1
|
Chahar M, Rana A, Gupta VK, Singh A, Singh N. Application of a novel lytic phage to control enterotoxigenic Escherichia coli in dairy food matrices. Int J Food Microbiol 2025; 426:110924. [PMID: 39348785 DOI: 10.1016/j.ijfoodmicro.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
A novel Escherichia coli phage designated as EC BD was isolated from cattle dung samples. Transmission electron microscopy demonstrated that the morphology of phage EC BD belongs to the family Myoviridae. The efficiency of plating (EOP) and scanning electron microscopy revealed the strong lytic activity of phage EC BD with a large burst size and a short latent period. Whole genome data analysis suggested that phage EC BD was inclined towards being completely lytic and revealed the absence of toxins, virulence and antibiotic resistance genes. Phylogenomic analysis of phage EC BD receptor binding proteins (RBPs) showed 74-100 % similarity with sixteen Enterobacter phages, representing their broad host range. The phage genome contains 262 ORFs, of which 107 displayed a unique pattern and additionally, the presence of a tRNA gene directed their fast replication and high stability. Comparative genome analysis suggested phage EC BD as a novel member of the genus Duplodnaviria and family Myoviridae. The efficiency of phage EC BD was determined in dairy food matrices (milk, cheese and paneer) artificially contaminated with enterotoxigenic E. coli strains ETEC H10407, ETEC K 12S and ETEC PB 176 with a significant reduction of 4.8, 6.0 and 5.3 log CFU/mL in milk and a substantial 4.9, 5.8 and 4.6 log CFU/mL reduction in cheese samples after 6 days at low storage temperature (4 °C); furthermore, within the similar conditions, paneer samples showed 4, 5.1 and 3.5 log CFU/mL reduction. EC BD phage treatment represents the complete eradication of three ETEC strains in liquid and semisolid dairy food matrices. This study suggested that phage EC BD might have potential as a biocontrol approach against ETEC foodborne infections.
Collapse
Affiliation(s)
- Madhvi Chahar
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India.
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Vinay Kumar Gupta
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Anu Singh
- Department of Microbiology, Swami Vivekanand University, Sagar, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India.
| |
Collapse
|
2
|
Li X, Cheng R, Zhang C, Shao Z. Genomic diversity of phages infecting the globally widespread genus Sulfurimonas. Commun Biol 2024; 7:1428. [PMID: 39488617 DOI: 10.1038/s42003-024-07079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
The widespread bacterial genus Sulfurimonas is metabolically versatile and occupies a key ecological niche in different habitats, but its interaction with bacteriophages remains unexplored. Here we systematically investigated the genetic diversity, taxonomy and interaction patterns of Sulfurimonas-associated phages based on sequenced microbial genomes and metagenomes. High-confidence phage contigs related to Sulfurimonas were retrieved from various ecosystems, clustered into 61 viral operational taxonomic units across three viral realms, including Duplodnaviria, Monodnaviria and Varidnaviria. Head-tail phages of Caudoviricetes were assigned to 19 genus-level viral clusters, the majority of which were distantly related to known viruses. Notably, diverse double jelly-roll viruses and inoviruses were also linked to Sulfurimonas, representing two commonly overlooked phage groups. Historical and current phage infections were revealed, implying viral impact on the evolution of host adaptive immunity. Additionally, phages carrying auxiliary metabolic genes might benefit hosts by compensating or augmenting sulfur metabolism. This study highlights the diversity and novelty of Sulfurimonas-associated phages with divergent tailless lineages, providing basis for further investigation of phage-host interactions within this genus.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
3
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Nadal-Molero F, Rosselli R, Garcia-Juan S, Campos-Lopez A, Martin-Cuadrado AB. Unveiling host-parasite relationships through conserved MITEs in prokaryote and viral genomes. Nucleic Acids Res 2024:gkae906. [PMID: 39470691 DOI: 10.1093/nar/gkae906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) play a pivotal role in the evolution of genomes across all life domains. 'Miniature Inverted-repeat Transposable-Elements' (MITEs) are non-autonomous TEs mainly located in intergenic regions, relying on external transposases for mobilization. The extent of MITEs' mobilome was explored across nearly 1700 prokaryotic genera, 183 232 genomes, revealing a broad distribution. MITEs were identified in 56.5% of genomes, totaling over 1.4 million cMITEs (cellular MITEs). Cluster analysis revealed that 97.4% of cMITEs were specific within genera boundaries, with up to 23% being species-specific. Subsequently, this genus-specificity was evaluated as a method to link microbial host to their viruses. A total of 51 655 cMITEs had counterparts in viral sequences, termed vMITEs (viral MITEs), resulting in the identification of 2500 viral sequences with them. Among these, 1501 sequences were positively assigned to a previously known host (41.8% were isolated viruses and 12.3% were assigned through CRISPR data), while 379 new host-virus associations were predicted. Deeper analysis in Neisseria and Bacteroidota groups allowed the association of 242 and 530 new viral sequences, respectively. MITEs are proposed as a novel approach to establishing valid virus-host relationships.
Collapse
Affiliation(s)
- Francisco Nadal-Molero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Riccardo Rosselli
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Silvia Garcia-Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Alicia Campos-Lopez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
5
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Wu Z, Liu S, Ni J. Metagenomic characterization of viruses and mobile genetic elements associated with the DPANN archaeal superphylum. Nat Microbiol 2024:10.1038/s41564-024-01839-y. [PMID: 39448846 DOI: 10.1038/s41564-024-01839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The archaeal superphylum DPANN (an acronym formed from the initials of the first five phyla discovered: Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota and Nanoarchaeota) is a group of ultrasmall symbionts able to survive in extreme ecosystems. The diversity and dynamics between DPANN archaea and their virome remain largely unknown. Here we use a metagenomic clustered regularly interspaced short palindromic repeats (CRISPR) screening approach to identify 97 globally distributed, non-redundant viruses and unclassified mobile genetic elements predicted to infect hosts across 8 DPANN phyla, including 7 viral groups not previously characterized. Genomic analysis suggests a diversity of viral morphologies including head-tailed, tailless icosahedral and spindle-shaped viruses with the potential to establish lytic, chronic or lysogenic infections. We also find evidence of a virally encoded Cas12f1 protein (probably originating from uncultured DPANN archaea) and a mini-CRISPR array, which could play a role in modulating host metabolism. Many metagenomes have virus-to-host ratios >10, indicating that DPANN viruses play an important role in controlling host populations. Overall, our study illuminates the underexplored diversity, functional repertoires and host interactions of the DPANN virome.
Collapse
Affiliation(s)
- Zongzhi Wu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China.
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China.
| |
Collapse
|
7
|
Valencia-Toxqui G, Ramsey J. How to introduce a new bacteriophage on the block: a short guide to phage classification. J Virol 2024; 98:e0182123. [PMID: 39264154 PMCID: PMC11494874 DOI: 10.1128/jvi.01821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Bacteriophage (phage) studies established the field of molecular biology and continue to propel life science research forward due to their diversity, abundance, and potential applications. In this Gem article, we orient newcomers to four common ways phages are currently classified: infection cycle, morphology, taxonomy, and supergroup. By using these classifications, researchers can determine where any novel phage fits into the scheme of the known "phage-verse".
Collapse
Affiliation(s)
- Guadalupe Valencia-Toxqui
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Zhang J, Shang J, Liu B, Zhu D, Li Q, Yin L, Ohore OE, Wen S, Ding C, Zhang Y, Yue Z, Zou Y. Hot spots of resistance: Transit centers as breeding grounds for airborne ARG-carrying bacteriophages. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136165. [PMID: 39418908 DOI: 10.1016/j.jhazmat.2024.136165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
The presence of pathogenic bacteria and antibiotic resistance genes (ARGs) in urban air poses a significant threat to public health. While prevailing research predominantly focuses on the airborne transmission of ARGs by bacteria, the potential influence of other vectors, such as bacteriophages, is often overlooked. This study aims to investigate the characteristics of phages and ARGs in aerosols originating from hospitals, public transit centers, wastewater treatment plants, and landfill sites. The average abundance of ARGs carried by phages in the public transit centers was 8.81 ppm, which was 2 to 3 times higher than that at the other three sites. Additionally, the abundance of ARGs across different risk levels at this site was also significantly higher than at the other three sites. The assembled phage communities bearing ARGs in public transit centers are chiefly governed by homogeneous selection processes, likely influenced by human movement. Furthermore, observations at public transit sites revealed that the average abundance ratio of virulent phages to their hosts was 1.01, and the correlation coefficient between their auxiliary metabolic genes and hosts' metabolic genes was 0.59, which were 20 times and 3 times higher, respectively, than those of temperate phages. This suggests that virulent phages may enhance their survival by altering host metabolism, thereby aiding the dispersion of ARGs and bacterial resistance. These revelations furnish fresh insights into phage-mediated ARG transmission, offering scientific substantiation for strategies aimed at preventing and controlling resistance within aerosols.
Collapse
Affiliation(s)
- Jing Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Jiayu Shang
- Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Beibei Liu
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Li Yin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Okugbe Ebiotubo Ohore
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Shaobai Wen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yican Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Zhengfu Yue
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Yukun Zou
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| |
Collapse
|
9
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
10
|
Freitas JF, Oliveira TT, Agnez-Lima LF. Metaviromic reveals the dynamics and diversity of the virosphere in wastewater samples from Natal, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124752. [PMID: 39154883 DOI: 10.1016/j.envpol.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.
Collapse
Affiliation(s)
- Júlia Firme Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thais Teixeira Oliveira
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
11
|
Antani JD, Ward T, Emonet T, Turner PE. Microscopic Phage Adsorption Assay: High-throughput quantification of virus particle attachment to host bacterial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617072. [PMID: 39416219 PMCID: PMC11482966 DOI: 10.1101/2024.10.09.617072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Phages, viruses of bacteria, play a pivotal role in Earth's biosphere and hold great promise as therapeutic and diagnostic tools in combating infectious diseases. Attachment of phages to bacterial cells is a crucial initial step of the interaction. The classic assay to quantify the dynamics of phage attachment involves co-culturing and enumeration of bacteria and phages, which is laborious, lengthy, hence low-throughput, and only provides ensemble estimates of model-based adsorption rate constants. Here, we utilized fluorescence microscopy and particle tracking to obtain trajectories of individual virus particles interacting with cells. The trajectory durations quantified the heterogeneity in dwell time, the time that each phage spends interacting with a bacterium. The average dwell time strongly correlated with the classically-measured adsorption rate constant. We successfully applied this technique to quantify host-attachment dynamics of several phages including those targeting key bacterial pathogens. This approach should benefit the field of phage biology by providing highly quantitative, model-free readouts at single-virus resolution, helping to uncover single-virus phenomena missed by traditional measurements. Owing to significant reduction in manual effort, our method should enable rapid, high-throughput screening of a phage library against a target bacterial strain for applications such as therapy or diagnosis.
Collapse
Affiliation(s)
- Jyot D. Antani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06520, USA
| | - Timothy Ward
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Thierry Emonet
- Quantitative Biology Institute, Yale University, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06520, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Roux S, Mutalik VK. Tapping the treasure trove of atypical phages. Curr Opin Microbiol 2024; 82:102555. [PMID: 39388759 DOI: 10.1016/j.mib.2024.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
With advancements in genomics technologies, a vast diversity of 'atypical' phages, that is, with single-stranded DNA or RNA genomes, are being uncovered from different ecosystems. Though these efforts have revealed the existence and prevalence of these nonmodel phages, computational approaches often fail to associate these phages with their specific bacterial host(s), while the lack of methods to isolate these phages has limited our ability to characterize infectivity pathways and new gene function. In this review, we call for the development of generalizable experimental methods to better capture this understudied viral diversity via isolation and study them through gene-level characterization and engineering. Establishing a diverse set of new 'atypical' phage model systems has the potential to provide many new biotechnologies, including potential uses of these atypical phages in halting the spread of antibiotic resistance and engineering of microbial communities for beneficial outcomes.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
13
|
Huang X, Braga LPP, Ding C, Yang B, Ge T, Di H, He Y, Xu J, Philippot L, Li Y. Impact of Viruses on Prokaryotic Communities and Greenhouse Gas Emissions in Agricultural Soils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407223. [PMID: 39373699 DOI: 10.1002/advs.202407223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Viruses are abundant and ubiquitous in soil, but their importance in modulating greenhouse gas (GHG) emissions in terrestrial ecosystems remains largely unknown. Here, various loads of viral communities are introduced into paddy soils with different fertilization histories via a reciprocal transplant approach to study the role of viruses in regulating greenhouse gas emissions and prokaryotic communities. The results showed that the addition of viruses has a strong impact on methane (CH4) and nitrous oxide (N2O) emissions and, to a minor extent, carbon dioxide (CO2) emissions, along with dissolved carbon and nitrogen pools, depending on soil fertilization history. The addition of a high viral load resulted in a decrease in microbial biomass carbon (MBC) by 31.4%, with changes in the relative abundance of 16.6% of dominant amplicon sequence variants (ASVs) in comparison to control treatments. More specifically, large effects of viral pressure are observed on some specific microbial communities with decreased relative abundance of prokaryotes that dissimilate sulfur compounds and increased relative abundance of Nanoarchaea. Structural equation modeling further highlighted the differential direct and indirect effects of viruses on CO2, N2O, and CH4 emissions. These findings underpin the understanding of the complex microbe-virus interactions and advance current knowledge on soil virus ecology.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lucas P P Braga
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Chenxiao Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bokai Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Laurent Philippot
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, Dijon, 21000, France
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Ji M, Zhou J, Li Y, Ma K, Song W, Li Y, Zhou J, Tu Q. Biodiversity of mudflat intertidal viromes along the Chinese coasts. Nat Commun 2024; 15:8611. [PMID: 39367024 PMCID: PMC11452619 DOI: 10.1038/s41467-024-52996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Viruses constitute the most diverse and abundant biological entities on Earth. However, our understanding of this tiniest life form in complex ecosystems remains limited. Here, we recover 20,102 viral OTUs from twelve intertidal zones along the Chinese coasts. Our analysis demonstrates high viral diversity and functional potential in intertidal zones, encoding important functional genes that can be potentially transferred to microbial hosts and mediate elemental biogeochemical cycles, especially carbon, phosphate and sulfur. Virus-host abundance dynamics vary among different microbial lineages. Viral community composition is closely associated with environmental conditions, including dissolved organic matter. Concordant biogeographic patterns are observed for viruses and microbes. Viral communities are generally habitat specific with low overlaps between intertidal and other habitats. Environmental factors and geographic distance dominate the compositional variation of intertidal viromes. Overall, these findings expand our understanding of intertidal viromes within an ecological framework, providing insights into the virus-host coevolutionary arms race.
Collapse
Affiliation(s)
- Mengzhi Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China.
| |
Collapse
|
15
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
16
|
Ahmed T, Xu X, Noman M, Wang Q, Li B. Phage-guided nanocarriers: a precision strategy against bacterial pathogens. Trends Biotechnol 2024:S0167-7799(24)00246-4. [PMID: 39341741 DOI: 10.1016/j.tibtech.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Bacterial infections pose a major threat to human health. Here, we describe the recent development of phage-guided therapeutic agent-loaded engineered nanomaterials for precise elimination of bacterial pathogens. This forum highlights the underexplored potential of bioinspired nano-enabled strategies for managing bacterial infections in a precise and safe manner.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10 Mersin, Turkey
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Liao H, Liu C, Zhou S, Liu C, Eldridge DJ, Ai C, Wilhelm SW, Singh BK, Liang X, Radosevich M, Yang QE, Tang X, Wei Z, Friman VP, Gillings M, Delgado-Baquerizo M, Zhu YG. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat Commun 2024; 15:8315. [PMID: 39333115 PMCID: PMC11437078 DOI: 10.1038/s41467-024-52450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chunqin Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Seville, Spain.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Wang W, Song W, Majzoub ME, Feng X, Xu B, Tao J, Zhu Y, Li Z, Qian PY, Webster NS, Thomas T, Fan L. Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont. Nat Commun 2024; 15:8205. [PMID: 39294150 PMCID: PMC11410982 DOI: 10.1038/s41467-024-52464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
Holobionts are highly organized assemblages of eukaryotic hosts, cellular microbial symbionts, and viruses, whose interactions and evolution involve complex biological processes. It is largely unknown which specific determinants drive similarity or individuality in genetic diversity between holobionts. Here, we combine short- and long-read sequencing and DNA-proximity-linkage technologies to investigate intraspecific diversity of the microbiomes, including host-resolved viruses, in individuals of a model marine sponge. We find strong impacts of the sponge host and the cellular hosts of viruses on strain-level organization of the holobiont, whereas substantial overlap in nucleotide diversity between holobionts suggests frequent exchanges of microbial cells and viruses at intrastrain level in the local sponge population. Immune-evasive arms races likely restricted virus-host co-evolution at the intrastrain level, generated holobiont-specific genome variations, and linked virus-host genetics through recombination. Our work shows that a decoupling of strain- and intrastrain-level interactions is a key factor in the genetic diversification of holobionts.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weizhi Song
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marwan E Majzoub
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiaoyuan Feng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bu Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Nicole S Webster
- The Australian Antarctic Division, Kingston, Tasmania, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Torsten Thomas
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Kang Y, Wang J, Zhu C, Zheng M, Li Z. Unveiling the genomic diversity and ecological impact of phage communities in hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135353. [PMID: 39094306 DOI: 10.1016/j.jhazmat.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Phages are pivotal in shaping microbial communities and biogeochemical cycles, while our understanding of the diversity, functions potential, and resistance gene carriage of phages in hospital wastewater (HWW) remains limited. We collected influent and effluent samples from the 3 hospital wastewater treatment plants (HWTPs) to assess the diversity and fate of phages, the interactions between phages and hosts, and the presence of resistance genes and auxiliary metabolic genes (AMGs) encoded by phages. Compared to influent, effluent showed reduced phage abundance and altered composition, with decreases in Microviridae and Inoviridae. The gene-sharing network highlights that many phages in HWW are not classified in known viral genera, suggesting HWW as a rich source of new viruses. There was a significant association between phages and microorganisms, with approximately 32.57 % of phages expected to be capable of infecting microbial hosts, characterized primarily by lytic activity. A total of 8 unique antibiotic resistance genes, 13 unique metal resistance genes, and 5 mobile genetic elements were detected in 3 HWTPs phageomes. Phage AMGs have the potential to influence carbon, nitrogen, phosphorus, and sulfur metabolism, impacting biogeochemical cycles. This study reveals the genomic diversity and ecological role of phages in HWTPs, highlighting their environmental and ecosystem impact.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Caizhong Zhu
- The Fourth Medical Center of Chinese PLA General Hospital, China
| | - Meiqin Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China.
| |
Collapse
|
21
|
Zhao J, Both JP, Rodriguez-R LM, Konstantinidis KT. GSearch: ultra-fast and scalable genome search by combining K-mer hashing with hierarchical navigable small world graphs. Nucleic Acids Res 2024; 52:e74. [PMID: 39011878 PMCID: PMC11381346 DOI: 10.1093/nar/gkae609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Genome search and/or classification typically involves finding the best-match database (reference) genomes and has become increasingly challenging due to the growing number of available database genomes and the fact that traditional methods do not scale well with large databases. By combining k-mer hashing-based probabilistic data structures (i.e. ProbMinHash, SuperMinHash, Densified MinHash and SetSketch) to estimate genomic distance, with a graph based nearest neighbor search algorithm (Hierarchical Navigable Small World Graphs, or HNSW), we created a new data structure and developed an associated computer program, GSearch, that is orders of magnitude faster than alternative tools while maintaining high accuracy and low memory usage. For example, GSearch can search 8000 query genomes against all available microbial or viral genomes for their best matches (n = ∼318 000 or ∼3 000 000, respectively) within a few minutes on a personal laptop, using ∼6 GB of memory (2.5 GB via SetSketch). Notably, GSearch has an O(log(N)) time complexity and will scale well with billions of genomes based on a database splitting strategy. Further, GSearch implements a three-step search strategy depending on the degree of novelty of the query genomes to maximize specificity and sensitivity. Therefore, GSearch solves a major bottleneck of microbiome studies that require genome search and/or classification.
Collapse
Affiliation(s)
- Jianshu Zhao
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Konstantinos T Konstantinidis
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
22
|
Lu X, Gong G, Zhang Q, Yang S, Wu H, Zhao M, Wang X, Shen Q, Ji L, Liu Y, Wang Y, Liu J, Suolang S, Ma X, Shan T, Zhang W. Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau. Commun Biol 2024; 7:1097. [PMID: 39242698 PMCID: PMC11379701 DOI: 10.1038/s42003-024-06798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Sizhu Suolang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China.
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
23
|
Hu Q, Huang L, Yang Y, Xiang Y, Liu J. Essential phage component induces resistance of bacterial community. SCIENCE ADVANCES 2024; 10:eadp5057. [PMID: 39231230 PMCID: PMC11373596 DOI: 10.1126/sciadv.adp5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Despite extensive knowledge on phage resistance at bacterium level, the resistance of bacterial communities is still not well-understood. Given its ubiquity, it is essential to understand resistance at the community level. We performed quantitative investigations on the dynamics of phage infection in Klebsiella pneumoniae biofilms. We found that the biofilms quickly developed resistance and resumed growth. Instead of mutations, the resistance was caused by unassembled phage tail fibers released by the phage-lysed bacteria. The tail fibers degraded the bacterial capsule essential for infection and induced spreading of capsule loss in the biofilm, and tuning tail fiber and capsule levels altered the resistance. Latent infections sustained in the biofilm despite resistance, allowing stable phage-bacteria coexistence. Last, we showed that the resistance exposed vulnerabilities in the biofilm. Our findings indicate that phage lysate plays important roles in shaping phage-biofilm interactions and open more dimensions for the rational design of strategies to counter bacteria with phage.
Collapse
Affiliation(s)
- Qianyu Hu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yaoyu Yang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Xiang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
24
|
Huang D, Xia R, Chen C, Liao J, Chen L, Wang D, Alvarez PJJ, Yu P. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends Microbiol 2024; 32:902-916. [PMID: 38433027 DOI: 10.1016/j.tim.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.
Collapse
Affiliation(s)
- Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China.
| |
Collapse
|
25
|
Pleyer D, Griebler C, Winter C. Virus production in shallow groundwater at the bank of the Danube River. PLoS One 2024; 19:e0306346. [PMID: 39208231 PMCID: PMC11361564 DOI: 10.1371/journal.pone.0306346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses play a crucial role in regulating prokaryotic populations, yet their impact on subsurface environments, specifically groundwater habitats, remains poorly understood. In this study, we employed the virus-dilution approach to measure lytic virus production rates in shallow groundwater located near the city of Vienna (Austria) during the period from July-November 2020. Physico-chemical parameters (pH, electrical conductivity, water temperature, concentration of dissolved oxygen), prokaryotic, and viral abundance, and viral decay rates were monitored as well. Our findings revealed low virus-to-prokaryote ratios varying between 0.9-3.9 throughout the study period and a lack of correlation between prokaryotic and viral abundance in groundwater. Virus production rates varied between 9-12% of viral abundance h-1 in July-August and between 34-36% of viral abundance h-1 in October-November. Seasonal variations in virus production rates were found to be correlated with electrical conductivity, revealing ~3.5 times higher virus production rates during periods with high electrical conductivity and low groundwater recharge in October-November compared to July-August with higher groundwater recharge and lower electrical conductivity. Our data indicate that groundwater recharge disrupts the balance between virus and prokaryotic host communities, resulting in a deficiency of suitable prokaryotic host cells for viral proliferation.
Collapse
Affiliation(s)
- Daniel Pleyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Winter
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Wang C, Zheng R, Zhang T, Sun C. Polysaccharides induce deep-sea Lentisphaerae strains to release chronic bacteriophages. eLife 2024; 13:RP92345. [PMID: 39207920 PMCID: PMC11361711 DOI: 10.7554/elife.92345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Viruses are ubiquitous in nature and play key roles in various ecosystems. Notably, some viruses (e.g. bacteriophage) exhibit alternative life cycles, such as chronic infections without cell lysis. However, the impact of chronic infections and their interactions with the host organisms remains largely unknown. Here, we found for the first time that polysaccharides induced the production of multiple temperate phages infecting two deep-sea Lentisphaerae strains (WC36 and zth2). Through physiological assays, genomic analysis, and transcriptomics assays, we found these bacteriophages were released via a chronic style without host cell lysis, which might reprogram host polysaccharide metabolism through the potential auxiliary metabolic genes. The findings presented here, together with recent discoveries made on the reprogramming of host energy-generating metabolisms by chronic bacteriophages, shed light on the poorly explored marine virus-host interaction and bring us closer to understanding the potential role of chronic viruses in marine ecosystems.
Collapse
Affiliation(s)
- Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Tianhang Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
He Y, Zhuo S, Gao D, Pan Y, Li M, Pan J, Jiang Y, Hu Y, Guo J, Lin Q, Sanford RA, Sun W, Shang J, Wei N, Peng S, Jiang Z, Li S, Li Y, Dong Y, Shi L. Viral communities in a pH>10 serpentinite-like environment: insight into diversity and potential roles in modulating the microbiomes by bioactive vitamin B 9 synthesis. Appl Environ Microbiol 2024; 90:e0085024. [PMID: 39016614 PMCID: PMC11337834 DOI: 10.1128/aem.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Viral communities exist in a variety of ecosystems and play significant roles in mediating biogeochemical processes, whereas viruses inhabiting strongly alkaline geochemical systems remain underexplored. In this study, the viral diversity, potential functionalities, and virus-host interactions in a strongly alkaline environment (pH = 10.4-12.4) exposed to the leachates derived from the serpentinization-like reactions of smelting slags were investigated. The viral populations (e.g., Herelleviridae, Queuovirinae, and Inoviridae) were closely associated with the dominating prokaryotic hosts (e.g., Meiothermus, Trueperaceae, and Serpentinomonas) in this ultrabasic environment. Auxiliary metabolic genes (AMGs) suggested that viruses may enhance hosts' fitness by facilitating cofactor biosynthesis, hydrogen metabolism, and carbon cycling. To evaluate the activity of synthesis of essential cofactor vitamin B9 by the viruses, a viral folA (vfolA) gene encoding dihydrofolate reductase (DHFR) was introduced into a thymidine-auxotrophic strain Escherichia coli MG1655 ΔfolA mutant, which restored the growth of the latter in the absence of thymidine. Notably, the homologs of the validated vDHFR were globally distributed in the viromes across various ecosystems. The present study sheds new light on the unique viral communities in hyperalkaline ecosystems and their potential beneficial impacts on the coexisting microbial consortia by supplying essential cofactors. IMPORTANCE This study presents a comprehensive investigation into the diversity, potential functionalities, and virus-microbe interactions in an artificially induced strongly alkaline environment. Functional validation of the detected viral folA genes encoding dihydrofolate reductase substantiated the synthesis of essential cofactors by viruses, which may be ubiquitous, considering the broad distribution of the viral genes associated with folate cycling.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shiyan Zhuo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Donghao Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yue Pan
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jinzhi Guo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qin Lin
- Shanghai Biozeron Biological Technology Co. Ltd, China, Shanghai, China
| | - Robert A. Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Urbana, llinois, USA
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
28
|
Ai C, Cui P, Liu C, Wu J, Xu Y, Liang X, Yang QE, Tang X, Zhou S, Liao H, Friman VP. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl Environ Microbiol 2024; 90:e0069524. [PMID: 39078126 PMCID: PMC11337816 DOI: 10.1128/aem.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024] Open
Abstract
While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.
Collapse
Affiliation(s)
- Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiawei Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Qiu-e Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
29
|
Lai S, Wang H, Bork P, Chen WH, Zhao XM. Long-read sequencing reveals extensive gut phageome structural variations driven by genetic exchange with bacterial hosts. SCIENCE ADVANCES 2024; 10:eadn3316. [PMID: 39141729 PMCID: PMC11323893 DOI: 10.1126/sciadv.adn3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Genetic variations are instrumental for unraveling phage evolution and deciphering their functional implications. Here, we explore the underlying fine-scale genetic variations in the gut phageome, especially structural variations (SVs). By using virome-enriched long-read metagenomic sequencing across 91 individuals, we identified a total of 14,438 nonredundant phage SVs and revealed their prevalence within the human gut phageome. These SVs are mainly enriched in genes involved in recombination, DNA methylation, and antibiotic resistance. Notably, a substantial fraction of phage SV sequences share close homology with bacterial fragments, with most SVs enriched for horizontal gene transfer (HGT) mechanism. Further investigations showed that these SV sequences were genetic exchanged between specific phage-bacteria pairs, particularly between phages and their respective bacterial hosts. Temperate phages exhibit a higher frequency of genetic exchange with bacterial chromosomes and then virulent phages. Collectively, our findings provide insights into the genetic landscape of the human gut phageome.
Collapse
Affiliation(s)
- Senying Lai
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Huarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Wei-Hua Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Maestri A, Pons BJ, Pursey E, Chong CE, Gandon S, Custodio R, Olina A, Agapov A, Chisnall MAW, Grasso A, Paterson S, Szczelkun MD, Baker KS, van Houte S, Chevallereau A, Westra ER. The bacterial defense system MADS interacts with CRISPR-Cas to limit phage infection and escape. Cell Host Microbe 2024; 32:1412-1426.e11. [PMID: 39094583 DOI: 10.1016/j.chom.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
The constant arms race between bacteria and their parasites has resulted in a large diversity of bacterial defenses, with many bacteria carrying multiple systems. Here, we report the discovery of a phylogenetically widespread defense system, coined methylation-associated defense system (MADS), which is distributed across gram-positive and gram-negative bacteria. MADS interacts with a CRISPR-Cas system in its native host to provide robust and durable resistance against phages. While phages can acquire epigenetic-mediated resistance against MADS, co-existence of MADS and a CRISPR-Cas system limits escape emergence. MADS comprises eight genes with predicted nuclease, ATPase, kinase, and methyltransferase domains, most of which are essential for either self/non-self discrimination, DNA restriction, or both. The complex genetic architecture of MADS and MADS-like systems, relative to other prokaryotic defenses, points toward highly elaborate mechanisms of sensing infections, defense activation, and/or interference.
Collapse
Affiliation(s)
- Alice Maestri
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Benoit J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Elizabeth Pursey
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Charlotte E Chong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK; Department of Genetics, University of Cambridge, Downing Place, Cambridge CB2 3EH, UK
| | - Sylvain Gandon
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, Montpellier 34293, France
| | - Rafael Custodio
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Anna Olina
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Aleksei Agapov
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Matthew A W Chisnall
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Anita Grasso
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK; Department of Genetics, University of Cambridge, Downing Place, Cambridge CB2 3EH, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Anne Chevallereau
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris 75014, France.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
31
|
Wu Z, Liu T, Chen Q, Chen T, Hu J, Sun L, Wang B, Li W, Ni J. Unveiling the unknown viral world in groundwater. Nat Commun 2024; 15:6788. [PMID: 39117653 PMCID: PMC11310336 DOI: 10.1038/s41467-024-51230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.
Collapse
Affiliation(s)
- Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qian Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Jinyun Hu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liyu Sun
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
32
|
Du S, Bi L, Lin D, Zheng XQ, Neilson R, Zhu D. Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13961-13972. [PMID: 39037720 DOI: 10.1021/acs.est.4c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Bi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Da Lin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian-Qing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, Scotland DD2 5DA, United Kingdom
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
33
|
Zhang P, Wang Y, Lin H, Liang J, Wang J, Bai Y, Qu J, Wang A. Bacterial evolution in Biofiltration of drinking water treatment plant: Different response of phage and plasmid to varied water sources. WATER RESEARCH 2024; 259:121887. [PMID: 38870889 DOI: 10.1016/j.watres.2024.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Biofiltration in drinking water treatment (BDWT) are popular as it holds promise as an alternative to chemical treatments, yet our understanding of the key drivers and trends underlying bacterial evolution within this process remains limited. While plasmids and phages are recognized as the main vectors of horizontal gene transfer (HGT), their roles in shaping bacterial evolution in BDWT remain largely unknown. Here we leverage global metagenomic data to unravel the primary forces driving bacterial evolution in BDWT. Our results revealed that the primary vector of HGT varies depending on the type of source water (groundwater and surface water). Both plasmids and phages accelerated bacterial evolution in BDWT by enhancing genetic diversity within species, but they drove contrasting evolutionary trends in functional redundancy in different source water types. Specifically, trends towards and away from functional redundancy (indicated as gene-protein ratio) were observed in surface-water and groundwater biofilters, respectively. Virulent phages drove bacterial evolution through synergistic interactions with bacterial species capable of natural transformation and with certain natural compounds that disrupt bacterial cytoplasmic membranes. Genes relating to water purification (such as Mn(II)-oxidizing genes), microbial risks (antibiotic resistance genes), and chemical risk (polycyclic aromatic hydrocarbons) were enriched via HGT in BDWT, highlighting the necessity for heighted focus on these useful and risky objects. Overall, these discoveries enhance our understanding of bacterial evolution in BDWT and have implications for the optimization of water treatment strategies.
Collapse
Affiliation(s)
- Peijun Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yuhan Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Huan Lin
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Sun X, Xue F, Cong C, Murtaza B, Wang L, Li X, Li S, Xu Y. Characterization of two virulent Salmonella phages and transient application in egg, meat and lettuce safety. Food Res Int 2024; 190:114607. [PMID: 38945617 DOI: 10.1016/j.foodres.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log10 CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log10 CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log10 CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.
Collapse
Affiliation(s)
- XiaoWen Sun
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fan Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Cong Cong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bilal Murtaza
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - LiLi Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - XiaoYu Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - ShuYing Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - YongPing Xu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China.
| |
Collapse
|
35
|
Beggs GA, Bassler BL. Phage small proteins play large roles in phage-bacterial interactions. Curr Opin Microbiol 2024; 80:102519. [PMID: 39047312 PMCID: PMC11323111 DOI: 10.1016/j.mib.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Phages have wide influence on bacterial physiology, and likewise, bacterial processes impinge on phage biology. Key to these interactions are phage small proteins (<100 aa). Long underappreciated, recent work has revealed millions of phage small proteins, and increasingly, mechanisms by which they function to dictate phage and/or bacterial behavior and evolution. Here, we describe select phage small proteins that mediate phage-bacterial interactions by modulating phage lifestyle decision-making components or by altering host gene expression.
Collapse
Affiliation(s)
- Grace A Beggs
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
36
|
Li Y, Xue Y, Roy Chowdhury T, Graham DE, Tringe SG, Jansson JK, Taş N. Genomic insights into redox-driven microbial processes for carbon decomposition in thawing Arctic soils and permafrost. mSphere 2024; 9:e0025924. [PMID: 38860762 PMCID: PMC11288003 DOI: 10.1128/msphere.00259-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is rapidly transforming Arctic landscapes where increasing soil temperatures speed up permafrost thaw. This exposes large carbon stocks to microbial decomposition, possibly worsening climate change by releasing more greenhouse gases. Understanding how microbes break down soil carbon, especially under the anaerobic conditions of thawing permafrost, is important to determine future changes. Here, we studied the microbial community dynamics and soil carbon decomposition potential in permafrost and active layer soils under anaerobic laboratory conditions that simulated an Arctic summer thaw. The microbial and viral compositions in the samples were analyzed based on metagenomes, metagenome-assembled genomes, and metagenomic viral contigs (mVCs). Following the thawing of permafrost, there was a notable shift in microbial community structure, with fermentative Firmicutes and Bacteroidota taking over from Actinobacteria and Proteobacteria over the 60-day incubation period. The increase in iron and sulfate-reducing microbes had a significant role in limiting methane production from thawed permafrost, underscoring the competition within microbial communities. We explored the growth strategies of microbial communities and found that slow growth was the major strategy in both the active layer and permafrost. Our findings challenge the assumption that fast-growing microbes mainly respond to environmental changes like permafrost thaw. Instead, they indicate a common strategy of slow growth among microbial communities, likely due to the thermodynamic constraints of soil substrates and electron acceptors, and the need for microbes to adjust to post-thaw conditions. The mVCs harbored a wide range of auxiliary metabolic genes that may support cell protection from ice formation in virus-infected cells. IMPORTANCE As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change.
Collapse
Affiliation(s)
- Yaoming Li
- College of Grassland Science, Beijing Forest University, Beijing, China
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yaxin Xue
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca R&D, Cambridge, United Kingdom
| | | | - David E. Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
37
|
Shi Z, Long X, Zhang C, Chen Z, Usman M, Zhang Y, Zhang S, Luo G. Viral and Bacterial Community Dynamics in Food Waste and Digestate from Full-Scale Biogas Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13010-13022. [PMID: 38989650 DOI: 10.1021/acs.est.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinyi Long
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Yalei Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| |
Collapse
|
38
|
Liu MY, Liu X, Wang CY, Wan QQ, Tian YF, Liu SL, Pang DW, Wang ZG. Inhalable Polymeric Microparticles for Phage and Photothermal Synergistic Therapy of Methicillin-Resistant Staphylococcus aureus Pneumonia. NANO LETTERS 2024; 24:8752-8762. [PMID: 38953881 DOI: 10.1021/acs.nanolett.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.
Collapse
Affiliation(s)
- Meng-Yao Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Chun-Yu Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi-Fan Tian
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
39
|
Dieppa-Colón E, Martin C, Anantharaman K. Prophage-DB: A comprehensive database to explore diversity, distribution, and ecology of prophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603044. [PMID: 39071402 PMCID: PMC11275716 DOI: 10.1101/2024.07.11.603044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored. Phages are classified as virulent or temperate based on their life cycles. Temperate phages adopt the lysogenic mode of infection, where the genome integrates into the host cell genome forming a prophage. Prophages enable viral genome replication without host cell lysis, and often contribute novel and beneficial traits to the host genome. Current phage research predominantly focuses on lytic phages, leaving a significant gap in knowledge regarding prophages, including their biology, diversity, and ecological roles. Results Here we develop and describe Prophage-DB, a database of prophages, their proteins, and associated metadata that will serve as a resource for viral genomics and microbial ecology. To create the database, we identified and characterized prophages from genomes in three of the largest publicly available databases. We applied several state-of-the-art tools in our pipeline to annotate these viruses, cluster and taxonomically classify them, and detect their respective auxiliary metabolic genes. In total, we identify and characterize over 350,000 prophages and 35,000 auxiliary metabolic genes. Our prophage database is highly representative based on statistical results and contains prophages from a diverse set of archaeal and bacterial hosts which show a wide environmental distribution. Conclusion Prophages are particularly overlooked in viral ecology and merit increased attention due to their vital implications for microbiomes and their hosts. Here, we created Prophage-DB to advance our comprehension of prophages in microbiomes through a comprehensive characterization of prophages in publicly available genomes. We propose that Prophage-DB will serve as a valuable resource for advancing phage research, offering insights into viral taxonomy, host relationships, auxiliary metabolic genes, and environmental distribution.
Collapse
Affiliation(s)
- Etan Dieppa-Colón
- Department of Bacteriology, University of Wisconsin-Madison
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison
- Department of Integrative Biology, University of Wisconsin-Madison
| |
Collapse
|
40
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. Coinfecting phages impede each other's entry into the cell. Curr Biol 2024; 34:2841-2853.e18. [PMID: 38878771 PMCID: PMC11233250 DOI: 10.1016/j.cub.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R Chemla
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Kozlova AP, Muntyan VS, Vladimirova ME, Saksaganskaia AS, Kabilov MR, Gorbunova MK, Gorshkov AN, Grudinin MP, Simarov BV, Roumiantseva ML. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int J Mol Sci 2024; 25:7388. [PMID: 39000497 PMCID: PMC11242549 DOI: 10.3390/ijms25137388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Collapse
Affiliation(s)
- Alexandra P Kozlova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Victoria S Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Maria E Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Alla S Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria K Gorbunova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Mikhail P Grudinin
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Boris V Simarov
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marina L Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| |
Collapse
|
42
|
Dong Y, Chen WH, Zhao XM. VirRep: a hybrid language representation learning framework for identifying viruses from human gut metagenomes. Genome Biol 2024; 25:177. [PMID: 38965579 PMCID: PMC11229495 DOI: 10.1186/s13059-024-03320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Identifying viruses from metagenomes is a common step to explore the virus composition in the human gut. Here, we introduce VirRep, a hybrid language representation learning framework, for identifying viruses from human gut metagenomes. VirRep combines a context-aware encoder and an evolution-aware encoder to improve sequence representation by incorporating k-mer patterns and sequence homologies. Benchmarking on both simulated and real datasets with varying viral proportions demonstrates that VirRep outperforms state-of-the-art methods. When applied to fecal metagenomes from a colorectal cancer cohort, VirRep identifies 39 high-quality viral species associated with the disease, many of which cannot be detected by existing methods.
Collapse
Affiliation(s)
- Yanqi Dong
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Liu Y, Huang Q, Zhuang Z, Yang H, Gou X, Xu T, Liu K, Wang J, Liu B, Gao P, Cao F, Yang B, Zhang C, Chen M, Fan G. Gut virome alterations in patients with chronic obstructive pulmonary disease. Microbiol Spectr 2024; 12:e0428723. [PMID: 38785444 PMCID: PMC11218493 DOI: 10.1128/spectrum.04287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the primary causes of mortality and morbidity worldwide. The gut microbiome, particularly the bacteriome, has been demonstrated to contribute to the progression of COPD. However, the influence of gut virome on the pathogenesis of COPD is rarely studied. Recent advances in viral metagenomics have enabled the rapid discovery of its remarkable role in COPD. In this study, deep metagenomics sequencing of fecal virus-like particles and bacterial 16S rRNA sequencing was performed on 92 subjects from China to characterize alterations of the gut virome in COPD. Lower richness and diversity of the gut virome were observed in the COPD subjects compared with the healthy individuals. Sixty-four viral species, including Clostridium phage, Myoviridae sp., and Synechococcus phage, showed positive relationships with pulmonary ventilation functions and had markedly declined population in COPD subjects. Multiple viral functions, mainly involved in bacterial susceptibility and the interaction between bacteriophages and bacterial hosts, were significantly declined in COPD. In addition, COPD was characterized by weakened viral-bacterial interactions compared with those in the healthy cohort. The gut virome showed diagnostic performance with an area under the curve (AUC) of 88.7%, which indicates the potential diagnostic value of the gut virome for COPD. These results suggest that gut virome may play an important role in the development of COPD. The information can provide a reference for the future investigation of diagnosis, treatment, and in-depth mechanism research of COPD. IMPORTANCE Previous studies showed that the bacteriome plays an important role in the progression of chronic obstructive pulmonary disease (COPD). However, little is known about the involvement of the gut virome in COPD. Our study explored the disease-specific virome signatures of patients with COPD. We found the diversity and compositions altered of the gut virome in COPD subjects compared with healthy individuals, especially those viral species positively correlated with pulmonary ventilation functions. Additionally, the declined bacterial susceptibility, the interaction between bacteriophages and bacterial hosts, and the weakened viral-bacterial interactions in COPD were observed. The findings also suggested the potential diagnostic value of the gut virome for COPD. The results highlight the significance of gut virome in COPD. The novel strategies for gut virome rectifications may help to restore the balance of gut microecology and represent promising therapeutics for COPD.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenhua Zhuang
- Chengdu Life Baseline Technology Co., Ltd., Chengdu, China
| | - Hongjing Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoling Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Xu
- Chengdu Life Baseline Technology Co., Ltd., Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Wang
- Department of Respiratory Medicine, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Bo Liu
- Department of Respiratory Medicine, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Cao
- Chengdu Life Baseline Technology Co., Ltd., Chengdu, China
| | - Bin Yang
- Chengdu Life Baseline Technology Co., Ltd., Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Sun CL, Pratama AA, Gazitúa MC, Cronin D, McGivern BB, Wainaina JM, Vik DR, Zayed AA, Bolduc B, Wrighton KC, Rich VI, Sullivan MB. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ Microbiol 2024; 26:e16665. [PMID: 39101434 DOI: 10.1111/1462-2920.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 08/06/2024]
Abstract
Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.
Collapse
Affiliation(s)
- Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | | | - Dylan Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Bridget B McGivern
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Kelly C Wrighton
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
45
|
Mäkelä K, Laanto E, Sundberg LR. Determinants in the phage life cycle: The dynamic nature of ssDNA phage FLiP and host interactions under varying environmental conditions and growth phases. Environ Microbiol 2024; 26:e16670. [PMID: 38952172 DOI: 10.1111/1462-2920.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage-host interactions.
Collapse
Affiliation(s)
- Kati Mäkelä
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Laanto
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
46
|
Li W, Wang Y, Zhao K, Xu L, Shi T, Ma B, Lv X. Host-virus coevolution drives soil microbial function succession along a millennium land reclamation chronosequence. J Adv Res 2024:S2090-1232(24)00258-3. [PMID: 38960277 DOI: 10.1016/j.jare.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Gene exchange between viruses and hosts plays an important role in driving virus-host coevolution, enabling adaptation of both viruses and hosts to environmental changes. However, the mechanisms and functional significance of virus-host gene exchanges over long-term scales remain largely unexplored. OBJECTIVE The present study aimed to gain insights into the role of viruses in virus-host interactions and coevolution by monitoring virome dynamics along a millennium-long land reclamation chronosequence. METHODS We collected 24 soil samples from 8 stages of a millennium-long land reclamation chronosequence, including non-reclamation, and reclamation periods of 10, 50, 100, 300, 500, 700, and 1000 years. We characterized their metagenomes, and identified DNA viruses within these metagenomes. RESULTS Our findings reveal a significant shift in viral community composition after 50 years of land reclamation, but soil viral diversity reached a stable phase approximately 300 years after the initial reclamation. Analysis of the virus-host network showed a scale-free degree distribution and a reduction in complexity over time, with generalist viruses emerging as key facilitators of horizontal gene transfer. CONCLUSION These findings highlight the integral role of viruses, especially generalist types, in mediating gene exchanges between viruses and hosts, thereby influencing the coevolutionary dynamics in soil ecosystems over significant timescales. This study offers novel insights into long-term virus-host interactions, showing how the virome responds to environmental changes, driving shifts in various microbial functions in reclaimed land.
Collapse
Affiliation(s)
- Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Linya Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tingfeng Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
47
|
Ruan C, Ramoneda J, Kan A, Rudge TJ, Wang G, Johnson DR. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nat Commun 2024; 15:5397. [PMID: 38926498 PMCID: PMC11208555 DOI: 10.1038/s41467-024-49840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Josep Ramoneda
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Timothy J Rudge
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
48
|
Zhang H, You J, Pan X, Hu Y, Zhang Z, Zhang X, Zhang W, Rao Z. Genomic and biological insights of bacteriophages JNUWH1 and JNUWD in the arms race against bacterial resistance. Front Microbiol 2024; 15:1407039. [PMID: 38989022 PMCID: PMC11233448 DOI: 10.3389/fmicb.2024.1407039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
The coevolution of bacteria and bacteriophages has created a great diversity of mechanisms by which bacteria fight phage infection, and an equivalent diversity of mechanisms by which phages subvert bacterial immunity. Effective and continuous evolution by phages is necessary to deal with coevolving bacteria. In this study, to better understand the connection between phage genes and host range, we examine the isolation and genomic characterization of two bacteriophages, JNUWH1 and JNUWD, capable of infecting Escherichia coli. Sourced from factory fermentation pollutants, these phages were classified within the Siphoviridae family through TEM and comparative genomic analysis. Notably, the phages exhibited a viral burst size of 500 and 1,000 PFU/cell, with latent periods of 15 and 20 min, respectively. They displayed stability over a pH range of 5 to 10, with optimal activity at 37°C. The complete genomes of JNUWH1 and JNUWD were 44,785 bp and 43,818 bp, respectively. Phylogenetic analysis revealed their close genetic relationship to each other. Antibacterial assays demonstrated the phages' ability to inhibit E. coli growth for up to 24 h. Finally, through laboratory-driven adaptive evolution, we successfully identified strains for both JNUWH1 and JNUWD with mutations in receptors specifically targeting lipopolysaccharides (LPS) and the lptD gene. Overall, these phages hold promise as additives in fermentation products to counter E. coli, offering potential solutions in the context of evolving bacterial resistance.
Collapse
Affiliation(s)
- Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yanglu Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Zan Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Weiguo Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
49
|
Lohrmann C, Holm C, Datta SS. Influence of bacterial swimming and hydrodynamics on attachment of phages. SOFT MATTER 2024; 20:4795-4805. [PMID: 38847805 DOI: 10.1039/d4sm00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteriophages ("phages") are viruses that infect bacteria. Since they do not actively self-propel, phages rely on thermal diffusion to find target cells-but can also be advected by fluid flows, such as those generated by motile bacteria themselves in bulk fluids. How does the flow field generated by a swimming bacterium influence how it encounters phages? Here, we address this question using coupled molecular dynamics and lattice Boltzmann simulations of flagellated bacteria swimming through a bulk fluid containing uniformly-dispersed phages. We find that while swimming increases the rate at which phages attach to both the cell body and flagellar propeller, hydrodynamic interactions strongly suppress this increase at the cell body, but conversely enhance this increase at the flagellar bundle. Our results highlight the pivotal influence of hydrodynamics on the interactions between bacteria and phages, as well as other diffusible species, in microbial environments.
Collapse
Affiliation(s)
- Christoph Lohrmann
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
50
|
Guzel M, Yucefaydali A, Yetiskin S, Deniz A, Yaşar Tel O, Akçelik M, Soyer Y. Genomic analysis of Salmonella bacteriophages revealed multiple endolysin ORFs and importance of ligand-binding site of receptor-binding protein. FEMS Microbiol Ecol 2024; 100:fiae079. [PMID: 38816206 PMCID: PMC11180984 DOI: 10.1093/femsec/fiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Salmonella is a prevalent foodborne pathogen causing millions of global cases annually. Antimicrobial resistance is a growing public health concern, leading to search for alternatives like bacteriophages. A total of 97 bacteriophages, isolated from cattle farms (n = 48), poultry farms (n = 37), and wastewater (n = 5) samples in Türkiye, were subjected to host-range analysis using 36 Salmonella isolates with 18 different serotypes. The broadest host range belonged to an Infantis phage (MET P1-091), lysing 28 hosts. A total of 10 phages with the widest host range underwent further analysis, revealing seven unique genomes (32-243 kb), including a jumbophage (>200 kb). Except for one with lysogenic properties, none of them harbored virulence or antibiotic resistance genes, making them potential Salmonella reducers in different environments. Examining open reading frames (ORFs) of endolysin enzymes revealed surprising findings: five of seven unique genomes contained multiple endolysin ORFs. Despite sharing same endolysin sequences, phages exhibited significant differences in host range. Detailed analysis unveiled diverse receptor-binding protein sequences, with similar structures but distinct ligand-binding sites. These findings emphasize the importance of ligand-binding sites of receptor-binding proteins. Additionally, bacterial reduction curve and virulence index revealed that Enteritidis phages inhibit bacterial growth even at low concentrations, unlike Infantis and Kentucky phages.
Collapse
Affiliation(s)
- Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Hitit University, Corum 19030, Türkiye
| | - Aysenur Yucefaydali
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Segah Yetiskin
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysu Deniz
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Osman Yaşar Tel
- Faculty of Veterinary Medicine, Harran University, Şanlıurfa 63300, Türkiye
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Ankara 06100, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| |
Collapse
|