1
|
Malafaia AP, Sobreiro-Almeida R, Rodrigues JMM, Mano JF. Thiol-ene click chemistry: Enabling 3D printing of natural-based inks for biomedical applications. BIOMATERIALS ADVANCES 2025; 167:214105. [PMID: 39522498 DOI: 10.1016/j.bioadv.2024.214105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Over the last decade, 3D bioprinting has gained increasing popularity, being a technique capable of producing well-defined tissue-like structures. One of its most groundbreaking features is the ability to create personalized therapies tailored to the specific demands of individual patients. However, challenges including the selection of materials and crosslinking strategies, still need to be addressed to enhance ink characteristics and develop robust biomaterials. Herein, the authors showcase the potential of overcoming these challenges, focusing on the use of versatile, fast, and selective thiol-ene click chemistry to formulate inks for 3D bioprinting. The exploration of natural polymers, specifically proteins and polysaccharides, will be discussed and highlighted, outlining the advantages and disadvantages of this approach. Leveraging advanced thiol-ene click chemistry and natural polymers in the development of 3D printable bioinks may face the current challenges and is envisioned to pave the way towards innovative and personalized biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Andreia P Malafaia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Sobreiro-Almeida
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João M M Rodrigues
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Wang C, Yao H, Shi J, Zhang Z, Cong B, Wu Z, Shang X, Hu X, Yang J, Sun H, Gu Z, Cheng G, Chong H, Wang DA, Zhao Y. Injectable tissue-engineered human cartilage matrix composite fibrin glue for regeneration of articular cartilage defects. BIOMATERIALS ADVANCES 2025; 167:214095. [PMID: 39504587 DOI: 10.1016/j.bioadv.2024.214095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Due to the lack of blood vessels and nerves, the ability of cartilage to repair itself is limited, and the injury of articular cartilage urgently needs effective treatment. Currently, the limitation of clinical repair for cartilage defects is that it is difficult to form pure hyaline cartilage repair, and the source of cartilage tissue and cells is limited. To obtain high-purity regenerated hyaline cartilage, we proposed to construct an injectable hydrogel precursor by using human living hyaline cartilage graft (hLhCG) secreted by human chondrocytes as the dispersed phase and fibrinogen solution as the continuous phase, by double injection with thrombin, three-dimensional network hydrogel structure was formed under the action of thrombin to repair joint defects. The component phenotypes of hLhCG and biomechanical properties of composite gel scaffolds were verified. After 12 weeks of injection of the mixed phase at the defect site, the regenerated tissues are similar in composition to adjacent natural tissues and exhibit similar biomechanical properties. The phenotype of regenerated cartilage was verified, confirming the successful regeneration of hyaline cartilage.
Collapse
Affiliation(s)
- Chirun Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong Special Administrative Region
| | - Bo Cong
- Department of Osteoarthropathy, Yantaishan Hospital, Yantai 264001, Shandong, PR China
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xianfeng Shang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong Special Administrative Region
| | - Jian Yang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, PR China
| | - Haidi Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Zehao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Gong Cheng
- Department of Osteoarthropathy, Yantaishan Hospital, Yantai 264001, Shandong, PR China
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong Special Administrative Region.
| | - Yuchi Zhao
- Department of Osteoarthropathy, Yantaishan Hospital, Yantai 264001, Shandong, PR China.
| |
Collapse
|
3
|
Mathur V, Dsouza V, Srinivasan V, Vasanthan KS. Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers. ACS Biomater Sci Eng 2025; 11:156-181. [PMID: 39746181 PMCID: PMC11733917 DOI: 10.1021/acsbiomaterials.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues. In India, the lack of clear regulatory guidelines and intellectual property protections poses additional hurdles for companies seeking to navigate the evolving landscape of bioprinting. This study emphasizes the importance of collaboration among industry stakeholders, regulatory agencies, and academic institutions to establish tailored frameworks that promote innovation while ensuring safety and efficacy. By bridging the gap between technological advancement and regulatory oversight, VAM can unlock new opportunities in regenerative medicine and tissue engineering, transforming patient care and therapeutic outcomes.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Vinita Dsouza
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Varadharajan Srinivasan
- Department
of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| |
Collapse
|
4
|
Karami M, Keshvari H, Hajari MA, Shiri M, Movahedi F, Rezaeiani S, Pahlavan S, Montazeri L. Functional and Structural Improvement of Engineered Cardiac Microtissue Using Aligned Microfilaments Scaffold. ACS Biomater Sci Eng 2025; 11:531-542. [PMID: 39725564 DOI: 10.1021/acsbiomaterials.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic-co-glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT). Consequently, the coculture of three cell types, including cardiac progenitor cells (CPC), human umbilical cord endothelial cells (HUVEC), and human foreskin fibroblasts (HFF), within this 3D scaffold significantly improved cellular alignment compared to the control. Additionally, cells in the ECMT exhibited a more uniaxial anisotropic and oriented cytoskeleton, characterized by immunostaining of F-actin. This approach not only enhanced cell structure and microtissue architecture but also improved functionality, evident in synchronized electrophysiological signals. Therefore, our engineered cardiac microtissue using this aligned microfilament scaffold (AMFS) holds great potential for pharmaceutical research and other biomedical applications.
Collapse
Affiliation(s)
- Mohammad Karami
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamid Keshvari
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Mahshad Shiri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Fatemeh Movahedi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
5
|
Wu Z, Liu R, Shao N, Zhao Y. Developing 3D bioprinting for organs-on-chips. LAB ON A CHIP 2025. [PMID: 39775492 DOI: 10.1039/d4lc00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Organs-on-chips (OoCs) have significantly advanced biomedical research by precisely reconstructing human microphysiological systems with biomimetic functions. However, achieving greater structural complexity of cell cultures on-chip for enhanced biological mimicry remains a challenge. To overcome these challenges, 3D bioprinting techniques can be used in directly building complex 3D cultures on chips, facilitating the in vitro engineering of organ-level models. Herein, we review the distinctive features of OoCs, along with the technical and biological challenges associated with replicating complex organ structures. We discuss recent bioprinting innovations that simplify the fabrication of OoCs while increasing their architectural complexity, leading to breakthroughs in the field and enabling the investigation of previously inaccessible biological problems. We highlight the challenges for the development of 3D bioprinted OoCs, concluding with a perspective on future directions aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ning Shao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Shenzhen Research Institute, Southeast University, Shenzhen 518071, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou 450009, China
| |
Collapse
|
6
|
Steudter T, Lam T, Pirmahboub H, Stoppel C, Kloke L, Pearson S, Del Campo A. A Comparative Study between Thiol-Ene and Acrylate Photocrosslinkable Hyaluronic Acid Hydrogel Inks for Digital Light Processing. Macromol Biosci 2024:e2400535. [PMID: 39741116 DOI: 10.1002/mabi.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Photocrosslinkable formulations based on the radical thiol-ene reaction are considered better alternatives than methacrylated counterparts for light-based fabrication processes. This study quantifies differences between thiol-ene and methacrylated crosslinked hydrogels in terms of precursors stability, the control of the crosslinking process, and the resolution of printed features particularized for hyaluronic acid (HA) inks at concentrations relevant for bioprinting. First, the synthesis of HA functionalized with norbornene, allyl ether, or methacrylate groups with the same molecular weight and comparable degrees of functionalization is presented. The thiol-ene hydrogel precursors show storage stability over 15 months, 3.8 times higher than the methacrylated derivative. Photorheology experiments demonstrate up to 4.7-times faster photocrosslinking. Network formation in photoinitiated thiol-ene HA crosslinking allows higher temporal control than in methacrylated HA, which shows long post-illumination hardening. Using digital light processing, 4% w/v HA hydrogels crosslinked with a dithiol allowed printing of 13.5 × 4 × 1 mm3 layers with holes of 100 µm resolution within 2 s. This is the smallest feature size demonstrated in DLP printing with HA-based thiol-ene hydrogels. The results are important to estimate the extent to which the synthetic effort of introducing -ene functions can pay off in the printing step.
Collapse
Affiliation(s)
- Therese Steudter
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | | | | | - Samuel Pearson
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
7
|
Burns N, Rajesh A, Manjula-Basavanna A, Duraj-Thatte A. 3D extrusion bioprinting of microbial inks for biomedical applications. Adv Drug Deliv Rev 2024; 217:115505. [PMID: 39701387 DOI: 10.1016/j.addr.2024.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
In recent years, the field of 3D bioprinting has witnessed the intriguing development of a new type of bioink known as microbial inks. Bioinks, typically associated with mammalian cells, have been reimagined to involve microbes, enabling many new applications beyond tissue engineering and regenerative medicine. This review presents the latest advancements in microbial inks, including their definition, types, composition, salient characteristics, and biomedical applications. Herein, microbes are genetically engineered to produce 1) extrudable bioink and 2) life-like functionalities such as self-regeneration, self-healing, self-regulation, biosynthesis, biosensing, biosignaling, biosequestration, etc. We also discuss some of the promising applications of 3D extrusion printed microbial inks, such as 1) drugs and probiotics delivery, 2) metabolite production, 3) tissue engineering, 4) bioremediation, 5) biosensors and bioelectronics, 6) biominerals and biocomposites, and 7) infectious disease modeling. Finally, we describe some of the current challenges of microbial inks that needs to be addressed in the coming years, to make a greater impact in health science and technology and many other fields.
Collapse
Affiliation(s)
- Nicolas Burns
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street, Blacksburg 24061, USA
| | - Arjun Rajesh
- Department of Chemistry and Chemical Biology, Northeastern University, 334 Huntington Avenue, Boston 02115, USA
| | - Avinash Manjula-Basavanna
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street, Blacksburg 24061, USA; Department of Chemistry and Chemical Biology, Northeastern University, 334 Huntington Avenue, Boston 02115, USA; Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston 02120, USA.
| | - Anna Duraj-Thatte
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street, Blacksburg 24061, USA; Macromolecular Innovation Institute, Virginia Tech, 240 W Campus Dr, Blacksburg 24060, USA.
| |
Collapse
|
8
|
Ren C, Chen W, Liao Y, Huang Y, Yu C, Chen T, Zeng Q, Yang Y, Huang R, Liu T, Jiang L, Bao B, Zhu L, Lin Q. Reinforcing Gelatin Hydrogels via In Situ Phase Separation and Enhanced Interphase Bonding for Advanced 3D Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416432. [PMID: 39659086 DOI: 10.1002/adma.202416432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Chunling Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yangguang Huang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Changlong Yu
- Burn Plastic Wound Repair Surgery of Ganzhou Hospital of Guangdong Provincial People's Hospital, GanZhou, 341000, China
| | - Ting Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunlong Yang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Rongkun Huang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Jiang Z, Jin B, Liang Z, Wang Y, Ren S, Huang Y, Li C, Sun H, Li Y, Liu L, Li N, Wang J, Cui Z, Huang P, Yang H, Mao Y, Ye H. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials 2024; 311:122681. [PMID: 38944968 DOI: 10.1016/j.biomaterials.2024.122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/28/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Cell-laden bioprinting is a promising biofabrication strategy for regenerating bioactive transplants to address organ donor shortages. However, there has been little success in reproducing transplantable artificial organs with multiple distinctive cell types and physiologically relevant architecture. In this study, an omnidirectional printing embedded network (OPEN) is presented as a support medium for embedded 3D printing. The medium is state-of-the-art due to its one-step preparation, fast removal, and versatile ink compatibility. To test the feasibility of OPEN, exceptional primary mouse hepatocytes (PMHs) and endothelial cell line-C166, were used to print hepatospheroid-encapsulated-artificial livers (HEALs) with vein structures following predesigned anatomy-based printing paths in OPEN. PMHs self-organized into hepatocyte spheroids within the ink matrix, whereas the entire cross-linked structure remained intact for a minimum of ten days of cultivation. Cultivated HEALs maintained mature hepatic functions and marker gene expression at a higher level than conventional 2D and 3D conditions in vitro. HEALs with C166-laden vein structures promoted endogenous neovascularization in vivo compared with hepatospheroid-only liver prints within two weeks of transplantation. Collectively, the proposed platform enables the manufacture of bioactive tissues or organs resembling anatomical architecture, and has broad implications for liver function replacement in clinical applications.
Collapse
Affiliation(s)
- Zhuoran Jiang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Yinhan Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Shuai Ren
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Yongfa Huang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yunzhu Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Li Liu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Nianlin Li
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Jinzhuo Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK; The Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou, 215123, China
| | - Pengyu Huang
- Engineering Research Center of Pulmonary and Critical Care Technology and Device (MOE of China), Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK; The Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou, 215123, China.
| |
Collapse
|
10
|
Kang D, Lee Y, Kim W, Lee HR, Jung S. Toxicity Assessment of Humidifier Disinfectant Component CMIT/MIT Using Bioprinted Thin-Layer Human Alveolar Model. BIOCHIP JOURNAL 2024; 18:576-588. [DOI: 10.1007/s13206-024-00172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/11/2024] [Accepted: 09/18/2024] [Indexed: 01/05/2025]
|
11
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024; 13:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
12
|
Desigaux T, Comperat L, Dusserre N, Stachowicz ML, Lea M, Dupuy JW, Vial A, Molinari M, Fricain JC, Paris F, Oliveira H. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity. Bioact Mater 2024; 42:316-327. [PMID: 39290339 PMCID: PMC11405629 DOI: 10.1016/j.bioactmat.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.
Collapse
Affiliation(s)
- Theo Desigaux
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Leo Comperat
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Nathalie Dusserre
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Marie-Laure Stachowicz
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Malou Lea
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Jean-William Dupuy
- Univ. Bordeaux, Bordeaux Proteome, F-33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR 3427, OncoProt, F-33000, Bordeaux, France
| | - Anthony Vial
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
- Services d'Odontologie et de Santé Buccale, CHU Bordeaux, F-33000, Bordeaux, France
| | - François Paris
- CRCINA, INSERM, CNRS, Univ. Nantes, F-44000, Nantes, France
- Institut de Cancérologie de l'Ouest, F-44800, Saint Herblain, France
| | - Hugo Oliveira
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| |
Collapse
|
13
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Arslan H, Davuluri A, Nguyen HH, So BR, Lee J, Jeon J, Yum K. 3D Bioprinting Using Universal Fugitive Network Bioinks. ACS APPLIED BIO MATERIALS 2024; 7:7040-7050. [PMID: 39291381 DOI: 10.1021/acsabm.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Three-dimensional (3D) bioprinting has emerged with potential for creating functional 3D tissues with customized geometries. However, the limited availability of bioinks capable of printing 3D structures with both high-shape fidelity and desired biological environments for encapsulated cells remains a key challenge. Here, we present a 3D bioprinting approach that uses universal fugitive network bioinks prepared by loading cells and hydrogel precursors (bioink base materials) into a 3D printable fugitive carrier. This approach constructs 3D structures of cell-encapsulated hydrogels by printing 3D structures using fugitive network bioinks, followed by cross-linking printed structures and removing the carrier from them. The use of the fugitive carrier decouples the 3D printability of bioinks from the material properties of bioink base materials, making this approach readily applicable to a range of hydrogel systems. The decoupling also enables the design of bioinks for the biological functionality of the final printed constructs without compromising the 3D printability. We demonstrate the generalizable 3D printability by printing self-supporting 3D structures of various hydrogels, including conventionally non-3D printable hydrogels and those with a low polymer content. We conduct preprinting screening of bioink base materials through 3D cell culture to select bioinks with high cell compatibility. The selected bioinks produce 3D constructs of cell-encapsulated hydrogels with both high-shape fidelity and high cell viability and proliferation. The universal fugitive network bioink platform could significantly expand 3D printable bioinks with customizable biological functionalities and the adoption of 3D bioprinting in diverse research and applied settings.
Collapse
Affiliation(s)
- Hakan Arslan
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aneela Davuluri
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Hiep H Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Byung Ran So
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Junha Jeon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kyungsuk Yum
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
15
|
Upadhyay A, Bakkalci D, Micalet A, Butler M, Bergin M, Moeendarbary E, Loizidou M, Cheema U. Dense Collagen I as a Biomimetic Material to Track Matrix Remodelling in Renal Carcinomas. ACS OMEGA 2024; 9:41419-41432. [PMID: 39398183 PMCID: PMC11465592 DOI: 10.1021/acsomega.4c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Aims: Renal tissue is a dynamic biophysical microenvironment, regulating healthy function and influencing tumor development. Matrix remodelling is an iterative process and aberrant tissue repair is prominent in kidney fibrosis and cancer. Biomimetic 3D models recapitulating the collagen composition and mechanical fidelity of native renal tissue were developed to investigate cell-matrix interactions in renal carcinomas. Methods: Collagen I and laminin hydrogels were engineered with renal cancer cells (ACHN and 786-O), which underwent plastic compression to generate dense matrices. Mechanical properties were determined using shear rheology and qPCR determined the gene expression of matrix markers. Results: The shear modulus and phase angle of acellular dense collagen I gels (474 Pa and 10.7) are similar to human kidney samples (1410 Pa and 10.5). After 21 days, 786-O cells softened the dense matrix (∼155 Pa), with collagen IV downregulation and upregulation of matrix metalloproteinases (MMP7 and MMP8). ACHN cells were found to be less invasive and stiffened the matrix to ∼1.25 kPa, with gene upregulation of collagen IV and the cross-linking enzyme LOX. Conclusions: Renal cancer cells remodel their biophysical environment, altering the material properties of tissue stroma in 3D models. These models can generate physiologically relevant stiffness to investigate the different matrix remodelling mechanisms utilized by cancer cells.
Collapse
Affiliation(s)
- Anuja Upadhyay
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Deniz Bakkalci
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Auxtine Micalet
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Matt Butler
- UCB
Pharma, 216 Bath Road, SL1 3WE Slough, United Kingdom
| | | | - Emad Moeendarbary
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Marilena Loizidou
- Division
of Surgery and Interventional Science, University
College London, Royal
Free Campus, Rowland Hill Street, NW3
2PF London, United
Kingdom
| | - Umber Cheema
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| |
Collapse
|
16
|
Deng C, Aldali F, Luo H, Chen H. Regenerative rehabilitation: a novel multidisciplinary field to maximize patient outcomes. MEDICAL REVIEW (2021) 2024; 4:413-434. [PMID: 39444794 PMCID: PMC11495474 DOI: 10.1515/mr-2023-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
Regenerative rehabilitation is a novel and rapidly developing multidisciplinary field that converges regenerative medicine and rehabilitation science, aiming to maximize the functions of disabled patients and their independence. While regenerative medicine provides state-of-the-art technologies that shed light on difficult-to-treated diseases, regenerative rehabilitation offers rehabilitation interventions to improve the positive effects of regenerative medicine. However, regenerative scientists and rehabilitation professionals focus on their aspects without enough exposure to advances in each other's field. This disconnect has impeded the development of this field. Therefore, this review first introduces cutting-edge technologies such as stem cell technology, tissue engineering, biomaterial science, gene editing, and computer sciences that promote the progress pace of regenerative medicine, followed by a summary of preclinical studies and examples of clinical investigations that integrate rehabilitative methodologies into regenerative medicine. Then, challenges in this field are discussed, and possible solutions are provided for future directions. We aim to provide a platform for regenerative and rehabilitative professionals and clinicians in other areas to better understand the progress of regenerative rehabilitation, thus contributing to the clinical translation and management of innovative and reliable therapies.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongmei Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Barcelos SM, Rosa PMDS, Moura ABB, Villarroel CLP, Bridi A, Bispo ECI, Garcez EM, Oliveira GDS, Almeida MA, Malard PF, Peixer MAS, Pereira RW, de Alencar SA, Saldanha-Araujo F, Dallago BSL, da Silveira JC, Perecin F, Pogue R, Carvalho JL. Extracellular vesicles derived from bovine adipose-derived mesenchymal stromal cells enhance in vitro embryo production from lesioned ovaries. Cytotherapy 2024; 26:1141-1151. [PMID: 38904584 DOI: 10.1016/j.jcyt.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS Ovum pick-up (OPU) is an intrinsic step of in vitro fertilization procedures. Nevertheless, it can cause ovarian lesions and compromise female fertility in bovines. Recently, we have shown that intraovarian injection of adipose-derived mesenchymal stromal cells (AD-MSCs) effectively preserves ovarian function in bovines. Given that MSC-derived extracellular vesicles (MSC-EVs) have been shown to recapitulate several therapeutic effects attributed to AD-MSCs and that they present logistic and regulatory advantages compared to AD-MSCs, we tested whether MSC-EVs would also be useful to treat OPU-induced lesions. METHODS MSC-EVs were isolated from the secretome of bovine AD-MSCs, using ultrafiltration (UF) and ultracentrifugation methods. The MSC-EVs were characterized according to concentration and mean particle size, morphology, protein concentration and EV markers, miRNA, mRNA, long noncoding RNA profile, total RNA yield and potential for induction of the proliferation and migration of bovine ovarian stromal cells. We then investigated whether intraovarian injection of MSC-EVs obtained by UF would reduce the negative effects of acute OPU-induced ovarian lesions in bovines. To do so, 20 animals were divided into 4 experimental groups (n = 5), submitted to 4 OPU cycles and different experimental treatments including vehicle only (G1), MSC-EVs produced by 7.5 × 106 AD-MSCs (G2), MSC-EVs produced by 2.5 × 106 AD-MSCs (G3) or 3 doses of MSC-EVs produced by 2.5 × 106 AD-MSCs, injected after OPU sessions 1, 2 and 3 (G4). RESULTS Characterization of the MSC-EVs revealed that the size of the particles was similar in the different isolation methods; however, the UF method generated a greater MSC-EV yield. MSC-EVs processed by both methods demonstrated a similar ability to promote cell migration and proliferation in ovarian stromal cells. Considering the higher yield and lower complexity of the UF method, UF-MSC-EVs were used in the in vivo experiment. We evaluated three therapeutic regimens for cows subjected to OPU, noting that the group treated with three MSC-EV injections (G4) maintained oocyte production and increased in vitro embryo production, compared to G1, which presented compromised embryo production following the OPU-induced lesions. CONCLUSIONS MSC-EVs have beneficial effects both on the migration and proliferation of ovarian stromal cells and on the fertility of bovines with follicular puncture injury in vivo.
Collapse
Affiliation(s)
- Stefhani Martins Barcelos
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Ana Beatriz Bossois Moura
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | - Emãnuella Melgaço Garcez
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | | | - Maria Alice Almeida
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | | | | | - Sérgio Amorim de Alencar
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bruno Stéfano Lima Dallago
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
18
|
Zoghi S. Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks. Biomed Eng Comput Biol 2024; 15:11795972241288099. [PMID: 39364141 PMCID: PMC11447703 DOI: 10.1177/11795972241288099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Tissue engineering is a multidisciplinary field that uses biomaterials to restore tissue function and assist with drug development. Over the last decade, the fabrication of three-dimensional (3D) multifunctional scaffolds has become commonplace in tissue engineering and regenerative medicine. Thanks to the development of 3D bioprinting technologies, these scaffolds more accurately recapitulate in vivo conditions and provide the support structure necessary for microenvironments conducive to cell growth and function. The purpose of this review is to provide a background on the leading 3D bioprinting methods and bioink selections for tissue engineering applications, with a specific focus on the growing field of developing multifunctional bioinks and possible future applications.
Collapse
Affiliation(s)
- Shervin Zoghi
- School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
19
|
Deo KA, Murali A, Tronolone JJ, Mandrona C, Lee HP, Rajput S, Hargett SE, Selahi A, Sun Y, Alge DL, Jain A, Gaharwar AK. Granular Biphasic Colloidal Hydrogels for 3D Bioprinting. Adv Healthc Mater 2024; 13:e2303810. [PMID: 38749006 DOI: 10.1002/adhm.202303810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Indexed: 05/30/2024]
Abstract
Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell-laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)-nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating β-islet cells into the PEG microparticles and endothelial cells in the GelMA-nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Kaivalya A Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Aparna Murali
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James J Tronolone
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Cole Mandrona
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Hung Pang Lee
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Satyam Rajput
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sarah E Hargett
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Amirali Selahi
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Nutrition, College of Agriculture, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel L Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abhishek Jain
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
- Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
20
|
Boretti G, Baldursson HE, Buonarrivo L, Simonsson S, Brynjólfsson S, Gargiulo P, Sigurjónsson ÓE. Mechanical and Biological Characterization of Ionic and Photo-Crosslinking Effects on Gelatin-Based Hydrogel for Cartilage Tissue Engineering Applications. Polymers (Basel) 2024; 16:2741. [PMID: 39408454 PMCID: PMC11479120 DOI: 10.3390/polym16192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Articular cartilage degeneration poses a significant public health challenge; techniques such as 3D bioprinting are being explored for its regeneration in vitro. Gelatin-based hydrogels represent one of the most promising biopolymers used in cartilage tissue engineering, especially for its collagen composition and tunable mechanical properties. However, there are no standard protocols that define process parameters such as the crosslinking method to apply. To this aim, a reproducible study was conducted for exploring the influence of different crosslinking methods on 3D bioprinted gelatin structures. This study assessed mechanical properties and cell viability in relation to various crosslinking techniques, revealing promising results particularly for dual (photo + ionic) crosslinking methods, which achieved high cell viability and tunable stiffness. These findings offer new insights into the effects of crosslinking methods on 3D bioprinted gelatin for cartilage applications. For example, ionic and photo-crosslinking methods provide softer materials, with photo-crosslinking supporting cell stretching and diffusion, while ionic crosslinking preserves a spherical stem cell morphology. On the other hand, dual crosslinking provides a stiffer, optimized solution for creating stable cartilage-like constructs. The results of this study offer a new perspective on the standardization of gelatin for cartilage bioprinting, bridging the gap between research and clinical applications.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Hafsteinn Esjar Baldursson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Luca Buonarrivo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 102 Reykjavik, Iceland;
| | - Paolo Gargiulo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
21
|
Wang X, Lu J, Huang Y, Liu X, Fang G, Yang CT, Guo Z. Editorial: Emerging bioanalytical techniques and therapies for human disease models. Front Bioeng Biotechnol 2024; 12:1453813. [PMID: 39386041 PMCID: PMC11461311 DOI: 10.3389/fbioe.2024.1453813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Xuerui Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinnuo Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixiao Huang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhao Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guocheng Fang
- School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chih-Tsung Yang
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Zhaobin Guo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
22
|
Yuan J, Sun B, Ma W, Cai C, Huang Z, Zhou P, Yi L, Liu L, Chen S. Orthogonally woven 3D nanofiber scaffolds promote rapid soft tissue regeneration by enhancing bidirectional cell migration. Bioact Mater 2024; 39:582-594. [PMID: 38883316 PMCID: PMC11179174 DOI: 10.1016/j.bioactmat.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024] Open
Abstract
Repairing large-area soft tissue defects caused by traumas is a major surgical challenge. Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regeneration. In this study, we developed an orthogonally woven three-dimensional (3D) nanofiber scaffold combining electrospinning, weaving, and modified gas-foaming technology. The developed orthogonally woven 3D nanofiber scaffold had a modular design and controlled fiber alignment. In vitro, the orthogonally woven 3D nanofiber scaffold exhibited adjustable mechanical properties, good cell compatibility, and easy drug loading. In vivo, for one thing, the implantation of an orthogonally woven 3D nanofiber scaffold in a full abdominal wall defect model demonstrated that extensive granulation tissue formation with enough mechanical strength could promote recovery of abdominal wall defects while reducing intestinal adhesion. Another result of diabetic wound repair experiments suggested that orthogonally woven 3D nanofiber scaffolds had a higher wound healing ratio, granulation tissue formation, collagen deposition, and re-epithelialization. Taken together, this novel orthogonally woven 3D nanofiber scaffold may provide a promising and effective approach for optimal soft tissue regeneration.
Collapse
Affiliation(s)
- Jiayi Yuan
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Bingbing Sun
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, 100000, China
| | - Weixing Ma
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chao Cai
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Zhenzhen Huang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Peiyi Zhou
- Chongqing Health Center for Women and Children, Chongqing Obstetric and Gynecologic Hospital, Chongqing, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lubin Liu
- Chongqing Health Center for Women and Children, Chongqing Obstetric and Gynecologic Hospital, Chongqing, China
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
23
|
Abuhamad AY, Masri S, Fadilah NIM, Alamassi MN, Maarof M, Fauzi MB. Application of 3D-Printed Bioinks in Chronic Wound Healing: A Scoping Review. Polymers (Basel) 2024; 16:2456. [PMID: 39274089 PMCID: PMC11397625 DOI: 10.3390/polym16172456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Chronic wounds, such as diabetic foot ulcers, pressure ulcers, and venous ulcers, pose significant clinical challenges and burden healthcare systems worldwide. The advent of 3D bioprinting technologies offers innovative solutions for enhancing chronic wound care. This scoping review evaluates the applications, methodologies, and effectiveness of 3D-printed bioinks in chronic wound healing, focusing on bioinks incorporating living cells to facilitate wound closure and tissue regeneration. Relevant studies were identified through comprehensive searches in databases, including PubMed, Scopus, and Web of Science databases, following strict inclusion criteria. These studies employ various 3D bioprinting techniques, predominantly extrusion-based, to create bioinks from natural or synthetic polymers. These bioinks are designed to support cell viability, promote angiogenesis, and provide structural integrity to the wound site. Despite these promising results, further research is necessary to optimize bioink formulations and printing parameters for clinical application. Overall, 3D-printed bioinks offer a transformative approach to chronic wound care, providing tailored and efficient solutions. Continued development and refinement of these technologies hold significant promise for improving chronic wound management and patient outcomes.
Collapse
Affiliation(s)
- Asmaa Y Abuhamad
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Syafira Masri
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohammed Numan Alamassi
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Manira Maarof
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mh Busra Fauzi
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
24
|
Sprenger L, Lu HH, Trippmacher S, Mansfeld U, Milkin P, Ionov L, Papastavrou G, Boccaccini AR, Salehi S. Composite Alginate Dialdehyde-Gelatin (ADA-GEL) Hydrogel Containing Short Ribbon-Shaped Fillers for Skeletal Muscle Tissue Biofabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44605-44622. [PMID: 39159061 DOI: 10.1021/acsami.4c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic-co-glycolic acid) (PLGA) ribbon surfaces. Oxygen plasma activation of 30 W for 5 min showed high immobilization of fibronectin as a protein coating on the PLGA ribbon surface, which resulted in enhanced cell adhesion and differentiation of muscle cells. Furthermore, the effect of various concentrations of CaCl2 solution, used for ionic cross-linking of ADA, on ADA-GEL physical and mechanical properties as well as encapsulated C2C12 cell viability and proliferation behavior was investigated. The pore area was measured via two approaches, cryofixation and lyophilization, which, in accordance with degradation tests and mechanical analysis, showed that 60 mM CaCl2 concentration is the optimum range for cross-linking of the formulation of ADA 2.5%w/v-GEL 3.75%w/v. These cross-linked hydrogels showed a compression modulus of 11.5 kPa (similar to the native skeletal muscle tissue), a high viability of C2C12 muscle cells (>80%), and a high proliferation rate during 7 days of culture. Rheological characterization of the ADA-GEL composite hydrogel containing short fillers (100 μm long) showed its suitability as a bioink with shear-thinning and flow behavior compared to ADA-GEL.
Collapse
Affiliation(s)
- Lys Sprenger
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Steffen Trippmacher
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), KeyLAB, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Pavel Milkin
- Department of Biofabrication, Faculty of Engineering Sciences, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Department of Biofabrication, Faculty of Engineering Sciences, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| |
Collapse
|
25
|
Zheng L, Zhan Y, Wang C, Fan Q, Sun D, Li Y, Xiong Y. Technological advances and challenges in constructing complex gut organoid systems. Front Cell Dev Biol 2024; 12:1432744. [PMID: 39206092 PMCID: PMC11349554 DOI: 10.3389/fcell.2024.1432744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.
Collapse
Affiliation(s)
- Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Chenxuan Wang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Qigui Fan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Denglong Sun
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
26
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
27
|
Rossi A, Furlani F, Bassi G, Cunha C, Lunghi A, Molinari F, Teran FJ, Lista F, Bianchi M, Piperno A, Montesi M, Panseri S. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater Today Bio 2024; 27:101110. [PMID: 39211510 PMCID: PMC11360152 DOI: 10.1016/j.mtbio.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Franco Furlani
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences. Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde. Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia 44121 Ferrara, Italy
- Section of Physiology, Università di Ferrara 44121 Ferrara, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J. Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions, Ctra Madrid23, 40150 Villacastín, Spain
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia 44125 Modena, Italy
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| |
Collapse
|
28
|
Wu S, Yang T, Ma M, Fan L, Ren L, Liu G, Wang Y, Cheng B, Xia J, Hao Z. Extracellular vesicles meet mitochondria: Potential roles in regenerative medicine. Pharmacol Res 2024; 206:107307. [PMID: 39004243 DOI: 10.1016/j.phrs.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Extracellular vesicles (EVs), secreted by most cells, act as natural cell-derived carriers for delivering proteins, nucleic acids, and organelles between cells. Mitochondria are highly dynamic organelles responsible for energy production and cellular physiological processes. Recent evidence has highlighted the pivotal role of EVs in intercellular mitochondrial content transfer, including mitochondrial DNA (mtDNA), proteins, and intact mitochondria. Intriguingly, mitochondria are crucial mediators of EVs release, suggesting an interplay between EVs and mitochondria and their potential implications in physiology and pathology. However, in this expanding field, much remains unknown regarding the function and mechanism of crosstalk between EVs and mitochondria and the transport of mitochondrial EVs. Herein, we shed light on the physiological and pathological functions of EVs and mitochondria, potential mechanisms underlying their interactions, delivery of mitochondria-rich EVs, and their clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meirui Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Le Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yiqiao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
29
|
Zubiarrain-Laserna A, Martínez-Moreno D, López de Andrés J, de Lara-Peña L, Guaresti O, Zaldua AM, Jiménez G, Marchal JA. Beyond stiffness: deciphering the role of viscoelasticity in cancer evolution and treatment response. Biofabrication 2024; 16:042002. [PMID: 38862006 DOI: 10.1088/1758-5090/ad5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
There is increasing evidence that cancer progression is linked to tissue viscoelasticity, which challenges the commonly accepted notion that stiffness is the main mechanical hallmark of cancer. However, this new insight has not reached widespread clinical use, as most clinical trials focus on the application of tissue elasticity and stiffness in diagnostic, therapeutic, and surgical planning. Therefore, there is a need to advance the fundamental understanding of the effect of viscoelasticity on cancer progression, to develop novel mechanical biomarkers of clinical significance. Tissue viscoelasticity is largely determined by the extracellular matrix (ECM), which can be simulatedin vitrousing hydrogel-based platforms. Since the mechanical properties of hydrogels can be easily adjusted by changing parameters such as molecular weight and crosslinking type, they provide a platform to systematically study the relationship between ECM viscoelasticity and cancer progression. This review begins with an overview of cancer viscoelasticity, describing how tumor cells interact with biophysical signals in their environment, how they contribute to tumor viscoelasticity, and how this translates into cancer progression. Next, an overview of clinical trials focused on measuring biomechanical properties of tumors is presented, highlighting the biomechanical properties utilized for cancer diagnosis and monitoring. Finally, this review examines the use of biofabricated tumor models for studying the impact of ECM viscoelasticity on cancer behavior and progression and it explores potential avenues for future research on the production of more sophisticated and biomimetic tumor models, as well as their mechanical evaluation.
Collapse
Affiliation(s)
- Ana Zubiarrain-Laserna
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
| | - Daniel Martínez-Moreno
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
| | - Julia López de Andrés
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Laura de Lara-Peña
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Olatz Guaresti
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Gema Jiménez
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Health Science, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain
| | - Juan Antonio Marchal
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
30
|
Song J, Lyu W, Kawakami K, Ariga K. Bio-gel nanoarchitectonics in tissue engineering. NANOSCALE 2024; 16:13230-13246. [PMID: 38953604 DOI: 10.1039/d4nr00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Given the creation of materials based on nanoscale science, nanotechnology must be combined with other disciplines. This role is played by the new concept of nanoarchitectonics, the process of constructing functional materials from nanocomponents. Nanoarchitectonics may be highly compatible with applications in biological systems. Conversely, it would be meaningful to consider nanoarchitectonics research oriented toward biological applications with a focus on materials systems. Perhaps, hydrogels are promising as a model medium to realize nanoarchitectonics in biofunctional materials science. In this review, we will provide an overview of some of the defined targets, especially for tissue engineering. Specifically, we will discuss (i) hydrogel bio-inks for 3D bioprinting, (ii) dynamic hydrogels as an artificial extracellular matrix (ECM), and (iii) topographical hydrogels for tissue organization. Based on these backgrounds and conceptual evolution, the construction strategies and functions of bio-gel nanoarchitectonics in medical applications and tissue engineering will be discussed.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Wenyan Lyu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| |
Collapse
|
31
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
33
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Park DY, Kim SH, Park SH, Jang JS, Yoo JJ, Lee SJ. 3D Bioprinting Strategies for Articular Cartilage Tissue Engineering. Ann Biomed Eng 2024; 52:1883-1893. [PMID: 37204546 DOI: 10.1007/s10439-023-03236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Do Young Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Orthopedic Surgery, Ajou University Hospital, Suwon, Republic of Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sang-Hyug Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Ji Su Jang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
35
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
36
|
Abaci A, Guvendiren M. 3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity. Biofabrication 2024; 16:035027. [PMID: 38821144 DOI: 10.1088/1758-5090/ad52f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.
Collapse
Affiliation(s)
- Alperen Abaci
- Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Murat Guvendiren
- Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
- Bioengineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
37
|
Biswas A, Apsite I, Rosenfeldt S, Bite I, Vitola V, Ionov L. Modular photoorigami-based 4D manufacturing of vascular junction elements. J Mater Chem B 2024; 12:5405-5417. [PMID: 38716838 DOI: 10.1039/d4tb00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Four-dimensional (4D) printing, combining three-dimensional (3D) printing with time-dependent stimuli-responsive shape transformation, eliminates the limitations of the conventional 3D printing technique for the fabrication of complex hollow constructs. However, existing 4D printing techniques have limitations in terms of the shapes that can be created using a single shape-changing object. In this paper, we report an advanced 4D fabrication approach for vascular junctions, particularly T-junctions, using the 4D printing technique based on coordinated sequential folding of two or more specially designed shape-changing elements. In our approach, the T-junction is split into two components, and each component is 4D printed using different synthesized shape memory polyurethanes and their nanohybrids, which have been synthesized with varying hard segment contents and by incorporating different weight percentages of photo-responsive copper sulfide-polyvinyl pyrrolidone nanoparticles. The formation of a T-junction is demonstrated by assigning different shape memory behaviors to each component of the T-junction. A cell culture study with human umbilical vein endothelial cells reveals that the cells proliferate over time, and almost 90% of cells remain viable on day 7. Finally, the formation of the T-junction in the presence of near-infrared light has been demonstrated after seeding the endothelial cells on the programmed flat surface of the two components and fluorescence microscopy at day 3 and 7 reveals that the cells adhered well and continue to proliferate over time. Hence, the proposed alternative approach has huge potential and can be used to fabricate vascular junctions in the future.
Collapse
Affiliation(s)
- Arpan Biswas
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Indra Apsite
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Sabine Rosenfeldt
- Faculty of Biology, Chemistry and Earth Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany
| | - Ivita Bite
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Virginija Vitola
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany.
| |
Collapse
|
38
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
39
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
40
|
Simińska-Stanny J, Nicolas L, Chafai A, Jafari H, Hajiabbas M, Dodi G, Gardikiotis I, Delporte C, Nie L, Podstawczyk D, Shavandi A. Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing. Bioact Mater 2024; 36:168-184. [PMID: 38463551 PMCID: PMC10924180 DOI: 10.1016/j.bioactmat.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lise Nicolas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- European School of Materials Science and Engineering, University of Lorraine, Nancy, France
| | - Adam Chafai
- Université Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Maryam Hajiabbas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Christine Delporte
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
41
|
Wang M, Li W, Sanchez Flores R, Cai L, Garciamendez-Mijares CE, Gill S, Snyder D, Millabas J, Chafin D, Zhang YS, Djalilvand A. Bioprinted Human Lung Cancer-Mimics for Tissue Diagnostics Applications. Tissue Eng Part A 2024; 30:270-279. [PMID: 37930720 DOI: 10.1089/ten.tea.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Developing a reproducible and secure supply of customizable control tissues that standardizes for the cell type, tissue architecture, and preanalytics of interest for usage in applications including diagnostic, prognostic, and predictive assays, is critical for improving our patient care and welfare. The conventionally adopted control tissues directly obtained from patients are not ideal because they oftentimes have different amounts of normal and neoplastic elements, differing cellularity, differing architecture, and unknown preanalytics, in addition to the limited supply availability and thus associated high costs. In this study, we demonstrated a strategy to stably produce tissue-mimics for diagnostics purposes by taking advantage of the three-dimensional (3D) bioprinting technology. Specifically, we take anaplastic lymphoma kinase-positive (Alk+) lung cancer as an example, where a micropore-forming bioink laden with tumor cells was combined with digital light processing-based bioprinting for developing native-like Alk+ lung cancer tissue-mimics with both structural and functional relevancy. It is anticipated that our proposed methodology will pave new avenues for both fields of tissue diagnostics and 3D bioprinting significantly expanding their capacities, scope, and sustainability.
Collapse
Affiliation(s)
- Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Regina Sanchez Flores
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Scott Gill
- Roche Diagnostics Solutions, Tucson, Arizona, USA
| | - David Snyder
- Roche Diagnostics Solutions, Tucson, Arizona, USA
| | | | - David Chafin
- Roche Diagnostics Solutions, Tucson, Arizona, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | | |
Collapse
|
42
|
Chandra Sekar N, Khoshmanesh K, Baratchi S. Bioengineered models of cardiovascular diseases. Atherosclerosis 2024; 393:117565. [PMID: 38714426 DOI: 10.1016/j.atherosclerosis.2024.117565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Age-associated cardiovascular diseases (CVDs), predominantly resulting from artery-related disorders such as atherosclerosis, stand as a leading cause of morbidity and mortality among the elderly population. Consequently, there is a growing interest in the development of clinically relevant bioengineered models of CVDs. Recent developments in bioengineering and material sciences have paved the way for the creation of intricate models that closely mimic the structure and surroundings of native cardiac tissues and blood vessels. These models can be utilized for basic research purposes and for identifying pharmaceutical interventions and facilitating drug discovery. The advancement of vessel-on-a-chip technologies and the development of bioengineered and humanized in vitro models of the cardiovascular system have the potential to revolutionize CVD disease modelling. These technologies offer pathophysiologically relevant models at a fraction of the cost and time required for traditional experimentation required in vivo. This progress signifies a significant advancement in the field, transitioning from conventional 2D cell culture models to advanced 3D organoid and vessel-on-a-chip models. These innovative models are specifically designed to explore the complexities of vascular aging and stiffening, crucial factors in the development of cardiovascular diseases. This review summarizes the recent progress of various bioengineered in vitro platforms developed for investigating the pathophysiology of human cardiovascular system with more focus on advanced 3D vascular platforms.
Collapse
Affiliation(s)
- Nadia Chandra Sekar
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
43
|
Wang X, Luo Y, Ma Y, Wang P, Yao R. Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol 2024; 42:648-663. [PMID: 38071145 DOI: 10.1016/j.tibtech.2023.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 05/04/2024]
Abstract
Bioprinting shows excellent potential for preclinical tumor modeling, with significant advantages over 2D cell cultures in replicating the tumor microenvironment (TME). Recently, the use of tumor organoids in bioprinting models has emerged as a groundbreaking approach to simulate volumetric tumor tissues. This synergetic fabrication method leverages the advantages of the spatial and geometric control of bioprinting to assemble heterogeneous TME components, while tumor organoids maintain collective cell behaviors. In this review, we provide a landscape of the latest progress on the convergence of 3D bioprinting and tumor organoids. Furthermore, we discuss the potential to incorporate organ-on-a-chip with bioprinting tumor organoids to improve the biomimicry and predictability of therapeutic performance. Lastly, we address the challenges to personalized medicine and predictive clinical integration.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Medicine, Tsinghua University, Beijing 100084, China; Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuankai Ma
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Pengyu Wang
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
45
|
Li X, Zhu H, Gu B, Yao C, Gu Y, Xu W, Zhang J, He J, Liu X, Li D. Advancing Intelligent Organ-on-a-Chip Systems with Comprehensive In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305268. [PMID: 37688520 DOI: 10.1002/adma.202305268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 09/11/2023]
Abstract
In vitro models are essential to a broad range of biomedical research, such as pathological studies, drug development, and personalized medicine. As a potentially transformative paradigm for 3D in vitro models, organ-on-a-chip (OOC) technology has been extensively developed to recapitulate sophisticated architectures and dynamic microenvironments of human organs by applying the principles of life sciences and leveraging micro- and nanoscale engineering capabilities. A pivotal function of OOC devices is to support multifaceted and timely characterization of cultured cells and their microenvironments. However, in-depth analysis of OOC models typically requires biomedical assay procedures that are labor-intensive and interruptive. Herein, the latest advances toward intelligent OOC (iOOC) systems, where sensors integrated with OOC devices continuously report cellular and microenvironmental information for comprehensive in situ bioanalysis, are examined. It is proposed that the multimodal data in iOOC systems can support closed-loop control of the in vitro models and offer holistic biomedical insights for diverse applications. Essential techniques for establishing iOOC systems are surveyed, encompassing in situ sensing, data processing, and dynamic modulation. Eventually, the future development of iOOC systems featuring cross-disciplinary strategies is discussed.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuyang Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wangkai Xu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jia Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
46
|
Yang J, Chen Z, Gao C, Liu J, Liu K, Wang X, Pan X, Wang G, Sang H, Pan H, Liu W, Ruan C. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun 2024; 15:3565. [PMID: 38670999 PMCID: PMC11053166 DOI: 10.1038/s41467-024-48023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bioprinting that can synchronously deposit cells and biomaterials has lent fresh impetus to the field of tissue regeneration. However, the unavoidable occurrence of cell damage during fabrication process and intrinsically poor mechanical stability of bioprinted cell-laden scaffolds severely restrict their utilization. As such, on basis of heart-inspired hollow hydrogel-based scaffolds (HHSs), a mechanical-assisted post-bioprinting strategy is proposed to load cells into HHSs in a rapid, uniform, precise and friendly manner. HHSs show mechanical responsiveness to load cells within 4 s, a 13-fold increase in cell number, and partitioned loading of two types of cells compared with those under static conditions. As a proof of concept, HHSs with the loading cells show an enhanced regenerative capability in repair of the critical-sized segmental and osteoporotic bone defects in vivo. We expect that this post-bioprinting strategy can provide a universal, efficient, and promising way to promote cell-based regenerative therapy.
Collapse
Affiliation(s)
- Jirong Yang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Chen
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao Wang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Xiaoling Pan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Guocheng Wang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxun Sang
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Haobo Pan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
47
|
Cetinkaya A, Kaya SI, Budak F, Ozkan SA. Current Analytical Methods for the Sensitive Assay of New-Generation Ovarian Cancer Drugs in Pharmaceutical and Biological Samples. Crit Rev Anal Chem 2024:1-17. [PMID: 38630637 DOI: 10.1080/10408347.2024.2339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Ovarian cancer, which affects the female reproductive organs, is one of the most common types of cancer. Since this type of cancer has a high mortality rate from gynaecological cancers, the scientific community shows great interest in studies on its treatment. Chemotherapy, radiotherapy, and surgical treatment methods are used in its treatment. In the absence of targeted treatments in these treatment methods, side effects occur in patients, and patients show resistance to the drug. In addition, the underlying causes of ovarian cancer are still not fully known. The scientific world thinks that genetic factors, environmental conditions, and consumed foods may cause this cancer. The most important factor in the treatment of ovarian cancer is early diagnosis. Therefore, the drugs used in the treatment of ovarian cancer are platinum-based anticancer drugs. In addition to these drugs, the most preferred treatment method recently is targeted treatment approaches using poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In this review, studies on the sensitive analysis of the treatment methods of these new-generation drugs used in the treatment of ovarian cancer have been comprehensively examined. In addition, the basic features, structural aspects, and biological data of analytical methods used in treatments with new-generation drugs are explained. Analytical studies carried out in the literature in recent years aim to show future developments in how these new-generation drugs are used today and to guide future studies by comprehensively examining and explaining the structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies. Finally, in this study, the methods used in the analysis of drugs used in the treatment of ovarian cancer and the studies conducted between 2015 and 2023 were discussed in detail.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
48
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
49
|
Otaka A, Hirota T, Iwasaki Y. Direct Fabrication of Glycoengineered Cells via Photoresponsive Thiol-ene Reaction. ACS Biomater Sci Eng 2024; 10:2068-2073. [PMID: 38477551 DOI: 10.1021/acsbiomaterials.3c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Three-dimensional printing of cell constructs with high-cell density, shape fidelity, and heterogeneous cell populations is an important tool for investigating cell sociology in living tissues but remains challenging. Herein, we propose an artificial intercellular adhesion method using a photoresponsive chemical cue between a thiol-bearing polymer and a methacrylate-bearing cell membrane. This process provided cell fabrication containing 108 cells/mL, embedded multiple cell populations in one structure, and enabled millimeter-sized scaleup. Our approach allows for the artificial cell construction of complex structures and is a promising bioprinting strategy for engineering tissues that are structurally and physiologically relevant.
Collapse
Affiliation(s)
- Akihisa Otaka
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Taisuke Hirota
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Yasuhiko Iwasaki
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
50
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|