1
|
Cauvin A, Brady K, Cavagnaro J, Luetjens CM. Evaluation of the effect of rozanolixizumab on pregnancy outcomes and pre- and postnatal development in cynomolgus monkeys. Reprod Toxicol 2024:108823. [PMID: 39709064 DOI: 10.1016/j.reprotox.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Rozanolixizumab, a humanised immunoglobulin (Ig) G4 monoclonal antibody that selectively inhibits binding of IgG to the neonatal Fc receptor (FcRn), was evaluated in an embryo-foetal enhanced pre- and postnatal development (ePPND) study. Pregnant female cynomolgus monkeys (19 per group) received subcutaneous rozanolixizumab 50mg/kg or 150mg/kg or vehicle every 3 days from gestation day 20 until delivery. The proportion of pregnancy losses was 15.8%, 21.1% and 5.3%, in the rozanolixizumab 50mg/kg, 150mg/kg and control groups, respectively. Based on eNormograms for groups of 18 or 20 animals, these results were considered to be within the range of spontaneous prenatal losses naturally observed in cynomolgus monkeys. Foetal examinations revealed no treatment-related effects. All infants had normal postnatal development, although higher mortality was observed in female infants from the control group during the first 3 weeks. All infants were able to mount a normal immune response to keyhole limpet haemocyanin when vaccinated at the age of 4 months. Offspring from 150mg/kg-treated mothers had very low IgG levels at birth, indicating blockade of maternal IgG transfer; infants from mothers who received 50mg/kg had variable IgG levels at birth, with mothers who had developed significant anti-drug antibodies conferring maternal IgG transfer to varying degrees. Rates of infection in infants were similar across treatment groups. IgG levels in infants from rozanolixizumab-treated groups normalised within 2 months. Treatment of pregnant cynomolgus monkeys with the FcRn inhibitor rozanolixizumab had no adverse effects on pre- or postnatal development of offspring, including immune system development.
Collapse
|
2
|
Wang J, Zhang Z, Zhang Z, Zou Z, Zhuo Y, Liu C, Nie D, Gan Y, Yu M. Enhanced Gut-to-Liver Oral Drug Delivery via Ligand-Modified Nanoparticles by Attenuating Protein Corona Adsorption. ACS NANO 2024. [PMID: 39681528 DOI: 10.1021/acsnano.4c11453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The development of effective oral drug delivery systems for targeted gut-to-liver transport remains a significant challenge due to the multiple biological barriers including the harsh gastrointestinal tract (GIT) environment and the complex protein corona (PC) formation. In this study, we developed ligand-modified nanoparticles (NPs) that enable gut-to-liver drug delivery by crossing the GIT and attenuating PC formation. Specifically, mesoporous silica nanoparticles (MSNs) were functionalized with peptides targeting the neonatal Fc receptor (FcRn), capitalizing on FcRn expression in the small intestine and liver for targeted drug delivery. We showed that MSNs decorated with a small cyclic FcRn binding peptide (MSNs-FcBP) obtained enhanced diffusion in intestinal mucus and superior transportation across the intestine compared to unmodified MSNs and MSNs decorated with a large IgG Fc fragment (MSNs-Fc), which correlated with diminished protein adsorption and weaker interaction with mucin. After entering the blood circulation, reduced serum PC formation by MSNs-FcBP reduces the proteolytic and phagocytic propensity of the reticuloendothelial system, ultimately ameliorating accumulation in hepatocytes. Pharmacokinetic and pharmacodynamic studies in diabetic mice revealed that MSNs-FcBP effectively transported the therapeutic agent exenatide across the intestinal epithelium, leading to a significant hypoglycemic response and improved glucose tolerance. This study underscores the critical role of ligand selection in limiting protein corona formation, thereby significantly enhancing gut-to-liver drug delivery by increasing mucus permeation and minimizing serum-protein interactions. The effective delivery of exenatide in diabetic mice illustrates the potential of this strategy to optimize oral drug bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zilong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiwen Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Nolasco S, Crimi C. Depemokimab, the first ultra-long-acting anti-IL-5 monoclonal antibody for severe eosinophilic asthma. MED 2024; 5:1452-1455. [PMID: 39674169 DOI: 10.1016/j.medj.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/16/2024]
Abstract
Depemokimab, the first ultra-long-acting anti-IL-5 monoclonal antibody, significantly reduced exacerbation rates in patients with severe eosinophilic asthma when administered biannually.1 While it offers potential benefits for patient adherence and convenience, the trials showed no improvement in symptoms and lung function. Further research is needed to determine its optimal place in therapy and identify patients who will benefit the most.
Collapse
Affiliation(s)
- Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Policlinico "G. Rodolico - San Marco" University Hospital, Catania, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Policlinico "G. Rodolico - San Marco" University Hospital, Catania, Italy.
| |
Collapse
|
4
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2024:1-26. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
5
|
Zhu L, Li L, Wu J. FcRn inhibitors: Transformative advances and significant impacts on IgG-mediated autoimmune diseases. Autoimmun Rev 2024:103719. [PMID: 39672251 DOI: 10.1016/j.autrev.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Pathogenic IgG autoantibodies play a crucial role in the pathogenesis of autoimmune diseases, and removal of pathogenic IgG autoantibodies is an important therapeutic approach and tool for such diseases. The neonatal Fc receptor (FcRn) interacts with IgG and protects it from lysosomal degradation. FcRn inhibitors accelerate the clearance of IgG antibodies, including pathogenic IgG autoantibodies, by targeting and blocking the binding of FcRn to IgG. Theoretically, FcRn inhibitors can be applied for the treatment of IgG-mediated autoimmune diseases. With successful completion of multiple relevant clinical trials, key evidence-based data have been provided for FcRn inhibitors in the treatment of IgG-mediated autoimmune diseases, and several FcRn inhibitors have been approved for these indications. Additional trials are being planned or conducted. This review examines all available high-quality clinical trials of FcRn inhibitors assessing IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Lina Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China..
| |
Collapse
|
6
|
Yu L, Yang YX, Gong Z, Wan Q, Du Y, Zhou Q, Xiao Y, Zahr T, Wang Z, Yu Z, Yang K, Geng J, Fried SK, Li J, Haeusler RA, Leong KW, Bai L, Wu Y, Sun L, Wang P, Zhu BT, Wang L, Qiang L. FcRn-dependent IgG accumulation in adipose tissue unmasks obesity pathophysiology. Cell Metab 2024:S1550-4131(24)00447-9. [PMID: 39674176 DOI: 10.1016/j.cmet.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 12/16/2024]
Abstract
Immunoglobulin G (IgG) is traditionally recognized as a plasma protein that neutralizes antigens for immune defense. However, our research demonstrates that IgG predominantly accumulates in adipose tissue during obesity development, triggering insulin resistance and macrophage infiltration. This accumulation is governed by neonatal Fc receptor (FcRn)-dependent recycling, orchestrated in adipose progenitor cells and macrophages during the early and late stages of diet-induced obesity (DIO), respectively. Targeting FcRn abolished IgG accumulation and rectified insulin resistance and metabolic degeneration in DIO. By integrating artificial intelligence (AI) modeling with in vivo and in vitro experimental models, we unexpectedly uncovered an interaction between IgG's Fc-CH3 domain and the insulin receptor's ectodomain. This interaction hinders insulin binding, consequently obstructing insulin signaling and adipocyte functions. These findings unveil adipose IgG accumulation as a driving force in obesity pathophysiology, providing a novel therapeutic strategy to tackle metabolic dysfunctions.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yong Xiao Yang
- Research Center for Endocrine and Metabolic Diseases, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yifei Du
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Tarik Zahr
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Zhaobin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhewei Yu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kangkang Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Jinyang Geng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Susan K Fried
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingjie Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Pan Wang
- Research Center for Endocrine and Metabolic Diseases, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao Ting Zhu
- Research Center for Endocrine and Metabolic Diseases, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Liheng Wang
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Li Qiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
7
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Wang T, Yang Y, Yang M, Wang J, Hai M, Zhang W, Ma R, Ma G, Wang N, Qin Y, Wang P, Wan Q. Mechanisms of Mt.b Ag85B-Fc fusion protein against allergic asthma in mice by intranasal immunization. Int J Biol Macromol 2024; 283:137535. [PMID: 39549815 DOI: 10.1016/j.ijbiomac.2024.137535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Ag85B, the primary component of the Ag85 complex and an early secreted protein by Mycobacterium tuberculosis, has shown potential for the treatment of allergic asthma (AA) when used as a Fc-fusion protein. Administered via nasal immunization, Ag85B-Fc fusion protein significantly alleviated airway inflammation and reduced the proportions of some anaphylaxis related cells in lungs, with no significant histopathological injury to major organs in ovalbumin (OVA)-induced AA model mice. To investigate the underlying immune regulatory mechanisms of Ag85B protein, integrated proteomics and transcriptomics analyses were conducted, identifying the complement and coagulation cascades, and phagosomes as the two significantly enriched pathways at both gene and protein levels. Moreover, C3ar1 (C3aR1), Itgam (CD11b), Itgb2 (CD18), fgg (FGG), Cybb (CYBB), and Ncf4 (NCF4) were identified as core target factors that play a central role in allergic and asthmatic responses. Among them, C3aR1 and CR3 consisting of CD11b and CD18, are main complement receptors, indicating that Ag85B alleviated AA by regulating C3aR1- and CR3-mediated signal transduction. The validation results were consistent with the aforementioned findings. Overall, these results provide valuable insight into the application of mucosal immunotherapy in treatment of AA, positioning Ag85B-Fc fusion protein as a safe mucosal immunotherapeutic agent for AA.
Collapse
Affiliation(s)
- Tiansong Wang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Yuxin Yang
- Clinical College of Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Maosheng Yang
- School of Geographic Science and Planning, Ningxia University, Yinchuan, Ningxia, 750021, PR China
| | - Jing Wang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Maiyan Hai
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Wei Zhang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Rui Ma
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Gang Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750003, PR China
| | - Na Wang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Yanyan Qin
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Peng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| | - Qiaofeng Wan
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| |
Collapse
|
9
|
Huang SQ, Yuan ZH, Hong Y, Jiang T, Zhao HD, Shi JQ. Successful treatment with efgartigimod as an add-on therapy in acute attack of anti-AQP4 antibody-positive NMOSD: a case report. Neurol Sci 2024; 45:5511-5515. [PMID: 38969961 DOI: 10.1007/s10072-024-07678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Neuromyelitis Optica Spectrum Disorder (NMOSD) is an autoimmune demyelinating disease characterized by recurrent myelitis and optic neuritis. It is associated with high rates of relapse and disability. The main treatment strategies for acute attacks include intravenous methylprednisolone pulse (IVMP) treatment and rescue treatment with plasma exchange (PLEX). Recently, the blockade of neonatal Fc receptor (FcRn)-IgG interaction has gained momentum as a therapeutic strategy. Efgartigimod, the first approved FcRn inhibitor for treating generalized myasthenia gravis, has shown impressive safety, efficacy, and tolerability, and is being regarded as "PLEX in a bottle". CASE DESCRIPTION We report a 65-year-old female patient who was diagnosed with anti-AQP4 antibody positive NMOSD. Add-on treatment with efgartigimod to IVMP and intravenous immunoglobulin (IVIG) at the second acute relapse showed favorable results. CONCLUSION This case suggests that efgartigimod is a potentially effective add-on therapy in acute attacks of AQP4-IgG-positive NMOSD.
Collapse
Affiliation(s)
- Shi-Qi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Zhen-Hua Yuan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Hong-Dong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China.
| |
Collapse
|
10
|
Qian S, Yang Z, Zhang X, Li R, Sun Y, Zhang Z, He Y, Song Y, Tang Z, Ding J, Lu S, Yu L, Song X, Yin Z, Tian Z. Novel therapeutic approach for psoriasis: Upregulating FcRn to inhibit ferroptosis and alleviate lesional skin. Free Radic Biol Med 2024; 224:797-808. [PMID: 39270944 DOI: 10.1016/j.freeradbiomed.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Psoriasis, a chronic inflammatory skin disease, is characterized by complex immune dysregulation and oxidative stress responses. The neonatal Fc receptor (FcRn) plays a crucial role in the development of autoimmune diseases. Analysis of clinical psoriasis samples demonstrated a negative correlation between FcRn expression in skin lesions and disease severity. However, the role of FcRn in this process remains unclear. This study aimed to investigate the involvement of FcRn in the pathogenesis and progression of psoriasis. In an imiquimod (IMQ)-induced psoriasis-like mouse model, FcRn expression was significantly decreased in the lesional skin, and transcriptome sequencing of the skin revealed activation of the ferroptosis pathway in psoriasis. This led to the hypothesis that FcRn could potentially regulate ferroptosis via the signal transducer and activating transcription factor 3 (STAT3)/solute carrier family 7 member 11 (SLC7A11) axis. Further experiments showed exacerbated psoriasis-like lesional skin and ferroptosis in FcRn-knockout mice, whereas intervention with the ferroptosis inhibitor Fer-1 or STAT3 inhibitor Stattic alleviated these symptoms. Critical binding sites for the transcription factor STAT3 were identified in the SLC7A11 promoter region at positions -1185 and -564 using the luciferase reporter assays and chromatin immunoprecipitation. The administration of 1,4-naphthoquinone (NQ), an FcRn agonist, effectively alleviated psoriasis-like skin lesions by inhibiting ferroptosis. This study highlights the molecular mechanisms of action of FcRn in psoriasis and provides an experimental basis for the development of novel therapeutic strategies targeting FcRn.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Zishan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yujie Sun
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Zihan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yeqing He
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yihang Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhou Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Junrui Ding
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Shuao Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Xiangfeng Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
11
|
Newman DK, Newman PJ. Antigen-specific immunotherapy for platelet alloimmune disorders. Hum Immunol 2024; 85:111172. [PMID: 39520801 PMCID: PMC11637901 DOI: 10.1016/j.humimm.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Fetal/Neonatal Alloimmune Thrombocytopenia (FNAIT) is a significant hematologic disorder arising from maternal immune responses to fetal platelet alloantigens, predominantly Human Platelet Antigen (HPA)-1a. This review first describes the pathogenesis of FNAIT, highlighting the roles of HPA-specific antibodies, particularly HPA-1a, in causing severe thrombocytopenia and intracranial hemorrhage in affected neonates. Current management strategies, including intravenous immunoglobulin and investigational therapies like Nipocalimab, are evaluated for their efficacy and limitations. The review also discusses promising antigen-specific therapies, such as effector-silent monoclonal antibodies and innovative approaches targeting alloantibody-producing B cells. Additionally, the potential of Chimeric Autoantibody Receptor (CAAR) T cell therapy for selective elimination of pathogenic B cells is examined. The necessity for a prophylactic strategy similar to RhD immunoprophylaxis in preventing FNAIT is emphasized, along with the importance of identifying at-risk pregnancies. The development of renewable monoclonal antibodies and suitable animal models are critical steps toward effective prevention and treatment of this disorder.
Collapse
Affiliation(s)
- Debra K Newman
- Versiti Blood Research Institute, Milwaukee, WI, United States; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Peter J Newman
- Versiti Blood Research Institute, Milwaukee, WI, United States; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
12
|
Hematianlarki M, Nimmerjahn F. Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies. Immunol Rev 2024; 328:372-386. [PMID: 39340138 DOI: 10.1111/imr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.
Collapse
Affiliation(s)
- Marjan Hematianlarki
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Lee S, Nouraein S, Kwon JJ, Huang Z, Wojick JA, Xia B, Corder G, Szablowski JO. Engineered serum markers for non-invasive monitoring of gene expression in the brain. Nat Biotechnol 2024; 42:1717-1725. [PMID: 38200117 PMCID: PMC11233427 DOI: 10.1038/s41587-023-02087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Measurement of gene expression in the brain requires invasive analysis of brain tissue or non-invasive methods that are limited by low sensitivity. Here we introduce a method for non-invasive, multiplexed, site-specific monitoring of endogenous gene or transgene expression in the brain through engineered reporters called released markers of activity (RMAs). RMAs consist of an easily detectable reporter and a receptor-binding domain that enables transcytosis across the brain endothelium. RMAs are expressed in the brain but exit into the blood, where they can be easily measured. We show that expressing RMAs at a single mouse brain site representing approximately 1% of the brain volume provides up to a 100,000-fold signal increase over the baseline. Expression of RMAs in tens to hundreds of neurons is sufficient for their reliable detection. We demonstrate that chemogenetic activation of cells expressing Fos-responsive RMA increases serum RMA levels >6-fold compared to non-activated controls. RMAs provide a non-invasive method for repeatable, multiplexed monitoring of gene expression in the intact animal brain.
Collapse
Affiliation(s)
- Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - James J Kwon
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Zhimin Huang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Jessica A Wojick
- Department of Psychiatry and Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Gregory Corder
- Department of Psychiatry and Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerzy O Szablowski
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Applied Physics Program, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Attarian S. New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 2024; 180:971-981. [PMID: 39379218 DOI: 10.1016/j.neurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.
Collapse
Affiliation(s)
- S Attarian
- Referral center for Neuromuscular disorders, Timone Hospital University, AIX-Marseille Université, Marseille, France; Filnemus, ERN NMD, Marseille, France.
| |
Collapse
|
15
|
Zakrzewicz A, Vanderheyden K, Galaly Y, Feldhoff S, Sips M, Brinkhaus M, Tikkanen R. Binding to the neonatal Fc receptor enhances the pathogenicity of anti-desmoglein-3 antibodies in keratinocytes. Front Immunol 2024; 15:1473637. [PMID: 39450168 PMCID: PMC11499148 DOI: 10.3389/fimmu.2024.1473637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The neonatal Fc receptor (FcRn) is important for numerous cellular processes that involve antibody recycling and trafficking. A major function of FcRn is IgG recycling and half-life prolongation, and FcRn blockade results in a reduction of autoantibodies in IgG-mediated autoimmune diseases. In epithelial cells, FcRn functions in processes different from IgG recycling, such as antibody transcytosis in intestinal cells. In pemphigus vulgaris, an autoimmune disease of the epidermis, IgG autoantibodies directed against desmosomal adhesion proteins, especially desmoglein-3 and -1, cause loss of keratinocyte adhesion. We have previously demonstrated that FcRn blockade with efgartigimod, a human Fc fragment with enhanced FcRn binding, significantly reduces the keratinocyte monolayer fragmentation caused by anti-desmoglein-3 antibodies. This points to a direct function of FcRn in keratinocytes, beyond IgG recycling, but the mechanisms have not yet been elucidated in detail. Here, we show that FcRn binding is required for the full pathogenicity of recombinant anti-desmoglein-3 antibodies in keratinocytes, and that antibodies that exhibit enhanced or reduced FcRn affinity due to targeted substitutions in their Fc region, as well as F(ab')2 fragments not binding to FcRn display different degrees of pathogenicity. Blockade of FcRn by efgartigimod only shows a protective effect on keratinocyte adhesion against antibodies capable of binding to FcRn. Furthermore, antibody-induced degradation of desmoglein-3 in keratinocytes does not depend on FcRn, demonstrating that desmoglein-3 degradation and acantholysis are functionally disconnected processes. Our data suggest that the role of FcRn in autoimmune diseases is likely to be versatile and cell-type dependent, thus stressing the importance of further studies on FcRn function in autoimmune diseases.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | | | - Yad Galaly
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | | | | | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| |
Collapse
|
16
|
Zhang Q, Yang W, Qian Y, Zhang Y, Zhao H, Shu M, Li Q, Li Y, Ding Y, Shi S, Liu Y, Cheng X, Niu Q. Case report: Rapid symptom relief in autoimmune encephalitis with efgartigimod: a three-patient case series. Front Immunol 2024; 15:1444288. [PMID: 39421741 PMCID: PMC11484013 DOI: 10.3389/fimmu.2024.1444288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Autoimmune encephalitis (AE) comprises a group of inflammatory brain disorders mediated by autoimmune responses. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis, and anti-γ-aminobutyric acid-B receptor (GABABR) encephalitis are the most prevalent forms, characterized by the presence of antibodies against neuronal cell-surface antigens. Efgartigimod, an antagonist of the neonatal Fc receptor, has proven efficacy in myasthenia gravis treatment. This clinical case report describes the clinical progression and functional outcomes of AE in three patients who received efgartigimod treatment. Case presentations Case 1 was a 60-year-old man exhibiting memory impairment and psychiatric disturbances over 11 days. Case 2 was a 38-year-old man with a 1-month history of rapid cognitive decline and seizures. Case 3 was a 68-year-old woman with mental behavioral changes and seizures for 4 months. Anti-GABABR, anti-LGI1, and anti-NMDAR antibodies were confirmed in the respective patients' cerebrospinal fluid or serum. All three patients experienced marked and swift symptomatic relief after four cycles of efgartigimod treatment, with no complication. Conclusion Current first-line and second-line treatments for AE have limitations, and efgartigimod has demonstrated potential in the rapid and efficacious treatment of AE, emerging as a promising option for the management of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xi Cheng
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Niu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Sahni A, Karumannan V, Singh L, Jain R, Sharma RR. Breast milk induced immune haemolytic disease of newborn due to anti-c: A case report. Transfus Apher Sci 2024; 63:103974. [PMID: 39084120 DOI: 10.1016/j.transci.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Hemolytic disease of fetus and newborn is a major risk factor for anemia and hyperbilirubinemia in newborns. Early identification and diagnosis can significantly improve neonatal health. CASE REPORT This report documents a case of hemolytic disease of fetus and newborn presenting as persistent neonatal anemia requiring frequent transfusion support. The underlying cause was determined to be the passive acquisition of hemolytic alloantibodies (anti-c) via breast milk. CONCLUSION Importance of antenatal screening for red cell antibodies is gradually being recognized and adopted in developing countries to minimize the burden of HDFN. Breast milk should be considered as a potential source of hemolysing alloantibodies in newborns and may require evaluation in mothers with alloantibodies in her serum.
Collapse
Affiliation(s)
- Aarushi Sahni
- Department of Transfusion Medicine, PGIMER, Chandigarh, India.
| | | | | | - Richa Jain
- Department of Paediatric Medicine, PGIMER, Chandigarh, India.
| | | |
Collapse
|
18
|
Lin KJ, Turner KC, Rosario M, Harnisch LO, Davis JD, DiCioccio AT. Population Pharmacokinetics of Casirivimab and Imdevimab in Pediatric and Adult Non-Infected Individuals, Pediatric and Adult Ambulatory or Hospitalized Patients or Household Contacts of Patients Infected with SARS-COV-2. Pharm Res 2024; 41:1933-1949. [PMID: 39294447 PMCID: PMC11530482 DOI: 10.1007/s11095-024-03764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Casirivimab (CAS) and imdevimab (IMD) are two fully human monoclonal antibodies that bind different epitopes on the receptor binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and block host receptor interactions. CAS + IMD and was developed for the treatment and prevention of SARS-CoV-2 infections. METHODS A population pharmacokinetic (PopPK) analysis was conducted using pooled data from 7598 individuals from seven clinical studies to simultaneously fit concentration-time data of CAS and IMD and investigate selected covariates as sources of variability in PK parameters. The dataset comprised CAS + IMD-treated pediatric and adult non-infected individuals, ambulatory or hospitalized patients infected with SARS-CoV-2, or household contacts of patients infected with SARS-CoV-2. RESULTS CAS and IMD concentration-time data were both appropriately described simultaneously by a two-compartment model with first-order absorption following subcutaneous dose administration and first-order elimination. Clearance estimates of CAS and IMD were 0.193 and 0.236 L/day, respectively. Central volume of distribution estimates were 3.92 and 3.82 L, respectively. Among the covariates identified as significant, body weight and serum albumin had the largest impact (20-34%, and ~ 7-31% change in exposures at extremes, respectively), while all other covariates resulted in small differences in exposures. Application of the PopPK model included simulations to support dose recommendations in pediatrics based on comparable exposures of CAS and IMD between different weight groups in pediatrics and adults following weight-based dosing regimens. CONCLUSIONS This analysis provided important insights to characterize CAS and IMD PK simultaneously in a diverse patient population and informed pediatric dose selection.
Collapse
Affiliation(s)
- Kuan-Ju Lin
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| | - Kenneth C Turner
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Maria Rosario
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lutz O Harnisch
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - John D Davis
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - A Thomas DiCioccio
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
19
|
Miyamoto T, Fukunaga Y, Munakata A, Murai K. Antibodies against glutamic acid decarboxylase in intravenous immunoglobulin preparations can affect the diagnosis of type 1 diabetes mellitus. Vox Sang 2024; 119:1106-1110. [PMID: 38955431 DOI: 10.1111/vox.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Intravenous immunoglobulins (IVIgs) contain various autoantibodies, including those against glutamic acid decarboxylase (GADAb), a valuable biomarker of type 1 diabetes mellitus. Passive transfer of GADAb from IVIgs to patients poses a risk of misdiagnosis, and information on the specific titres of GADAb and their impact on diagnostic accuracy remains limited. This study aimed to provide further insights into the origin of GADAb detected in patient serum following IVIg infusion. MATERIALS AND METHODS GADAb titres in IVIg products from Japan and the United States were measured using enzyme-linked immunosorbent assay-based assays. For reliable quantification, GADAb titres in pooled plasma were quantified and compared with those in the IVIg products. The determined titres were used to estimate the likelihood of passively detecting acquired GADAb in individuals receiving IVIgs. RESULTS GADAbs were prevalent in IVIg products; however, the titres varied significantly among different lots and products. Importantly, IVIg-derived GADAb was estimated to remain detectable in patient serum for up to 100 days following a dosage of 2000 mg/kg. CONCLUSION Clinicians should consider that IVIg preparations may contain GADAb, which can lead to false-positive results in serological assays. Careful interpretation of the assay results is key to the definitive diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Yuki Fukunaga
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
| | - Ai Munakata
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Katsushi Murai
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| |
Collapse
|
20
|
Banoun H. Analysis of Beyfortus ® (Nirsevimab) Immunization Campaign: Effectiveness, Biases, and ADE Risks in RSV Prevention. Curr Issues Mol Biol 2024; 46:10369-10395. [PMID: 39329969 PMCID: PMC11431526 DOI: 10.3390/cimb46090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Respiratory infections with respiratory syncytial virus (RSV) account for an important part of hospital admissions for acute respiratory infections. Nirsevimab has been developed to reduce the hospital burden of RSV infections. Compared with the product previously used, it has a stronger binding capacity to RSV F protein and a high affinity for FcRn (neonatal receptor for the Fc fragment of IgG), which extends its lifespan. Nirsevimab has been shown to be highly effective in reducing hospitalization rates of RSV infections but a large or unknown number of treated subjects have been excluded in clinical and post-marketing studies. However, analysis of these studies cannot exclude that, in rare cases, nirsevimab facilitates and worsens RSV infection (or other respiratory infections). This could be attributable to antibody-dependent enhancement (ADE) which has been observed with RSV F protein antibodies in inactivated vaccine trials. This risk has been incompletely assessed in pre-clinical and clinical trials (incomplete exploration of nirsevimab effector functions and pharmacokinetics). ADE by disruption of the immune system (not studied and due to FcRn binding) could explain why there is no reduction in all-cause hospital admissions in treated age groups. Given the high price of nirsevimab, the cost-effectiveness of mass immunization campaigns may therefore be debated from an economic as well as a scientific point of view.
Collapse
|
21
|
Tulika T, Ruso-Julve F, Ahmadi S, Ljungars A, Rivera-de-Torre E, Wade J, Fernández-Quintero ML, Jenkins TP, Belfakir SB, Ross GMS, Boyens-Thiele L, Buell AK, Sakya SA, Sørensen CV, Bohn MF, Ledsgaard L, Voldborg BG, Francavilla C, Schlothauer T, Lomonte B, Andersen JT, Laustsen AH. Engineering of pH-dependent antigen binding properties for toxin-targeting IgG1 antibodies using light-chain shuffling. Structure 2024; 32:1404-1418.e7. [PMID: 39146931 PMCID: PMC11385703 DOI: 10.1016/j.str.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/07/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.
Collapse
Affiliation(s)
- Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Fulgencio Ruso-Julve
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; VenomAid Diagnostics ApS, Lyngby, Denmark
| | | | - Lars Boyens-Thiele
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Siri A Sakya
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Markus-Frederik Bohn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bjørn G Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Jan Terje Andersen
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
22
|
Mucke HA. Patent highlights October-November 2023. Pharm Pat Anal 2024; 13:23-29. [PMID: 39324858 DOI: 10.1080/20468954.2024.2389765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/27/2024]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
23
|
Seefeld ML, Templeton EL, Lehtinen JM, Sinclair N, Yadav D, Hartwell BL. Harnessing the potential of the NALT and BALT as targets for immunomodulation using engineering strategies to enhance mucosal uptake. Front Immunol 2024; 15:1419527. [PMID: 39286244 PMCID: PMC11403286 DOI: 10.3389/fimmu.2024.1419527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.
Collapse
Affiliation(s)
- Madison L Seefeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Erin L Templeton
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Justin M Lehtinen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Noah Sinclair
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Daman Yadav
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Brittany L Hartwell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
Howard JF, Vu T, Li G, Korobko D, Smilowski M, Liu L, Gistelinck F, Steeland S, Noukens J, Van Hoorick B, Podhorna J, Borgions F, Li Y, Utsugisawa K, Wiendl H, De Bleecker JL, Mantegazza R. Subcutaneous efgartigimod PH20 in generalized myasthenia gravis: A phase 3 randomized noninferiority study (ADAPT-SC) and interim analyses of a long-term open-label extension study (ADAPT-SC+). Neurotherapeutics 2024; 21:e00378. [PMID: 39227284 PMCID: PMC11579873 DOI: 10.1016/j.neurot.2024.e00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 09/05/2024] Open
Abstract
ADAPT-SC (NCT04735432) was designed to evaluate noninferiority of subcutaneous (SC) efgartigimod PH20 to intravenous (IV) efgartigimod in participants with generalized myasthenia gravis (gMG). ADAPT-SC+ (NCT04818671) is an open-label extension study designed to assess long-term safety, tolerability, and efficacy of efgartigimod PH20 SC. Adult participants in ADAPT-SC were randomly assigned to receive a treatment cycle of 4 once-weekly administrations of efgartigimod PH20 SC 1000 mg or efgartigimod IV 10 mg/kg, followed by 7 weeks of follow-up. Primary endpoint was percentage change from baseline in total immunoglobulin G (IgG) level at week 4 (1 week after the fourth administration). Secondary efficacy endpoints assessed number and percentage of Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) responders and mean change from baseline in total score for each measure. The primary endpoint was met, demonstrating noninferiority in total IgG reduction between efgartigimod PH20 SC 1000 mg and efgartigimod IV 10 mg/kg. Clinically meaningful improvements were seen as early as 1 week following the first administration in both treatment arms, with maximal improvements at week 4. Continued treatment cycles of efgartigimod PH20 SC in ADAPT-SC+ have demonstrated long-term safety and consistent improvements in MG-ADL total score. Findings from ADAPT-SC and ADAPT-SC+ demonstrate similar safety and efficacy as observed in the placebo-controlled ADAPT study. Collectively, these findings support noninferiority between efgartigimod PH20 SC 1000 mg and efgartigimod IV 10 mg/kg, as well as long-term safety, tolerability, and efficacy of efgartigimod PH20 SC for treatment of a broad population of patients with gMG.
Collapse
Affiliation(s)
- James F Howard
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Tuan Vu
- Department of Neurology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - George Li
- Medsol Clinical Research Center, Port Charlotte, FL, USA
| | - Denis Korobko
- Regional Centre for Multiple Sclerosis and Other Autoimmune System Diseases of the Nervous System, State Novosibirsk Regional Clinical Hospital, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Marek Smilowski
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | | | | | - Yuebing Li
- Neuromuscular Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Jan L De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Renato Mantegazza
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Kitahara K, Rondon A, Miller E, Mak HH, Loas A, Pentelute BL. In vivo Antibody Painting for Next Generation Weight Loss Drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609257. [PMID: 39229199 PMCID: PMC11370551 DOI: 10.1101/2024.08.22.609257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Peptide-based therapeutics are currently in great demand but often suffer from rapid clearance and accumulation in off-target tissues which continue to present barriers in their clinical translation. Here, we developed an electrophilic peptide for the attachment of therapeutics to native immunoglobulin (IgG) in vivo, enabling the bioorthogonal covalent linkage, or 'painting', of peptide drugs of choice to circulating IgGs directly in live animals. Native IgG painting with glucagon-like peptide-1 (GLP-1) results in sustained body weight loss and prolonged blood glucose management after one dose. Such technology might revolutionize the next generation of long-acting peptide-based medicines.
Collapse
Affiliation(s)
- Katsushi Kitahara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Present address: Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Aurélie Rondon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Edward Miller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Howard H. Mak
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
26
|
Coe CL, Nimityongskul F, Lubach GR, Luke K, Rancour D, Schomburg FM. Maternal Immunization with Adjuvanted Recombinant Receptor-Binding Domain Protein Provides Immune Protection against SARS-CoV-2 in Infant Monkeys. Vaccines (Basel) 2024; 12:929. [PMID: 39204052 PMCID: PMC11359192 DOI: 10.3390/vaccines12080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Maternal vaccinations administered prior to conception or during pregnancy enhance the immune protection of newborn infants against many pathogens. A feasibility experiment was conducted to determine if monkeys can be used to model the placental transfer of maternal antibody against SARS-CoV-2. Six adult rhesus monkeys were immunized with adjuvanted recombinant-protein antigens comprised of receptor-binding domain human IgG1-Fc fusion proteins (RBD-Fc) containing protein sequences from the ancestral-Wuhan or Gamma variants. The female monkeys mounted robust and sustained anti-SARS-CoV-2 antibody responses. Blood samples collected from their infants after delivery verified prenatal transfer of high levels of spike-specific IgG, which were positively correlated with maternal IgG titers at term. In addition, an in vitro test of ACE2 neutralization indicated that the infants' IgG demonstrated antigen specificity, reflecting prior maternal immunization with either Wuhan or Gamma-variant antigens. All sera showed stronger ACE2-RBD binding inhibition when variants in the assay more closely resembled the vaccine RBD sequence than with more distantly related variants (i.e., Delta and Omicron). Monkeys are a valuable animal model for evaluating new vaccines that can promote maternal and infant health. Further, the findings highlight the enduring nature and safety of the immune protection elicited by an adjuvanted recombinant RBD-Fc vaccine.
Collapse
Affiliation(s)
- Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA;
| | | | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA;
| | | | | | | |
Collapse
|
27
|
Wang Y, Sun Y, Shen Z, Wang C, Qian J, Mao Q, Wang Y, Song W, Kong Y, Zhan C, Chen Z, Dimitrov DS, Yang Z, Jiang S, Wu F, Lu L, Ying T, Sun L, Wu Y. Fully human single-domain antibody targeting a highly conserved cryptic epitope on the Nipah virus G protein. Nat Commun 2024; 15:6892. [PMID: 39134522 PMCID: PMC11319437 DOI: 10.1038/s41467-024-51066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Nipah virus infection, one of the top priority diseases recognized by the World Health Organization, underscores the urgent need to develop effective countermeasures against potential epidemics and pandemics. Here, we identify a fully human single-domain antibody that targets a highly conserved cryptic epitope situated at the dimeric interface of the Nipah virus G protein (receptor binding protein, RBP), as elucidated through structures by high-resolution cryo-electron microscopy (cryo-EM). This unique binding mode disrupts the tetramerization of the G protein, consequently obstructing the activation of the F protein and inhibiting viral membrane fusion. Furthermore, our investigations reveal that this compact antibody displays enhanced permeability across the blood-brain barrier (BBB) and demonstrates superior efficacy in eliminating pseudovirus within the brain in a murine model of Nipah virus infection, particularly compared to the well-characterized antibody m102.4 in an IgG1 format. Consequently, this single-domain antibody holds promise as a therapeutic candidate to prevent Nipah virus infections and has potential implications for vaccine development.
Collapse
Affiliation(s)
- Yulu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yifang Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhaoling Shen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery (MOE), School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiyu Mao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yajie Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenping Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu Kong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Zhenlin Yang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| |
Collapse
|
28
|
Song J, Wang H, Huan X, Jiang Q, Wu Z, Yan C, Xi J, Zhao C, Feng H, Luo S. Efgartigimod as a promising add-on therapy for myasthenic crisis: a prospective case series. Front Immunol 2024; 15:1418503. [PMID: 39136012 PMCID: PMC11317420 DOI: 10.3389/fimmu.2024.1418503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Efgartigimod is effective and well-tolerated in patients with anti-acetylcholine receptor (AChR) antibody-positive generalized myasthenia gravis (MG). However, the therapeutic potential and the safety profile of efgartigimod in myasthenic crisis (MC) remained largely unknown. Methods This is an observational, prospective, multicenter, real-world study to follow 2 MC patients who initiated efgartigimod as a first-line rescue therapy and 8 cases who used it as an add-on therapy. Baseline demographic features and immunotherapies were collected, and the MG-activities of daily living (MG-ADL) scale was evaluated every week since efgartigimod treatment for 8 weeks. Additionally, serum IgG and anti-AChR antibody levels and the peripheral CD4+ T lymphocytes were measured before and after one cycle of treatment. Results Ten patients with MC were enrolled in the study, including 9 anti-AChR antibody positive and 1 anti-muscle-specific kinase (MuSK) positive. All patients were successfully weaned from the ventilation after receiving efgartigimod treatment, with a length of 10.44 ± 4.30 days. After one cycle of infusions, the MG-ADL score reduced from 15.6 ± 4.4 at the baseline to 3.4 ± 2.2, while the corticosteroid dose was tapered from 55.0 ± 20.7 mg to 26.0 ± 14.1 mg. The proportions of regulatory T cells and naïve T cells (% in CD4+ T) significantly decreased post-efgartigimod treatment (5.48 ± 1.23 vs. 6.90 ± 1.80, P=0.0313, and 34.98 ± 6.47 vs. 43.68 ± 6.54, P=0.0313, respectively). Conclusion These findings validated the rapid action of efgartigimod in facilitating the weaning process with a good safety profile in patients with MC.
Collapse
Affiliation(s)
- Jie Song
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Haiyan Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Huan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Qilong Jiang
- Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongtai Wu
- Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Chong Yan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Jianying Xi
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sushan Luo
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Keating SM, Higgins BW. New technologies in therapeutic antibody development: The next frontier for treating infectious diseases. Antiviral Res 2024; 227:105902. [PMID: 38734210 DOI: 10.1016/j.antiviral.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Adaptive immunity to viral infections requires time to neutralize and clear viruses to resolve infection. Fast growing and pathogenic viruses are quickly established, are highly transmissible and cause significant disease burden making it difficult to mount effective responses, thereby prolonging infection. Antibody-based passive immunotherapies can provide initial protection during acute infection, assist in mounting an adaptive immune response, or provide protection for those who are immune suppressed or immune deficient. Historically, plasma-derived antibodies have demonstrated some success in treating diseases caused by viral pathogens; nonetheless, limitations in access to product and antibody titer reduce success of this treatment modality. Monoclonal antibodies (mAbs) have proven an effective alternative, as it is possible to manufacture highly potent and specific mAbs against viral targets on an industrial scale. As a result, innovative technologies to discover, engineer and manufacture specific and potent antibodies have become an essential part of the first line of treatment in pathogenic viral infections. However, a mAb targeting a specific epitope will allow escape variants to outgrow, causing new variant strains to become dominant and resistant to treatment with that mAb. Methods to mitigate escape have included combining mAbs into cocktails, creating bi-specific or antibody drug conjugates but these strategies have also been challenged by the potential development of escape mutations. New technologies in developing antibodies made as recombinant polyclonal drugs can integrate the strength of poly-specific antibody responses to prevent mutational escape, while also incorporating antibody engineering to prevent antibody dependent enhancement and direct adaptive immune responses.
Collapse
Affiliation(s)
- Sheila M Keating
- GigaGen, Inc. (A Grifols Company), 75 Shoreway Road, San Carlos, CA, 94070, USA.
| | | |
Collapse
|
30
|
Van Coillie S, Prévot J, Sánchez-Ramón S, Lowe DM, Borg M, Autran B, Segundo G, Pecoraro A, Garcelon N, Boersma C, Silva SL, Drabwell J, Quinti I, Meyts I, Ali A, Burns SO, van Hagen M, Pergent M, Mahlaoui N. Charting a course for global progress in PIDs by 2030 - proceedings from the IPOPI global multi-stakeholders' summit (September 2023). Front Immunol 2024; 15:1430678. [PMID: 39055704 PMCID: PMC11270239 DOI: 10.3389/fimmu.2024.1430678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
The International Patient Organisation for Primary Immunodeficiencies (IPOPI) held its second Global Multi-Stakeholders' Summit, an annual stimulating and forward-thinking meeting uniting experts to anticipate pivotal upcoming challenges and opportunities in the field of primary immunodeficiency (PID). The 2023 summit focused on three key identified discussion points: (i) How can immunoglobulin (Ig) therapy meet future personalized patient needs? (ii) Pandemic preparedness: what's next for public health and potential challenges for the PID community? (iii) Diagnosing PIDs in 2030: what needs to happen to diagnose better and to diagnose more? Clinician-Scientists, patient representatives and other stakeholders explored avenues to improve Ig therapy through mechanistic insights and tailored Ig preparations/products according to patient-specific needs and local exposure to infectious agents, amongst others. Urgency for pandemic preparedness was discussed, as was the threat of shortage of antibiotics and increasing antimicrobial resistance, emphasizing the need for representation of PID patients and other vulnerable populations throughout crisis and care management. Discussion also covered the complexities of PID diagnosis, addressing issues such as global diagnostic disparities, the integration of patient-reported outcome measures, and the potential of artificial intelligence to increase PID diagnosis rates and to enhance diagnostic precision. These proceedings outline the outcomes and recommendations arising from the 2023 IPOPI Global Multi-Stakeholders' Summit, offering valuable insights to inform future strategies in PID management and care. Integral to this initiative is its role in fostering collaborative efforts among stakeholders to prepare for the multiple challenges facing the global PID community.
Collapse
Affiliation(s)
- Samya Van Coillie
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Johan Prévot
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Health Research Institute of the Hospital Clínico San Carlos/Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IML and IdISSC), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - David M. Lowe
- Department of Immunology, Royal Free London National Heath System (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Michael Borg
- Department of Infection Control & Sterile Services, Mater Dei Hospital, Msida, Malta
| | - Brigitte Autran
- Sorbonne-Université, Cimi-Paris, Institut national de la santé et de la recherche médicale (INSERM) U1135, centre national de la recherche scientifique (CNRS) ERL8255, Université Pierre et Marie Curie Centre de Recherche n°7 (UPMC CR7), Paris, France
| | - Gesmar Segundo
- Departamento de Pediatra, Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
| | - Antonio Pecoraro
- Transfusion Medicine Unit, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Nicolas Garcelon
- Université de Paris, Imagine Institute, Data Science Platform, Institut national de la santé et de la recherche médicale Unité Mixte de Recherche (INSERM UMR) 1163, Paris, France
| | - Cornelis Boersma
- Health-Ecore B.V., Zeist, Netherlands
- Unit of Global Health, Department of Health Sciences, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
- Department of Management Sciences, Open University, Heerlen, Netherlands
| | - Susana L. Silva
- Serviço de Imunoalergologia, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jose Drabwell
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Adli Ali
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, Universiti Kebangsaan Malaysia (UKM) Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London National Heath System (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martine Pergent
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Nizar Mahlaoui
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
31
|
Villafuerte-Vega RC, Li HW, Bergman AE, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding Rapidly Characterize the Structural Polydispersity and Stability of an Fc-Fusion Protein. Anal Chem 2024; 96:10003-10012. [PMID: 38853531 DOI: 10.1021/acs.analchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Addison E Bergman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
33
|
Cavalcante P, Mantegazza R, Antozzi C. Targeting autoimmune mechanisms by precision medicine in Myasthenia Gravis. Front Immunol 2024; 15:1404191. [PMID: 38903526 PMCID: PMC11187261 DOI: 10.3389/fimmu.2024.1404191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Immunotherapy and Apheresis Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
34
|
Boulard P, Azzopardi N, Levard R, Cornec JM, Lamamy J, Prieur B, Demattei MV, Watier H, Gatault P, Gouilleux-Gruart V. Albumin influences leucocyte FcRn expression in the early days of kidney transplantation. Clin Exp Immunol 2024; 216:307-317. [PMID: 38353127 PMCID: PMC11097912 DOI: 10.1093/cei/uxae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 05/18/2024] Open
Abstract
FcRn, a receptor originally known for its involvement in IgG and albumin transcytosis and recycling, is also important in the establishment of the innate and adaptive immune response. Dysregulation of the immune response has been associated with variations in FcRn expression, as observed in cancer. Recently, a link between autophagy and FcRn expression has been demonstrated. Knowing that autophagy is strongly involved in the development of reperfusion injury in kidney transplantation and that albuminemia is transiently decreased in the first 2 weeks after transplantation, we investigated variations in FcRn expression after kidney transplantation. We monitored FcRn levels by flow cytometry in leukocytes from 25 renal transplant patients and considered parameters such as albumin concentrations, estimated glomerular filtration rate, serum creatinine, serum IgG levels, and ischaemia/reperfusion time. Two groups of patients could be distinguished according to their increased or non-increased FcRn expression levels between days 2 and 6 (d2-d6) post-transplantation. Leukocyte FcRn expression at d2-d6 was correlated with albumin concentrations at d0-d2. These results suggest that albumin concentrations at d0-d2 influence FcRn expression at d2-d6, raising new questions about the mechanisms underlying these original observations.
Collapse
Affiliation(s)
- Pierre Boulard
- Centre d’Étude des Pathologies Respiratoires (CEPR) U1100 INSERM, Tours, France
- Laboratoire d’immunologie, CHU de Tours, Tours,France
| | | | - Romain Levard
- Laboratoire d’immunologie, CHU de Tours, Tours,France
| | | | - Juliette Lamamy
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| | | | | | - Hervé Watier
- Laboratoire d’immunologie, CHU de Tours, Tours,France
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| | - Philippe Gatault
- EA4245 T2I, Faculté de Médecine, Université de Tours, Tours,France
- Service de Néphrologie, CHU de Tours, Tours,France
| | - Valérie Gouilleux-Gruart
- Laboratoire d’immunologie, CHU de Tours, Tours,France
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| |
Collapse
|
35
|
Ma G, Crowley AR, Heyndrickx L, Rogiers I, Parthoens E, Van Santbergen J, Ober RJ, Bobkov V, de Haard H, Ulrichts P, Hofman E, Louagie E, Balbino B, Ward ES. Differential effects of FcRn antagonists on the subcellular trafficking of FcRn and albumin. JCI Insight 2024; 9:e176166. [PMID: 38713534 PMCID: PMC11141909 DOI: 10.1172/jci.insight.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.
Collapse
Affiliation(s)
- Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew R. Crowley
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Eef Parthoens
- VIB BioImaging Core, Center for Inflammation Research, Ghent, Belgium
| | | | - Raimund J. Ober
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | - E. Sally Ward
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Sampson JM, Cannon DA, Duan J, Epstein JCK, Sergeeva AP, Katsamba PS, Mannepalli SM, Bahna FA, Adihou H, Guéret SM, Gopalakrishnan R, Geschwindner S, Rees DG, Sigurdardottir A, Wilkinson T, Dodd RB, De Maria L, Mobarec JC, Shapiro L, Honig B, Buchanan A, Friesner RA, Wang L. Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590325. [PMID: 38712280 PMCID: PMC11071377 DOI: 10.1101/2024.04.22.590325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.
Collapse
Affiliation(s)
| | | | - Jianxin Duan
- Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany
| | | | - Alina P. Sergeeva
- Columbia University, Department of Systems Biology, New York, NY, USA
| | | | - Seetha M. Mannepalli
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
| | - Fabiana A. Bahna
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
| | - Hélène Adihou
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stéphanie M. Guéret
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stefan Geschwindner
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | | | | | | | - Roger B. Dodd
- AstraZeneca, Biologics Engineering, R&D, Cambridge, UK
| | - Leonardo De Maria
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Juan Carlos Mobarec
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | - Lawrence Shapiro
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
| | - Barry Honig
- Columbia University, Department of Systems Biology, New York, NY, USA
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
- Columbia University, Department of Medicine, New York, NY, USA
| | | | | | - Lingle Wang
- Schrödinger, Inc., Life Sciences Software, New York, NY, USA
| |
Collapse
|
37
|
Chen J, Feng L, Li S, Wang H, Huang X, Shen C, Feng H. Therapeutic Plasma Exchange in AChR-Ab Positive Generalized Myasthenia Gravis: A Real World Study About Its Early Response. J Inflamm Res 2024; 17:2299-2308. [PMID: 38645879 PMCID: PMC11032135 DOI: 10.2147/jir.s455104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024] Open
Abstract
Background Since there is no clear priority or selection principle in the guidelines for myasthenia crisis, therapeutic plasma exchange (TPE) and intravenous immunoglobulin are often administered randomly. However, it should be more prudent in taking TPE due to its higher cost and risk. Studying its early response factors is crucial for managing myasthenia crisis and can improve medical and economic benefits. Methods A prospective observational study was conducted, and patients classified as having "impending myasthenia crisis" or experiencing a myasthenia crisis and treated by TPE were included. The primary endpoint was the response after TPE. Univariate logistic regression analysis and repeated measurement were performed to analyze factors related to TPE efficacy. Results A total of 30 patients who treated with TPE as their fast-acting treatments were enrolled. After TPE, those whose QMGs and/or MGCs decreased by ≥5 points or ≥30% of the baseline were judged as "response group", accounting for 66.67% (20/30). Respiratory symptoms had a response rate of 72.00% (18/25), showing the most remarkable improvement. Meanwhile, extraocular symptoms were the least sensitive, with only 8.00% (2/25) showing efficacy. Thymoma (100.00% vs 50.00%, P=0.002) and a high concentration of AChR-Ab (37.37 nmol/L vs 25.4 nmol/L, P=0.039) were common in the early response group. Repeated measures showed significant changes in AChR-Ab and CD19+ B cells before and after TPE (all with P < 0.05). After treatment, the CD19+ B cells tended to decrease in the response group. Discussion These results indicated that, for AChR-Ab positive generalized MG, TPE can quickly improve respiratory symptoms. Thymoma and a high concentration of AChR-Ab before TPE predict an early better response. Additionally, TPE may work by decreasing AChR-Ab levels and inducing immune regulation. Future prospective and randomized controlled studies are needed.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Li Feng
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Shiyin Li
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Haiyan Wang
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Xin Huang
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Cunzhou Shen
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Huiyu Feng
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| |
Collapse
|
38
|
Lagassé HD, Ou J, Sauna ZE, Golding B. Factor VIII moiety of recombinant Factor VIII Fc fusion protein impacts Fc effector function and CD16 + NK cell activation. Front Immunol 2024; 15:1341013. [PMID: 38655263 PMCID: PMC11035769 DOI: 10.3389/fimmu.2024.1341013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.
Collapse
Affiliation(s)
- H.A. Daniel Lagassé
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Jiayi Ou
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Zuben E. Sauna
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Basil Golding
- Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
39
|
Macri C, Paxman M, Jenika D, Lin XP, Elahi Z, Gleeson PA, Caminschi I, Lahoud MH, Villadangos JA, Mintern JD. FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. NPJ Vaccines 2024; 9:76. [PMID: 38594284 PMCID: PMC11003989 DOI: 10.1038/s41541-024-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined. Here we have investigated the role of FcRn in antigen presentation using antigen conjugated to IgG mAb which target specific DC receptors, including DEC205 and Clec9A expressed by the conventional DC 1 (cDC1) subset. We show that FcRn is expressed at high levels by cDC1, both at steady-state and following activation and plays a significant role in MHC I cross-presentation and MHC II presentation of antigens that are targeted to cDC1 via mAb specific for DEC205. This effect of FcRn is intrinsic to cDC1 and FcRn impacts the efficacy of anti-DEC205-mediated vaccination against B cell lymphoma. In contrast, FcRn does not impact presentation of antigens targeted to Clec9A and does not regulate presentation of cell-associated antigen. These data highlight a new and unique role of FcRn in controlling the immunogenicity of anti-DEC205-based vaccination, with consequences for exploiting this pathway to improve DC-targeted vaccine outcomes.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Matthew Paxman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Xiao Peng Lin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Zahra Elahi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
40
|
Zheng Y, Xu R, Cheng H, Tai W. Mono-amino acid linkers enable highly potent small molecule-drug conjugates by conditional release. Mol Ther 2024; 32:1048-1060. [PMID: 38369752 PMCID: PMC11163218 DOI: 10.1016/j.ymthe.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Ruolin Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
41
|
Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther 2024; 7:132-156. [PMID: 38617189 PMCID: PMC11011201 DOI: 10.1093/abt/tbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
In calendar year 2023, the United States Food and Drug Administration (US FDA) approved a total of 55 new molecular entities, of which 12 were in the class of therapeutic antibodies. Besides antibody protein drugs, the US FDA also approved another five non-antibody protein drugs, making the broader class of protein drugs about 31% of the total approved drugs. Among the 12 therapeutic antibodies approved by the US FDA, 8 were relatively standard IgG formats, 3 were bivalent, bispecific antibodies and 1 was a trivalent, bispecific antibody. In 2023, no new antibody-drug conjugates, immunocytokines or chimeric antigen receptor-T cells were approved. Of the approved antibodies, two targeted programmed cell death receptor-1 (PD-1) for orphan indications, two targeted CD20 for diffuse large B cell lymphoma, two targeted different receptors (B-cell maturation antigen [BCMA] and G-coupled protein receptor class C, group 5, member D [GPRC5D]) for treatment of multiple myeloma, and one each that targeted amyloid-β protofibrils for Alzheimer's disease, neonatal Fc receptor alpha-chain for myasthenia gravis, complement factor C5 for CD55 deficiency with hyper-activation of complement, angiopathic thrombosis and severe protein-losing enteropathy disease, interleukin (IL)-23p19 for severely active ulcerative colitis, IL-17A-F for plaque psoriasis and respiratory syncytial virus (RSV)-F protein for season-long RSV prophylaxis in infants.
Collapse
Affiliation(s)
- William R Strohl
- Scientific Advisor Department, BiStro Biotechnology Consulting, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA
| |
Collapse
|
42
|
Sidonio RF, Weisel JW, Stafford D. Unresolved hemostasis issues in haemophilia. Haemophilia 2024; 30 Suppl 3:70-77. [PMID: 38575518 DOI: 10.1111/hae.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Despite rapid technological advancement in factor and nonfactor products in the prevention and treatment of bleeding in haemophilia patients, it is imperative that we acknowledge gaps in our understanding of how hemostasis is achieved. The authors will briefly review three unresolved issues in persons with haemophilia (PwH) focusing on the forgotten function that red blood cells play in hemostasis, the critical role of extravascular (outside circulation) FIX in hemostasis in the context of unmodified and extended half-life FIX products and finally on the role that skeletal muscle myosin plays in prothrombinase assembly and subsequent thrombin generation that could mitigate breakthrough muscle hematomas.
Collapse
Affiliation(s)
- Robert F Sidonio
- Hemophilia of Georgia Center for Bleeding and Clotting Disorders of CHOA, Atlanta, Georgia, USA
| | - John W Weisel
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Darrel Stafford
- University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
44
|
Haddad G, Blaine J. Identification of Four Mouse FcRn Splice Variants and FcRn-Specific Vesicles. Cells 2024; 13:594. [PMID: 38607033 PMCID: PMC11012118 DOI: 10.3390/cells13070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.
Collapse
Affiliation(s)
| | - Judith Blaine
- Division of Renal Disease and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
45
|
Yan C, Yue Y, Guan Y, Bu B, Ke Q, Duan R, Deng H, Xue Q, Jiang H, Xiao F, Yang H, Chang T, Zou Z, Li H, Tan S, Xiao H, Zhou H, Zhang H, Meng Q, Li W, Li W, Guo J, Zhang Y, Li Z, Tu J, Shi J, Li W, Lee M, Chen Y, Tao X, Zhao S, Li P, Zhao C. Batoclimab vs Placebo for Generalized Myasthenia Gravis: A Randomized Clinical Trial. JAMA Neurol 2024:2815832. [PMID: 38436998 PMCID: PMC10913013 DOI: 10.1001/jamaneurol.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Importance Myasthenia gravis (MG) is caused by autoantibodies that disrupt the neuromuscular junction. The neonatal fragment crystallizable receptor (FcRn) antagonists, efgartigimod and rozanolixizumab, reduce immunoglobulin G (IgG) level in the circulation and alleviate symptoms in patients with generalized MG. Objective To examine the efficacy and safety profile of batoclimab, a monoclonal IgG1 antibody, in patients with generalized MG. Design, Setting, and Participants This was a multicenter randomized clinical trial conducted from September 15, 2021, to June 29, 2022, at 27 centers in China. Adult patients 18 years or older with generalized MG were screened, and those who were antibody positive were enrolled. Intervention Eligible patients received batoclimab or matching placebo in addition to standard of care. Each treatment cycle consisted of 6 weekly subcutaneous injections of batoclimab, 680 mg, or matching placebo followed by 4 weeks of observation. A second treatment cycle was conducted in patients who required continuing treatment. Main Outcome and Measure The primary outcome was sustained improvement, as defined by a 3-point or greater reduction in the Myasthenia Gravis Activities of Daily Living (MG-ADL) score from baseline for 4 or more consecutive weeks in the first cycle in individuals who were positive for acetylcholine receptor or muscle-specific kinase antibodies. Results A total of 178 adult patients with generalized MG were screened, 132 were randomly assigned, 131 tested positive for antibodies, and 1 tested negative for antibodies. A total of 132 patients (mean [SE] age, 43.8 [13.6] years; 88 women [67.2%]) were enrolled. The rate of sustained MG-ADL improvement in the first cycle in antibody-positive patients was 31.3% (20 of 64) in the placebo group vs 58.2% (39 of 67) in the batoclimab group (odds ratio, 3.45; 95% CI, 1.62-7.35; P = .001). The MG-ADL score diverged between the 2 groups as early as week 2. The mean (SE) maximum difference in MG-ADL score reduction occurred 1 week after the last dose (day 43, 1.7 [0.3] in the placebo group vs 3.6 [0.3] in the batoclimab group; group difference, -1.9; 95% CI, -2.8 to -1.0; nominal P < .001). The rates of treatment-related and severe treatment-emergent adverse events in patients were 36.9% (24 of 65) and 7.7% (5 of 65) in the placebo group vs 70.1% (47 of 67) and 3.0% (2 of 67) in the batoclimab group, respectively. Conclusions and Relevance Batoclimab increased the rate of sustained MG-ADL improvement and was well tolerated in adult patients with generalized MG. Clinical effects and the extent of IgG reduction were similar to those previously reported for efgartigimod and rozanolixizumab. Future studies of large sample size are needed to further understand the safety profile of batoclimab. Trial Registration ClinicalTrials.gov Identifier: NCT05039190.
Collapse
Affiliation(s)
- Chong Yan
- National Center for Neurological Disorders, Huashan Rare Disease Centre, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaoxian Yue
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Ke
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruisheng Duan
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji’nan, China
| | - Hui Deng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Qun Xue
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi’an, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haifeng Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haibing Xiao
- Neuromedicine Center, Department of Neurology, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Department of Neurology, Beijing Hospital, Beijing, China
| | - Qiang Meng
- Department of Neurology, the First People’s Hospital of Yunnan Province & the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenyu Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- Department of Neurology, Qilu Hospital, Shandong University, Ji’nan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Yali Zhang
- Department of Neurology, Chifeng Municipal Hospital, Chifeng, China
| | - Zunbo Li
- Department of Neurology, Xi’an Gaoxin Hospital, Xi’an Medical College, Xi’an, China
| | - Jianglong Tu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianquan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Neurology, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Michael Lee
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Yu Chen
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Xiaolu Tao
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Shuai Zhao
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Ping Li
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Chongbo Zhao
- National Center for Neurological Disorders, Huashan Rare Disease Centre, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Tremblay TL, Alata W, Slinn J, Baumann E, Delaney CE, Moreno M, Haqqani AS, Stanimirovic DB, Hill JJ. The proteome of the blood-brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture. Fluids Barriers CNS 2024; 21:23. [PMID: 38433215 PMCID: PMC10910681 DOI: 10.1186/s12987-024-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.
Collapse
Affiliation(s)
- Tammy-Lynn Tremblay
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Wael Alata
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
- Biology Program, New York University Abu Dhabi, Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jacqueline Slinn
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Maria Moreno
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
47
|
Ait-Oudhia S, Wang YM, Dosne AG, Roy A, Jin JY, Shen J, Kagan L, Musuamba FT, Zhang L, Kijima S, Gastonguay MR, Ouellet D. Challenging the Norm: A Multidisciplinary Perspective on Intravenous to Subcutaneous Bridging Strategies for Biologics. Clin Pharmacol Ther 2024; 115:412-421. [PMID: 38069528 DOI: 10.1002/cpt.3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The transition from intravenous (i.v.) to subcutaneous (s.c.) administration of biologics is a critical strategy in drug development aimed at improving patient convenience, compliance, and therapeutic outcomes. Focusing on the increasing role of model-informed drug development (MIDD) in the acceleration of this transition, an in-depth overview of the essential clinical pharmacology, and regulatory considerations for successful i.v. to s.c. bridging for biologics after the i.v. formulation has been approved are presented. Considerations encompass multiple aspects beginning with adequate pharmacokinetic (PK) and pharmacodynamic (i.e., exposure-response) evaluations which play a vital role in establishing comparability between the i.v. and s.c. routes of administrations. Selected key recommendations and points to consider include: (i) PK characterization of the s.c. formulation, supported by the increasing preclinical understanding of the s.c. absorption, and robust PK study design and analyses in humans; (ii) a thorough characterization of the exposure-response profiles including important metrics of exposure for both efficacy and safety; (iii) comparability studies designed to meet regulatory considerations and support approval of the s.c. formulation, including noninferiority studies with PK and/or efficacy and safety as primary end points; and (iv) comprehensive safety package addressing assessments of immunogenicity and patients' safety profile with the new route of administration. Recommendations for successful bridging strategies are evolving and MIDD approaches have been used successfully to accelerate the transition to s.c. dosing, ultimately leading to improved patient experiences, adherence, and clinical outcomes.
Collapse
Affiliation(s)
| | - Yow-Ming Wang
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anne-Gaelle Dosne
- Janssen Research & Development, LLC, Beerse, Belgium
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amit Roy
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jin Y Jin
- Genentech Inc., South San Francisco, California, USA
| | - Jun Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Flora T Musuamba
- Belgian Federal Agency for Medicines and Health Products, Brussels, Belgium
- NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Lucia Zhang
- Health Canada, Biologic and Radiopharmaceutical Drugs Directorate, Ottawa, Ontario, Canada
| | - Shinichi Kijima
- Pharmaceuticals and Medical Devices Agency (PMDA), Tokyo, Japan
| | | | - Daniele Ouellet
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
48
|
Uysal SP, Morren JA. Promising therapies for the treatment of myasthenia gravis. Expert Opin Pharmacother 2024; 25:395-408. [PMID: 38523508 DOI: 10.1080/14656566.2024.2332610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune condition targeting the neuromuscular junction, which manifests with neuromuscular symptoms of varying severity and significant morbidity. The mainstay of treatment in MG is mitigation of the immune cascade with steroids and non-steroidal immunosuppressive therapies. The therapeutic strategies in MG are transitioning from broad and indiscriminate immunosuppression to novel agents targeting key steps in MG pathogenesis, including T cell activation, B cell proliferation, complement activation, maintenance of pathogenic antibody production, and proinflammatory cytokine production. AREAS COVERED In this review, an overview of the pathogenesis of MG and traditional MG therapies is presented, followed by a discussion of the novel MG drugs that have been evaluated in phase 3 clinical trials with an emphasis on those which have received regulatory approval. EXPERT OPINION Novel MG therapeutics belonging to the classes of complement inhibitors, neonatal Fc receptor (FcRn) inhibitors and B cell depletors, as well as the other emerging MG drugs in the pipeline constitute promising treatment strategies with potentially better efficacy and safety compared to the conventional MG treatments. However, further long-term research is needed in order to optimize the implementation of these new treatment options for the appropriate patient populations.
Collapse
Affiliation(s)
- Sanem Pinar Uysal
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John A Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
49
|
Lindroos JLV, Bjørk MH, Gilhus NE. Transient Neonatal Myasthenia Gravis as a Common Complication of a Rare Disease: A Systematic Review. J Clin Med 2024; 13:1136. [PMID: 38398450 PMCID: PMC10889526 DOI: 10.3390/jcm13041136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease. Transient neonatal myasthenia gravis (TNMG) is caused by pathogenic maternal autoantibodies that cross the placenta and disrupt signaling at the neuromuscular junction. This is a systematic review of this transient immunoglobulin G (IgG)-mediated disease. TNMG affects 10-20% of children born to mothers with MG. The severity of symptoms ranges from minor feeding difficulties to life-threatening respiratory weakness. Minor symptoms might go unnoticed but can still interfere with breastfeeding. Acetylcholine-esterase inhibitors and antibody-clearing therapies such as immunoglobulins can be used to treat TNMG, but most children do well with observation only. TNMG is self-limiting within weeks as circulating antibodies are naturally cleared from the blood. In rare cases, TNMG is associated with permanent skeletal malformations or permanent myopathy. The mother's antibodies can also lead to spontaneous abortions. All healthcare professionals meeting pregnant or birthing women with MG or their neonates should be aware of TNMG. TNMG is hard to predict. Reoccurrence is common among siblings. Pre-pregnancy thymectomy and intravenous immunoglobulins during pregnancy reduce the risk. Neonatal fragment crystallizable receptor (FcRn) blocking drugs for MG might reduce TNMG risk.
Collapse
Affiliation(s)
- Jenny Linnea Victoria Lindroos
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Marte-Helene Bjørk
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| |
Collapse
|
50
|
Wijngaarden JE, Jauw YWS, Zwezerijnen GJC, de Wit-van der Veen BJ, Vugts DJ, Zijlstra JM, van Dongen GAMS, Boellaard R, Menke-van der Houven van Oordt CW, Huisman MC. Non-specific irreversible 89Zr-mAb uptake in tumours: evidence from biopsy-proven target-negative tumours using 89Zr-immuno-PET. EJNMMI Res 2024; 14:18. [PMID: 38358425 PMCID: PMC10869322 DOI: 10.1186/s13550-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Distribution of mAbs into tumour tissue may occur via different processes contributing differently to the 89Zr-mAb uptake on PET. Target-specific binding in tumours is of main interest; however, non-specific irreversible uptake may also be present, which influences quantification. The aim was to investigate the presence of non-specific irreversible uptake in tumour tissue using Patlak linearization on 89Zr-immuno-PET data of biopsy-proven target-negative tumours. Data of two studies, including target status obtained from biopsies, were retrospectively analysed, and Patlak linearization provided the net rate of irreversible uptake (Ki). RESULTS Two tumours were classified as CD20-negative and two as CD20-positive. Four tumours were classified as CEA-negative and nine as CEA-positive. Ki values of CD20-negative (0.43 µL/g/h and 0.92 µL/g/h) and CEA-negative tumours (mdn = 1.97 µL/g/h, interquartile range (IQR) = 1.50-2.39) were higher than zero. Median Ki values of target-negative tumours were lower than CD20-positive (1.87 µL/g/h and 1.90 µL/g/h) and CEA-positive tumours (mdn = 2.77 µL/g/h, IQR = 2.11-3.65). CONCLUSION Biopsy-proven target-negative tumours showed irreversible uptake of 89Zr-mAbs measured in vivo using 89Zr-immuno-PET data, which suggests the presence of non-specific irreversible uptake in tumours. Consequently, for 89Zr-immuno-PET, even if the target is absent, a tumour-to-plasma ratio always increases over time.
Collapse
Affiliation(s)
- Jessica E Wijngaarden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Yvonne W S Jauw
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Berlinda J de Wit-van der Veen
- Department of Nuclear Medicine, Antoni Van Leeuwenhoek Nederlands Kanker Instituut, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Daniëlle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Marc C Huisman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|