan E. Development of mouse preimplantation embryos in space. Natl Sci Rev 2020; 7:1437-1446. [PMID: 34691539 PMCID: PMC8288510 DOI: 10.1093/nsr/nwaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
The development of life beyond planet Earth is a long-standing quest of the human race, but whether normal mammalian embryonic development can occur in space is still unclear. Here, we show unequivocally that preimplantation mouse embryos can develop in space, but the rate of blastocyst formation and blastocyst quality are compromised. Additionally, the cells in the embryo contain severe DNA damage, while the genome of the blastocysts developed in space is globally hypomethylated with a unique set of differentially methylated regions. The developmental defects, DNA damage and epigenetic abnormalities can be largely mimicked by the treatment with ground-based low-dose radiation. However, the exposure to simulated microgravity alone does not cause major disruptions of embryonic development, indicating that radiation is the main cause for the developmental defects. This work advances the understanding of embryonic development in space and reveals long-term extreme low-dose radiation as a hazardous factor for mammalian reproduction.
Collapse
Affiliation(s)
- Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lina Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongcun Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Zhang
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 100049, China
| | - Dehong Li
- Division of Ionizing Radiation, National Institute of Metrology, Beijing 100029, China
| | - Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chiyuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|