1
|
Cai YT, Liu YC, Gu YY, Zhu YQ, Liu YH, Chen J, Yang Y, Liu MX. Red fluorescent AIE bioprobes with a large Stokes shift for droplet-specific imaging and fatty liver diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125325. [PMID: 39490184 DOI: 10.1016/j.saa.2024.125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Lipid droplets (LDs) as spherical dynamic subcellular organelles, play an important role in various cellular functions such as protein degradation, lipid metabolism, energy storage, signal transduction, and membrane formation. Abnormal function of LDs will lead to a series of diseases and hence monitoring the status of LDs is particularly important. In this study, we synthesized a water-insoluble red fluorescent emitting small molecule fluorescent probe (TPE-TCF), which exhibited aggregation-induced emission (AIE) properties and enabled highly selective real-time imaging of LDs (Pearson's R value was 0.90). More interestingly, this probe was able to track the dynamic processes of LDs in living cells, including lipophagy, and monitor fatty liver disease in mice. Therefore, TPE-TCF with red fluorescence emission, good biocompatibility, large Stokes shift, AIE properties, LDs imaging, and fatty liver recognition capabilities can be practically used in more LDs-related diseases.
Collapse
Affiliation(s)
- Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ya-Qi Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yong-Hong Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China.
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Cai H, Shen J, Peng W, Zhang X, Wen T. Identification of SOX9-related prognostic DEGs and a prediction model for hepatitis C-induced early-stage fibrosis. Gene 2025; 937:149133. [PMID: 39622395 DOI: 10.1016/j.gene.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection induces liver inflammation, activating hepatic stellate cells (HSC) and advancing fibrosis. Studies have indicated that SOX9 overexpression is closely linked to HSC activation. The study aims to identify genes associated with SOX9 and search for potential targets for detecting and treating liver fibrosis. METHOD The dataset GSE15654, containing 216 biopsy samples from HCV-induced early-stage cirrhosis patients, was obtained from the GEO database. Prognostic genes were identified through differential gene analysis, LASSO, and Cox regression analyses. CIBERSORT analysis quantified infiltration levels across 22 immune cell types. Constructing a prognostic prediction model using screened genes and conducting preliminary validation using qRT PCR and RNA sequencing techniques. RESULTS Elevated SOX9 expression correlates with unfavorable outcomes in patients with early-stage liver fibrosis induced by HCV. We identified nine SOX9-related prognostic DEGs in our study. ADAMTS2, ARHGEF5, CCT8, ERG, LBH, FRMD6, INMT, and RASGRF2 were considered risk factors in the disease progression, while DHRS4 was considered a protective factor. SOX9 expression showed a positive correlation with mast cell infiltration, whereas ARHGEF5 and FRMD6 expressions were positively associated with M0 macrophage infiltration. Our combined model surpasses the commonly used APRI and FIB4 indicators in predicting patient prognosis. The testing of clinical samples also preliminarily validated our research results. CONCLUSION The prognostic model based on nine SOX9-related DEGs provides an effective tool for forecasting the progression and outcomes of liver fibrosis. This study introduces a new strategy for advancing liver fibrosis prediction and treatment.
Collapse
Affiliation(s)
- Haozheng Cai
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Junyi Shen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Wei Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Xiaoyun Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Tianfu Wen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China.
| |
Collapse
|
3
|
Yang Y, Li L, Fei J, Li Z. C2C12 myoblasts differentiate into myofibroblasts via the TGF-β1 signaling pathway mediated by Fibulin2. Gene 2025; 936:149048. [PMID: 39490650 DOI: 10.1016/j.gene.2024.149048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Myoblasts play a critical role in the regeneration of skeletal muscle following injury. It has been reported that local elevation of transforming growth factor-β1 (TGF-β1) after skeletal muscle injury induces differentiation of myoblasts into myofibroblasts. However, the mechanisms underlying this differentiation process remain incompletely understood. In this study, we found that Fibulin2 expression significantly increases in myoblasts in response to TGF-β1 stimulation. Elevated Fibulin2 levels enhance the expression of fibrotic markers. Conversely, downregulation of Fibulin2 in myoblasts inhibits the upregulation of fibrotic markers induced by TGF-β1 stimulation. Extracellular secretion of Fibulin2 activates the TGF-β1-Smad2 pathway, thereby promoting the upregulation of fibrotic markers. Hence, Fibulin2 and TGF-β1 form a positive feedback loop that facilitates differentiation of myoblasts into myofibroblasts.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing , PR China.
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
4
|
Cui X, Zhang R, Li Y, Li P, Liu Y, Yu X, Zhou J, Wang L, Tian X, Li H, Zhang S, Lan T, Li X, Zhang G, Li J, Liu Z. Bie Jia Jian pill ameliorates BDL-induced cholestatic hepatic fibrosis in rats by regulating intestinal microbial composition and TMAO-mediated PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118910. [PMID: 39369915 DOI: 10.1016/j.jep.2024.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a compound of traditional Chinese medicine (TCM), Bie Jia Jian pill (BJJP) is extensively used to treat the clinical chronic liver disease. Nevertheless, the specific mechanism through which BJJP affects hepatic fibrosis (HF) remains unknown. AIM OF THE STUDY To explore the role and potential mechanism of BJJP involved in treating HF. MATERIALS AND METHODS HF model of Sprague-Dawley (SD) rats was induced by a bile duct ligation (BDL). The function of BJJP involved in the intestinal microbiota (IM) and its metabolites in BDL-induced HF rats were explored through the 16S rRNA sequencing and untargeted metabolomics technologies. Network pharmacology was used to forecast mechanism underlying BJJP's anti-HF effects, which were validated in BDL-induced rats and trimethylamine N-oxide (TMAO)-induced LX-2 and HSC-T6 cells. RESULTS BJJP effectively ameliorated pathological liver damage, inflammation, and fibrosis of the BDL-induced HF rats. BJJP regulated IM diversity and composition and interfered with trimethylamine (TMA)-flavin monooxygenase 3 (FMO3)-TMAO process. In vitro, BJJP significantly inhibited the TMAO-induced activation of hepatic stellate cells (HSCs) (rat HSC cell line, HSC-T6; human HSC cell line, LX-2). Network pharmacology results demonstrated that PI3K/AKT signal pathway is crucially involved in BJJP treatment of HF. Further research revealed that BJJP inhibited the PI3K/AKT signal pathway in BDL-induced HF rats. Moreover, TMAO activated the PI3K/AKT pathway, whereas BJJP suppressed TMAO-induced activation. Subsequent intervention with 740Y-P (the PI3K agonist) successfully neutralized the repression effect on PI3K/AKT signal pathway by BJJP. CONCLUSION These results clearly show that BJJP attenuates HF by regulating the IM, as well as inhibiting PI3K/AKT pathway mediated by TMAO.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Hebei Provincial Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Ronghua Zhang
- Hebei Provincial Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yufeng Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan, 063001, China
| | - Ping Li
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063000, China
| | - Yankun Liu
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan, 063001, China
| | - Xiaohan Yu
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063000, China
| | - Jing Zhou
- Hebei Provincial Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Luyao Wang
- Hebei Provincial Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Xuetao Tian
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063000, China
| | - Hongjie Li
- Hebei Provincial Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Shukun Zhang
- Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Tao Lan
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou, 061000, China
| | - Xin Li
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou, 061000, China
| | - Guangling Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063000, China.
| | - Jingwu Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan, 063001, China.
| | - Zhiyong Liu
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063000, China.
| |
Collapse
|
5
|
Sun HM, Feng QY, Qin BF, Guo X, Liu XK, Song J, Shi LQ. Bruceine A attenuates fibrogenesis and inflammation through NR2F2-regulated HMGB1 inflammatory signaling cascades in hepatic fibrosis. Eur J Pharmacol 2025; 987:177164. [PMID: 39615868 DOI: 10.1016/j.ejphar.2024.177164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
This investigation explored the hepatoprotective capabilities of Bruceine A (BA) and its underlying mechanisms in mitigating hepatic fibrosis. Hepatic stellate cells (HSCs) and mouse primary hepatocytes were treated with TGF-β and subsequently exposed to BA. To assess the effects of BA on the NR2F2-HMGB1 signaling cascade, these cells underwent transfection with a siRNA vector targeting NR2F2. The interaction between NR2F2 and the HMGB1 promoter was elucidated using a dual luciferase assay. In vivo, C57BL/6 mice were treated with thioacetamide (TAA) to induce liver damage, followed by administration of BA. The study found that BA moderated extracellular matrix (ECM) buildup, epithelial-mesenchymal transition (EMT), and inflammatory mediator levels, while concurrently reducing NR2F2 and HMGB1 expression in activated HSCs. Furthermore, BA lessened pyroptosis in hepatocytes, curtailing the inflammatory response. The absence of NR2F2 in HSCs or hepatocytes hindered BA's inhibitory effect on this pathway. It was demonstrated that NR2F2 binds directly to the HMGB1 promoter. Treatment with BA resulted in diminished serum levels of ALT and AST, mitigated damage in hepatic tissues, and decreased the ECM and neutrophil extracellular traps (NETs), thus protecting hepatocytes from fibrosis. Furthermore, BA suppressed the synthesis of inflammatory mediators such as NLRP3, caspase-1, and IL-1β by blocking the NR2F2-driven HMGB1 pathway, markedly reversing hepatic fibrosis. These observations highlight the efficacy of BA as a viable therapeutic candidate for hepatic fibrosis.
Collapse
Affiliation(s)
- Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Xin Guo
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, China
| | - Xue-Kun Liu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China.
| | - Li-Qiang Shi
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| |
Collapse
|
6
|
Song J, Li N, Yang Y, Chen B, Hu J, Tian Y, Lin L, Qin Z. Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2025:110106. [PMID: 39755287 DOI: 10.1016/j.fsi.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue. Quantitative real-time PCR and western blotting confirmed that PHZ treatment significantly upregulated Real-time fluorescence quantitative PCR and western blot confirmed that PHZ treatment significantly up-regulated the expression of iron metabolism-related genes and proteins, including transferrin (Tf), ferritin, ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), nuclear receptor coactivator 4 (NCOA4), divalent metal transporter 1 (DMT1), and six-transmembrane epithelial antigen of prostate 3 (STEAP3). Further investigation of PHZ-induced hemolysis effects on tissues showed that inflammation- and antioxidant enzyme-related genes in the liver and head kidney were significantly upregulated, indicating that hemolysis activated the antioxidant system and intensified inflammatory responses. Perls' staining revealed iron deposition in the head kidney and liver at ten and fourteen days post-PHZ injection. Moreover, β-galactosidase staining and transmission electron microscopy showed increased cellular senescence and mitochondrial damage, respectively, as a result of PHZ-induced hemolysis. In vitro assays with hemin treatment demonstrated increased Fe2+ content in CIK and L8824 cells, which induced oxidative stress, upregulated iron metabolism and inflammatory genes, and ultimately led to cell death. These findings suggest that excessive Hb release during sustained hemolysis leads to iron overload, elevates reactive oxygen species production, disrupts antioxidant balance, and ultimately causes cellular damage.
Collapse
Affiliation(s)
- Jialing Song
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Ningjing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Yan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jiaxiang Hu
- SiChuan Water Conservancy Vocational College, Cheng Du, Si Chuan Province 610000, China
| | - Ye Tian
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China.
| |
Collapse
|
7
|
Yaribeygi H, Kashian K, Moghaddam KI, Karim SR, Bagheri N, Karav S, Jamialahmadi T, Rizzo M, Sahebkar A. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J Diabetes Complications 2025; 39:108928. [PMID: 39644538 DOI: 10.1016/j.jdiacomp.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Kiana Kashian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Narges Bagheri
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Zong J, Li Y, Zhou W, Mao M, Xu X, Cai S, Li M, Ding K. The structure elucidation and alleviating effect on liver fibrosis in vivo of a pectin-like polysaccharide isolated from Buddleja officinalis. Int J Biol Macromol 2025; 284:137936. [PMID: 39579817 DOI: 10.1016/j.ijbiomac.2024.137936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Buddleja officinalis has been used as a traditional Chinese medicine for years. Although evidence has demonstrated it can enhance liver function, the active material basis remains unknown. We hypothesize polysaccharides from Buddleja officinalis may be the active material against liver disease. Herein, we elucidated the structure of a novel pectin-like polysaccharide designed BOM0.05S2 with a molecular weight of 13.6 kDa. Combined with endo-1, 4-β-Mannanase degradation, we found its backbone consists of alternate 1, 2, 4-linked α-Rhap and 1, 4-linked α-GalpA (RG-I type pectin) and mannoglucan, with branches of 1, 4-, 1, 6- and 1, 3, 6-linked β-Galp, T-, 1, 5- and 1, 3, 5-linked α-Araf, T-linked β-Manp and T-linked α-Glcp substituted at C-4 of 1, 2, 4-linked α-Rhap and C-6 of 1, 4, 6-linked α-Glcp. As speculated, BOM0.05S2 showed a significant improvement on carbon tetrachloride (CCl4)-induced liver damage in mice. Bioactivity test showed that BOM0.05S2 reduced AST, ALT and four indexes of liver fibrosis including LN, HA, IV-C, PC-III. Further, we demonstrated that BOM0.05S2 attenuated the collagenous fiber and α-SMA in liver. These findings highlight the potential of BOM0.05S2 as a lead compound for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jianing Zong
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China
| | - Yun Li
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wanqi Zhou
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai, China
| | - Mengfei Mao
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xin Xu
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Simin Cai
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng, Henan Province 475004, China
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai, China.
| |
Collapse
|
9
|
Bae AN, Lee H, Yang H, Mukherjee S, Im SS, Lee JH, Park JH. Enhancing Regulatory T cell function by mevalonate pathway inhibition prevents liver fibrosis. Biochem Biophys Res Commun 2025; 742:151094. [PMID: 39632293 DOI: 10.1016/j.bbrc.2024.151094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Liver fibrosis is a well-established risk factor for liver cancer development. Despite extensive mechanistic studies on liver fibrosis, the role of the immune cell network in fibrotic disease remains poorly understood. In this study, we demonstrate that regulatory T cells (Tregs) are involved in preventing liver fibrosis by regulating the mevalonate pathway. Blocking the mevalonate pathway increased the granzyme B secretion from Tregs, while restoring the pathway reduced it. Statin treatment, which inhibits the mevalonate pathway, alleviated liver fibrosis progression and enhanced the immunosuppressive function of Tregs in vivo. Mechanistically, mevalonate products, including geranylgeranyl pyrophosphate, inhibited the phosphorylation and activation of LKB1, that is a key regulator of Treg homeostasis. Furthermore, these products disrupted the interaction between LKB1 and cAMP-dependent protein kinase (PKA), leading to further reduction of LKB1 phosphorylation. These findings suggest that targeting LKB1 in Tregs through statin treatment prevents the progression of liver fibrosis, offering a promising and safe therapeutic strategy for liver disease and liver cancer.
Collapse
Affiliation(s)
- An-Na Bae
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Hajin Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Huiseong Yang
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Sulagna Mukherjee
- Department of Physiology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Seung-Soon Im
- Department of Physiology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jong Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea.
| |
Collapse
|
10
|
Du J, Zhang K, Miao J, Yang Y, Tian Y, Wu T, Tao C, Wang Y, Yang S. Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs. Life Sci 2024; 362:123337. [PMID: 39734013 DOI: 10.1016/j.lfs.2024.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
AIMS This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis. MATERIALS AND METHODS The triple-transgenic (PNPLA3I148M-GIPRdn-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials. The transcriptome, metabolome, and lipidome were used to investigate the molecular mechanisms of the liver in pigs. KEY FINDINGS The TG2 pigs presented mild metaflammation and insulin resistance (IR) which was similar to WT12 pigs. Compared with the other three groups, the TG12 pigs presented severe hepatocyte ballooning, fat deposition, and portal area fibrosis. The transcriptome data suggested that the TG2 pigs presented upregulated gene expression in the extracellular matrix (ECM). The TG12 pigs presented more severe metaflammation and exhibited imbalanced glycolipid metabolism. Interestingly, genes such as ETNPPL, GABBR2, and BMP8B might be key regulatory targets for liver injury. The metabolome and lipidome suggested that long-chain polyunsaturated fatty acids (LCPUFAs) and phospholipids with corresponding LCPUFAs were remodelled. Importantly, bis(monoacylglycerol) phosphates (BMPs) and sulfatides (SLs) could be the key regulatory metabolites in liver injury. SIGNIFICANCE ETNPPL, GABBR2, and BMP8B might be potential therapeutic targets for liver injury. BMPs and SLs might be biomarkers for the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuying Tian
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
11
|
Fan J, Xiao Z, Dong Y, Ye F, Qiu Y, Zhang C, Yin X, Li Y, Wang T. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater 2024:e2402933. [PMID: 39723654 DOI: 10.1002/adhm.202402933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Hepatic diseases cause serious public health problems worldwide, and there is an urgent need to develop effective therapeutic agents. In recent years, significant progress is made in RNA therapy, and RNA molecules, such as mRNAs, siRNAs, miRNAs, and RNA aptamers, are shown to provide significant advantages in the treatment of hepatic diseases. However, the drawbacks of RNAs, such as their poor biological stability, easy degradation by nucleases in vivo, low bioavailability, and low concentrations in target tissues, significantly limit the clinical application of RNA-based drugs. Therefore, exploring and developing effective nanoscale delivery platforms for RNA therapeutics are of immense value. This review focuses on the different types of hepatic diseases and RNA therapeutics, summarizing various nanoscale delivery platforms and their strengths and weaknesses. Finally, the current status and future prospects of nanoscale delivery systems for RNA therapy are discussed.
Collapse
Affiliation(s)
- Jinhui Fan
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Zhicheng Xiao
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Fei Ye
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Chuan Zhang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Xiaolan Yin
- Cancer center, Shanghai 411 hospital, China RongTong Medical Healthcare Group Co. Ltd./411 Hospital, Shanghai University, Shanghai, 200081, China
| | - Yi Li
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
12
|
Du Y, Shuai R, Luo S, Jin Y, Xu F, Zhang J, Liu D, Feng L. Exploring the molecular mechanism of estrogen therapy effectiveness after TCRA in IUA patients at single-cell level. Biol Direct 2024; 19:142. [PMID: 39722036 DOI: 10.1186/s13062-024-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a common cause of clinically refractory infertility, and there exists significant heterogeneity in the treatment outcomes among IUA patients with the similar severity after transcervical resection of adhesion(TCRA). The underlying mechanism of different treatment outcomes occur remains elusive, and the precise contribution of various cell subtypes in this process remains uncertain. RESULTS Here, we performed single-cell transcriptome sequencing on 10 human endometrial samples to establish a single-cell atlas differences between patients who responded to estrogen therapy and those who did not. The results showed increased infiltration of immune cells such as monocyte macrophages, T cells, and natural killer (NK) cells in patients who did not respond to estrogen therapy. Our findings indicate that distinct fibroblast subsets are implicated in the modulation of the Wnt, Hippo, and Hedgehog signaling pathways, as evidenced by functional enrichment analyses. This may have implications for the therapeutic efficacy in patients with IUA. Furthermore, we delineated the markers and transcriptional status of different macrophage subsets and identified two cell clusters, CXCL10high and CCL4L2high macrophage subsets, which are intimately associated with inflammation and fibrosis. The state of fibrosis and inflammatory response in human endometrial tissues with disparate treatment outcomes is revealed, and providing evidence to clarify the underlying determinants of sensitivity to estrogen therapy. CONCLUSIONS We described the transcriptional status of different cell subtypes in the two groups of patients, providing new ideas for exploring the molecular mechanism of the difference in the effectiveness of estrogen therapy in patients, and providing theoretical basis for providing precise and individualized treatment plans for IUA patients.
Collapse
Affiliation(s)
- Yue Du
- Department of Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ruzhen Shuai
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Sang Luo
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yiran Jin
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Fengjuan Xu
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jingyi Zhang
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Dan Liu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Limin Feng
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
13
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Zhou P, Yang L, Li H, Zeng L, Zhang Y, Zhong Z, Li R, Yin Y, Tao K, Zhang P. IRG1/Itaconate inhibits hepatic stellate cells ferroptosis and attenuates TAA-induced liver fibrosis by regulating SLC39A14 expression. Int Immunopharmacol 2024; 146:113945. [PMID: 39724735 DOI: 10.1016/j.intimp.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to elucidate the protective roles of Immune Response Gene-1 (IRG1) and exogenous itaconate in murine models of hepatic fibrosis and to delineate the underlying mechanistic pathways using both wild-type and IRG1-deficient (IRG1-/-) mice. Primary murine stellate cells (mHSC) and bone marrow-derived macrophages (BMDM) were isolated and cocultured. Hepatocellular fibrosis was induced in vitro using Transforming Growth Factor-beta (TGF-β) to evaluate the protective efficacy of IRG1/itaconate. Histopathological damage in the hepatic tissues was assessed using Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius red staining, followed by hepatic fibrosis scoring. The levels of released inflammatory cytokines were quantified using enzyme-linked immunosorbent assay (ELISA) kits. Immunohistochemistry was used to detect 4-Hydroxynonenal (4-HNE) levels and Perls staining was used to assess ferroptosis. RNA sequencing and gene enrichment analyses were performed to identify implicated molecular entities and signaling pathways. IRG1 and SLC39A14 knockdown and overexpression cell lines were generated. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to measure the mRNA and protein expression levels in hepatic tissues and cells. Kits were used to assess reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the concentrations of liver enzymes, iron, GSH, and GSSG within hepatic tissues and cells.4-octyl itaconate (4-OI) significantly attenuated the histopathological damage in hepatic tissues, preserved the normal hepatic function, effectively reduced the release of inflammatory cytokines, and mitigated oxidative stress markers such as ROS and MDA in Thioacetamide (TAA)-induced fibrotic mice. Notably, this study is the first to reveal the pivotal role of SLC39A14 in the pathogenesis of hepatic fibrosis in murine models and elucidate how IRG1/itaconate mediates downstream ferroptosis-related signaling pathways by targeting SLC39A14, thereby inhibiting ferroptosis-induced hepatic fibrosis. IRG1/itaconate can alleviate the TAA-induced hepatic fibrosis in mice by regulating the expression of SLC39A14, consequently suppressing hepatic stellate cell ferroptosis.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Yang
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhuo Zhang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ziyou Zhong
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
Zhu Y, Cao C, Li Z, Xu Z, Qian S, Zhang J, Li M, Hu X, Zhang A, Du N, Pan X, Wang X, Sun Y, Wang J, Huang Y. ASIC1a regulates ferroptosis in hepatic stellate cells via the Hippo/Yap-1 pathway in liver fibrosis. Int Immunopharmacol 2024; 143:113226. [PMID: 39353388 DOI: 10.1016/j.intimp.2024.113226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Liver fibrosis is a sustained process of liver tissue damage and repair caused by various physiological and pathological factors, with the activation and proliferation of hepatic stellate cells being central. Therefore, understanding and clarifying the relevant mechanisms of hepatic stellate cell activation and death is of great clinical significance for the treatment of liver fibrosis diseases. METHODS In vivo, recombinant adeno-associated virus was used to infect the liver of experimental mice, overexpressing ASIC1a, and based on this, a liver fibrosis model treated with sorafenib was constructed. In vitro, using RNA plasmid technology to transfect HSC-T6 cells, ASIC1a was overexpressed or silenced in the cells, and on this basis, PDGF-BB and Sorafenib were used to stimulate HSC-T6 cells, causing activated HSC-T6 to undergo ferroptosis. RESULTS The ferroptosis inducers Sorafenib and erastin can induce ferroptosis in HSCs, effectively inhibiting or reversing the progression of liver fibrosis. We found that the expression level of ASIC1a was significantly reduced in the livers of mice with liver fibrosis treated with Sorafenib. After treatment with an adeno-associated virus overexpressing ASIC1a, the therapeutic effect of Sorafenib was inhibited, and the level of ferroptosis induced by Sorafenib was also inhibited. The induction of ferroptosis in hepatic stellate cells in vitro depends on the presence of ASIC1a. By further exploring the potential mechanism, we observed that the overexpression of ASIC1a can promote an increase in YAP nuclear translocation, thereby regulating the activity of Hippo/YAP pathway signaling. After treatment with Sorafenib, the influx of Ca2+ significantly increased when ASIC1a was overexpressed, and BAPTA-AM intervention eliminated the intracellular Ca2+ accumulation induced by ASIC1a overexpression. CONCLUSIONS This indicated that the activation of YAP depends on the calcium ion influx induced by ASIC1a, which regulates ferroptosis in hepatic stellate cells by regulating the calcium ion-dependent Hippo/YAP pathway.
Collapse
Affiliation(s)
- Yueqin Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Chun Cao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Mengxue Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Du
- Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Xuesheng Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinchen Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Yancai Sun
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Yang Y, Liu Y, Cheng Y, He H, Liang A, Pan Z, Liu Y, Chen Z. Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism. J Transl Med 2024; 22:1138. [PMID: 39716274 DOI: 10.1186/s12967-024-05955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear. METHODS This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests. The anti-fibrosis mechanism of MESB was investigated using qPCR, Western blotting, RNA interference, proteomics, and metabolomics. Spatial metabolomics identified key components of MESB in liver tissue, while molecular docking determined their targets. RESULTS Treatment with MESB alleviated hepatic pathological changes and reversed hepatic fibrosis in the CCl4-induced models, as evidenced by decreased collagen fibers deposition, reduced expression of hepatic fibrosis markers COL1A1, FN, and PAI-1, and lowered serum levels of AST and ALT. In vitro, MESB inhibited the proliferation of LX-2 cells and the expression of hepatic fibrosis markers. Furthermore, MESB intervention modulated various pathways, particularly those involved in metabolic pathways. Subsequent metabolomics analysis demonstrated that MESB disrupted glycerophospholipid metabolism and suppressed arachidonic acid metabolism. MESB downregulated the expression of cPLA2 in LX-2 cells, leading to decreased production of arachidonic acid and its downstream inflammatory mediators. Meanwhile, MESB inhibited the expression of cPLA2 and its downstream NF-κB pathway in the liver tissues of models induced by CCl4. Additionally, silencing cPLA2 markedly reduced the expressions of COL1A1, FN, and PAI-1. Spatial metabolomics analysis confirmed the penetration of baicalein, wogonin and wogonoside into liver tissue. Further results indicated that baicalein and wogonin inhibited the expression of cPLA2, while baicalin and wogonoside do not exhibit this effect. Moreover, molecular docking suggested that baicalein and wogonin possess the potential to directly interact with cPLA2. CONCLUSION This study reveals that MESB is crucial in preventing hepatic fibrosis via the cPLA2-mediated arachidonic acid metabolic pathway, highlighting its key active components as potential drugs for fibrosis treatment.
Collapse
Affiliation(s)
- Yunheng Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yujie Cheng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Honglin He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Liang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Pan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
17
|
Abdelrahman RS, Elnfarawy AA, Nashy AE, Abdelsalam RA, Zaghloul MS. Targeting angiogenic and proliferative mediators by montelukast & trimetazidine Ameliorates thioacetamide-induced liver fibrosis in rats. Toxicol Appl Pharmacol 2024; 495:117208. [PMID: 39716576 DOI: 10.1016/j.taap.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Liver fibrosis is a significant health complication with the potential to result in serious mortality and morbidity. However, there is no standard treatment due to its complex pathogenesis. The drug montelukast reversibly and selectively antagonizes the cysteinyl-leukotrienes-1 receptor and reduces inflammation; thus, it is used in the treatment of asthma. Trimetazidine, an anti-anginal agent, selectively inhibits the activity of mitochondrial long-chain 3-ketoacyl-CoA thiolase, inhibition of free fatty acid (FFA) oxidation. This study explores the efficacy of montelukast (5 and 10 mg/kg) and trimetazidine (10-20 mg/kg) against liver fibrosis induced by thioacetamide (TAA) in rats. Impaired liver function tests were significantly improved by montelukast and trimetazidine. The antioxidant and anti-inflammatory effects of montelukast and trimetazidine were proved by the inhibition of malondialdehyde (MDA) and nitric oxide (NO) accumulation, with elevation of glutathione (GSH) and superoxide dismutase activity, decreased heat shock protein (HSP-70) expression, and a decline in interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels in liver tissue. Also, the antifibrotic effects were explored by reducing levels of hydroxyproline and alpha-smooth muscle actin (α-SMA) expression in liver tissue and attenuating hepatic expression of hepatic expression of angiogenic mediator vascular endothelium growth factor (VEGF) and proliferative mediator Antigen Kiel 67 (Ki-67).
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia.
| | - Ahmed A Elnfarawy
- Biotechnology Lab, Central Administration of Biological and Innovative Products and Clinical Studies, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Ramy A Abdelsalam
- Lecturer of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
18
|
Tsuchiya Y, Nishina T, Komazawa-Sakon S, Seki T, Mikami T, Nakano H. Interleukin-11 signaling plays limited roles for liver fibrosis in a mouse model of metabolic dysfunction-associated steatohepatitis. Biochem Biophys Res Commun 2024; 739:150938. [PMID: 39536410 DOI: 10.1016/j.bbrc.2024.150938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Liver fibrosis, an abnormal accumulation of collagen fibers in the liver, is caused due to several chronic liver diseases including viral hepatitis, alcoholic steatohepatitis, and metabolic dysfunction-associated steatohepatitis. Among the various symptoms of chronic hepatitis, liver fibrosis is the most crucial factor in determining patient prognosis. Extensive liver fibrosis leads to cirrhosis and liver cancer and shortens the lifespans of patients. However, no drug is currently approved for the treatment of liver fibrosis. Therefore, the identification of molecular mechanisms and druggable targets of liver fibrosis is urgently needed. Interleukin-11 is a member of the interleukin-6 family of inflammatory cytokines that is involved in multiple processes of inflammation and tissue repair. Recent reports also suggest the pro-fibrogenic function of interleukin-11 in various organs. In this study, we examined the fibrogenic potential of interleukin-11 in the liver using a choline-deficient, amino acid-defined high-fat diet, a mouse model of metabolic dysfunction-associated steatohepatitis that rapidly develops liver fibrosis. Although interleukin-11 was specifically upregulated in the liver in this pathological model, the loss of interleukin-11 signaling played minor roles in liver injury, inflammation, fibrosis, and signal transduction pathways. Our results indicate that the pro-fibrogenic function of interleukin-11 may vary among organs and disease etiologies.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan; Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, 274-8510, Japan.
| | - Takashi Nishina
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Takao Seki
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Tetuo Mikami
- Department of Pathology, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
19
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
20
|
Dai J, Li H, Gou L, Tian Y, Cheng C, Yuan F, Xie J, Zhang L, Ji J, Zhang L, Wang X. Mechanistic Study of Purple Sweet Potato Anthocyanins: Multifaceted Anti-Fibrotic Effects and Targeting of PDGFRβ in Liver Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27861-27875. [PMID: 39626114 DOI: 10.1021/acs.jafc.4c05796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The purple sweet potato anthocyanins (PSPA) are known for their diverse health benefits, yet their hepatoprotective effects and the mechanisms by which they combat liver fibrosis have not been thoroughly investigated. This study aimed to elucidate these effects by employing a carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis. We conducted a comprehensive analysis of the effects of PSPA on liver injury, oxidative stress, inflammation, and fibrosis-related signaling pathways. Our results demonstrate that PSPA can mitigate liver damage in mice, regulate key antioxidant enzymes such as catalase and SOD, and reduce oxidative stress as indicated by lowered MDA levels. PSPA also decrease the expression of inflammatory proteins, including CD3, CD4, CD45, IL-1β, TNF-α, and IL-17A, and reduce the accumulation of fibrotic markers like type I and III collagens and α-SMA. Additionally, PSPA have demonstrated the ability to inhibit key fibrogenic signaling proteins, including TGFβR2, p-Smad2, p-Smad3, p-PDGFRβ, p-AKT, p-ERK1/2, p-JNK1/2, and p-p38. Furthermore, we identified two potent monomers, PSPA-1 and PSPA-2, which directly target the PDGFRβ, a key player in fibrosis. The mechanism of action involves the inhibition of PDGF-B binding to PDGFRβ, thus disrupting the PDGF-B/PDGFRβ signaling pathway. These findings suggest that the hepatoprotective and antifibrotic effects of PSPA are due to their multifunctional bioactivities and the presence of specific active components that can effectively target fibrogenic protein.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, China
| | - Huansong Li
- Department of General Surgery of XuZhou Central Hospital, XuZhou Clinical School of Xuzhou Medical University, XuZhou 221009, Jiangsu, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, Jiangsu, China
| | - Yuanzhi Tian
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Chao Cheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Fukang Yuan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jun Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Lidan Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jia Ji
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221009, Jiangsu, China
| | - Liming Zhang
- Institute of Field Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Xingqi Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, China
| |
Collapse
|
21
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
22
|
Martín-Escolano R, Virseda-Berdices A, Berenguer J, González-García J, Brochado-Kith O, Fernández-Rodríguez A, Díez C, Hontañon V, Resino S, Jiménez-Sousa MÁ. Immune checkpoint proteins are associated with persistently high liver stiffness after successful HCV treatment in people with HIV: a retrospective study. Front Immunol 2024; 15:1505864. [PMID: 39742264 PMCID: PMC11686224 DOI: 10.3389/fimmu.2024.1505864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Various immune checkpoint proteins have been linked to cirrhosis. This study aimed to explore the association between plasma levels of these proteins measured one year after successful HCV treatment and persistently liver stiffness (defined as liver stiffness measurement (LSM) ≥ 12.5 kPa) five years after HCV treatment in people with HIV (PWH). We conducted a retrospective study involving 39 patients with HIV/HCV-coinfection who had advanced fibrosis or cirrhosis and achieved sustained virologic response (SVR). Plasma samples were obtained one year after treatment, and levels of immune checkpoints along with inflammatory biomarkers were evaluated using a Luminex 200TM analyzer. Statistical analyses were performed using Generalized Linear Models (GLMs) with a gamma distribution. Spearman correlation tests were used to analyze the correlation between significant immune checkpoints and inflammatory biomarkers. Although LSM values showed a decreasing trend over the years following successful HCV treatment, this trend was not statistically significant due to substantial variability among PWH. Persistently high liver stiffness was observed in 61.5% of patients five years after HCV treatment. Elevated plasma levels of soluble BTLA, PD-1, and TIM-3 one year after HCV treatment were associated with persistently liver stiffness five years later. These significant immune checkpoints were found to correlate with inflammatory biomarkers in PWH with persistently high liver stiffness. In conclusion, increased plasma concentrations of immune checkpoints one year after successful HCV therapy were linked to persistently high liver stiffness five years later, particularly BTLA, PD-1, and TIM-3. This suggests a potential immunopathological mechanism in ongoing liver stiffness post-HCV eradication.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Victor Hontañon
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
23
|
Yousefi Z, Nourbakhsh M, Sahebghadam Lotfi A. Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. DNA Cell Biol 2024. [PMID: 39681345 DOI: 10.1089/dna.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Liver fibrosis (LF) is a clinical disorder characterized by inflammation and excessive accumulation of extracellular matrix (ECM). This study investigates the effects of the antifibrotic compound pirfenidone (PFD) on improving LF through histological changes and modulation of eukaryotic translation initiation factor 6 (eIF6), P311, and transforming growth factor beta (TGF-β) in rats with bile duct ligation (BDL)-induced LF. Rats received daily doses of PFD (200 and 500 mg/kg) for 4 weeks. The study encompassed biochemical, pathological, and immunohistochemical (IHC) analyses. mRNA levels of eIF6, P311, TGF-β, ECM deposition, hepatic stellate cell (HSC) activation, and inflammatory mediator genes were measured by RT-qPCR. Protein levels of eIF6, P311, and TGF-β were detected by western blotting. Compared with the BDL group, PFD dose-dependently reduced hydroxyproline content, liver index, biochemical parameters, fibrosis score, and fibrosis area. PFD also modulated BDL-induced hepatic inflammation, ECM accumulation, and HSC activation. IHC staining of Ki-67 and hepatocyte paraffin-1 revealed that PFD enhanced liver regeneration. The research confirmed that PFD gradually downregulated elevated eIF6, P311, and TGF-β levels in BDL-induced LF. These findings suggest that PFD could be a potential treatment for LF, as it may help attenuate fibrosis and enhance liver regeneration, possibly through the modulation of these specific markers.
Collapse
Affiliation(s)
- Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Dai W, Wu J, Li K, Xu Y, Wang W, Xiao W. Andrographolide: A promising therapeutic agent against organ fibrosis. Eur J Med Chem 2024; 280:116992. [PMID: 39454221 DOI: 10.1016/j.ejmech.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Fibrosis is the terminal pathology of chronic illness in many organs, marked by excessive accumulation of extracellular matrix proteins. These changes influence organ function, ultimately resulting in organ failure. Although significant progress has been achieved in comprehending the molecular pathways responsible for fibrosis in the last decades, effective and approved clinical therapies for the condition are still lacking. Andrographolide is a diterpenoid isolated and purified mainly from the aboveground parts of the Andrographis paniculata plant, which possesses good effects of purging heat, detoxifying, antibacterial and anti-inflammatory. In-depth research has gradually confirmed the anticancer, antioxidant, antiviral and other effects of Andro so that it can play a preventive and therapeutic role in various diseases. Over the past few years, an increasing number of research findings have indicated that Andro exerts antifibrotic effects in various organs by acting on transforming growth factor-β/small mother against decapentaplegic protein, mitogen-activated protein kinases, nuclear factor-E2-related factor 2, nuclear factor kappa-B and other signalling molecules to inhibit inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and collagen buildup. This review presents a compilation of findings regarding the antifibrotic impact of Andro in tissue and cell models in vitro and in vivo. Emphasis is placed on the potential therapeutic benefits of Andro in diseases related to organ fibrosis. Existing studies and cutting-edge technologies on Andro pharmacokinetics, toxicity and bioavailability are briefly discussed to provide evidence for accelerating its clinical conversion and adoption.
Collapse
Affiliation(s)
- Wei Dai
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Yingying Xu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Research Institute for Biology and Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
25
|
Liu MK, Tang JJ, Li H, Chen XY, Cai JL, Lin GY, Chen KY, Liu ZP, Ji XF, Yang ZJ, Li Z. Artemisitene ameliorates carbon tetrachloride-induced liver fibrosis by inhibiting NLRP3 inflammasome activation and modulating immune responses. Int Immunopharmacol 2024; 146:113818. [PMID: 39681062 DOI: 10.1016/j.intimp.2024.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Artemisitene (ATT), an artemisinin (ART) analog retaining the endoperoxide moiety and incorporating an additional α, β-unsaturated carbonyl structure, exhibits enhanced biological activities. However, its therapeutic effects on liver fibrosis remain unclear. In this study, we demonstrated that ATT significantly alleviated liver inflammation and fibrosis induced by carbon tetrachloride (CCL4) in mice. ATT treatment markedly reduced the count of neutrophils in the liver, as well as macrophages in both the liver and spleen. Additionally, the frequencies of Th2 and Th17 cells were significantly lowered, while Th1 cells frequency and the Th1/Th2 index were notably increased. The frequency of ILC2 cells, correlated with ST2 and IL-33 expression levels, was also significantly lowered. Consistently, ATT inhibited NLRP3 inflammasome activation, which was positively associated with AST and ALT levels, and with the count of Neutrophils, macrophages, and ILC2 cells, but negatively correlated with Th1frequeny. Furthermore, liver fibrosis severity showed a significant positive correlation with neutrophil and Th17 cell counts in the liver, and a negative correlation with Th1 cell count and the Th1/Th2 index. Therefore, ATT alleviated CCL4-induced mice liver fibrosis through NLRP3 inflammasome inhibition and immunomodulation.
Collapse
Affiliation(s)
- Meng-Ke Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Juan-Juan Tang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hao Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xu-Yang Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jun-Ling Cai
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Gui-Ying Lin
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Kan-Yao Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Clinical Laboratory, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Zhi-Peng Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Affiliated Qingyuan Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - Xiao-Fang Ji
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhong-Jin Yang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
26
|
Zhao H, Liu Z, Chen H, Han M, Zhang M, Liu K, Jin H, Liu X, Shi M, Pu W, Werner M, Meister M, Kauschke SG, Sun R, Wang J, Shen R, Wang QD, Ma X, Tchorz JS, Zhou B. Identifying specific functional roles for senescence across cell types. Cell 2024; 187:7314-7334.e21. [PMID: 39368477 DOI: 10.1016/j.cell.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Cellular senescence plays critical roles in aging, regeneration, and disease; yet, the ability to discern its contributions across various cell types to these biological processes remains limited. In this study, we generated an in vivo genetic toolbox consisting of three p16Ink4a-related intersectional genetic systems, enabling pulse-chase tracing (Sn-pTracer), Cre-based tracing and ablation (Sn-cTracer), and gene manipulation combined with tracing (Sn-gTracer) of defined p16Ink4a+ cell types. Using liver injury and repair as an example, we found that macrophages and endothelial cells (ECs) represent distinct senescent cell populations with different fates and functions during liver fibrosis and repair. Notably, clearance of p16Ink4a+ macrophages significantly mitigates hepatocellular damage, whereas eliminating p16Ink4a+ ECs aggravates liver injury. Additionally, targeted reprogramming of p16Ink4a+ ECs through Kdr overexpression markedly reduces liver fibrosis. This study illuminates the functional diversity of p16Ink4a+ cells and offers insights for developing cell-type-specific senolytic therapies in the future.
Collapse
Affiliation(s)
- Huan Zhao
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zixin Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Chen
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Maoying Han
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hengwei Jin
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuxiu Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mengyang Shi
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus Werner
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Meister
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan G Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Jinjin Wang
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xin Ma
- Department of Pharmacology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Bin Zhou
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
27
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410416. [PMID: 39665319 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ya Li
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingwen Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Tianyue Li
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Banghua Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
28
|
Zhang G, Wu K, Jiang X, Gao Y, Ding D, Wang H, Yu C, Wang X, Jia N, Zhu L. The role of ferroptosis-related non-coding RNA in liver fibrosis. Front Cell Dev Biol 2024; 12:1517401. [PMID: 39717848 PMCID: PMC11663870 DOI: 10.3389/fcell.2024.1517401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Liver fibrosis represents a reversible pathophysiological process, caused by chronic inflammation stemming from hepatocyte damage. It delineates the initial stage in the progression of chronic liver disease. This pathological progression is characterized by the excessive accumulation of the extracellular matrix (ECM), which leads to significant structural disruption and ultimately impairs liver function. To date, no specific antifibrotic drugs have been developed, and advanced liver fibrosis remains largely incurable. Liver transplantation remains the sole efficacious intervention for advanced liver fibrosis; nevertheless, it is constrained by exorbitant costs and the risk of postoperative immune rejection, underscoring the imperative for novel therapeutic strategies. Ferroptosis, an emergent form of regulated cell death, has been identified as a pivotal regulatory mechanism in the development of liver fibrosis and is intricately linked with the progression of liver diseases. Recent investigations have elucidated that a diverse array of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, are involved in the ferroptosis pathway, thereby modulating the progression of various diseases, including liver fibrosis. In recent years, the roles of ferroptosis and ferroptosis-related ncRNAs in liver fibrosis have attracted escalating scholarly attention. This paper elucidates the pathophysiology of liver fibrosis, explores the mechanisms underlying ferroptosis, and delineates the involvement of ncRNA-mediated ferroptosis pathways in the pathology of liver fibrosis. It aims to propose novel strategies for the prevention and therapeutic intervention of liver fibrosis.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaobo Jiang
- Kunshan Zhenchuan Community Health Service Center, Kunshan, Jiangsu, China
| | - Yuan Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Ding
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhong Wang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and the Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People’s Hospital affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Li Zhu
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
29
|
Subramaniam NK, Mann KK. Mechanisms of Metal-Induced Hepatic Inflammation. Curr Environ Health Rep 2024; 11:547-556. [PMID: 39499483 DOI: 10.1007/s40572-024-00463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Worldwide, there is an increasing prevalence of hepatic diseases. The most common diseases include alcoholic-associated liver disease (ALD), metabolic dysfunction-associated fatty liver disease/ metabolic dysfunction-associated steatohepatitis (MAFLD/MASH) and viral hepatitis. While there are many important mediators of these diseases, there is increasing recognition of the importance of the inflammatory immune response in hepatic disease pathogenesis. RECENT FINDINGS Hepatic inflammation triggers the onset and progression of liver diseases. Chronic and sustained inflammation can lead to fibrosis, then cirrhosis and eventually end-stage cancer, hepatocellular carcinoma. Importantly, growing evidence suggest that metal exposure plays a role in hepatic disease pathogenesis. While in recent years, studies have linked metal exposure and hepatic steatosis, studies emphasizing metal-induced hepatic inflammation are limited. Hepatic inflammation is an important hallmark of fatty liver disease. This review aims to summarize the mechanisms of arsenic (As), cadmium (Cd) and chromium (Cr)-induced hepatic inflammation as they contribute to hepatic toxicity and to identify data gaps for future investigation.
Collapse
Affiliation(s)
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste Catherine Rd. Rm 202.1, Montréal, Québec, H3T 1E2, Canada.
| |
Collapse
|
30
|
Chen YF, Wang SH, Jan JS. Peptide-Based Nanoparticles Suppress Hepatic Inflammation via Blockage of Human Antigen R. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406963. [PMID: 39344590 DOI: 10.1002/smll.202406963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Human antigen R (HuR), which is a mRNA-binding protein that stabilizes and regulates mRNA translation, is found to have increased expression in inflammation, cancer and other diseases, making HuR to be a promising drug target. This study reports a peptide-based nanoparticle (NP) system exhibits potent anti-inflammatory activity to ameliorate acute liver injury via the ability of peptides to inhibit the mRNA binding site of HuR and block downstream signaling. Molecular modeling provided structural evidence indicating that the peptides interact with the RNA-binding site of HuR, mainly via hydrogen-bonding and hydrophobic interactions. These peptide-based NPs can act as nanocarriers to deliver peptides into cells to compete with the mRNA binding site of HuR, evidenced by the reduction of antibody recognition to the native protein and the exhibition of anti-inflammatory activity against activated macrophage cells, with no adverse effect in vitro and in vivo. In LPS/D-GalN-induced hepatic sepsis with high dosage of LPS/GalN, administration of the NPs significantly attenuated necrosis and HuR expression, resulting in the significant improvement of animal survival rate, suggesting their therapeutic potential for hepatic inflammation and a broad range of HuR-overexpressed diseases.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Master Program in Biomedicine, National Taitung University, Taitung, 95092, Taiwan
- Department of Chemical engineering, National Cheng Kung University, Tainan, 70701, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical engineering, National Cheng Kung University, Tainan, 70701, Taiwan
| |
Collapse
|
31
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
32
|
Moloi TP, Ziqubu K, Mazibuko-Mbeje SE, Mabaso NH, Ndlovu Z. Aflatoxin B 1-induced hepatotoxicity through mitochondrial dysfunction, oxidative stress, and inflammation as central pathological mechanisms: A review of experimental evidence. Toxicology 2024; 509:153983. [PMID: 39491743 DOI: 10.1016/j.tox.2024.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Aflatoxin B1 (AFB1) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB1 is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB1 toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes. This review aims to dissect the complexities of the pathophysiological and molecular mechanisms implicated in hepatotoxicity induced by AFB1, including mitochondrial dysfunction, oxidative stress and hepatic inflammation. Mechanistically, AFB1 disrupt mitochondrial bioenergetics and membrane potential, promotes mitochondrial cholesterol trafficking and induces mitophagy. Moreover, mitochondrial dysfunction may lead to hepatic oxidative stress as a consequence of uncontrolled production of reactive oxygen species and defects in the antioxidant defense system. Retrieved experimental evidence also showed that AFB1 may lead to hepatic inflammation through gut microbiota dysbiosis, the release of DAMPs and cytokines, and immune cell recruitment. Overall, these mechanisms could be utilized as potential targets to extrapolate treatment for liver injury caused by AFB1.
Collapse
Affiliation(s)
- Tsholofelo P Moloi
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Nonduduzo H Mabaso
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Zibele Ndlovu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa.
| |
Collapse
|
33
|
Pan L, Wang L, Ma H, Ding F. Relevance of combined influence of nutritional and inflammatory status on non-alcoholic fatty liver disease and advanced fibrosis: A mediation analysis of lipid biomarkers. J Gastroenterol Hepatol 2024; 39:2853-2862. [PMID: 39392197 DOI: 10.1111/jgh.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM This study aimed to investigate the relationship between advanced lung cancer inflammation index (ALI) and non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF). METHODS A total of 5642 individuals from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020 were examined. Limited cubic spline regression model, and weighted logistic regression were employed to determine if ALI levels were related to the prevalence of NAFLD and AF. Additionally, a mediating analysis was conducted to investigate the role of lipid biomarkers, such as total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), in the effects of ALI on the prevalence of NAFLD and AF. RESULTS After adjusting for potential confounders, a significant positive association was found between ALI with NAFLD and AF prevalence. Compared with those in ALI Tertile 1, participants in Tertile 3 had higher odds of NAFLD prevalence (odds ratio [OR]: 3.16; 95% confidence interval [CI]: 2.52-3.97) and AF (OR: 3.17; 95% CI: 2.30-4.36). Participants in both Tertile 2 and Tertile 3 had lower odds of developing AF (P for trend = 0.005). Moreover, we discovered a nonlinear association between ALI and NAFLD. An inflection point of 74.25 for NAFLD was identified through a two-segment linear regression model. Moreover, TC and HDL-C levels mediated the association between ALI and NAFLD by 10.2% and 4.2%, respectively (both P < 0.001). CONCLUSION Our findings suggest that higher ALI levels are positively associated with an increased prevalence of NAFLD and AF, partly mediated by lipid biomarkers.
Collapse
Affiliation(s)
- Lei Pan
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Lixuan Wang
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Ma
- Department of physiology, Hebei Medical University, Shijiazhuang, China
| | - Fan Ding
- Hubei Jingmen Maternal and Child Health Hospital, Jingmen, China
| |
Collapse
|
34
|
Zhang W, Gao K, Bai Y, Xu D, Zhao M, Tao X, Wang J. Wedelolactone Attenuates Liver Fibrosis and Hepatic Stellate Cell Activation by Suppressing the Hippo Pathway. Rejuvenation Res 2024; 27:207-219. [PMID: 39276092 DOI: 10.1089/rej.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
Liver fibrosis is a commonly observed pathological phenomenon that occurs during the progression of various types of chronic liver diseases. The Hippo pathway is closely associated with the pathogenesis of liver fibrosis. Previous studies have shown that wedelolactone (WED) has a significant antihepatic fibrosis effect, whereas the target and mechanism underlying WED remain elusive. In this study, we found that WED significantly alleviated liver fibrosis and injury by inhibiting the expression of Yes-associated protein (YAP) and tafazzin (TAZ). In an in vitro model, WED suppressed the activation of hepatic stellate cells (HSCs) induced by transforming growth factor (TGF-β1), as well as the mRNA and protein expression of α-smooth muscle actin (α-SMA), YAP, and TAZ. The allosteric regulation of YAP by WED was confirmed using MD and cellular thermal shift assay. Moreover, specific knockdown or inhibition of YAP did not enhance the suppressive effect of WED on HSC activation or protein expression associated with fibrosis. These findings demonstrated that the administration of WED effectively alleviated liver fibrosis by suppressing the Hippo/YAP/TAZ pathways. In addition, YAP activity may be regulated by WED via allosteric regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ya Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Liu X, Cai Y, Zhang Y, Zhang H, Tian S, Gong Y, Song Q, Chen X, Ma X, Wen Y, Chen Y, Zeng J. Artesunate: A potential drug for the prevention and treatment from hepatitis to hepatocellular carcinoma. Pharmacol Res 2024; 210:107526. [PMID: 39617278 DOI: 10.1016/j.phrs.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Liver cancer represents a multifactorial, multistage, and intricately progressive malignancy. Over the past decade, artesunate (ART), initially renowned for its anti-malarial efficacy, has been the focus of over 3000 studies uncovering its diverse pharmacological actions, including anti-inflammatory, immunoregulatory, metabolic regulatory, anti-fibrotic, and anti-cancer properties. This review highlights ART's role in the multistep progression from hepatitis to cancer and its underlying regulatory mechanisms, revealing signal transducer and activator of transcription 3 (STAT3) and ferroptosis (a novel form of programmed cell death) as promising therapeutic targets. ART demonstrates efficacy in inhibiting hepatitis virus infections, modulating inflammation, and facilitating recovery from inflammatory processes. During stages of hepatic fibrosis or cirrhosis, ART reverses fibrotic and cirrhotic changes by suppressing hepatic stellate cell activity, regulating inflammatory pathways, inhibiting hematopoietic stem cell proliferation, and inducing ferroptosis. Additionally, ART hinders hepatocellular carcinoma (HCC) cell proliferation, invasion, and metastasis, induces apoptosis and autophagy, combats drug resistance, and enhances chemosensitivity. Collectively, ART exhibits multi-step actions across multiple targets and signaling pathways, highlighting its potential as a clinical candidate for the prevention and treatment of liver cancer, from hepatitis and hepatic fibrosis to advanced HCC.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yilin Cai
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yuanhao Zhang
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Hetian Zhang
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Sisi Tian
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yuxia Gong
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qinmei Song
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaotong Chen
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
36
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
37
|
Sakaguchi T, Nagahama Y, Hamada N, Singh SK, Mikami H, Maeda K, Akira S. Novel Choline-Deficient and 0.1%-Methionine-Added High-Fat Diet Induces Burned-Out Metabolic-Dysfunction-Associated Steatohepatitis with Inflammation by Rapid Immune Cell Infiltration on Male Mice. Nutrients 2024; 16:4151. [PMID: 39683544 DOI: 10.3390/nu16234151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder that possesses metabolic dysfunction and shows steatohepatitis. Although the number of patients is globally increasing and many clinical studies have developed medicine for MASLD, most of the studies have failed due to low efficacy. One reason for this failure is the lack of appropriate animal disease models that reflect human MASLD to evaluate the potency of candidate drugs. Methods: We developed a novel choline-deficient and 0.11%-methionine-added high-fat diet (CDAHFD)-based (MASH) diet that can induce murine metabolic-dysfunction-associated steatohepatitis (MASH) without severe body weight loss. We performed kinetic analyses post-feeding and proposed an appropriate timing of MASH pathogenesis by quantitatively analyzing steatosis, inflammation, and fibrosis. Results: This MASH diet induced liver fibrosis earlier than the conventional CDAHFD model. In brief, lipid accumulation, inflammation, and fibrosis started after 1 week from feeding. Lipid accumulation increased until 8 weeks and declined thereafter; on the other hand, liver fibrosis showed continuous progression. Additionally, immune cells, especially myeloid cells, specifically accumulated and induced inflammation in the initiation stage of MASH. Conclusions: The novel MASH diet promotes the dynamics of lipid deposition and fibrosis in the liver, similar to human MASH pathophysiology. Furthermore, immune-cell-derived inflammation possibly contributes to the initiation of MASH pathogenesis. We propose this model can be the new pre-clinical MASH model to discover the drugs against human MASH by evaluating the interaction between parenchymal and non-parenchymal cells.
Collapse
Affiliation(s)
- Takatoshi Sakaguchi
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Host Defense Laboratory, Immunology Unit, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh 562-0029, Japan
| | - Nanako Hamada
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | | | - Kazuhiko Maeda
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System (CAMaD), Osaka University, Suita 565-0871, Japan
| |
Collapse
|
38
|
Tian Y, Sun D, Liu N, Zhao J, Zhao T, Liu X, Dong X, Dong L, Wang W, Jiao P, Ma J. Biomimetic mesenchymal stem cell membrane-coated nanoparticle delivery of MKP5 inhibits hepatic fibrosis through the IRE/XBP1 pathway. J Nanobiotechnology 2024; 22:741. [PMID: 39609656 PMCID: PMC11606114 DOI: 10.1186/s12951-024-03029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatic fibrosis is a common disease with high morbidity and mortality rates. The complex and poorly understood mechanisms underlying hepatic fibrosis represent a significant challenge for the development of more effective therapeutic strategies. MKP5 is a potential regulator of multiple fibrotic diseases. However, its precise role and mechanism of action in hepatic fibrosis remains unclear. This study identified a reduction in MKP5 expression in fibrotic liver tissues of mice treated with CCl4 and observed that MKP5 knockout mice exhibited a more pronounced development of hepatic fibrosis. In addition, RNA-seq data indicated activation of protein processing in the endoplasmic reticulum signalling pathway in fibrotic liver tissues of mice lacking MKP5. Mechanistically, MKP5 inhibits the activation of hepatic stellate cells (HSCs) and hepatocyte apoptosis through the regulation of the IRE/XBP1 pathway. Based on these findings, we developed PLGA-MKP5 nanoparticles coated with a mesenchymal stem cell membrane (MSCM). Our results demonstrated that MSCM-PLGA-MKP5 was most effective in attenuating hepatic inflammation and fibrosis in murine models by modulating the IRE/XBP1 axis. This study contributes to the current understanding of the pathogenesis of hepatic fibrosis, suggesting that the targeted delivery of MKP5 via a nano-delivery system may represent a promising therapeutic approach to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Jianan Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Tongjian Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Xiaonan Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Xinzhe Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Li Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China.
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
39
|
Liu L, Wang P, Xie SQ, Pu WJ, Xu J, Xia CM. ICOSL deficiency promotes M1 polarization to alleviate liver fibrosis in schistosomiasis mice. Acta Trop 2024; 261:107470. [PMID: 39581561 DOI: 10.1016/j.actatropica.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
The expression of inducible co-stimulator ligand (ICOSL) on macrophage (Mφ) implies their ability to interact with inducible co-stimulator (ICOS)-expressing T cells, thereby modulating immune responses within the liver microenvironment. This study aimed to elucidate the mechanism underlying ICOS/ICOSL signaling in the regulation of Mφ polarization during Schistosomiasis-induced liver fibrosis. To investigate this, ICOSL-knock out (KO) and wildtype (WT) C57BL/6 mice were infected with Schistosoma japonicum (S. japonicum) to examine the dynamic changes in Mφ phenotype and observe the pathology alterations in the liver. There was significantly decreased expression of ICOSL both in monocytes of cirrhosis patients and the liver tissue of mice infected with S. japonicum. Furthermore, ICOSL-KO mice exhibited reduced liver granuloma formation and fibrosis during S. japonicum infection. Simultaneously, Mφ in ICOSL-KO mice polarized towards M1-type and induced apoptosis of hepatic stellate cells (HSCs). Overall, the blockade of ICOSL signaling could promote M1 polarization, induce HSCs apoptosis, and ameliorate hepatic fibrosis, suggesting that ICOSL may serve as a potential biomarker for prognosis and therapeutic target for schistosomiasis-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China; Department of Blood Transfusion, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei 230032, Anhui, China
| | - Peng Wang
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shi-Qi Xie
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Wen-Jie Pu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jing Xu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Chao-Ming Xia
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
40
|
Pilling D, Martinez TC, Gomer RH. Inhibition of CCl4-induced liver inflammation and fibrosis by a NEU3 inhibitor. PLoS One 2024; 19:e0308060. [PMID: 39570922 PMCID: PMC11581222 DOI: 10.1371/journal.pone.0308060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024] Open
Abstract
Sialic acids are located on the ends of many glycoconjugates and are cleaved off by enzymes called sialidases (neuraminidases). Upregulation of neuraminidase 3 (NEU3) is associated with intestinal inflammation and colitis, neuroinflammation, and lung fibrosis. Genetic ablation of NEU3 or pharmacological inhibition of NEU3 reduces lung fibrosis in mice. To determine if inhibiting NEU3 can inhibit liver fibrosis in the commonly-used CCl4 model, in this report, we examined the effects of injections of the NEU3 inhibitor 2-acetyl pyridine (2AP). 2AP inhibited CCl4-induced weight loss in female but not male mice. 2AP attenuated CCl4-induced liver inflammation and fibrosis in male and female mice, but did not affect CCl4-induced steatosis. After CCl4 treatment, female but not male mice had significant increases in liver neutrophils, and 2AP attenuated this response. 2AP also reversed CCl4-induced liver desialylation and CCl4-induced increased expression of NEU3. Patients with pulmonary fibrosis have increased desialylation of some serum proteins, and elevated serum levels of NEU3. We find that sera from patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) have elevated desialylation of a serum protein and patients with NAFLD have increased levels of NEU3. These data suggest that elevated levels of NEU3 may be associated with liver inflammation and fibrosis, and that in mice this is ameliorated by injections of a NEU3 inhibitor.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Trevor C. Martinez
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
41
|
Fang X, Yin Y, Zhao H, Wang C, Li H, Shang Y, Li J, Gao Y, Méndez-Sánchez N, Qi X. Effect of fatty liver disease on liver function and fibrosis in patients with chronic hepatitis B: a cross-sectional study. Front Med (Lausanne) 2024; 11:1481051. [PMID: 39640976 PMCID: PMC11617145 DOI: 10.3389/fmed.2024.1481051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose Chronic hepatitis B (CHB) and fatty liver disease (FLD) are common chronic liver diseases, both of which can progress to advanced liver diseases with poor outcome. However, it remains controversial whether the presence of FLD aggravates the disease severity of CHB patients. Patients and methods All consecutive outpatients who were diagnosed with CHB at our department between March 1, 2021 and September 30, 2023 were retrospectively screened. They were divided into FLD and non-FLD groups. Liver function parameters and non-invasive indicators of liver fibrosis, including liver stiffness measurement (LSM) value, fibrosis-4 index (FIB-4) score, and aspartate aminotransferase to platelet ratio index (APRI) score, were compared between the two groups. Subgroups analyses were performed in HBeAg-positive, HBeAb-positive, HBV DNA > 10 IU/mL, mild FLD, and moderate/severe FLD patients. Results Overall, 201 CHB patients were included, of whom 76 (37.81%) had FLD. In the overall analyses, CHB patients with FLD had a significantly higher alanine aminotransferase (ALT) (47.04 ± 53.28 vs. 32.95 ± 35.10, p = 0.003) than those without FLD, but there was no significant difference in the LSM value (7.79 ± 5.16 vs. 8.19 ± 4.99, p = 0.508), FIB-4 score (1.13 ± 0.75 vs. 1.28 ± 0.99, p = 0.679), and APRI score (0.41 ± 0.46 vs. 0.36 ± 0.47, p = 0.535) between CHB patients with and without FLD. The above-mentioned statistical results in all subgroup analyses were nearly consistent with those in the overall analyses. Conclusion FLD may intensify abnormal liver function reflected by increased ALT level in CHB patients, but not influence the progression of liver fibrosis.
Collapse
Affiliation(s)
- Xiaohui Fang
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuhang Yin
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Haonan Zhao
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Cai’e Wang
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Li
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiyang Shang
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiayu Li
- Department of Laboratory Medicine, The General Hospital of Northern Theater Command, Shenyang, China
| | - Yue Gao
- Department of Ultrasound, The General Hospital of Northern Theater Command, Shenyang, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, The General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Postgraduate College, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
44
|
Chen J, Yang S, Luo H, Fu X, Li W, Li B, Fu C, Chen F, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/MyD88/NF-κB pathway. Int Immunopharmacol 2024; 141:113014. [PMID: 39191120 DOI: 10.1016/j.intimp.2024.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.
Collapse
Affiliation(s)
- Junyi Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuzhan Yang
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Hanxia Luo
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Feiyue Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
45
|
Zhu Z, Zhu Z, Shi Z, Wang C, Chen F. Kaempferol Remodels Liver Monocyte Populations and Treats Hepatic Fibrosis in Mice by Modulating Intestinal Flora and Metabolic Reprogramming. Inflammation 2024:10.1007/s10753-024-02184-2. [PMID: 39531210 DOI: 10.1007/s10753-024-02184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Changes in gut flora are associated with liver fibrosis. The interactions of host with intestinal flora are still unknown, with little research investigating such interactions with comprehensive multi-omics data. The present work analyzed and integrated large-scale multi-omics transcriptomics, microbiome, metabolome, and single-cell RNA-sequencing datasets from Kaempferol-treated and untreated control groups by advanced bioinformatics methods. This study concludes that kaempferol dose-dependently improved serum markers (like AST, ALT, TBil, Alb, and PT) and suppressed fibrosis markers (including HA, PC III, LN, α-SMA, and Collagen I), while kaempferol also increased body weight. Mechanistically, kaempferol improved the metabolic levels of intestinal flora dysbiosis and associated lipids. This was achieved by increasing the abundance of g__Robinsoniella, g__Erysipelotrichaceae_UCG-003, g__Coriobacteriaceae_UCG-002, and 5-Methylcytidine, all-trans-5,6- Epoxyretinoic acid, LPI (18:0), LPI (20:4), etc. to achieve this. Kaemferol exerts anti-inflammatory and immune-enhancing effects by down-regulating the Th17/IL-17 signaling pathway in PDGF-induced LX2 cells. In addition, kaempferol administration remarkably elevated CD4 + T and CD8 + T cellular proportions, thereby activating immune cells for protecting the body and controlling inflammatory conditions. The combined interaction of multiple data may explain how Kaempferol modulates the intestinal flora thereby remodeling the hepatocyte population and alleviating liver fibrosis.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Zhenyi Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical & Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, 10 Southern Medical University, Guangzhou, China
| | - Chen Wang
- The Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
46
|
Liu X, Jin J, Wang B, Ge L. Genetically predicted serum ferritin mediates the association between inflammatory cytokines and non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1437999. [PMID: 39583964 PMCID: PMC11581845 DOI: 10.3389/fendo.2024.1437999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
Objective Investigating the causal relationship between inflammatory cytokines and Non-alcoholic fatty liver disease(NAFLD) and identifying and quantifying the role of serum ferritin as a potential mediator. Methods Genetic summary statistics were derived from open genome-wide association study (GWAS) databases. We conducted a two-sample Mendelian randomization (MR) analysis to investigate the relationship between inflammatory cytokines (8,293 individuals) and NAFLD (8,434 cases, 770,180 controls). Furthermore, we used two-step MR to quantitate the proportion of the effect of serum ferritin-mediated inflammatory cytokines on NAFLD. In this study, we primarily utilized inverse-variance-weighted Mendelian randomization (MR-IVW) and reverse MR analysis methods, while other methods were also performed for sensitivity analysis, false discovery rate (FDR) <0.0012 as statistical significance in MR analyses. Results Our results indicated that high levels of Eotaxin, regulated upon activation normal T cell expressed and presumably secreted(RANTES), Interleukin-2(IL-2), macrophage migration inhibitory factor(MIF), tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) and Stem cell factor(SCF) were associated with increased risks of NAFLD, while high Cutaneous T cell-attracting chemokine(CTACK) and Interleukin-16(IL-16) levels that reduced the risk of NAFLD.The proportion of genetically predicted NAFLD mediated by ferritin was 2.1%(95% CI = 1.39%-5.61%). Conclusion In conclusion, our study identified a causal relationship between inflammatory cytokines and NAFLD, with a small proportion of the effect mediated by ferritin, but a majority of the effect of inflammatory cytokines on NAFLD remains unclear. Further research is needed on additional risk factors as potential mediators.
Collapse
Affiliation(s)
- XiaoQian Liu
- Department of Endocrinology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - JianHong Jin
- Department of Endocrinology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - BaoFa Wang
- Department of Endocrinology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - LinPu Ge
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Zhao W, Shen Y, Bao Y, Monroig Ó, Zhu T, Sun P, Tocher DR, Zhou Q, Jin M. Fucoidan alleviates hepatic lipid deposition by modulating the Perk-Eif2α-Atf4 axis via Sirt1 activation in Acanthopagrus schlegelii. Int J Biol Macromol 2024; 282:137266. [PMID: 39505163 DOI: 10.1016/j.ijbiomac.2024.137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
With the increasing use of high-fat diets (HFD), fatty liver disease has become common in fish, and fucoidan is of interest as a natural sulfated polysaccharide with lipid-lowering activity. To explore the molecular regulatory mechanisms of fucoidan's alleviation of HFD-induced lipid deposition in liver, black seabream (Acanthopagrus schlegelii) was used to construct in vivo and in vitro HFD models. In vivo HFD stimulated the protein kinase RNA-like endoplasmic reticulum kinase (Perk) pathway, and up-regulated proliferator-activated receptor gamma (Pparγ) nuclear translocation and expression of lipogenic genes, while it down-regulated Ppar alpha (Pparα) nuclear translocation and expression of lipolytic genes. However, fucoidan reversed these effects of HFD and significantly alleviated HFD-induced lipid accumulation in liver. Moreover, after sirtuin 1 (sirt1) knockdown, these effects of fucoidan disappeared. In the in vitro HFD model, GSK2606414 (GSK)-specific inhibition of the Perk pathway, decreased Pparγ nuclear translocation and increased Pparα nuclear translocation. Overall, fucoidan mitigated HFD-induced, Perk pathway-mediated lipid deposition in the liver of black seabream by activating Sirt1. The findings provided a new prospect for the application of green polysaccharides in aquatic animal feeds.
Collapse
Affiliation(s)
- Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
48
|
Luo S, Yang B, Xu H, Pan X, Chen X, Jue X, Liu S, Wan R, Tan Q, Yao Y, Chen X, Jiang J, Deng B, Li J. Lithospermic acid improves liver fibrosis through Piezo1-mediated oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155974. [PMID: 39217657 DOI: 10.1016/j.phymed.2024.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hepatic fibrosis is becoming an increasingly serious public health issue worldwide. Although liver transplantation is the only and definitive treatment for end-stage liver fibrosis, traditional Chinese medicine offers certain benefits in the treatment of advanced hepatic fibrosis. PURPOSE This study aims to explore the protective effect of lithospermic acid (LA), an extraction from Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, known as Danshen in Chinese), on liver fibrosis and investigate its potential mechanisms. METHODS AND RESULTS Mice were treated with carbon tetrachloride (CCl4) via intraperitoneal injection for 4 weeks. LA was orally administered or colchicine (COL) was injected intraperitoneally for 3 weeks starting one week after the initial CCl4 injection. After the LA treatment, we observed a decrease in the fibrosis index and an improvement in liver function. Molecular docking results revealed that Piezo1 may be a potential pharmacological target of LA. The further experimental results showed that LA inhibited Piezo1 activation and expression in macrophages. Mechanistically, both Piezo1/Notch-mediated inflammation and oxidative stress regulated by the Piezo1/Ca2+ pathway were alleviated in fibrotic livers following LA treatment. Moreover, less oxidative stress and Notch activation were observed in the deficiency of macrophage Piezo1 (Piezo1ΔLysM) mice. In addition, Piezo1ΔLysM partially counteracted the pharmacological effects of LA on liver fibrosis. CONCLUSION In conclusion, our present study corroborated LA limits the progression of liver fibrosis by regulating Piezo1-mediated oxidative stress and inflammation. These results indicate that LA could be a potential medication for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Shangfei Luo
- Innovation Research Center, Shandong University of Chinese Medicine, Jinan, 250307, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglin Xu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianmei Pan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoyu Jue
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Silin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rentao Wan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiaorui Tan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Youfen Yao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoting Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jintao Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jing Li
- Innovation Research Center, Shandong University of Chinese Medicine, Jinan, 250307, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
49
|
Mašek J, Filipovic I, Van Hul N, Belicová L, Jiroušková M, Oliveira DV, Frontino AM, Hankeova S, He J, Turetti F, Iqbal A, Červenka I, Sarnová L, Verboven E, Brabec T, Björkström NK, Gregor M, Dobeš J, Andersson ER. Jag1 insufficiency alters liver fibrosis via T cell and hepatocyte differentiation defects. EMBO Mol Med 2024; 16:2946-2975. [PMID: 39358604 PMCID: PMC11554675 DOI: 10.1038/s44321-024-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Belicová
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Markéta Jiroušková
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Daniel V Oliveira
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Anna Maria Frontino
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Fabio Turetti
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Igor Červenka
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Sarnová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| |
Collapse
|
50
|
Cansby E, Caputo M, Andersson E, Saghaleyni R, Henricsson M, Xia Y, Asiedu B, Blüher M, Svensson LT, Hoy AJ, Mahlapuu M. GCKIII kinases control hepatocellular lipid homeostasis via shared mode of action. J Lipid Res 2024; 65:100669. [PMID: 39395791 PMCID: PMC11602991 DOI: 10.1016/j.jlr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease has emerged as a leading global cause of chronic liver disease. Our recent translational investigations have shown that the STE20-type kinases comprising the GCKIII subfamily-MST3, STK25, and MST4-associate with hepatic lipid droplets and regulate ectopic fat storage in the liver; however, the mode of action of these proteins remains to be resolved. By comparing different combinations of the silencing of MST3, STK25, and/or MST4 in immortalized human hepatocytes, we found that their single knockdown results in a similar reduction in hepatocellular lipid content and metabolic stress, without any additive or synergistic effects observed when all three kinases are simultaneously depleted. A genome-wide yeast two-hybrid screen of the human hepatocyte library identified several interaction partners contributing to the GCKIII-mediated regulation of liver lipid homeostasis, that is, PDCD10 that protects MST3, STK25, and MST4 from degradation, MAP4K4 that regulates their activity via phosphorylation, and HSD17B11 that controls their action via a conformational change. Finally, using in vitro kinase assays on microfluidic microarrays, we pinpointed various downstream targets that are phosphorylated by the GCKIII kinases, with known functions in lipogenesis, lipolysis, and lipid secretion, as well as glucose uptake, glycolysis, hexosamine synthesis, and ubiquitination. Together, this study demonstrates that the members of the GCKIII kinase subfamily regulate hepatocyte lipid metabolism via common pathways. The results shed new light on the role of MST3, STK25, and MST4, as well as their interactions with PDCD10, MAP4K4, and HSD17B11, in the control of liver lipid homeostasis and metabolic dysfunction-associated steatotic liver disease susceptibility.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rasool Saghaleyni
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcus Henricsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernice Asiedu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - L Thomas Svensson
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|