1
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Xie Y, Zuo J, Ding A, Xiong P. Nanocatalytic NO gas therapy against orthotopic oral squamous cell carcinoma by single iron atomic nanocatalysts. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2368452. [PMID: 38993242 PMCID: PMC11238653 DOI: 10.1080/14686996.2024.2368452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has been being one of the most malignant carcinomas featuring high metastatic and recurrence rates. The current OSCC treatment modalities in clinics severely deteriorate the quality of life of patients due to the impaired oral and maxillofacial functions. In the present work, we have engineered the single-atom Fe nanocatalysts (SAF NCs) with a NO donor (S-nitrosothiol, SNO) via surface modification to achieve synergistic nanocatalytic NO gas therapy against orthotopic OSCC. Upon near-infrared laser irradiation, the photonic hyperthermia could effectively augment the heterogeneous Fenton catalytic activity, meanwhile trigger the thermal decomposition of the engineered NO donor, thus producing toxic hydroxyl radicals (•OH) and antitumor therapeutic NO gas at tumor lesion simultaneously, and consequently inducing the apoptotic cell death of tumors via mitochondrial apoptosis pathway. This therapeutic paradigm presents an effective local OSCC therapeutics in a synergistic manner based on the nanocatalytic NO gas therapy, providing a promising antitumor modality with high biocompatibility.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Ultrasound, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Jiaxin Zuo
- Department of Ultrasound, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Angang Ding
- Department of Ultrasound, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Ping Xiong
- Department of Ultrasound, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
3
|
Zhang Y, Zhang H, Zhao S, Qi Z, He Y, Zhang X, Wu W, Yan K, Hu L, Sun S, Tang X, Zhou Q, Chen F, Gu A, Wang L, Zhang Z, Yu B, Wang D, Han Y, Xie L, Ji Y. S-Nitrosylation of Septin2 Exacerbates Aortic Aneurysm and Dissection by Coupling the TIAM1-RAC1 Axis in Macrophages. Circulation 2024; 149:1903-1920. [PMID: 38357802 DOI: 10.1161/circulationaha.123.066404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and β-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Hao Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Zhenhua Qi
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Xuhong Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Wencheng Wu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Ke Yan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Lulu Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Xinlong Tang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (X.T., Q.Z., D.W.)
| | - Qing Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (X.T., Q.Z., D.W.)
| | - Feng Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
- Department of Forensic Medicine (F.C.), Nanjing Medical University, China
| | - Aihua Gu
- School of Public Health (A.G.), Nanjing Medical University, China
| | - Liansheng Wang
- Departments of Cardiology, First Affiliated Hospital of Nanjing Medical University, China (L.W.)
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Heilongjiang, PR China (Z.Z., Y.J.)
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Heilongjiang, China (B.Y.)
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (X.T., Q.Z., D.W.)
| | - Yi Han
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
- Gusu School, Nanjing Medical University, Suzhou, China (L.X., Y.J.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
- Gusu School, Nanjing Medical University, Suzhou, China (L.X., Y.J.)
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Heilongjiang, PR China (Z.Z., Y.J.)
| |
Collapse
|
4
|
Wei Z, Yang B, Wang H, Lv S, Chen H, Liu D. Caloric restriction, Sirtuins, and cardiovascular diseases. Chin Med J (Engl) 2024; 137:921-935. [PMID: 38527930 PMCID: PMC11046024 DOI: 10.1097/cm9.0000000000003056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT Caloric restriction (CR) is a well-established dietary intervention known to extend healthy lifespan and exert positive effects on aging-related diseases, including cardiovascular conditions. Sirtuins, a family of nicotinamide adenine dinucleotide (NAD + )-dependent histone deacetylases, have emerged as key regulators of cellular metabolism, stress responses, and the aging process, serving as energy status sensors in response to CR. However, the mechanism through which CR regulates Sirtuin function to ameliorate cardiovascular disease remains unclear. This review not only provided an overview of recent research investigating the interplay between Sirtuins and CR, specifically focusing on their potential implications for cardiovascular health, but also provided a comprehensive summary of the benefits of CR for the cardiovascular system mediated directly via Sirtuins. CR has also been shown to have considerable impact on specific metabolic organs, leading to the production of small molecules that enter systemic circulation and subsequently regulate Sirtuin activity within the cardiovascular system. The direct and indirect effects of CR offer a potential mechanism for Sirtuin modulation and subsequent cardiovascular protection. Understanding the interplay between CR and Sirtuins will provide new insights for the development of interventions to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Ziyu Wei
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Bo Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Huiyu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shuangjie Lv
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Houzao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Depei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
5
|
De Jesus DF, Zhang Z, Brown NK, Li X, Xiao L, Hu J, Gaffrey MJ, Fogarty G, Kahraman S, Wei J, Basile G, Rana TM, Mathews C, Powers AC, Parent AV, Atkinson MA, Dhe-Paganon S, Eizirik DL, Qian WJ, He C, Kulkarni RN. Redox regulation of m 6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes. Nat Cell Biol 2024; 26:421-437. [PMID: 38409327 PMCID: PMC11042681 DOI: 10.1038/s41556-024-01368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the destruction of pancreatic β-cells. Several observations have renewed the interest in β-cell RNA sensors and editors. Here, we report that N 6-methyladenosine (m6A) is an adaptive β-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in β-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hyper methylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-βH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in β-cells delayed diabetes progression in the non-obese diabetic mouse model of T1 D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human β-cells. Collectively, we report that m6A regulates the innate immune response at the β-cell level during the onset of T1D in humans.
Collapse
Affiliation(s)
- Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Natalie K Brown
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Garrett Fogarty
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Giorgio Basile
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tariq M Rana
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Clayton Mathews
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Alvin C Powers
- Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A Atkinson
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry, and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Filomeni G. 'NO-how' enzymatic S-nitrosylation controls insulin pathophysiology. Trends Endocrinol Metab 2024:S1043-2760(24)00039-0. [PMID: 38587367 DOI: 10.1016/j.tem.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024]
Abstract
Whether S-nitrosylation is the result of an unselective chemical process or enzymatically driven has been debated for years. A recent study by Zhou et al. identifies and characterizes the first S-nitroso-CoA (SNO-CoA)-assisted nitrosylase (SCAN) that catalyzes protein S-nitrosylation in mammals, including insulin receptor (INSR)/insulin receptor substrate 1 (IRS1), with implications for human metabolism.
Collapse
Affiliation(s)
- Giuseppe Filomeni
- Redox Biology, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Biology, Tor Vergata University, Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
7
|
Luo S, Ye D, Wang Y, Liu X, Wang X, Xie L, Ji Y. Roles of Protein S-Nitrosylation in Endothelial Homeostasis and Dysfunction. Antioxid Redox Signal 2024; 40:186-205. [PMID: 37742108 DOI: 10.1089/ars.2023.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danyu Ye
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
8
|
Zhou HL, Grimmett ZW, Venetos NM, Stomberski CT, Qian Z, McLaughlin PJ, Bansal PK, Zhang R, Reynolds JD, Premont RT, Stamler JS. An enzyme that selectively S-nitrosylates proteins to regulate insulin signaling. Cell 2023; 186:5812-5825.e21. [PMID: 38056462 PMCID: PMC10794992 DOI: 10.1016/j.cell.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zachary W Grimmett
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicholas M Venetos
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Colin T Stomberski
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zhaoxia Qian
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Precious J McLaughlin
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Puneet K Bansal
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rongli Zhang
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James D Reynolds
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Anesthesiology and Perioperative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
9
|
Lv D, Xu Z, Cheng P, Hu Z, Dong Y, Rong Y, Xu H, Wang Z, Cao X, Deng W, Tang B. S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation. BURNS & TRAUMA 2023; 11:tkad024. [PMID: 38116467 PMCID: PMC10729783 DOI: 10.1093/burnst/tkad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/15/2023] [Accepted: 04/03/2023] [Indexed: 12/21/2023]
Abstract
Background Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown. We aimed to discover the association between protein SNO and keloid formation. Methods Normal and keloid fibroblasts were isolated from collected normal skin and keloid tissues. The obtained fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The effects of DJ-1 on cell proliferation, apoptosis, migration and invasion, and on the expression of proteins were assayed. TurboID-based proximity labelling and liquid chromatography-mass spectrometry were conducted to explore the potential targets of DJ-1. Biotin-switch assays and transnitrosylation reactions were used to detect protein SNO. Quantitative data were compared by two-tailed Student's t test. Results We found that DJ-1 served as an essential positive modulator to facilitate keloid cell proliferation, migration and invasion. A higher S-nitrosylated DJ-1 (SNO-DJ-1) level was observed in keloids, and the effect of DJ-1 on keloids was dependent on SNO of the Cys106 residue of the DJ-1 protein. SNO-DJ-1 was found to increase the level of phosphatase and tensin homolog (PTEN) S-nitrosylated at its Cys136 residue via transnitrosylation in keloids, thus diminishing the phosphatase activity of PTEN and activating the PI3K/AKT/mTOR pathway. Furthermore, Cys106-mutant DJ-1 is refractory to SNO and abrogates DJ-1-PTEN coupling and the SNO of the PTEN protein, thus repressing the PI3K/AKT/mTOR pathway and alleviating keloid formation. Importantly, the biological effect of DJ-1 in keloids is dependent on the SNO-DJ-1/SNO-PTEN/PI3K/AKT/mTOR axis. Conclusions For the first time, this study demonstrated the effect of transnitrosylation from DJ-1 to PTEN on promoting keloid formation via the PI3K/AKT/mTOR signaling pathway, suggesting that SNO of DJ-1 may be a novel therapeutic target for keloid treatment.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Pu Cheng
- Department of General Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Yunxian Dong
- Department of Plastic Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, 466 Xingang Middle Road, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Hailin Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhiyong Wang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|
10
|
Guil-Luna S, Sanchez-Montero MT, Rodríguez-Ariza A. S-Nitrosylation at the intersection of metabolism and autophagy: Implications for cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189012. [PMID: 37918453 DOI: 10.1016/j.bbcan.2023.189012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Department of Comparative Anatomy and Pathology, Faculty of Veterinary Medicine of Córdoba, University of Córdoba, Córdoba, Spain
| | | | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
11
|
Armour SL, Stanley JE, Cantley J, Dean ED, Knudsen JG. Metabolic regulation of glucagon secretion. J Endocrinol 2023; 259:e230081. [PMID: 37523232 PMCID: PMC10681275 DOI: 10.1530/joe-23-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Since the discovery of glucagon 100 years ago, the hormone and the pancreatic islet alpha cells that produce it have remained enigmatic relative to insulin-producing beta cells. Canonically, alpha cells have been described in the context of glucagon's role in glucose metabolism in liver, with glucose as the primary nutrient signal regulating alpha cell function. However, current data reveal a more holistic model of metabolic signalling, involving glucagon-regulated metabolism of multiple nutrients by the liver and other tissues, including amino acids and lipids, providing reciprocal feedback to regulate glucagon secretion and even alpha cell mass. Here we describe how various nutrients are sensed, transported and metabolised in alpha cells, providing an integrative model for the metabolic regulation of glucagon secretion and action. Importantly, we discuss where these nutrient-sensing pathways intersect to regulate alpha cell function and highlight key areas for future research.
Collapse
Affiliation(s)
- Sarah L Armour
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| | - Jade E. Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - James Cantley
- Division of Cellular and systems medicine, School of Medicine, University of Dundee, UK
| | - E. Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
- Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center school of medicine, USA
| | - Jakob G Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| |
Collapse
|
12
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022; 23:ijms232214049. [PMID: 36430532 PMCID: PMC9692786 DOI: 10.3390/ijms232214049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.
Collapse
|
14
|
Chen X, Zou Z, Wang Q, Gao W, Zeng S, Ye S, Xu P, Huang M, Li K, Chen J, Zhong Z, Zhang Q, Hao B, Liu Q. Inhibition of NOS1 promotes the interferon response of melanoma cells. J Transl Med 2022; 20:205. [PMID: 35538490 PMCID: PMC9092760 DOI: 10.1186/s12967-022-03403-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Background NOS1 expression predicts poor prognosis in patients with melanoma. However, the molecular function of NOS1 in the type I IFN response and immune escape of melanoma is still unknown. Methods The CRISPR/Cas9 system was used to generate NOS1-knockout melanoma cells and the biological characteristics of NOS1-knockout cells were evaluated by MTT assay, clonogenic assay, EdU assay, and flow cytometric assay. The effect on tumor growth was tested in BALB/c-nu and C57BL/6 mouse models. The gene expression profiles were detected with Affymetrix microarray and RNA-seq and KEGG (Kyoto Encyclopedia of Genes and Genomes) and CLUE GO analysis was done. The clinical data and transcriptional profiles of melanoma patients from the public database TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus, GSE32611) were analyzed by Qlucore Omics Explorer. Results NOS1 deletion suppressed the proliferation of melanoma A375 cells in culture, blocked cell cycling at the G0/G1 phase, and decreased the tumor growth in lung metastasis nodes in a B16 melanoma xenograft mouse model. Moreover, NOS1 knockout increased the infiltration of CD3+ immune cells in tumors. The transcriptomics analysis identified 2203 differential expression genes (DEGs) after NOS1 deletion. These DEGs indicated that NOS1 deletion downregulated mostly metabolic functions but upregulated immune response pathways. After inhibiting with NOS1 inhibitor N-PLA, melanoma cells significantly increased the response to IFN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha $$\end{document}α by upregulation expression of IFN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha $$\end{document}α simulation genes (ISGs), especially the components in innate immune signaling, JAK-STAT, and TOLL-LIKE pathway. Furthermore, these NOS1-regulating immune genes (NOS1-ISGs) worked as a signature to predict poor overall survival and lower response to chemotherapy in melanoma patients. Conclusion These findings provided a transcriptional evidence of NOS1 promotion on tumor growth, which is correlated with metabolic regulation and immune escape in melanoma cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03403-w.
Collapse
Affiliation(s)
- Xi Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Zhiwei Zou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Wenwen Gao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Sisi Zeng
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Zhuo Zhong
- Guangzhou Hospital of integrated Traditional and West Medicine, Guangzhou, 510800, China
| | - Qianbing Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China. .,Pingshan District People's Hospital of Shenzhen, Shenzhen, 518118, China.
| |
Collapse
|
15
|
Premont RT, Singel DJ, Stamler JS. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol Aspects Med 2022; 84:101056. [PMID: 34852941 PMCID: PMC8821404 DOI: 10.1016/j.mam.2021.101056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The allosteric transition within tetrameric hemoglobin (Hb) that allows both full binding to four oxygen molecules in the lung and full release of four oxygens in hypoxic tissues would earn Hb the moniker of 'honorary enzyme'. However, the allosteric model for oxygen binding in hemoglobin overlooked the essential role of blood flow in tissue oxygenation that is essential for life (aka autoregulation of blood flow). That is, blood flow, not oxygen content of blood, is the principal determinant of oxygen delivery under most conditions. With the discovery that hemoglobin carries a third biologic gas, nitric oxide (NO) in the form of S-nitrosothiol (SNO) at β-globin Cys93 (βCys93), and that formation and export of SNO to dilate blood vessels are linked to hemoglobin allostery through enzymatic activity, this title is honorary no more. This chapter reviews evidence that hemoglobin formation and release of SNO is a critical mediator of hypoxic autoregulation of blood flow in tissues leading to oxygen delivery, considers the physiological implications of a 3-gas respiratory cycle (O2/NO/CO2) and the pathophysiological consequences of its dysfunction. Opportunities for therapeutic intervention to optimize oxygen delivery at the level of tissue blood flow are highlighted.
Collapse
Affiliation(s)
- Richard T Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - David J Singel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|