1
|
Yu LY, Chen JY, Weng HJ, Lin HF, Zhang CJ, Yang LY, Lin JZ, Lin XH, Zhong GX. Cell-free transcription amplification-based split-type electrochemical sensor using enzyme-linked magnetic microbeads for minimal residual leukemia detection. Talanta 2025; 286:127551. [PMID: 39788075 DOI: 10.1016/j.talanta.2025.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Constrained by detecting techniques, patients with acute promyelocytic leukemia (APL) are often confronted with minimal residual disease (MRD) and a high risk of relapse. Thus, a pragmatic and robust method for MRD monitoring is urgently needed. Herein, a novel split-type electrochemical sensor (E-sensor) was developed by integrating nucleic acid sequence-based amplification (NASBA) with enzyme-linked magnetic microbeads (MMBs) for ultra-sensitive detection of the PML/RARα transcript. In this system, NASBA facilitated efficient amplification under isothermal conditions, generating a large amount of RNA amplicons, which mediated the quick binding between horseradish peroxidase (HRP) and MMBs. The separately HRP-linked MMBs were subsequently transferred onto the surface of magnetic glass carbon electrode, producing a remarkably strong electrochemical signal in the presence of the HRP substrate. The proposed split-type E-sensor could detect the PML/RARα transcript with a high sensitivity (a limit detection of 100 aM), a high specificity (single base discrimination) as well as a high stability (a relative standard deviation of 8.3 % for 10 fM target RNA and 6.0 % for 100 fM target RNA). Finally, it could achieve both direct detection of serum cell-free RNA and specific intracellular RNA detection. Owing to its isothermal characteristics, robustness, and suitability for point-of-care testing, this method offers a powerful tool for the early diagnosis of APL and the monitoring of MRD, which holds a great significance for facilitating treatment response assessment and making treatment decisions.
Collapse
Affiliation(s)
- Lu-Ying Yu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jin-Yuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Huan-Jiao Weng
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Huang-Feng Lin
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chui-Ju Zhang
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Liang-Yong Yang
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ji-Zhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Guang-Xian Zhong
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, 350122, China; Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Li Z, Wang Y, Zhao X, Meng Q, Ma G, Xie L, Jiang X, Liu Y, Huang D. Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions. Biotechnol Adv 2025; 79:108514. [PMID: 39755221 DOI: 10.1016/j.biotechadv.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.
Collapse
Affiliation(s)
- Ziyu Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Yujie Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Xiaojing Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Qing Meng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Guozhen Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lijie Xie
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China.
| |
Collapse
|
3
|
Rasor BJ, Erb TJ. Cell-Free Systems to Mimic and Expand Metabolism. ACS Synth Biol 2025; 14:316-322. [PMID: 39878226 PMCID: PMC11852204 DOI: 10.1021/acssynbio.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations in vitro has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways. However, only a small fraction of metabolic possibilities has been explored in cell-free systems, and extracts from model organisms remain the most common starting points. Expanding the scope of cell-free metabolism to include extracts from new organisms, alternative metabolic pathways, and non-natural chemistries will enhance our ability to understand and engineer bio-based chemical conversions.
Collapse
Affiliation(s)
- Blake J. Rasor
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
4
|
Nour El-Din H, Kettal M, Lam S, Granados Maciel J, Peters DL, Chen W. Cell-free expression system: a promising platform for bacteriophage production and engineering. Microb Cell Fact 2025; 24:42. [PMID: 39962567 PMCID: PMC11834285 DOI: 10.1186/s12934-025-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Cell-free expression is a technique used to synthesize proteins without utilising living cells. This technique relies mainly on the cellular machinery -ribosomes, enzymes, and other components - extracted from cells to produce proteins in vitro. Thus far, cell-free expression systems have been used for an array of biologically important purposes, such as studying protein functions and interactions, designing synthetic pathways, and producing novel proteins and enzymes. In this review article, we aim to provide bacteriophage (phage) researchers with an understanding of the cell-free expression process and the potential it holds to accelerate phage production and engineering for phage therapy and other applications. Throughout the review, we summarize the system's main steps and components, both generally and particularly for the self-assembly and engineering of phages and discuss their potential optimization for better protein and phage production. Cell-free expression systems have the potential to serve as a platform for the biosynthetic production of personalized phage therapeutics. This is an area of in vitro biosynthesis that is becoming increasingly attractive, given the current high interest in phages and their promising potential role in the fight against antimicrobial resistant infections.
Collapse
Affiliation(s)
- Hanzada Nour El-Din
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada.
| | - Maryam Kettal
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Serena Lam
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - José Granados Maciel
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Danielle L Peters
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
5
|
Fang F, Guo H, Guo Z, Lin L, Lai L, Shi Y, You W, Chen S, Liu C, Zhao M, Guo S, Ou Q, Fu Y. A simple and colorimetric method utilizing cell-free toehold switch sensors for the detection of Chlamydia trachomatis, Ureaplasma urealyticum and Neisseria gonorrhoeae. Anal Chim Acta 2025; 1339:343622. [PMID: 39832877 DOI: 10.1016/j.aca.2025.343622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Sexually transmitted infections (STIs) rank among the most prevalent acute infectious conditions and remain a major global public health concern. Notable STI pathogens include Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), and Neisseria gonorrhoeae (NG). Early detection and diagnosis are crucial for controlling the spread of STIs. RESULTS In this study, we utilized toehold switches integrated with a cell-free system to develop a simple, colorimetric, sensitive, specific and rapid method for the parallel detection of CT, UU, and NG. Target DNA and sensor DNA were transcribed into target trigger RNA and toehold switch sensor RNA respectively, within a cell-free transcription system. The binding of target RNA to the toehold switch RNA activated the switch, subsequently initiating the translation of the downstream lacZ gene. The expressed LacZ protein hydrolyzed the substrate chlorophenol red-β-d-galactopyranoside (CPRG), resulting in a color change from yellow to purple, which provided a visible colorimetric output. The three screened sensors exhibited excellent orthogonality without any observed cross-reactivity. By enhancing sensitivity with recombinase polymerase amplification (RPA), we reliably detected NG in clinical samples using this method, with no interference from other pathogens. Moreover, we selected high-performance toehold switch sensor for paper-based detection, further enhancing portability. SIGNIFICANCE In summary, this technique enables the simple snd sensitive parallel detection of CT, UU, and NG, generating visible colorimetric results without the need for specialized personnel or sophisticated equipment. Given these advantages, this method holds significant potential as a simple and portable diagnostic tool in resource-limited settings or point-of-care testing (POCT) scenarios.
Collapse
Affiliation(s)
- Fengling Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Hongyan Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; The School of Public Health, Fujian Medical University, 350122, Fuzhou, China
| | - Zhaopei Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Lin Lin
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Lu Lai
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Yue Shi
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Weiquan You
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Shanjian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China
| | - Can Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China
| | - Mingming Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China.
| | - Ya Fu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China.
| |
Collapse
|
6
|
Ji BT, Pan HT, Qian ZG, Xia XX. Programming biological communication between distinct membraneless compartments. Nat Chem Biol 2025:10.1038/s41589-025-01840-4. [PMID: 39910287 DOI: 10.1038/s41589-025-01840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Distinct membraneless organelles within cells collaborate closely to organize crucial functions. However, biosynthetic communicating membraneless organelles have yet to be created. Here we report a binary population of membraneless compartments capable of coexistence, biological communication and controllable feedback under cellular environmental conditions. The compartment consortia emerge from two orthogonally phase-separating proteins in a cell-free expression system. Their appearance can be programmed in time and order for on-demand delivery of molecules. In particular, the consortia can sense, process and deliver functional protein cargo in response to a protease message or a DNA message that encodes the protease. Such DNA-based molecular programs can be further harnessed by installing a feedback loop that controls the information flow at the messenger RNA level. These results contribute to understanding crosstalk among membraneless organelles and provide a design principle that can guide construction of functional compartment consortia.
Collapse
Affiliation(s)
- Bo-Tao Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - He-Tong Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Ng IS, Wang PH, Ting WW, Juo JJ. Recent progress in one-pot enzymatic synthesis and regeneration of high-value cofactors. Trends Biotechnol 2025; 43:270-273. [PMID: 39214790 DOI: 10.1016/j.tibtech.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
One-pot enzymatic synthesis is flourishing in synthetic chemistry, heralding a sustainable and green era. Recent advancements enable the creation of complex enzymatic prosthetic groups and regeneration of enzymatic cofactors such as S-adenosylmethionine. The next frontier is to develop the effective and innovative cofactors for essential micronutrients, metabolic modulators, and biomedicines.
Collapse
Affiliation(s)
- I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China.
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, Republic of China; Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan, Republic of China.
| | - Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Jiun-Jang Juo
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| |
Collapse
|
8
|
Zeng J, Wang H, Xu Y, Han J, Li Y, Wen S, Wu C, Li D, Liu Z, Zhang X, Tian GB, Dong M. A Clostridioides difficile cell-free gene expression system for prototyping and gene expression analysis. Appl Environ Microbiol 2025; 91:e0156624. [PMID: 39745467 PMCID: PMC11784378 DOI: 10.1128/aem.01566-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
Clostridioides difficile is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of C. difficile under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of C. difficile. The cell-free gene expression (CFE) system has demonstrated utility in various applications, including prototyping, protein production, and in vitro screening. In this study, we developed a C. difficile CFE system capable of in vitro transcription and translation (TX-TL) in the presence of oxygen. Through optimization of cell extract preparation and reaction systems, we increased the protein yield significantly. Furthermore, our observations indicated that this system exhibited higher protein yield using linear DNA templates than circular plasmids for in vitro expression. The prototyping capability of the C. difficile CFE system was assessed using a series of synthetic Clostridium promoters, demonstrating a good correlation between in vivo and in vitro expression. Additionally, we tested the expression of tcdB and tcdR from clinically relevant C. difficile strains using the CFE system, confirming higher toxin expression of the hypervirulent strain R20291. We believe that the CFE system can not only serve as a platform for in vitro protein synthesis and genetic part prototyping but also has the potential to be a simplified model for studying metabolic regulations in Clostridioides difficile.IMPORTANCEClostridioides difficile has been listed as an urgent threat due to its antibiotic resistance, and it is crucial to conduct gene expression analysis to understand gene functionality. However, this task can be challenging, given the need to maintain the bacterium in an anaerobic environment and the inefficiency of introducing genetic material into C. difficile cells. Conversely, the C. difficile cell-free gene expression (CFE) system enables in vitro transcription and translation in the presence of oxygen within just half an hour. Furthermore, the composition of the CFE system is adaptable, permitting the addition or removal of elements, regulatory proteins for example, during the reaction. As a result, this system could potentially offer an efficient and accessible approach to accelerate the study of gene expression and function in Clostridioides difficile.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yuxi Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jianying Han
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yannan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shu'an Wen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Changbu Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Dani Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaokang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Wang K, Liu S, Zhou S, Qileng A, Wang D, Liu Y, Chen C, Lei C, Nie Z. Ligand-Responsive Artificial Protein-Protein Communication for Field-Deployable Cell-Free Biosensing. Angew Chem Int Ed Engl 2025; 64:e202416671. [PMID: 39558180 DOI: 10.1002/anie.202416671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Natural protein-protein communications, such as those between transcription factors (TFs) and RNA polymerases/ribosomes, underpin cell-free biosensing systems operating on the transcription/translation (TXTL) paradigm. However, their deployment in field analysis is hampered by the delayed response (hour-level) and the complex composition of in vitro TXTL systems. For this purpose, we present a de novo-designed ligand-responsive artificial protein-protein communication (LIRAC) by redefining the connection between TFs and non-interacting CRISPR/Cas enzymes. By rationally designing a chimeric DNA adaptor and precisely regulating its binding affinities to both proteins, LIRAC immediately transduces target-induced TF allostery into rapid CRISPR/Cas enzyme activation within a homogeneous system. Consequently, LIRAC obviates the need for RNA/protein biosynthesis inherent to conventional TXTL-based cell-free systems, substantially reducing reaction complexity and time (from hours to 10 minutes) with improved sensitivity and tunable dynamic range. Moreover, LIRAC exhibits excellent versatility and programmability for rapidly and sensitively detecting diverse contaminants, including antibiotics, heavy metal ions, and preservatives. It also enables the creation of a multi-protein communication-based tristate logic for the intelligent detection of multiple contaminants. Integrated with portable devices, LIRAC has been proven effective in the field analysis of environmental samples and personal care products, showcasing its potential for environmental and health monitoring.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Siqian Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Shuqi Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
11
|
Landwehr GM, Bogart JW, Magalhaes C, Hammarlund EG, Karim AS, Jewett MC. Accelerated enzyme engineering by machine-learning guided cell-free expression. Nat Commun 2025; 16:865. [PMID: 39833164 PMCID: PMC11747319 DOI: 10.1038/s41467-024-55399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we develop a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We apply this platform to engineer amide synthetases by evaluating substrate preference for 1217 enzyme variants in 10,953 unique reactions. We use these data to build augmented ridge regression ML models for predicting amide synthetase variants capable of making 9 small molecule pharmaceuticals. Over these nine compounds, ML-predicted enzyme variants demonstrate 1.6- to 42-fold improved activity relative to the parent. Our ML-guided, cell-free framework promises to accelerate enzyme engineering by enabling iterative exploration of protein sequence space to build specialized biocatalysts in parallel.
Collapse
Affiliation(s)
- Grant M Landwehr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Jonathan W Bogart
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Carol Magalhaes
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Eric G Hammarlund
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025:10.1038/s41579-024-01141-y. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
13
|
Courrégelongue C, Baigl D. Functionalization of Emulsion Interfaces: Surface Chemistry Made Liquid. Chemistry 2025; 31:e202403501. [PMID: 39540269 PMCID: PMC11739829 DOI: 10.1002/chem.202403501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Disperse systems, and emulsions in particular, are currently massively used in fields as varied as food industry, cosmetics, health care and environmentally-friendly materials. To meet increasingly precise needs or targeted applications, these systems need to be endowed with new functionalities at their interfaces, in addition to their composition and structural properties. However, due to the fragility of drops and the low reactivity of their surface, conventional solid surface chemistry cannot be used for such a purpose. Several specific emulsion interface functionalization techniques have thus been developed for targeted systems and applications, but a general framework has yet to be drawn. In this review, we attempt to present these methods in a unified way through the prism of what we may call "liquid surface chemistry". We propose to categorize existing methods into drop-coating strategies, including layer-by-layer techniques and polymer coating, with a particular focus on polydopamine, and emulsifier-carrier approaches involving particles and/or amphiphilic molecules. They are discussed in a transversal way, highlighting the underlying physico-chemical principles and providing a comparative analysis of their advantages, current limitations and potential for improvement. We also propose future directions and opportunities, involving for instance DNA-based programmability or artificial intelligence, which could make liquid surface chemistry more versatile and controlled.
Collapse
Affiliation(s)
- Clémence Courrégelongue
- PASTEUR, Department of Chemistry, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRS75005ParisFrance
| | - Damien Baigl
- PASTEUR, Department of Chemistry, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRS75005ParisFrance
| |
Collapse
|
14
|
Yadav S, Perkins AJP, Liyanagedera SBW, Bougas A, Laohakunakorn N. ATP Regeneration from Pyruvate in the PURE System. ACS Synth Biol 2025; 14:247-256. [PMID: 39754602 PMCID: PMC11744923 DOI: 10.1021/acssynbio.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP in situ. Successful ATP regeneration requires a high initial concentration of ∼10 mM phosphate buffer, which surprisingly does not affect the protein synthesis activity of PURE. The pathway can function independently or in combination with the existing creatine-based system in PURE; the combined system produces up to 233 μg/mL of mCherry, an enhancement of 78% compared to using the creatine system alone. The results are reproducible across multiple batches of homemade PURE and importantly also generalize to commercial systems such as PURExpress from New England Biolabs. These results demonstrate a rational bottom-up approach to engineering PURE, paving the way for applications in cell-free synthetic biology and synthetic cell construction.
Collapse
Affiliation(s)
- Surendra Yadav
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Alexander J. P. Perkins
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Sahan B. W. Liyanagedera
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Anthony Bougas
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Nadanai Laohakunakorn
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| |
Collapse
|
15
|
Peters DI, Shin IJ, Deever AN, Kaspar JR. Design, Development and Validation of New Fluorescent Strains for Studying Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632972. [PMID: 39868180 PMCID: PMC11761503 DOI: 10.1101/2025.01.14.632972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species Streptococcus gordonii, Streptococcus mutans, and Streptococcus sanguinis. Gene fragments, developed to contain the constitutive promoter Pveg, the fluorescent gene of interest as well as aad9, providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness. All strains, except for sfGFP in S. sanguinis, were validated to produce a detectable and specific fluorescent signal. Individual stains, along with extracellular polymeric substances (EPS) within biofilms, were visualized and quantified through either widefield or super-resolution confocal microscopy approaches. Finally, to validate the ability to perform single cell-level analysis using the strains, we imaged and analyzed a triculture mixed-species biofilm of S. gordonii, S. mutans, and S. sanguinis grown with and without addition of human saliva. Quantification of the loss in membrane integrity using a SYTOX dye revealed that all strains had increased loss of membrane integrity with water or human saliva added to the growth media, but the proportion of the population stained by the SYTOX dye varied by species. In all, these fluorescent strains will be a valuable resource for the continued study of oral microbial ecology.
Collapse
Affiliation(s)
- Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Alyssa N. Deever
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
16
|
Hejazi S, Godin R, Jurasic V, Reuel NF. Single-Walled Carbon Nanotube Probes for Protease Characterization Directly in Cell-Free Expression Reactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632549. [PMID: 39868320 PMCID: PMC11760254 DOI: 10.1101/2025.01.11.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate. Substrate proteins were conjugated to carboxymethyl cellulose-wrapped SWCNT, yielding stable and sensitive probes for protease detection with a detection limit of 6.4 ng/mL for bacterial protease from Streptomyces griseus. These probes successfully measured subtilisin activity in unpurified CFE reactions, surpassing commercial assays. Furthermore, they enabled continuous monitoring of activity during synthesis of subtilisin in both purified and lysate-based CFE systems without compromising protein expression. Surface passivation techniques, such as pre-incubation with cell lysate and supplement components, reduced the initial signal loss and improved probe signal stability in the complex cell lysate environment. These modular probes can be used, as described, for high-throughput screening and optimization of proteases and, with the change of conjugated substrate, a wider range of other hydrolases.
Collapse
Affiliation(s)
- Sepehr Hejazi
- Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011
| | - Ryan Godin
- Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011
| | - Vito Jurasic
- Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011
| | - Nigel F Reuel
- Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011
| |
Collapse
|
17
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Devi NB, Pugazhenthi G, Pakshirajan K. Synthetic biology approaches and bioseparations in syngas fermentation. Trends Biotechnol 2025; 43:111-130. [PMID: 39168757 DOI: 10.1016/j.tibtech.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fossil fuel use drives greenhouse gas emissions and climate change, highlighting the need for alternatives like biomass-derived syngas. Syngas, mainly H2 and CO, is produced via biomass gasification and offers a solution to environmental challenges. Syngas fermentation through the Wood-Ljungdahl pathway yields valuable chemicals under mild conditions. However, challenges in scaling up persist due to issues like unpredictable syngas composition and microbial fermentation contamination. This review covers advancements in genetic tools and metabolic engineering to expand product range, highlighting crucial enabling technologies that expedite strain development for acetogens and other non-model organisms. This review paper provides an in-depth exploration of syngas fermentation, covering microorganisms, gas composition effects, separation techniques, techno economic analysis, and commercialization efforts.
Collapse
Affiliation(s)
- Naorem Bela Devi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
19
|
Lehr FX, Gaizauskaite A, Lipińska KE, Gilles S, Sahoo A, Inckemann R, Niederholtmeyer H. Modular Golden Gate Assembly of Linear DNA Templates for Cell-Free Prototyping. Methods Mol Biol 2025; 2850:197-217. [PMID: 39363073 DOI: 10.1007/978-1-0716-4220-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cell-free transcription and translation (TXTL) systems have emerged as a powerful tool for testing genetic regulatory elements and circuits. Cell-free prototyping can dramatically accelerate the design-build-test-learn cycle of new functions in synthetic biology, in particular when quick-to-assemble linear DNA templates are used. Here, we describe a Golden-Gate-assisted, cloning-free workflow to rapidly produce linear DNA templates for TXTL reactions by assembling transcription units from basic genetic parts of a modular cloning toolbox. Functional DNA templates composed of multiple parts such as promoter, ribosomal binding site (RBS), coding sequence, and terminator are produced in vitro in a one-pot Golden Gate assembly reaction followed by polymerase chain reaction (PCR) amplification. We demonstrate assembly, cell-free testing of promoter and RBS combinations, as well as characterization of a repressor-promoter pair. By eliminating time-consuming transformation and cloning steps in cells and by taking advantage of modular cloning toolboxes, our cell-free prototyping workflow can produce data for large numbers of new assembled constructs within a single day.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Aukse Gaizauskaite
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Katarzyna Elżbieta Lipińska
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Sara Gilles
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Arpita Sahoo
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - René Inckemann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrike Niederholtmeyer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
20
|
Takahashi H, Ikemoto Y, Ogawa A. Simultaneous Detection of Multiple Analytes at Ambient Temperature Using Eukaryotic Artificial Cells with Modular and Robust Synthetic Riboswitches. ACS Synth Biol 2024. [PMID: 39729431 DOI: 10.1021/acssynbio.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures. We here encapsulated a eukaryotic cell-free system consisting of wheat germ extract (WGE) and a DNA template encoding an analyte-responsive regulatory RNA (called a riboswitch) into giant unilamellar vesicles (GUVs) to create eukaryotic artificial cell-based sensors that function well at ambient temperature. First, we improved our previously reported eukaryotic synthetic riboswitches and WGE for use in GUVs by chimerizing two internal ribosome entry sites and optimizing magnesium concentrations, respectively, both of which increased the expression efficiency in GUVs several fold. Then, a DNA template encoding one of these riboswitches followed by a reporter protein was encapsulated with the optimized GUV-friendly WGE. Importantly, our previously established versatile method allowed for the rational design of highly efficient eukaryotic riboswitches that are responsive to a user-defined analyte. In fact, we utilized this method to successfully create three types of artificial cells, each of which responded to a specific, membrane-permeable analyte with wide-range, analyte-dose dependency and high sensitivity at ambient temperature. Finally, due to their orthogonality and robustness, we were able to mix a cocktail of these artificial cells to achieve simultaneous detection of the three analytes without significant barriers.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yuri Ikemoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
21
|
Hejazi S, Ahsan A, Kashani S, Tameiv D, Reuel NF. Amplified DNA heterogeneity assessment with Oxford Nanopore sequencing applied to cell free expression templates. PLoS One 2024; 19:e0305457. [PMID: 39625927 PMCID: PMC11614277 DOI: 10.1371/journal.pone.0305457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024] Open
Abstract
In this work, Oxford Nanopore sequencing is tested as an accessible method for quantifying heterogeneity of amplified DNA. This method enables rapid quantification of deletions, insertions, and substitutions, the probability of each mutation error, and their locations in the replicated sequences. Amplification techniques tested were conventional polymerase chain reaction (PCR) with varying levels of polymerase fidelity (OneTaq, Phusion, and Q5) as well as rolling circle amplification (RCA) with Phi29 polymerase. Plasmid amplification using bacteria was also assessed. By analyzing the distribution of errors in a large set of sequences for each sample, we examined the heterogeneity and mode of errors in each sample. This analysis revealed that Q5 and Phusion polymerases exhibited the lowest error rates observed in the amplified DNA. As a secondary validation, we analyzed the emission spectra of sfGFP fluorescent proteins synthesized with amplified DNA using cell free expression. Error-prone polymerase chain reactions confirmed the dependency of reporter protein emission spectra peak broadness to DNA error rates. The presented nanopore sequencing methods serve as a roadmap to quantify the accuracy of other gene amplification techniques, as they are discovered, enabling more homogenous cell-free expression of desired proteins.
Collapse
Affiliation(s)
- Sepehr Hejazi
- Chemical and Biological Engineering, Iowa State University, Ames, IA, United States of America
| | - Afrin Ahsan
- Chemical and Biological Engineering, Iowa State University, Ames, IA, United States of America
| | - SeyedMohammad Kashani
- Electrical and Computer Engineering, Iowa State University, Ames, IA, United States of America
| | - Denis Tameiv
- Chemical and Biological Engineering, Iowa State University, Ames, IA, United States of America
| | - Nigel F. Reuel
- Chemical and Biological Engineering, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
22
|
Santema LL, Rotilio L, Xiang R, Tjallinks G, Guallar V, Mattevi A, Fraaije MW. Discovery and biochemical characterization of thermostable glycerol oxidases. Appl Microbiol Biotechnol 2024; 108:61. [PMID: 38183484 PMCID: PMC10771423 DOI: 10.1007/s00253-023-12883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/08/2024]
Abstract
Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain
| | - Gwen Tjallinks
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
23
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Computation-guided transcription factor biosensor specificity engineering for adipic acid detection. Comput Struct Biotechnol J 2024; 23:2211-2219. [PMID: 38817964 PMCID: PMC11137364 DOI: 10.1016/j.csbj.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Transcription factor (TF)-based biosensors that connect small-molecule sensing with readouts such as fluorescence have proven to be useful synthetic biology tools for applications in biotechnology. However, the development of specific TF-based biosensors is hindered by the limited repertoire of TFs specific for molecules of interest since current construction methods rely on a limited set of characterized TFs. In this study, we present an approach for engineering the specificity of TFs through a computation-based workflow using molecular docking that enables targeted alteration of TF ligand specificity. Using this method, we engineer the LysR family BenM TF to alter its specificity from its cognate ligand cis,cis-muconic acid to adipic acid through a single amino acid substitution identified by our computational workflow. When implemented in a cell-free system, the engineered biosensor shows higher ligand sensitivity, expanding the potential applications of this circuit. We further investigate ligand binding through molecular dynamics to analyze the substitution, elucidating the impact of modulating a single amino acid position on the mechanism of BenM ligand binding. This study represents the first application of biomolecular modeling methods for altering BenM specificity and for gaining insights into how mutations influence the structural dynamics of BenM. Such methods can potentially be applied to other TFs to alter specificity and analyze the dynamics responsible for these changes, highlighting the applicability of computational tools for informing experiments. In addition, our developed adipic acid biosensor can be applied for the identification and engineering of enzymes to produce adipic acid.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
- The Institute of Biomedical Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
24
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
25
|
Ricouvier J, Mostov P, Shabtai O, Vonshak O, Tayar A, Karzbrun E, Khakimzhan A, Noireaux V, Daube SS, Bar-Ziv R. Large-scale-integration and collective oscillations of 2D artificial cells. Nat Commun 2024; 15:10202. [PMID: 39587081 PMCID: PMC11589715 DOI: 10.1038/s41467-024-54098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
The on-chip large-scale-integration of genetically programmed artificial cells capable of exhibiting collective expression patterns is important for fundamental research and biotechnology. Here, we report a 3D biochip with a 2D layout of 1024 DNA compartments as artificial cells on a 5 × 5 mm2 area. Homeostatic cell-free protein synthesis reactions driven by genetic circuits occur inside the compartments. We create a reaction-diffusion system with a 30 × 30 square lattice of artificial cells interconnected by thin capillaries for diffusion of products. We program the connected lattice with a synthetic genetic oscillator and observe collective oscillations. The microscopic dimensions of the unit cell and capillaries set the effective diffusion and coupling strength in the lattice, which in turn affects the macroscopic synchronization dynamics. Strongly coupled oscillators exhibit fast and continuous 2D fronts emanating from the boundaries, which generate smooth and large-scale correlated spatial variations of the oscillator phases. This opens a class of 2D genetically programmed nonequilibrium synthetic multicellular systems, where chemical energy dissipated in protein synthesis leads to large-scale spatiotemporal patterns.
Collapse
Affiliation(s)
- Joshua Ricouvier
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Pavel Mostov
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Shabtai
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ohad Vonshak
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Tayar
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Molecular genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Roy Bar-Ziv
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
26
|
Wong DA, Shaver ZM, Cabezas MD, Daniel-Ivad M, Warfel KF, Prasanna DV, Sobol SE, Fernandez R, Nicol R, DeLisa MP, Balskus EP, Karim AS, Jewett MC. Development of cell-free platforms for discovering, characterizing, and engineering post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586624. [PMID: 39651187 PMCID: PMC11623507 DOI: 10.1101/2024.03.25.586624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Post-translational modifications (PTMs) are important for the stability and function of many therapeutic proteins and peptides. Current methods for studying and engineering PTM installing proteins often suffer from low-throughput experimental techniques. Here we describe a generalizable, in vitro workflow coupling cell-free protein synthesis (CFPS) with AlphaLISA for the rapid expression and testing of PTM installing proteins. We apply our workflow to two representative classes of peptide and protein therapeutics: ribosomally synthesized and post-translationally modified peptides (RiPPs) and conjugate vaccines. First, we demonstrate how our workflow can be used to characterize the binding activity of RiPP recognition elements, an important first step in RiPP biosynthesis, and be integrated into a biodiscovery pipeline for computationally predicted RiPP products. Then, we adapt our workflow to study and engineer oligosaccharyltransferases (OSTs) involved in conjugate vaccine production, enabling the identification of mutant OSTs and sites within a carrier protein that enable high efficiency production of conjugate vaccines. In total, we expect that our workflow will accelerate design-build-test cycles for engineering PTMs.
Collapse
|
27
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
28
|
Dizani M, Sorrentino D, Agarwal S, Stewart JM, Franco E. Protein Recruitment to Dynamic DNA-RNA Host Condensates. J Am Chem Soc 2024; 146:29344-29354. [PMID: 39418394 DOI: 10.1021/jacs.4c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We describe the design and characterization of artificial nucleic acid condensates that are engineered to recruit and locally concentrate proteins of interest in vitro. These condensates emerge from the programmed interactions of nanostructured motifs assembling from three DNA strands and one RNA strand that can include an aptamer domain for the recruitment of a target protein. Because condensates are designed to form regardless of the presence of target protein, they function as "host" compartments. As a model protein, we consider Streptavidin (SA) due to its widespread use in binding assays. In addition to demonstrating protein recruitment, we describe two approaches to control the onset of condensation and protein recruitment. The first approach uses UV irradiation, a physical stimulus that bypasses the need for exchanging molecular inputs and is particularly convenient to control condensation in emulsion droplets. The second approach uses RNA transcription, a ubiquitous biochemical reaction that is central to the development of the next generation of living materials. We then show that the combination of RNA transcription and degradation leads to an autonomous dissipative system in which host condensates and protein recruitment occur transiently and that the host condensate size as well as the time scale of the transition can be controlled by the level of RNA-degrading enzyme. We conclude by demonstrating that biotinylated beads can be recruited to SA-host condensates, which may therefore find immediate use for the physical separation of a variety of biotin-tagged components.
Collapse
Affiliation(s)
- Mahdi Dizani
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Daniela Sorrentino
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Siddharth Agarwal
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Ekas H, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. An Automated Cell-Free Workflow for Transcription Factor Engineering. ACS Synth Biol 2024; 13:3389-3399. [PMID: 39373325 PMCID: PMC11494693 DOI: 10.1021/acssynbio.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
The design and optimization of metabolic pathways, genetic systems, and engineered proteins rely on high-throughput assays to streamline design-build-test-learn cycles. However, assay development is a time-consuming and laborious process. Here, we create a generalizable approach for the tailored optimization of automated cell-free gene expression (CFE)-based workflows, which offers distinct advantages over in vivo assays in reaction flexibility, control, and time to data. Centered around designing highly accurate and precise transfers on the Echo Acoustic Liquid Handler, we introduce pilot assays and validation strategies for each stage of protocol development. We then demonstrate the efficacy of our platform by engineering transcription factor-based biosensors. As a model, we rapidly generate and assay libraries of 127 MerR and 134 CadR transcription factor variants in 3682 unique CFE reactions in less than 48 h to improve limit of detection, selectivity, and dynamic range for mercury and cadmium detection. This was achieved by assessing a panel of ligand conditions for sensitivity (to 0.1, 1, 10 μM Hg and 0, 1, 10, 100 μM Cd for MerR and CadR, respectively) and selectivity (against Ag, As, Cd, Co, Cu, Hg, Ni, Pb, and Zn). We anticipate that our Echo-based, cell-free approach can be used to accelerate multiple design workflows in synthetic biology.
Collapse
Affiliation(s)
- Holly
M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D. Silverman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B. Lucks
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Simpson Querrey
Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
31
|
Woudstra C, Sørensen AN, Sørensen MCH, Brøndsted L. Strategies for developing phages into novel antimicrobial tailocins. Trends Microbiol 2024; 32:996-1006. [PMID: 38580606 DOI: 10.1016/j.tim.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Tailocins are high-molecular-weight bacteriocins produced by bacteria to kill related environmental competitors by binding and puncturing their target. Tailocins are promising alternative antimicrobials, yet the diversity of naturally occurring tailocins is limited. The structural similarities between phage tails and tailocins advocate using phages as scaffolds for developing new tailocins. This article reviews three strategies for producing tailocins: disrupting the capsid-tail junction of phage particles, blocking capsid assembly during phage propagation, and creating headless phage particles synthetically. Particularly appealing is the production of tailocins through synthetic biology using phages with contractile tails as scaffolds to unlock the antimicrobial potential of tailocins.
Collapse
Affiliation(s)
- Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
32
|
Ekas HM, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. Engineering a PbrR-Based Biosensor for Cell-Free Detection of Lead at the Legal Limit. ACS Synth Biol 2024; 13:3003-3012. [PMID: 39255329 DOI: 10.1021/acssynbio.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Industrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of-the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use. However, known aTFs, such as PbrR, are unable to detect lead at concentrations regulated by the Environmental Protection Agency (24-72 nM). Here, we develop a rapid cell-free platform for engineering aTF biosensors with improved sensitivity, selectivity, and dynamic range characteristics. We apply this platform to engineer PbrR mutants for a shift in limit of detection from 10 μM to 50 nM lead and demonstrate use of PbrR as a cell-free biosensor. We envision that our workflow could be applied to engineer any aTF.
Collapse
Affiliation(s)
- Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
33
|
Haynes KA, Andrews LB, Beisel CL, Chappell J, Cuba Samaniego CE, Dueber JE, Dunlop MJ, Franco E, Lucks JB, Noireaux V, Savage DF, Silver PA, Smanski M, Young E. Ten Years of the Synthetic Biology Summer Course at Cold Spring Harbor Laboratory. ACS Synth Biol 2024; 13:2635-2642. [PMID: 39300908 PMCID: PMC11421210 DOI: 10.1021/acssynbio.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Cold Spring Harbor Laboratory (CSHL) Summer Course on Synthetic Biology, established in 2013, has emerged as a premier platform for immersive education and research in this dynamic field. Rooted in CSHL's rich legacy of biological discovery, the course offers a comprehensive exploration of synthetic biology's fundamentals and applications. Led by a consortium of faculty from diverse institutions, the course structure seamlessly integrates practical laboratory sessions, exploratory research rotations, and enriching seminars by leaders in the field. Over the years, the curriculum has evolved to cover essential topics such as cell-free transcription-translation, DNA construction, computational modeling of gene circuits, engineered gene regulation, and CRISPR technologies. In this review, we describe the history, development, and structure of the course, and discuss how elements of the course might inform the development of other short courses in synthetic biology. We also demonstrate the course's impact beyond the lab with a summary of alumni contributions to research, education, and entrepreneurship. Through these efforts, the CSHL Summer Course on Synthetic Biology remains at the forefront of shaping the next generation of synthetic biologists.
Collapse
Affiliation(s)
- Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia 30345, United States
| | - Lauren B Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - James Chappell
- Biosciences Department, Rice University, Houston, Texas 77005, United States
| | - Christian E Cuba Samaniego
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - John E Dueber
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mary J Dunlop
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Elisa Franco
- Mechanical and Aerospace Engineering, Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David F Savage
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eric Young
- Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
34
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
35
|
Bartsch T, Lütz S, Rosenthal K. Cell-free protein synthesis with technical additives - expanding the parameter space of in vitro gene expression. Beilstein J Org Chem 2024; 20:2242-2253. [PMID: 39286794 PMCID: PMC11403795 DOI: 10.3762/bjoc.20.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Biocatalysis has established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as nucleotides and amino acids, as well as energy molecules, salts, buffer, etc., are added. After successful protein synthesis, further substrates can be added for an enzyme activity assay. Although mimicking of cell-like conditions is an approach for optimization, the physical and chemical properties of CFPS are not well described yet. To date, standard conditions have mainly been used for CFPS, with little systematic testing of whether conditions closer to intracellular conditions in terms of viscosity, macromolecules, inorganic ions, osmolarity, or water content are advantageous. Also, very few non-physiological conditions have been tested to date that would expand the parameter space in which CFPS can be performed. In this study, the properties of an Escherichia coli extract-based CFPS system are evaluated, and the parameter space is extended to high viscosities, concentrations of inorganic ion and osmolarity using ten different technical additives including organic solvents, polymers, and salts. It is shown that the synthesis of two model proteins, namely superfolder GFP (sfGFP) and the enzyme truncated human cyclic GMP-AMP synthase fused to sfGFP (thscGAS-sfGFP), is very robust against most of the tested additives.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 6, 28759 Bremen, Germany
| |
Collapse
|
36
|
Ioannou IA, Monck C, Ceroni F, Brooks NJ, Kuimova MK, Elani Y. Nucleated synthetic cells with genetically driven intercompartment communication. Proc Natl Acad Sci U S A 2024; 121:e2404790121. [PMID: 39186653 PMCID: PMC11388312 DOI: 10.1073/pnas.2404790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.
Collapse
Affiliation(s)
- Ion A Ioannou
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carolina Monck
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
37
|
Ma GL, Liu WQ, Huang H, Yan XF, Shen W, Visitsatthawong S, Prakinee K, Tran H, Fan X, Gao YG, Chaiyen P, Li J, Liang ZX. An Enzymatic Oxidation Cascade Converts δ-Thiolactone Anthracene to Anthraquinone in the Biosynthesis of Anthraquinone-Fused Enediynes. JACS AU 2024; 4:2925-2935. [PMID: 39211597 PMCID: PMC11350584 DOI: 10.1021/jacsau.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Anthraquinone-fused enediynes are anticancer natural products featuring a DNA-intercalating anthraquinone moiety. Despite recent insights into anthraquinone-fused enediyne (AQE) biosynthesis, the enzymatic steps involved in anthraquinone biogenesis remain to be elucidated. Through a combination of in vitro and in vivo studies, we demonstrated that a two-enzyme system, composed of a flavin adenine dinucleotide (FAD)-dependent monooxygenase (DynE13) and a cofactor-free enzyme (DynA1), catalyzes the final steps of anthraquinone formation by converting δ-thiolactone anthracene to hydroxyanthraquinone. We showed that the three oxygen atoms in the hydroxyanthraquinone originate from molecular oxygen (O2), with the sulfur atom eliminated as H2S. We further identified the key catalytic residues of DynE13 and A1 by structural and site-directed mutagenesis studies. Our data support a catalytic mechanism wherein DynE13 installs two oxygen atoms with concurrent desulfurization and decarboxylation, whereas DynA1 acts as a cofactor-free monooxygenase, installing the final oxygen atom in the hydroxyanthraquinone. These findings establish the indispensable roles of DynE13 and DynA1 in AQE biosynthesis and unveil novel enzymatic strategies for anthraquinone formation.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Wan-Qiu Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Huawei Huang
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Xin-Fu Yan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Wei Shen
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Surawit Visitsatthawong
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Hoa Tran
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Xiaohui Fan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Yong-Gui Gao
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Pimchai Chaiyen
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Jian Li
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Zhao-Xun Liang
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| |
Collapse
|
38
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
39
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
40
|
Bienau A, Jäkel AC, Simmel FC. Cell-Free Gene Expression in Bioprinted Fluidic Networks. ACS Synth Biol 2024; 13:2447-2456. [PMID: 39042670 PMCID: PMC11334185 DOI: 10.1021/acssynbio.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
The realization of soft robotic devices with life-like properties requires the engineering of smart, active materials that can respond to environmental cues in similar ways as living cells or organisms. Cell-free expression systems provide an approach for embedding dynamic molecular control into such materials that avoids many of the complexities associated with genuinely living systems. Here, we present a strategy to integrate cell-free protein synthesis within agarose-based hydrogels that can be spatially organized and supplied by a synthetic vasculature. We first utilize an indirect printing approach with a commercial bioprinter and Pluronic F-127 as a fugitive ink to define fluidic channel structures within the hydrogels. We then investigate the impact of the gel matrix on the expression of proteins in E. coli cell-extract, which is found to depend on the gel density and the dilution of the expression system. When supplying the vascularized hydrogels with reactants, larger components such as DNA plasmids are confined to the channels or immobilized in the gels while nanoscale reaction components can diffusively spread within the gel. Using a single supply channel, we demonstrate different spatial protein concentration profiles emerging from different cell-free gene circuits comprising production, gene activation, and negative feedback. Variation of the channel design allows the creation of specific concentration profiles such as a long-term stable gradient or the homogeneous supply of a hydrogel with proteins.
Collapse
Affiliation(s)
- Alexandra Bienau
- TU Munich, School of Natural Sciences, Department of Bioscience, 85748 Garching
b. München, Germany
| | - Anna C. Jäkel
- TU Munich, School of Natural Sciences, Department of Bioscience, 85748 Garching
b. München, Germany
| | - Friedrich C. Simmel
- TU Munich, School of Natural Sciences, Department of Bioscience, 85748 Garching
b. München, Germany
| |
Collapse
|
41
|
Böhm C, Inckemann R, Burgis M, Baumann J, Brinkmann CK, Lipinska KE, Gilles S, Freudigmann J, Seiler VN, Clark LG, Jewett MC, Voll LM, Niederholtmeyer H. Chloroplast Cell-Free Systems from Different Plant Species as a Rapid Prototyping Platform. ACS Synth Biol 2024; 13:2412-2424. [PMID: 39028299 PMCID: PMC11334176 DOI: 10.1021/acssynbio.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/20/2024]
Abstract
Climate change poses a significant threat to global agriculture, necessitating innovative solutions. Plant synthetic biology, particularly chloroplast engineering, holds promise as a viable approach to this challenge. Chloroplasts present a variety of advantageous traits for genetic engineering, but the development of genetic tools and genetic part characterization in these organelles is hindered by the lengthy time scales required to generate transplastomic organisms. To address these challenges, we have established a versatile protocol for generating highly active chloroplast-based cell-free gene expression (CFE) systems derived from a diverse range of plant species, including wheat (monocot), spinach, and poplar trees (dicots). We show that these systems work with conventionally used T7 RNA polymerase as well as the endogenous chloroplast polymerases, allowing for detailed characterization and prototyping of regulatory sequences at both transcription and translation levels. To demonstrate the platform for characterization of promoters and 5' and 3' untranslated regions (UTRs) in higher plant chloroplast gene expression, we analyze a collection of 23 5'UTRs, 10 3'UTRs, and 6 chloroplast promoters, assessed their expression in spinach and wheat extracts, and found consistency in expression patterns, suggesting cross-species compatibility. Looking forward, our chloroplast CFE systems open new avenues for plant synthetic biology, offering prototyping tools for both understanding gene expression and developing engineered plants, which could help meet the demands of a changing global climate.
Collapse
Affiliation(s)
- Clemens
V. Böhm
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - René Inckemann
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Michael Burgis
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Jessica Baumann
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | | | - Katarzyna E. Lipinska
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Sara Gilles
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Jonas Freudigmann
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Vinca N. Seiler
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Lauren G. Clark
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lars M. Voll
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Henrike Niederholtmeyer
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
- Technical
University of Munich, Campus Straubing for Biotechnology and Sustainability, 94315 Straubing, Germany
| |
Collapse
|
42
|
Landwehr GM, Vogeli B, Tian C, Singal B, Gupta A, Lion R, Sargent EH, Karim AS, Jewett MC. A synthetic cell-free pathway for biocatalytic upgrading of one-carbon substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607227. [PMID: 39149402 PMCID: PMC11326285 DOI: 10.1101/2024.08.08.607227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Biotechnological processes hold tremendous potential for the efficient and sustainable conversion of one-carbon (C1) substrates into complex multi-carbon products. However, the development of robust and versatile biocatalytic systems for this purpose remains a significant challenge. In this study, we report a hybrid electrochemical-biochemical cell-free system for the conversion of C1 substrates into the universal biological building block acetyl-CoA. The synthetic reductive formate pathway (ReForm) consists of five core enzymes catalyzing non-natural reactions that were established through a cell-free enzyme engineering platform. We demonstrate that ReForm works in a plug-and-play manner to accept diverse C1 substrates including CO2 equivalents. We anticipate that ReForm will facilitate efforts to build and improve synthetic C1 utilization pathways for a formate-based bioeconomy.
Collapse
Affiliation(s)
- Grant M. Landwehr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vogeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Cong Tian
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Bharti Singal
- Stanford SLAC CryoEM Initiative, Stanford University; Stanford, CA 94305, USA
| | - Anika Gupta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Rebeca Lion
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H. Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
43
|
Collins M, Lau MB, Ma W, Shen A, Wang B, Cai S, La Russa M, Jewett MC, Qi LS. A frugal CRISPR kit for equitable and accessible education in gene editing and synthetic biology. Nat Commun 2024; 15:6563. [PMID: 39095367 PMCID: PMC11297044 DOI: 10.1038/s41467-024-50767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Equitable and accessible education in life sciences, bioengineering, and synthetic biology is crucial for training the next generation of scientists, fostering transparency in public decision-making, and ensuring biotechnology can benefit a wide-ranging population. As a groundbreaking technology for genome engineering, CRISPR has transformed research and therapeutics. However, hands-on exposure to this technology in educational settings remains limited due to the extensive resources required for CRISPR experiments. Here, we develop CRISPRkit, an affordable kit designed for gene editing and regulation in high school education. CRISPRkit eliminates the need for specialized equipment, prioritizes biosafety, and utilizes cost-effective reagents. By integrating CRISPRi gene regulation, colorful chromoproteins, cell-free transcription-translation systems, smartphone-based quantification, and an in-house automated algorithm (CRISPectra), our kit offers an inexpensive (~$2) and user-friendly approach to performing and analyzing CRISPR experiments, without the need for a traditional laboratory setup. Experiments conducted by high school students in classroom settings highlight the kit's utility for reliable CRISPRkit experiments. Furthermore, CRISPRkit provides a modular and expandable platform for genome engineering, and we demonstrate its applications for controlling fluorescent proteins and metabolic pathways such as melanin production. We envision CRISPRkit will facilitate biotechnology education for communities of diverse socioeconomic and geographic backgrounds.
Collapse
Affiliation(s)
- Marvin Collins
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew B Lau
- Program of Biomedical Computation, Stanford University, Stanford, CA, 94305, USA
| | - William Ma
- Chinese International School, Hong Kong, 999077, Hong Kong SAR, China
| | - Aidan Shen
- East Chapel Hill High School, Chapel Hill, NC, 27514, USA
| | - Brenda Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
44
|
Cui H, Wang C, Maan H, Pang K, Luo F, Duan N, Wang B. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat Methods 2024; 21:1470-1480. [PMID: 38409223 DOI: 10.1038/s41592-024-02201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Generative pretrained models have achieved remarkable success in various domains such as language and computer vision. Specifically, the combination of large-scale diverse datasets and pretrained transformers has emerged as a promising approach for developing foundation models. Drawing parallels between language and cellular biology (in which texts comprise words; similarly, cells are defined by genes), our study probes the applicability of foundation models to advance cellular biology and genetic research. Using burgeoning single-cell sequencing data, we have constructed a foundation model for single-cell biology, scGPT, based on a generative pretrained transformer across a repository of over 33 million cells. Our findings illustrate that scGPT effectively distills critical biological insights concerning genes and cells. Through further adaptation of transfer learning, scGPT can be optimized to achieve superior performance across diverse downstream applications. This includes tasks such as cell type annotation, multi-batch integration, multi-omic integration, perturbation response prediction and gene network inference.
Collapse
Affiliation(s)
- Haotian Cui
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontartio, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Chloe Wang
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontartio, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Hassaan Maan
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontartio, Canada
- Vector Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kuan Pang
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Fengning Luo
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Nan Duan
- Microsoft Research, Redmond, WA, USA
| | - Bo Wang
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontartio, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- Vector Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- AI Hub, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Chaudhary S, Ali Z, Mahfouz M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2282-2300. [PMID: 38685599 PMCID: PMC11258990 DOI: 10.1111/pbi.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
46
|
Paas A, Dresler J, Talmann L, Vilcinskas A, Lüddecke T. Venom Ex Machina? Exploring the Potential of Cell-Free Protein Production for Venom Biodiscovery. Int J Mol Sci 2024; 25:8286. [PMID: 39125859 PMCID: PMC11311792 DOI: 10.3390/ijms25158286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are relatively small and deliver minuscule venom yields. Thus, the most commonly employed activity-guided biodiscovery pipeline cannot be applied effectively. Cell-free protein production may represent an attractive tool to produce selected venom components at high speed and without the creation of genetically modified organisms, promising rapid and highly efficient access to biomolecules for bioactivity studies. However, these methods have only sporadically been used in venom research and their potential remains to be established. Here, we explore the ability of a prokaryote-based cell-free system to produce a range of venom toxins of different types and from various source organisms. We show that only a very limited number of toxins could be expressed in small amounts. Paired with known problems to facilitate correct folding, our preliminary investigation underpins that venom-tailored cell-free systems probably need to be developed before this technology can be employed effectively in venom biodiscovery.
Collapse
Affiliation(s)
- Anne Paas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Josephine Dresler
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Lea Talmann
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, CH4332 Stein, Switzerland;
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff Ring 26-32, 35392 Gießen, Germany
| | - Tim Lüddecke
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
47
|
Vento JM, Durmusoglu D, Li T, Patinios C, Sullivan S, Ttofali F, van Schaik J, Yu Y, Wang Y, Barquist L, Crook N, Beisel CL. A cell-free transcription-translation pipeline for recreating methylation patterns boosts DNA transformation in bacteria. Mol Cell 2024; 84:2785-2796.e4. [PMID: 38936361 DOI: 10.1016/j.molcel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/10/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.
Collapse
Affiliation(s)
- Justin M Vento
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Deniz Durmusoglu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Tianyu Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Constantinos Patinios
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Sean Sullivan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Fani Ttofali
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Yanyan Wang
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany; Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
48
|
DeWinter MA, Wong DA, Fernandez R, Kightlinger W, Thames AH, DeLisa MP, Jewett MC. Establishing a Cell-Free Glycoprotein Synthesis System for Enzymatic N-GlcNAcylation. ACS Chem Biol 2024; 19:1570-1582. [PMID: 38934647 DOI: 10.1021/acschembio.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.
Collapse
Affiliation(s)
- Madison A DeWinter
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Derek A Wong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Regina Fernandez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc.,, Oakland, California 94606, United States
| | - Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
50
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|