1
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
2
|
Qin Y, Cheng K, Jong MC, Zheng H, Cai Z, Xiao B, Zhou J. Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress. MARINE POLLUTION BULLETIN 2024; 209:117116. [PMID: 39418876 DOI: 10.1016/j.marpolbul.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.
Collapse
Affiliation(s)
- Yuke Qin
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Huina Zheng
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Baohua Xiao
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China.
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
3
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
4
|
Wei Y, Zhang W, Baguya EB, Gu Y, Yi K, Zhou J, Tong M. Bleached coral supports high diversity and heterogeneity of bacterial communities: Following the rule of the 'Anna Karenina principle'. ENVIRONMENTAL RESEARCH 2024; 262:119977. [PMID: 39265759 DOI: 10.1016/j.envres.2024.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Coral-associated bacteria are sensitive to the health status of coral and proven biomarker(s) of the coral bleaching. However, whether coral specificity or health status play a key role when coral-associated bacteria responding to coral bleaching is not known. Therefore, the bacterial communities of five species of healthy and bleached corals, Acropora millepora, Favites abdita, Galaxea fascicularis, Dipsastraea speciosa and Pocillopora damicornis, were collected along the coast of Sanya, South China Sea and targeted for associated bacterial studies. The relative abundance of the dominant class Gammaproteobacteria tended to be higher in healthy corals, while Alphaproteobacteria were more abundant in bleached corals. Dominant genus Achromobacter demonstrated higher relative abundance in healthy corals (0.675) than in bleached corals (0.151). Most of the bleached corals had high α diversity, β dispersion, heterogeneity and complexity of the co-occurrence network of bacterial communities, which support the 'Anna Karenina Principle (AKP)' of diverse in threatened objects and conserved in healthy ones. The bacterial communities in the bleached corals were mostly involved in the selection process, and communities in the healthy corals were involved in the undominated process, which is obtained based on the null model test of β nearest-taxon-index (βNTI) and Bray-Curtis-based Raup-Crick (RCBray). This evidence further confirmed the AKP and revealed that the bacterial communities in the bleached corals were driven by deterministic factors. These findings provide valuable insights into the connection between bacterial and coral status, and the application of the AKP in the changing patterns of bacterial communities during coral bleaching.
Collapse
Affiliation(s)
- Yihan Wei
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, 510030, China
| | - Wenguang Zhang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | | | - Yu Gu
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Kehan Yi
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518131, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, 510030, China; Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
5
|
Stuij TM, Cleary DFR, Rocha RJM, Polonia ARM, Machado E Silva DA, Frommlet JC, Louvado A, Huang YM, De Voogd NJ, Gomes NCM. Development and validation of an experimental life support system to study coral reef microbial communities. Sci Rep 2024; 14:21260. [PMID: 39261551 PMCID: PMC11391067 DOI: 10.1038/s41598-024-69514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp., and a sponge Chondrilla sp.. Physicochemical parameters and bacterial communities in the ELSS were similar to those observed at shallow coral reef sites. Sediment bacterial evenness and higher taxonomic composition were more similar to natural-type communities at days 29 and 34 than at day 8 after transfer to the microcosms, suggesting microbial stabilization after an initial recovery period. Biotopes were compositionally distinct but shared a number of ASVs. At day 34, sediment specific ASVs were found in hosts and visa versa. Transplantation significantly altered the bacterial community composition of M. digitata and Chondrilla sp., suggesting microbial adaptation to altered environmental conditions. Altogether, our results support the suitability of the ELSS developed in this study as a model system to investigate coral reef associated bacterial communities using multi-factorial experiments.
Collapse
Affiliation(s)
- T M Stuij
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - R J M Rocha
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A R M Polonia
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - D A Machado E Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - J C Frommlet
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A Louvado
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Y M Huang
- National Penghu University of Science and Technology, Magong, Taiwan
| | - N J De Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Leiden, the Netherlands
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Chen J, Yu X, Yu K, Chen B, Qin Z, Liao Z, Ma Y, Xu L, Wang Y. Potential adaptation of scleractinian coral Pocillopora damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over south China. ENVIRONMENTAL RESEARCH 2024; 262:119848. [PMID: 39216737 DOI: 10.1016/j.envres.2024.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Global warming intensifies the water cycle, resulting in significant increases in precipitation and river runoff, which brings severe hypo-salinity stress to nearshore coral reefs. Ecological investigations have found that some corals exhibit remarkable adaptability to hypo-salinity stress during mass-bleaching events. However, the exact cause of this phenomenon remains unclear. To elucidate the potential molecular mechanism leading to high tolerance to hypo-salinity stress, Pocillopora damicornis was used as a research object in this study. We compared the differences in transcriptional responses and symbiotic microbiomes between bleaching and unbleaching P. damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over South China in 2022. The results showed that: (1) Under hypo-salinity stress, the coral genes related to immune defense and cellular stress were significantly upregulated in bleaching corals, indicating more severe immune damage and stress, and the Symbiodiniaceae had no significant gene enrichment. Conversely, metabolic genes related to glycolysis/gluconeogenesis were significantly downregulated in unbleaching corals, whereas Symbiodiniaceae genes related to oxidative phosphorylation were significantly upregulated to meet the energy requirements of coral holobiont; (2) C1d was the dominant Symbiodiniaceae subclade in all samples, with no significant difference between the two groups; (3) The symbiotic bacterial community structure was reorganized under hypo-salinity stress. The abundance of opportunistic bacteria increased significantly in bleaching coral, whereas the relative abundance of probiotics was higher in unbleaching coral. This may be due to severe immune damage, making the coral more susceptible to opportunistic infection and bleaching. These results suggest that long-term hypo-salinity acclimation in the Pearl River Estuary enhances the tolerance of some corals to hypo-salinity stress. Corals with higher tolerance may reduce energy consumption by slowing down their metabolism, improve the energy metabolism of Symbiodiniaceae to meet the energy requirements of the coral holobiont, and alter the structure of symbiotic bacterial communities to avoid bleaching.
Collapse
Affiliation(s)
- Junling Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Nanning Normal University, Nanning, China
| | - Yuling Ma
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China.
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| |
Collapse
|
7
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
8
|
Bai C, Wang Q, Xu J, Zhang H, Huang Y, Cai L, Zheng X, Yang M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024; 12:1540. [PMID: 39203380 PMCID: PMC11356306 DOI: 10.3390/microorganisms12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.
Collapse
Affiliation(s)
- Chuanzhu Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Qifang Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Jinyan Xu
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Pingtan 350400, China;
| | - Han Zhang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Ling Cai
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
| |
Collapse
|
9
|
Mason B, Hayward DC, Moya A, Cooke I, Sorenson A, Brunner R, Andrade N, Huerlimann R, Bourne DG, Schaeffer P, Grinblat M, Ravasi T, Ueda N, Tang SL, Ball EE, Miller DJ. Microbiome manipulation by corals and other Cnidaria via quorum quenching. Curr Biol 2024; 34:3226-3232.e5. [PMID: 38942019 DOI: 10.1016/j.cub.2024.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
A dynamic mucous layer containing numerous micro-organisms covers the surface of corals and has multiple functions including both removal of sediment and "food gathering."1 It is likely to also act as the primary barrier to infection; various proteins and compounds with antimicrobial activity have been identified in coral mucus, though these are thought to be largely or exclusively of microbial origin. As in Hydra,2 anti-microbial peptides (AMPs) are likely to play major roles in regulating the microbiomes of corals.3,4 Some eukaryotes employ a complementary but less obvious approach to manipulate their associated microbiome by interfering with quorum signaling, effectively preventing bacteria from coordinating gene expression across a population. Our investigation of immunity in the reef-building coral Acropora millepora,5 however, led to the discovery of a coral gene referred to here as AmNtNH1 that can inactivate a range of acyl homoserine lactones (AHLs), common bacterial quorum signaling molecules, and is induced on immune challenge of adult corals and expressed during the larval settlement process. Closely related proteins are widely distributed within the Scleractinia (hard corals) and some other cnidarians, with multiple paralogs in Acropora, but their closest relatives are bacterial, implying that these are products of one or more lateral gene transfer events post-dating the cnidarian-bilaterian divergence. The deployment by corals of genes used by bacteria to compete with other bacteria reflects a mechanism of microbiome manipulation previously unknown in Metazoa but that may apply more generally.
Collapse
Affiliation(s)
- Benjamin Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David C Hayward
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Alanna Sorenson
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Ramona Brunner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Natalia Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - David G Bourne
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick Schaeffer
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Nobuo Ueda
- Marine Science Section, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 15529, Taiwan
| | - Eldon E Ball
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
10
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
11
|
Bogale AT, Braun M, Bernhardt J, Zühlke D, Schiefelbein U, Bog M, Scheidegger C, Zengerer V, Becher D, Grube M, Riedel K, Bengtsson MM. The microbiome of the lichen Lobaria pulmonaria varies according to climate on a subcontinental scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13289. [PMID: 38923181 PMCID: PMC11194104 DOI: 10.1111/1758-2229.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
The Lobaria pulmonaria holobiont comprises algal, fungal, cyanobacterial and bacterial components. We investigated L. pulmonaria's bacterial microbiome in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with subcontinental-scale (a stretch of ~1100 km) climatic parameters related to temperature and precipitation. We also tested the impact of short-term weather dynamics, sampling season and algal/fungal genotypes on microbiome variation. Metaproteomics provided insights into compositional and functional changes within the microbiome. Climatic variables explained 41.64% of microbiome variation, surpassing the combined influence of local weather and sampling season at 31.63%. Notably, annual mean temperature and temperature seasonality emerged as significant climatic drivers. Microbiome composition correlated with algal, not fungal genotype, suggesting similar environmental recruitment for the algal partner and microbiome. Differential abundance analyses revealed distinct protein compositions in Sub-Atlantic Lowland and Alpine regions, indicating differential microbiome responses to contrasting environmental/climatic conditions. Proteins involved in oxidative and cellular stress were notably different. Our findings highlight microbiome plasticity in adapting to stable climates, with limited responsiveness to short-term fluctuations, offering new insights into climate adaptation in lichen symbiosis.
Collapse
Affiliation(s)
| | - Maria Braun
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Jörg Bernhardt
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Daniela Zühlke
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Ulf Schiefelbein
- Landscape EcologyUniversity of Rostock, Botanical GardenRostockGermany
| | - Manuela Bog
- Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Christoph Scheidegger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Veronika Zengerer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Martin Grube
- Karl‐Franzens‐Universität Graz, Institut für BiologieGrazAustria
| | - Katharina Riedel
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
12
|
Li Q, Liu C, Xie F, Lyu L, Zhang S, Li J. Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. isolated from coral tissue: proposal of two new families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38900566 DOI: 10.1099/ijsem.0.006427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
A genome-based polyphasic approach was used to determine the taxonomic status of two novel bacterial strains, SCSIO 12594T and SCSIO 12813T, isolated from tissues of a coral. Both strains were Gram-stain-negative and facultatively anaerobic. The genome sizes of strains SCSIO 12594T and SCSIO 12813T were 3.9 Mb and 4.1 Mb, respectively, and they possessed DNA G+C contents of 55.1 and 46.2 mol%, respectively . Both strains were found to be catalase- and oxidase-positive, while SCSIO 12594T also could hydrolyse starch. SCSIO 12594T was observed to grow at between 20 and 37 °C (optimally at 25 °C) and at a pH range from 6 to 7 and in the presence of 3-7 % (w/v) NaCl. The growth of SCSIO 12813T required seawater and occurred at 20-30 °C (optimum, 25 °C), pH 5-8 (optimum, pH 6-7) and in the presence of 3-3.7 % (w/v) NaCl. The results of 16S rRNA gene-based phylogenetic analysis indicated that SCSIO 12594T shared 92.97 % or less sequence similarity with its closest relatives Rhodobium gokarnense JA173T and other members of the order Hyphomicrobiales. The results of 16S rRNA sequences-based phylogenetic analysis of SCSIO 12813T indicated that Croceimicrobium hydrocarbonivorans A20-9T (89.34 %) was the most closely related species. SCSIO 12594T and SCSIO 12813T can be readily separated from their closest relatives, as indicated by the results of phylogenomic analysis, low average nucleotide indexes, average amino acid identity, digital DNA-DNA hybridisation (dDDH) similarities and associated phenotypic and chemical data. Consequently, the two coral isolates are considered to represent two novel genera and species for which the names Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. are proposed, the type strains are SCSIO 12594T (= JCM 35320T = GDMCC 1.3060T) and SCSIO 12813T (= JCM 35373T = GDMCC 1.3063T), respectively. In addition, two novel families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov are proposed to accommodate Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov., respectively.
Collapse
Affiliation(s)
- Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, PR China
| |
Collapse
|
13
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
15
|
Maull V, Solé R. Biodiversity as a firewall to engineered microbiomes for restoration and conservation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231526. [PMID: 39100153 PMCID: PMC11296081 DOI: 10.1098/rsos.231526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 08/06/2024]
Abstract
The possibility of abrupt transitions threatens to poise ecosystems into irreversibly degraded states. Synthetic biology has recently been proposed to prevent them from crossing tipping points. However, there is little understanding of the impact of such intervention on the resident communities. Can such modification have 'unintended consequences', such as loss of species? Here, we address this problem by using a mathematical model that allows us to simulate this intervention scenario explicitly. We show how the indirect effect of damping the decay of shared resources results in biodiversity increase, and last but not least, the successful incorporation of the synthetic within the ecological network and very small-positive changes in the population size of the resident community. Furthermore, extensions and implications for future restoration and terraformation strategies are discussed.
Collapse
Affiliation(s)
- Victor Maull
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
16
|
Johnston EC, Caruso C, Mujica E, Walker NS, Drury C. Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral. Heredity (Edinb) 2024; 132:275-283. [PMID: 38538721 PMCID: PMC11167003 DOI: 10.1038/s41437-024-00681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Elena Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
17
|
Cunning R, Lenz EA, Edmunds PJ. Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs. PeerJ 2024; 12:e17358. [PMID: 38827291 PMCID: PMC11141555 DOI: 10.7717/peerj.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.
Collapse
Affiliation(s)
- Ross Cunning
- Conservation Research Department, John G. Shedd Aquarium, Chicago, Illinois, United States
| | - Elizabeth A. Lenz
- University of Hawai‘i Sea Grant College Program, University of Hawai‘i at Mānoa, Honolulu, Hawaii, United States
| | - Peter J. Edmunds
- Department of Biology, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
18
|
Lima LFO, Alker AT, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Pre-Bleaching Coral Microbiome Is Enriched in Beneficial Taxa and Functions. Microorganisms 2024; 12:1005. [PMID: 38792833 PMCID: PMC11123844 DOI: 10.3390/microorganisms12051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Marine Biology, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- San Diego State University, San Diego, CA 92182, USA
| | - Amanda T. Alker
- Innovative Genomics Institute, University of California, Berkeley, SA 5045, USA;
| | - Megan M. Morris
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Robert A. Edwards
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| | | | - Elizabeth A. Dinsdale
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
19
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
20
|
Li J, Luo J, Li M, Wang C, Hu S, Lu K, Wang G. Splendidivirga corallicola gen. nov., sp. nov. and Agaribacillus aureus gen. nov., sp. nov., two bacteria isolated from coral Porites lutea, and proposal of Splendidivirgaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38739684 DOI: 10.1099/ijsem.0.006376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The Bacteroidota is one of the dominant bacterial phyla in corals. However, the exact taxa of those coral bacteria under the Bacteroidota are still unclear. Two aerobic, Gram-stain-negative, non-motile rods, designated strains BMA10T and BMA12T, were isolated from stony coral Porites lutea collected from Weizhou Island, PR China. Global alignment of 16S rRNA gene sequences indicated that both strains are closest to species of Fulvivirga with the highest identities being lower than 93 %, and the similarity value between these two strains was 92.3 %. Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that these two strains form an monophylogenetic lineage alongside the families Fulvivirgaceae, Reichenbachiellaceae, Roseivirgaceae, Marivirgaceae, Cyclobacteriaceae, and Cesiribacteraceae in the order Cytophagales, phylum Bacteroidota. The genomic DNA G+C contents of BMA10T and BMA12T were 38.4 and 41.9 mol%, respectively. The major polar lipids of BMA10T were phosphatidylethanolamine, unidentified aminophospholipid, four unidentified aminolipids, and five unidentified lipids. While those of BMA12T were phosphatidylethanolamine, two unidentified aminolipids, and five unidentified lipids. The major cellular fatty acids detected in both isolates were iso-C15 : 0 and C16 : 1 ω5c. Carbohydrate-active enzyme analysis indicated these two strains may utilize coral mucus or chitin. Based on above characteristics, these two strains are suggested to represent two new species in two new genera of a new family in the order Cytophagales, for which the name Splendidivirga corallicola gen. nov., sp. nov., Agaribacillus aureus gen. nov., sp. nov. and Splendidivirgaceae fam. nov. are proposed. The type strain of S. corallicola is BMA10T (=MCCC 1K08300T=KCTC 102045T), and that for A. aureus is BMA12T (=MCCC 1K08309T=KCTC 102046T).
Collapse
Affiliation(s)
- Jin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Jixin Luo
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Mi Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Chenyan Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Siyu Hu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Kun Lu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
21
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
22
|
Chen B, Wei Y, Yu K, Liang Y, Yu X, Liao Z, Qin Z, Xu L, Bao Z. The microbiome dynamics and interaction of endosymbiotic Symbiodiniaceae and fungi are associated with thermal bleaching susceptibility of coral holobionts. Appl Environ Microbiol 2024; 90:e0193923. [PMID: 38445866 PMCID: PMC11022545 DOI: 10.1128/aem.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanting Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
23
|
Chen X, Liao X, Chang S, Chen Z, Yang Q, Peng J, Hu W, Zhang X. Comprehensive insights into the differences of fungal communities at taxonomic and functional levels in stony coral Acropora intermedia under a natural bleaching event. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106419. [PMID: 38408405 DOI: 10.1016/j.marenvres.2024.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Previous studies have reported the correlations between bacterial communities and coral bleaching, but the knowledge of fungal roles in coral bleaching is still limited. In this study, the taxonomic and functional diversities of fungi in unbleached, partly bleached and bleached stony coral Acropora intermedia were investigated through the ITS-rRNA gene next-generation sequencing. An unexpected diversity of successfully classified fungi (a total of 167 fungal genera) was revealed in this study, and the partly bleached coral samples gained the highest fungal diversity, followed by bleached and unbleached coral samples. Among these fungi, 122 genera (nearly 73.2%) were rarely found in corals in previous studies, such as Calostoma and Morchella, which gave us a more comprehensive understanding of coral-associated fungi. Positively correlated fungal genera (Calostoma, Corticium, Derxomyces, Fusicolla, Penicillium and Vishniacozyma) and negative correlated fungal genera (Blastobotrys, Exophiala and Dacryopinax) with the coral bleaching were both detected. It was found that a series of fungal genera, dominant by Apiotrichum, a source of opportunistic infections, was significantly enriched; while another fungal group majoring in Fusicolla, a probiotic fungus, was distinctly depressed in the bleached coral. It was also noteworthy that the abundance of pathogenic fungi, including Fusarium, Didymella and Trichosporon showed a rising trend; while the saprotrophic fungi, including Tricladium, Botryotrichum and Scleropezicula demostrated a declining trend as the bleaching deteriorating. The rising of pathogenic fungi and the declining of saprotrophic fungi revealed the basic rules of fungal community transitions in the coral bleaching, but the mechanism of coral-associated fungal interactions still lacks further investigation. Overall, this is an investigation focused on the differences of fungal communities at taxonomic and functional levels in stony coral A. intermedia under different bleaching statuses, which provides a better comprehension of the correlations between fungal communities and the coral bleaching.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shihan Chang
- University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoting Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Peng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weihui Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Edmunds PJ, Maritorena S, Burgess SC. Early post-settlement events, rather than settlement, drive recruitment and coral recovery at Moorea, French Polynesia. Oecologia 2024; 204:625-640. [PMID: 38418704 DOI: 10.1007/s00442-024-05517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Understanding population dynamics is a long-standing objective of ecology, but the need for progress in this area has become urgent. For coral reefs, achieving this objective is impeded by a lack of information on settlement versus post-settlement events in determining recruitment and population size. Declines in coral abundance are often inferred to be associated with reduced densities of recruits, which could arise from mechanisms occurring at larval settlement, or throughout post-settlement stages. This study uses annual measurements from 2008 to 2021 of coral cover, the density of coral settlers (S), the density of small corals (SC), and environmental conditions, to evaluate the roles of settlement versus post-settlement events in determining rates of coral recruitment and changes in coral cover at Moorea, French Polynesia. Coral cover, S, SC, and the SC:S ratio (a proxy for post-settlement success), and environmental conditions, were used in generalized additive models (GAMs) to show that: (a) coral cover was more strongly related to SC and SC:S than S, and (b) SC:S was highest when preceded by cool seawater, low concentrations of Chlorophyll a, and low flow speeds, and S showed evidence of declining with elevated temperature. Together, these results suggest that changes in coral cover in Moorea are more strongly influenced by post-settlement events than settlement. The key to understanding coral community resilience may lie in elucidating the factors attenuating the bottleneck between settlers and small corals.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, Northridge, CA, 91330-8303, USA.
| | - Stéphane Maritorena
- Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-3060, USA
| | - Scott C Burgess
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA
| |
Collapse
|
25
|
Sparagon WJ, Arts MGI, Quinlan ZA, Wegley Kelly L, Koester I, Comstock J, Bullington JA, Carlson CA, Dorrestein PC, Aluwihare LI, Haas AF, Nelson CE. Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation. Commun Biol 2024; 7:160. [PMID: 38351328 PMCID: PMC10864316 DOI: 10.1038/s42003-023-05730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.
Collapse
Affiliation(s)
- Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Milou G I Arts
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Irina Koester
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Jacqueline Comstock
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Jessica A Bullington
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | | | - Lihini I Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- San Diego State University, San Diego, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
26
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
27
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
28
|
Kang Y, Xu L, Dong J, Yuan X, Ye J, Fan Y, Liu B, Xie J, Ji X. Programmed microalgae-gel promotes chronic wound healing in diabetes. Nat Commun 2024; 15:1042. [PMID: 38310127 PMCID: PMC10838327 DOI: 10.1038/s41467-024-45101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Chronic diabetic wounds are at lifelong risk of developing diabetic foot ulcers owing to severe hypoxia, excessive reactive oxygen species (ROS), a complex inflammatory microenvironment, and the potential for bacterial infection. Here we develop a programmed treatment strategy employing live Haematococcus (HEA). By modulating light intensity, HEA can be programmed to perform a variety of functions, such as antibacterial activity, oxygen supply, ROS scavenging, and immune regulation, suggesting its potential for use in programmed therapy. Under high light intensity (658 nm, 0.5 W/cm2), green HEA (GHEA) with efficient photothermal conversion mediate wound surface disinfection. By decreasing the light intensity (658 nm, 0.1 W/cm2), the photosynthetic system of GHEA can continuously produce oxygen, effectively resolving the problems of hypoxia and promoting vascular regeneration. Continuous light irradiation induces astaxanthin (AST) accumulation in HEA cells, resulting in a gradual transformation from a green to red hue (RHEA). RHEA effectively scavenges excess ROS, enhances the expression of intracellular antioxidant enzymes, and directs polarization to M2 macrophages by secreting AST vesicles via exosomes. The living HEA hydrogel can sterilize and enhance cell proliferation and migration and promote neoangiogenesis, which could improve infected diabetic wound healing in female mice.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Bing Liu
- Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, Beijing, 10088, China.
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
- Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
29
|
Zou Y, Ip JCH, Xie JY, Yeung YH, Wei L, Guo Z, Zhang Y, Qiu JW. Dynamic changes in bacterial communities in three species of corals during the 2017 bleaching event in subtropical Hong Kong waters. MARINE POLLUTION BULLETIN 2024; 199:116002. [PMID: 38181470 DOI: 10.1016/j.marpolbul.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, Hainan University, Haikou, China
| | | | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu Wei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
30
|
Crump BC, Bowen JL. The Microbial Ecology of Estuarine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:335-360. [PMID: 37418833 DOI: 10.1146/annurev-marine-022123-101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.
Collapse
Affiliation(s)
- Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Jennifer L Bowen
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA;
| |
Collapse
|
31
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
32
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
33
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
34
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
35
|
Downie AT, Cramp RL, Franklin CE. The interactive impacts of a constant reef stressor, ultraviolet radiation, with environmental stressors on coral physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168066. [PMID: 37890630 DOI: 10.1016/j.scitotenv.2023.168066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Reef-building corals create one of the most biodiverse and economically important ecosystems on the planet. Unfortunately, global coral reef ecosystems experience threats from numerous natural stressors, which are amplified by human activities. One such threat is ultraviolet radiation (UVR) from the sun; a genotoxic stressor that is a double-edged sword for corals as they rely on sunlight for energy. More intense UVR has been shown to have greater direct impacts on animal physiology, and these may be exacerbated by co-occurring stressors. The aim of this systematic literature review was to examine if the same applies to corals; that is, if the co-exposure of a constant stressor (UVR) with other stressors has a greater impact on coral physiology than if these stressors occurred separately. We reviewed the biochemical and cellular processes impacted by UVR and the defenses corals have against UVR. The main stressors investigated with UVR were temperature, nitrate, nutrient, oil, water motion, and photosynthetically active radiation (PAR). UVR generally worsened the physiological impacts of other stressors (e.g., by decreasing zooxanthellae and chlorophyll densities). There were species-specific differences in their tolerance to UVR (differences in zooxanthellae populations, sunscreen production and depth) and environmental stress (e.g., resilience to some oils), and that ambient levels of UVR were often beneficial (i.e., nullifying impacts of nitrates). We highlight areas of future investigation including examining and assessing other interacting stressors and their impacts (e.g., ocean acidification, ocean deoxygenation, toxins and pollutants), investigating impacts of multiple stressors with UVR on the coral microbiome, and elucidating the effects of multi-stressors with UVR across early-life history stages (especially larvae). UVR is a pervasive stressor to corals and can interact with other environmental conditions to compromise the resilience of corals. This environmental driver needs to be more comprehensively examined alongside climate change stressors (e.g., temperature increases, ocean acidification and hypoxia) to better understand future climate scenarios on reefs.
Collapse
Affiliation(s)
- Adam T Downie
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
36
|
Liu Z, Tang K, Zhou Y, Liu T, Guo Y, Wu D, Wang X. Active prophages in coral-associated Halomonas capable of lateral transduction. THE ISME JOURNAL 2024; 18:wrae085. [PMID: 38739683 PMCID: PMC11131426 DOI: 10.1093/ismejo/wrae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Temperate phages can interact with bacterial hosts through lytic and lysogenic cycles via different mechanisms. Lysogeny has been identified as the major form of bacteria-phage interaction in the coral-associated microbiome. However, the lysogenic-to-lytic switch of temperate phages in ecologically important coral-associated bacteria and its ecological impact have not been extensively investigated. By studying the prophages in coral-associated Halomonas meridiana, we found that two prophages, Phm1 and Phm3, are inducible by the DNA-damaging agent mitomycin C and that Phm3 is spontaneously activated under normal cultivation conditions. Furthermore, Phm3 undergoes an atypical lytic pathway that can amplify and package adjacent host DNA, potentially resulting in lateral transduction. The induction of Phm3 triggered a process of cell lysis accompanied by the formation of outer membrane vesicles (OMVs) and Phm3 attached to OMVs. This unique cell-lysis process was controlled by a four-gene lytic module within Phm3. Further analysis of the Tara Ocean dataset revealed that Phm3 represents a new group of temperate phages that are widely distributed and transcriptionally active in the ocean. Therefore, the combination of lateral transduction mediated by temperate phages and OMV transmission offers a versatile strategy for host-phage coevolution in marine ecosystems.
Collapse
Affiliation(s)
- Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Duoting Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
37
|
Chuang PS, Yu SP, Liu PY, Hsu MT, Chiou YJ, Lu CY, Tang SL. A gauge of coral physiology: re-examining temporal changes in Endozoicomonas abundance correlated with natural coral bleaching. ISME COMMUNICATIONS 2024; 4:ycae001. [PMID: 38371393 PMCID: PMC10872716 DOI: 10.1093/ismeco/ycae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Bacteria contribute to many physiological functions of coral holobionts, including responses to bleaching. The bacterial genus, Endozoicomonas, dominates the microbial flora of many coral species and its abundance appears to be correlated with coral bleaching. However, evidences for decoupling of bleaching and Endozoicomonas abundance changes have also been reported. In 2020, a severe bleaching event was recorded at reefs in Taiwan, providing a unique opportunity to re-examine bleaching-Endozoicomonas association using multiple stony corals in natural environments. In this study, we monitored tissue color and microbiome changes in three coral species (Montipora sp., Porites sp., and Stylophora pistillata) in Kenting National Park, following the bleaching event. All tagged Montipora sp. and Porites sp. recovered from bleaching within 1 year, while high mortality occurred in S. pistillata. Microbiome analysis found no correlation of Endozoicomonas relative abundance and bleaching severity during the sampling period, but found a stronger correlation when the month in which bleaching occurred was excluded. Moreover, Endozoicomonas abundance increased during recovery months in Montipora sp. and Porites sp., whereas in S. pistillata it was nearly depleted. These results suggest that Endozoicomonas abundance may represent a gauge of coral health and reflect recovery of some corals from stress. Interestingly, even though different Endozoicomonas strains predominated in the three corals, these Endozoicomonas strains were also shared among coral taxa. Meanwhile, several Endozoicomonas strains showed secondary emergence during coral recovery, suggesting possible symbiont switching in Endozoicomonas. These findings indicate that it may be possible to introduce Endozoicomonas to non-native coral hosts as a coral probiotic.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ming-Tsung Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Jing Chiou
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Centre for Marine Science and Innovation, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
38
|
Longley R, Benucci GMN, Pochon X, Bonito G, Bonito V. Species-specific coral microbiome assemblages support host bleaching resistance during an extreme marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167803. [PMID: 37838063 DOI: 10.1016/j.scitotenv.2023.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Scleractinian assemblages are threatened by marine heat waves with coral survivorship depending on host genetics and microbiome composition. We documented an extreme marine heat wave in Fiji and the response of corals in two thermally stressed reef flats. Through high-throughput amplicon sequencing of 16S and ITS rDNA phylogenetic markers, we assessed coral microbiomes (Symbiodiniaceae, prokaryotes, fungi, and Apicomplexa) of paired bleached and unbleached colonies of four common coral species representative of dominant genera in the South Pacific. While all coral species exhibited one or more pathways to bleaching resistance, harboring assemblages composed primarily of thermally tolerant photosymbionts did not always result in host bleaching resistance. Montipora and Pocillopora species, which associate with diverse Symbiodiniaceae and vertically transmit their photosymbionts, fared better than Acropora, which acquire their photosymbionts from the environment, and Porites, which associate with a narrow photosymbiont assemblage. Prokaryotic and fungal beta diversity did not differ between bleached and unbleached conspecifics, however, the relative abundance of the fungus Malassezia globosa was significantly greater in unbleached colonies of Montipora digitata. Each coral species harbored distinct assemblages of Symbiodiniaceae, prokaryotes, and Apicomplexa, but not fungi, reiterating the importance of host genetics in structuring components of its microbiome. Terrestrial fungal and prokaryotic taxa were detected at low abundance across coral microbiomes, indicating that allochthonous microbial inputs occur, but that coral microbiomes remain dominated by marine microbial taxa. Our study offers valuable insights into the microbiome assemblages associated with coral tolerance to extreme water temperatures.
Collapse
Affiliation(s)
- Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA
| | | | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA; Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, 48824, MI, USA; Coral Coast Conservation Center, Votua Village, Fiji.
| | - Victor Bonito
- Coral Coast Conservation Center, Votua Village, Fiji; Reef Explorer Fiji, Votua Village, Fiji
| |
Collapse
|
39
|
Cheng K, Li X, Tong M, Jong MC, Cai Z, Zheng H, Xiao B, Zhou J. Integrated metagenomic and metaproteomic analyses reveal bacterial micro-ecological mechanisms in coral bleaching. mSystems 2023; 8:e0050523. [PMID: 37882797 PMCID: PMC10734480 DOI: 10.1128/msystems.00505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Maire J, Philip GK, Livingston J, Judd LM, Blackall LL, van Oppen MJH. Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. mSystems 2023; 8:e0086023. [PMID: 37909753 PMCID: PMC10746172 DOI: 10.1128/msystems.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jadzia Livingston
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
41
|
Modolon F, Schultz J, Duarte G, Vilela CLS, Thomas T, Peixoto RS. In situ devices can culture the microbial dark matter of corals. iScience 2023; 26:108374. [PMID: 38162026 PMCID: PMC10755713 DOI: 10.1016/j.isci.2023.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/16/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024] Open
Abstract
Most microorganisms found in environmental samples have never been cultured and can often only be explored through molecular or microscopic approaches. Here, we adapt the use of in situ diffusion-based devices to culture "yet-to-be-cultured" microorganisms associated with coral mucus and compare this with a traditional culturing method. The culturability of microorganisms associated with mucus of the coral Pocillopora damicornis increased by 420% and 570% with diffusion growth chambers and microwell chip devices, respectively, compared with the traditional method tested. The obtained cultures represent up to 64.4% of the total diversity of amplicon sequence variants (ASVs) found in the mucus of the coral P. damicornis. In addition, some previously uncultured microorganisms, such as members of the family Nitrosopumilaceae and halophilic/halotolerant bacteria were cultured. Our results validate alternative microbial culturing strategies to culture coral-associated microorganisms, while significantly increasing the culturability of previous microbial dark matter.
Collapse
Affiliation(s)
- Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Júnia Schultz
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| | - Gustavo Duarte
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| | - Caren Leite Spindola Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raquel Silva Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
42
|
Fu J, Zhou J, Zhou J, Zhang Y, Liu L. Competitive effects of the macroalga Caulerpa taxifolia on key physiological processes in the scleractinian coral Turbinaria peltata under thermal stress. PeerJ 2023; 11:e16646. [PMID: 38107563 PMCID: PMC10725675 DOI: 10.7717/peerj.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
An increased abundance of macroalgae has been observed in coral reefs damaged by climate change and local environmental stressors. Macroalgae have a sublethal effect on corals that includes the inhibition of their growth, development, and reproduction. Thus, this study explored the effects of the macroalga, Caulerpa taxifolia, on the massive coral, Turbinaria peltata, under thermal stress. We compared the responses of the corals' water-meditated interaction with algae (the co-occurrence group) and those in direct contact with algae at two temperatures. The results show that after co-culturing with C. taxifolia for 28 days, the density content of the dinoflagellate endosymbionts was significantly influenced by the presence of C. taxifolia at ambient temperature (27 °C), from 1.3 × 106 cells cm-2 in control group to 0.95 × 106 cells cm-2 in the co-occurrence group and to 0.89 × 106 cells cm-2 in the direct contact group. The chlorophyll a concentration only differed significantly between the control and the direct contact group at 27 °C. The protein content of T. peltata decreased by 37.2% in the co-occurrence group and 49.0% in the direct contact group compared to the control group. Meanwhile, the growth rate of T. peltata decreased by 57.7% in the co-occurrence group and 65.5% in the direct contact group compared to the control group. The activity of the antioxidant enzymes significantly increased, and there was a stronger effect of direct coral contact with C. taxifolia than the co-occurrence group. At 30 °C, the endosymbiont density, chlorophyll a content, and growth rate of T. peltata significantly decreased compared to the control temperature; the same pattern was seen in the increase in antioxidant enzyme activity. Additionally, when the coral was co-cultured with macroalgae at 30 °C, there was no significant decrease in the density or chlorophyll a content of the endosymbiont compared to the control. However, the interaction of macroalgae and elevated temperature was evident in the feeding rate, protein content, superoxide dismutase (SOD), and catalase (CAT) activity compared to the control group. The direct contact of the coral with macroalga had a greater impact than water-meditated interactions. Hence, the competition between coral and macroalga may be more intense under thermal stress.
Collapse
Affiliation(s)
- JianRong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - JiaLi Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - YanPing Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
43
|
Edmunds PJ. Coral recruitment: patterns and processes determining the dynamics of coral populations. Biol Rev Camb Philos Soc 2023; 98:1862-1886. [PMID: 37340617 DOI: 10.1111/brv.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms 'recruit' and 'recruitment' have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
44
|
Howard RD, Schul MD, Rodriguez Bravo LM, Altieri AH, Meyer JL. Shifts in the coral microbiome in response to in situ experimental deoxygenation. Appl Environ Microbiol 2023; 89:e0057723. [PMID: 37916820 PMCID: PMC10686059 DOI: 10.1128/aem.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Marine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels around Siderastrea siderea and Agaricia lamarcki colonies in situ to observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.
Collapse
Affiliation(s)
- Rachel D. Howard
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Monica D. Schul
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Lucia M. Rodriguez Bravo
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Andrew H. Altieri
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie L. Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
45
|
Dungan AM, Tandon K, Jameson V, Gotze CR, Blackall LL, van Oppen MJH. A targeted approach to enrich host-associated bacteria for metagenomic sequencing. FEMS MICROBES 2023; 5:xtad021. [PMID: 38264162 PMCID: PMC10804224 DOI: 10.1093/femsmc/xtad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful. Using a combination of hybridization chain reaction fluorescence in situ hybridization and fluorescence activated cell sorting (HCR-FISH + FACS), we sorted two populations of bacteria from five genotypes of the coral Acropora loripes, targeting (i) Endozoicomonas spp, and (ii) all other bacteria. NovaSeq sequencing resulted in 67-91 M reads per sample, 55%-90% of which were identified as bacterial. Most reads were taxonomically assigned to the key coral-associated family, Endozoicomonadaceae, with Vibrionaceae also abundant. Endozoicomonadaceae were 5x more abundant in the 'Endozoicomonas' population, highlighting the success of the dual-labelling approach. This method effectively enriched coral samples for bacteria with <1% contamination from host and algal symbionts. The application of this method will allow researchers to decipher the functional potential of coral-associated bacteria. This method can also be adapted to accommodate other host-associated communities.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vanta Jameson
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
46
|
Yu J, Jiang C, Yamano R, Koike S, Sakai Y, Mino S, Sawabe T. Unveiling the early life core microbiome of the sea cucumber Apostichopus japonicus and the unexpected abundance of the growth-promoting Sulfitobacter. Anim Microbiome 2023; 5:54. [PMID: 37876012 PMCID: PMC10599069 DOI: 10.1186/s42523-023-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Microbiome in early life has long-term effects on the host's immunological and physiological development and its disturbance is known to trigger various diseases in host Deuterostome animals. The sea cucumber Apostichopus japonicus is one of the most valuable marine Deuterostome invertebrates in Asia and a model animal in regeneration studies. To understand factors that impact on host development and holobiont maintenance, host-microbiome association has been actively studied in the last decade. However, we currently lack knowledge of early life core microbiome during its ontogenesis and how it benefits the host's growth. RESULTS We analyzed the microbial community in 28 sea cucumber samples from a laboratory breeding system, designed to replicate aquaculture environments, across six developmental stages (fertilized eggs to the juvenile stage) over a three years-period to examine the microbiomes' dynamics and stability. Microbiome shifts occurred during sea cucumber larval ontogenesis in every case. Application of the most sophisticated core microbiome extraction methodology, a hybrid approach with abundance-occupancy core microbiome analyses (top 75% of total reads and > 70% occupation) and core index calculation, first revealed early life core microbiome consisted of Alteromonadaceae and Rhodobacteraceae, as well as a stage core microbiome consisting of pioneer core microbe Pseudoalteromonadaceae in A. japonicus, suggesting a stepwise establishment of microbiome related to ontogenesis and feeding behavior in A. japonicus. More interestingly, four ASVs affiliated to Alteromonadaceae and Rhodobacteraceae were extracted as early life core microbiome. One of the ASV (ASV0007) was affiliated to the Sulfitobactor strain BL28 (Rhodobacteraceae), isolated from blastula larvae in the 2019 raring batch. Unexpectedly, a bioassay revealed the BL28 strain retains a host growth-promoting ability. Further meta-pangenomics approach revealed the BL28 genome reads were abundant in the metagenomic sequence pool, in particular, in that of post-gut development in early life stages of A. japonicus. CONCLUSION Repeated rearing efforts of A. japonicus using laboratory aquaculture replicating aquaculture environments and hybrid core microbiome extraction approach first revealed particular ASVs affiliated to Alteromonadaceae and Rhodobacteraceae as the A. japonicus early life core microbiome. Further bioassay revealed the growth promoting ability to the host sea cucumber in one of the core microbes, the Sulfitobactor strain BL28 identified as ASV0007. Genome reads of the BL28 were abundant in post-gut development of A. japonicus, which makes us consider effective probiotic uses of those core microbiome for sea cucumber resource production and conservation. The study also emphasizes the importance of the core microbiome in influencing early life stages in marine invertebrates. Understanding these dynamics could offer pathways to improve growth, immunity, and disease resistance in marine invertebrates.
Collapse
Affiliation(s)
- Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shotaro Koike
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
47
|
Galià-Camps C, Baños E, Pascual M, Carreras C, Turon X. Multidimensional variability of the microbiome of an invasive ascidian species. iScience 2023; 26:107812. [PMID: 37744040 PMCID: PMC10514470 DOI: 10.1016/j.isci.2023.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Elena Baños
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
48
|
Wang C, Zheng X, Kvitt H, Sheng H, Sun D, Niu G, Tchernov D, Shi T. Lineage-specific symbionts mediate differential coral responses to thermal stress. MICROBIOME 2023; 11:211. [PMID: 37752514 PMCID: PMC10521517 DOI: 10.1186/s40168-023-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai, 536015, China.
| | - Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, 88112, Eilat, Israel
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Danye Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Gaofeng Niu
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Tuo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510000, China.
| |
Collapse
|
49
|
Hawthorn A, Berzins IK, Dennis MM, Kiupel M, Newton AL, Peters EC, Reyes VA, Work TM. An introduction to lesions and histology of scleractinian corals. Vet Pathol 2023; 60:529-546. [PMID: 37519147 DOI: 10.1177/03009858231189289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Stony corals (Scleractinia) are in the Phylum Cnidaria (cnidae referring to various types of stinging cells). They may be solitary or colonial, but all secrete an external, supporting aragonite skeleton. Large, colonial members of this phylum are responsible for the accretion of coral reefs in tropical and subtropical waters that form the foundations of the most biodiverse marine ecosystems. Coral reefs worldwide, but particularly in the Caribbean, are experiencing unprecedented levels of disease, resulting in reef degradation. Most coral diseases remain poorly described and lack clear case definitions, while the etiologies and pathogenesis are even more elusive. This introductory guide is focused on reef-building corals and describes basic gross and microscopic lesions in these corals in order to serve as an invitation to other veterinary pathologists to play a critical role in defining and advancing the field of coral pathology.
Collapse
Affiliation(s)
- Aine Hawthorn
- University of Wisconsin-Madison, Madison, WI
- U.S. Geological Survey, Seattle, WA
| | - Ilze K Berzins
- University of Florida, Gainesville, FL
- One Water, One Health, LLC, Golden Valley, MN
| | | | | | - Alisa L Newton
- ZooQuatic Laboratory, LLC, Baltimore, MD
- OCEARCH, Park City, UT
| | | | | | | |
Collapse
|
50
|
Dellaert Z, Putnam HM. Reconciling the variability in the biological response of marine invertebrates to climate change. J Exp Biol 2023; 226:jeb245834. [PMID: 37655544 DOI: 10.1242/jeb.245834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As climate change increases the rate of environmental change and the frequency and intensity of disturbance events, selective forces intensify. However, given the complicated interplay between plasticity and selection for ecological - and thus evolutionary - outcomes, understanding the proximate signals, molecular mechanisms and the role of environmental history becomes increasingly critical for eco-evolutionary forecasting. To enhance the accuracy of our forecasting, we must characterize environmental signals at a level of resolution that is relevant to the organism, such as the microhabitat it inhabits and its intracellular conditions, while also quantifying the biological responses to these signals in the appropriate cells and tissues. In this Commentary, we provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting using reef-building corals as a focal model. We then describe examples of mismatches between the scales of external signals relative to the sensors and signal transduction cascades that initiate and maintain cellular responses. Studying cellular responses at this scale is crucial because these responses are the basis of acclimation to changing environmental conditions and the potential for environmental 'memory' of prior or historical conditions through molecular mechanisms. To challenge the field, we outline some unresolved questions and suggest approaches to align experimental work with an organism's perception of the environment; these aspects are discussed with respect to human interventions.
Collapse
Affiliation(s)
- Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|