1
|
Garg A, Debnath A. Light Harvesting Complex II Resists Non-bilayer Lipid-Induced Polymorphism in Plant Thylakoid Membranes via Lipid Redistribution. J Phys Chem Lett 2025; 16:95-102. [PMID: 39700347 DOI: 10.1021/acs.jpclett.4c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The plant thylakoid membrane hosting the light-harvesting complex (LHCII) is the site of oxygenic photosynthesis. Contrary to the earlier consensus of a protein-driven single lamellar phase of the thylakoid, despite containing 40% non-bilayer-forming lipids, recent experiments confirm the polymorphic state of the functional thylakoid. What, then, is the origin of this polymorphism and what factors control it? The current Letter addresses the question using a total of 617.8 μs long coarse-grained simulations of thylakoids with and without LHCII and varying concentrations of non-bilayer lipids using Martini-2.2 and -3.0 at 323 K. The LHCII redistributes the non-bilayer lipids into its annular region, increases the bending modulus and the stalk formation free energy, reduces the nonzero mean curvature propensity, and resists the polymorphism these lipids promote. The thermodynamic trade-off between non-bilayer lipids and LHCII dictates the degree of nanoscopic curvature leading to the polymorphism crucial for non-photochemical quenching under excess light conditions.
Collapse
Affiliation(s)
- Avinash Garg
- Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Ananya Debnath
- Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
2
|
Chen J, Liu M, Chen S, Chou CP, Liu H, Wu D, Liu Y. Engineered Therapeutic Bacteria with High-Yield Membrane Vesicle Production Inspired by Eukaryotic Membrane Curvature for Treating Inflammatory Bowel Disease. ACS NANO 2025. [PMID: 39772458 DOI: 10.1021/acsnano.4c13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Bacterial membrane vesicles (BMVs) are emerging as powerful natural nanoparticles with transformative potential in medicine and industry. Despite their promise, scaling up BMV production and ensuring stable isolation and storage remain formidable challenges that limit their broader application. Inspired by eukaryotic mechanisms of membrane curvature, we engineered Escherichia coli DH5α to serve as a high-efficiency BMV factory. By fusing the ethanolamine utilization microcompartment shell protein EutS with the outer membrane via the ompA signal peptide, we induced dramatic membrane curvatures that drove enhanced vesiculation. Simultaneously, overexpression of fatty acyl reductase led to the production of amphiphilic fatty alcohols, further amplifying the BMV yield. Dynamic modulation of peptidoglycan hydrolase (PGase) expression facilitated efficient BMV release, resulting in a striking 149.11-fold increase in vesicle production. Notably, the high-yield BMVs from our engineered strain, without the need for purification, significantly bolstered innate immune responses and demonstrated therapeutic efficacy in treating inflammatory bowel disease (IBD). This study presents a strategy to overcome BMV production barriers, showcasing the therapeutic potential of engineered bacteria and BMVs for IBD treatment, while highlighting their potential applications in diverse biomedical fields.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mingkang Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiyi Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilan Liu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Liebl K, Voth GA. Lipid organization by the Caveolin-1 complex. Biophys J 2024; 123:3688-3697. [PMID: 39306671 PMCID: PMC11560304 DOI: 10.1016/j.bpj.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolins are lipid-binding proteins that can organize membrane remodeling and oligomerize into the 8S complex. The CAV1-8S complex comprises a disk-like structure, about 15 nm in diameter, with a central beta barrel. Further oligomerization of 8S complexes remodels the membrane into caveolae vessels, with a dependence on cholesterol concentration. However, the molecular mechanisms behind membrane remodeling and cholesterol filtering are still not understood. Performing atomistic molecular dynamics simulations in combination with advanced sampling techniques, we describe how the CAV1-8S complex bends the membrane and accumulates cholesterol. Here, our simulations show an enhancing effect by the palmitoylations of CAV1, and we predict that the CAV1-8S complex can extract cholesterol molecules from the lipid bilayer and accommodate them in its beta barrel. Through backmapping to the all-atom level, we also conclude that the Martini v.2 coarse-grained force field overestimates membrane bending, as the atomistic simulations exhibit only very localized bending.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Faizi HA, Granek R, Vlahovska PM. Curvature fluctuations of fluid vesicles reveal hydrodynamic dissipation within the bilayer. Proc Natl Acad Sci U S A 2024; 121:e2413557121. [PMID: 39441635 PMCID: PMC11536141 DOI: 10.1073/pnas.2413557121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
The biological function of membranes is closely related to their softness, which is often studied through the membranes' thermally driven fluctuations. Typically, the analysis assumes that the relaxation rate of a pure bending deformation is determined by the competition between membrane bending rigidity and viscous dissipation in the surrounding medium. Here, we reexamine this assumption and demonstrate that viscous flows within the membrane dominate the dynamics of bending fluctuations of nonplanar membranes with a radius of curvature smaller than the Saffman-Delbrück length. Using flickering spectroscopy of giant vesicles made of dipalmitoylphosphatidylcholine, DPPC:cholesterol mixtures and pure diblock-copolymer membranes, we experimentally detect the signature of membrane dissipation in curvature fluctuations. We show that membrane viscosity can be reliably obtained from the short time behavior of the shape time correlations. The results indicate that the DPPC:cholesterol membranes behave as a Newtonian fluid, while the polymer membranes exhibit more complex rheology. Our study provides physical insights into the time scales of curvature remodeling of biological and synthetic membranes.
Collapse
Affiliation(s)
- Hammad A. Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL60208
| | - Rony Granek
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of The Negev, Beer Sheva84105, Israel
| | - Petia M. Vlahovska
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL60611
| |
Collapse
|
6
|
Rinaldin M, Ten Haaf SLD, Vegter EJ, van der Wel C, Fonda P, Giomi L, Kraft DJ. Lipid membranes supported by polydimethylsiloxane substrates with designed geometry. SOFT MATTER 2024; 20:7379-7386. [PMID: 39046306 DOI: 10.1039/d4sm00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The membrane curvature of cells and intracellular compartments continuously adapts to enable cells to perform vital functions, from cell division to signal trafficking. Understanding how membrane geometry affects these processes in vivo is challenging because of the biochemical and geometrical complexity as well as the short time and small length scales involved in cellular processes. By contrast, in vitro model membranes with engineered curvature would provide a versatile platform for this investigation and applications to biosensing and biocomputing. Here, we present a strategy that allows fabrication of lipid membranes with designed shape by combining 3D micro-printing and replica-molding lithography with polydimethylsiloxane to create curved micrometer-sized scaffolds with virtually any geometry. The resulting supported lipid membranes are homogeneous and fluid. We demonstrate the versatility of the system by fabricating structures of interesting combinations of mean and Gaussian curvature. We study the lateral phase separation and how local curvature influences the effective diffusion coefficient. Overall, we offer a bio-compatible platform for understanding curvature-dependent cellular processes and developing programmable bio-interfaces for living cells and nanostructures.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | | | - Ernst J Vegter
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| | - Casper van der Wel
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| | - Piermarco Fonda
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | - Daniela J Kraft
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
7
|
Sharma KD, Doktorova M, Waxham MN, Heberle FA. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach. Biophys J 2024; 123:2877-2891. [PMID: 38689500 PMCID: PMC11393711 DOI: 10.1016/j.bpj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness. However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess accuracy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for a more detailed understanding of raft properties in biological contexts.
Collapse
Affiliation(s)
- Karan D Sharma
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
8
|
Wang D, Yu L. Migrasome biogenesis: when biochemistry meets biophysics on membranes. Trends Biochem Sci 2024; 49:829-840. [PMID: 38945731 DOI: 10.1016/j.tibs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.
Collapse
Affiliation(s)
- Dongju Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Liu J. Roles of membrane mechanics-mediated feedback in membrane traffic. Curr Opin Cell Biol 2024; 89:102401. [PMID: 39018789 PMCID: PMC11297666 DOI: 10.1016/j.ceb.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
Synthesizing the recent progresses, we present our perspectives on how local modulations of membrane curvature, tension, and bending energy define the feedback controls over membrane traffic processes. We speculate the potential mechanisms of, and the control logic behind, the different membrane mechanics-mediated feedback in endocytosis and exo-endocytosis coupling. We elaborate the path forward with the open questions for theoretical considerations and the grand challenges for experimental validations.
Collapse
Affiliation(s)
- Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
10
|
Liebl K, Voth GA. Lipid Organization by the Caveolin-1 Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602986. [PMID: 39026816 PMCID: PMC11257593 DOI: 10.1101/2024.07.10.602986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Caveolins are lipid-binding proteins that can organize membrane remodeling and oligomerize into the 8S-complex. The CAV1 8S-complex comprises a disk-like structure, about 15nm in diameter, with a central beta barrel. Further oligomerization of 8S-complexes remodels the membrane into caveolae vessels, with a dependence on cholesterol concentration. However, the molecular mechanisms behind membrane remodeling and cholesterol filtering are still not understood. Performing atomistic Molecular Dynamics simulations in combination with advanced sampling techniques, we describe how the CAV1-8S complex bends the membrane and accumulates cholesterol. Here, our simulations show an enhancing effect by the palmitoylations of CAV1, and we predict that the CAV1-8S complex can extract cholesterol molecules from the lipid bilayer and accommodate them in its beta barrel. Through backmapping to the all-atom level we also conclude that the Martini v2 coarse-grained forcefield overestimates membrane bending, as the atomistic simulations exhibit only very localized bending.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
11
|
Bragulat-Teixidor H, Ishihara K, Szücs GM, Otsuka S. The endoplasmic reticulum connects to the nucleus by constricted junctions that mature after mitosis. EMBO Rep 2024; 25:3137-3159. [PMID: 38877171 PMCID: PMC11239909 DOI: 10.1038/s44319-024-00175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Junctions between the endoplasmic reticulum (ER) and the outer membrane of the nuclear envelope (NE) physically connect both organelles. These ER-NE junctions are essential for supplying the NE with lipids and proteins synthesized in the ER. However, little is known about the structure of these ER-NE junctions. Here, we systematically study the ultrastructure of ER-NE junctions in cryo-fixed mammalian cells staged in anaphase, telophase, and interphase by correlating live cell imaging with three-dimensional electron microscopy. Our results show that ER-NE junctions in interphase cells have a pronounced hourglass shape with a constricted neck of 7-20 nm width. This morphology is significantly distinct from that of junctions within the ER network, and their morphology emerges as early as telophase. The highly constricted ER-NE junctions are seen in several mammalian cell types, but not in budding yeast. We speculate that the unique and highly constricted ER-NE junctions are regulated via novel mechanisms that contribute to ER-to-NE lipid and protein traffic in higher eukaryotes.
Collapse
Affiliation(s)
- Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria.
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.
| | - Keisuke Ishihara
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gréta Martina Szücs
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria.
| |
Collapse
|
12
|
Cardoso MH, de la Fuente-Nunez C, Santos NC, Zasloff MA, Franco OL. Influence of antimicrobial peptides on the bacterial membrane curvature and vice versa. Trends Microbiol 2024; 32:624-627. [PMID: 38777700 PMCID: PMC11537279 DOI: 10.1016/j.tim.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Many factors contribute to bacterial membrane stabilization, including steric effects between lipids, membrane spontaneous curvature, and the difference in the number of neighboring molecules. This forum provides an overview of the physicochemical properties associated with membrane curvature and how this parameter can be tuned to design more effective antimicrobial peptides.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, - MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, - DF, Brazil; Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, - MS, Brazil.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington, DC, USA
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, - MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, - DF, Brazil
| |
Collapse
|
13
|
Zhang W, Uei Y, Matsuura T, Maruyama A. Characterization and regulation of 2D-3D convertible lipid membrane transformation. Biomater Sci 2024; 12:3423-3430. [PMID: 38809312 DOI: 10.1039/d4bm00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Micro-nanomaterials that can adopt different structures are powerful tools in the fields of biological and medical sciences. We previously developed a lipid membrane that can convert between 2D nanosheet and 3D vesicle forms using cationic copolymer polyallylamine-graft-polyethylene glycol and the anionic peptide E5. The properties of the membrane during conversion have been characterized only by confocal laser scan microscopy. Furthermore, due to the 2D symmetry of the lipid nanosheet, the random folding of the lipid bilayer into either the original or the reverse orientation occurs during sheet-to-vesicle conversion, compromising the structural consistency of the membrane. In this study, flow cytometry was applied to track the conversion of more than 5000 lipid membranes from 3D vesicles to 2D nanosheets and back to 3D vesicles, difficult with microscopies. The lipid nanosheets exhibited more side scattering intensity than 3D vesicles, presumably due to free fluctuation and spin of the sheets in the suspension. Furthermore, by immobilizing bovine serum albumin as one of the representative proteins on the outer leaflet of giant unilamellar vesicles at a relatively low coverage, complete restoration of lipid membranes to the original 3D orientation was obtained after sheet-to-vesicle conversion. This convertible membrane system should be applicable in a wide range of fields. Our findings also provide experimental evidence for future theoretical studies on membrane behavior.
Collapse
Affiliation(s)
- Wancheng Zhang
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Yuta Uei
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
14
|
Campelo F, Lillo JV, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophys J 2024; 123:1531-1541. [PMID: 38698644 PMCID: PMC11214006 DOI: 10.1016/j.bpj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
15
|
Wei L, Guo X, Haimov E, Obashi K, Lee SH, Shin W, Sun M, Chan CY, Sheng J, Zhang Z, Mohseni A, Ghosh Dastidar S, Wu XS, Wang X, Han S, Arpino G, Shi B, Molakarimi M, Matthias J, Wurm CA, Gan L, Taraska JW, Kozlov MM, Wu LG. Clathrin mediates membrane fission and budding by constricting membrane pores. Cell Discov 2024; 10:62. [PMID: 38862506 PMCID: PMC11166961 DOI: 10.1038/s41421-024-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/04/2024] [Indexed: 06/13/2024] Open
Abstract
Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.
Collapse
Affiliation(s)
- Lisi Wei
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xiaoli Guo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ehud Haimov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Kazuki Obashi
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Sung Hoon Lee
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Chung-Ang University, Seoul, Republic of Korea
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Min Sun
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jiansong Sheng
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- 900 Clopper Rd, Suite, 130, Gaithersburg, MD, USA
| | - Zhen Zhang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Center of Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ammar Mohseni
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xin Wang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sue Han
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Emme 3 Srl - Via Luigi Meraviglia, 31 - 20020, Lainate, MI, Italy
| | - Bo Shi
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Maryam Molakarimi
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | | | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
16
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
17
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
18
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
19
|
Li W, Zhang S, Sun M, Kleuskens S, Wilson DA. Shape Transformation of Polymer Vesicles. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:453-466. [PMID: 38694189 PMCID: PMC11059097 DOI: 10.1021/accountsmr.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 05/04/2024]
Abstract
Life activities, such as respiration, are accomplished through the continuous shape modulation of cells, tissues, and organs. Developing smart materials with shape-morphing capability is a pivotal step toward life-like systems and emerging technologies of wearable electronics, soft robotics, and biomimetic actuators. Drawing inspiration from cells, smart vesicular systems have been assembled to mimic the biological shape modulation. This would enable the understanding of cellular shape adaptation and guide the design of smart materials with shape-morphing capability. Polymer vesicles assembled by amphiphilic molecules are an example of remarkable vesicular systems. The chemical versatility, physical stability, and surface functionality promise their application in nanomedicine, nanoreactor, and biomimetic systems. However, it is difficult to drive polymer vesicles away from equilibrium to induce shape transformation due to the unfavorable energy landscapes caused by the low mobility of polymer chains and low permeability of the vesicular membrane. Extensive studies in the past decades have developed various methods including dialysis, chemical addition, temperature variation, polymerization, gas exchange, etc., to drive shape transformation. Polymer vesicles can now be engineered into a variety of nonspherical shapes. Despite the brilliant progress, most of the current studies regarding the shape transformation of polymer vesicles still lie in the trial-and-error stage. It is a grand challenge to predict and program the shape transformations of polymer vesicles. An in-depth understanding of the deformation pathway of polymer vesicles would facilitate the transition from the trial-and-error stage to the computing stage. In this Account, we introduce recent progress in the shape transformation of polymer vesicles. To provide an insightful analysis, the shape transformation of polymer vesicles is divided into basic and coupled deformation. First, we discuss the basic deformation of polymer vesicles with a focus on two deformation pathways: the oblate pathway and the prolate pathway. Strategies used to trigger different deformation pathways are introduced. Second, we discuss the origin of the selectivity of two deformation pathways and the strategies used to control the selectivity. Third, we discuss the coupled deformation of polymer vesicles with a focus on the switch and coupling of two basic deformation pathways. Last, we analyze the challenges and opportunities in the shape transformation of polymer vesicles. We envision that a systematic understanding of the deformation pathway would push the shape transformation of polymer vesicles from the trial-and-error stage to the computing stage. This would enable the prediction of deformation behaviors of nanoparticles in complex environments, like blood and interstitial tissue, and access to advanced architecture desirable for man-made applications.
Collapse
Affiliation(s)
- Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mingchen Sun
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
20
|
Ying R, Li C, Li H, Zou J, Hu M, Hong Q, Shen Y, Hou L, Cheng H, Zhou R. RPGR is a guanine nucleotide exchange factor for the small GTPase RAB37 required for retinal function via autophagy regulation. Cell Rep 2024; 43:114010. [PMID: 38536817 DOI: 10.1016/j.celrep.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Although the small GTPase RAB37 acts as an organizer of autophagosome biogenesis, the upstream regulatory mechanism of autophagy via guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange in maintaining retinal function has not been determined. We found that retinitis pigmentosa GTPase regulator (RPGR) is a guanine nucleotide exchange factor that activates RAB37 by accelerating GDP-to-GTP exchange. RPGR directly interacts with RAB37 via the RPGR-RCC1-like domain to promote autophagy through stimulating exchange. Rpgr knockout (KO) in mice leads to photoreceptor degeneration owing to autophagy impairment in the retina. Notably, the retinopathy phenotypes of Rpgr KO retinas are rescued by the adeno-associated virus-mediated transfer of pre-trans-splicing molecules, which produce normal Rpgr mRNAs via trans-splicing in the Rpgr KO retinas. This rescue upregulates autophagy through the re-expression of RPGR in KO retinas to accelerate GDP-to-GTP exchange; thus, retinal homeostasis reverts to normal. Taken together, these findings provide an important missing link for coordinating RAB37 GDP-GTP exchange via the RPGR and retinal homeostasis by autophagy regulation.
Collapse
Affiliation(s)
- Ruhong Ying
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Cong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Huirong Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325003, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Qiang Hong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yin Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ling Hou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325003, China.
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
21
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
22
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthaeus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. Nat Commun 2024; 15:2767. [PMID: 38553473 PMCID: PMC10980822 DOI: 10.1038/s41467-024-47109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
Affiliation(s)
- Raluca Groza
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Kita Valerie Schmidt
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Paul Markus Müller
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Claire Schlack-Leigers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ursula Neu
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Claudia Matthaeus
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Justin Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Helge Ewers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
24
|
Heberle FA, Waxham MN. Phase separation in model lipid membranes investigated with cryogenic electron microscopy. Methods Enzymol 2024; 700:189-216. [PMID: 38971600 DOI: 10.1016/bs.mie.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
We describe a method for investigating lateral membrane heterogeneity using cryogenic electron microscopy (cryo-EM) images of liposomes. The method takes advantage of differences in the thickness and molecular density of ordered and disordered phases that are resolvable in phase contrast cryo-EM. Compared to biophysical techniques like FRET or neutron scattering that yield ensemble-averaged information, cryo-EM provides direct visualization of individual vesicles and can therefore reveal variability that would otherwise be obscured by averaging. Moreover, because the contrast mechanism involves inherent properties of the lipid phases themselves, no extrinsic probes are required. We explain and discuss various complementary analyses of spatially resolved thickness and intensity measurements that enable an assessment of the membrane's phase state. The method opens a window to nanodomain structure in synthetic and biological membranes that should lead to an improved understanding of lipid raft phenomena.
Collapse
Affiliation(s)
- Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States.
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, United States.
| |
Collapse
|
25
|
Mondal S, Cui Q. Sequence Sensitivity in Membrane Remodeling by Polyampholyte Condensates. J Phys Chem B 2024; 128:2087-2099. [PMID: 38407041 DOI: 10.1021/acs.jpcb.3c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Intrinsically disordered peptides (IDPs) have been found to undergo liquid-liquid phase separation (LLPS) and produce complex coacervates that play numerous regulatory roles in the cell. Recent experimental studies have discovered that LLPS at or near the membrane surface helps in the biomolecular organization during signaling events and can significantly alter the membrane morphology. However, the molecular mechanism and microscopic details of such processes still remain unclear. Here we study the effect of polyampholyte and polyelectrolyte condensation on two different anionic membranes, as they represent a majority of naturally occurring IDPs. The polyampholytes are fifty-residue polymers, made of glutamate(E) and lysine(K) with different charge patterns. The polyelectrolytes are separate chains of E25 and K25. We first calibrate the MARTINI v3.0 force field and then perform long-time-scale coarse-grained molecular dynamics simulations. We find that condensates formed by all the polyampholytes get adsorbed on the membrane. However, the strong polyampholytes (i.e., blocky sequences) can remodel the membranes more prominently than the weaker ones (i.e., scrambled sequences). Condensates formed by the blocky sequences induce a significant negative curvature (∼0.1 nm-1) and local demixing of lipids, whereas those by the scrambled sequences tend to wet the membrane to a greater extent without generating significant curvature or demixing. We perform several microscopic analyses to characterize the nature of the interaction between membranes and these condensates. Our analyses of interaction energetics reveal that membrane remodeling and/or wetting are favored by enhanced interactions between polyampholytes with lipids and the counterions.
Collapse
Affiliation(s)
- Sayantan Mondal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
26
|
Li X, Fu L, Zhang S, Dong Y, Gao L. Relationship between Protein-Induced Membrane Curvature and Membrane Thermal Undulation. J Phys Chem B 2024; 128:515-525. [PMID: 38181399 DOI: 10.1021/acs.jpcb.3c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
This work studied the membrane curvature generated by anchored proteins lacking amphipathic helices and intrinsic morphologies, including the Epsin N-terminal homology domain, intrinsically disordered C-terminal domain, and truncated C-terminal fragments, by using coarse-grained molecular dynamics simulations. We found that anchored proteins can stabilize the thermal undulation of membranes at a wavelength five times the protein's binding size. This proportional connection is governed by the membrane bending rigidity and protein density. Extended intrinsically disordered proteins with relatively high hydrophobicity favor colliding with the membrane, leading to a much larger binding size, and show superiority in generating membrane curvature at low density over folded proteins.
Collapse
Affiliation(s)
- Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
Pezeshkian W, Ipsen JH. Mesoscale simulation of biomembranes with FreeDTS. Nat Commun 2024; 15:548. [PMID: 38228588 PMCID: PMC10792169 DOI: 10.1038/s41467-024-44819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
We present FreeDTS software for performing computational research on biomembranes at the mesoscale. In this software, a membrane is represented by a dynamically triangulated surface equipped with vertex-based inclusions to integrate the effects of integral and peripheral membrane proteins. Several algorithms are included in the software to simulate complex membranes at different conditions such as framed membranes with constant tension, vesicles and high-genus membranes with various fixed volumes or constant pressure differences and applying external forces to membrane regions. Furthermore, the software allows the user to turn off the shape evolution of the membrane and focus solely on the organization of proteins. As a result, we can take realistic membrane shapes obtained from, for example, cryo-electron tomography and backmap them into a finer simulation model. In addition to many biomembrane applications, this software brings us a step closer to simulating realistic biomembranes with molecular resolution. Here we provide several interesting showcases of the power of the software but leave a wide range of potential applications for interested users.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - John H Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
28
|
Liu L, Duan C, Wang R. Kinetic pathway and micromechanics of fusion/fission for polyelectrolyte vesicles. J Chem Phys 2024; 160:024908. [PMID: 38214388 DOI: 10.1063/5.0185934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Despite the wide existence of vesicles in living cells as well as their important applications like drug delivery, the underlying mechanism of vesicle fusion/fission remains under debate. Classical models cannot fully explain recent observations in experiments and simulations. Here, we develop a constrained self-consistent field theory that allows tracking the shape evolution and free energy as a function of center-of-mass separation distance. Fusion and fission are described in a unified framework. Both the kinetic pathway and the mechanical response can be simultaneously captured. By taking vesicles formed by polyelectrolytes as a model system, we predict discontinuous transitions between the three morphologies: parent vesicle with a single cavity, hemifission/hemifusion, and two separated child vesicles, as a result of breaking topological isomorphism. With the increase in inter-vesicle repulsion, we observe a great reduction in the cleavage energy, indicating that vesicle fission can be achieved without hemifission, in good agreement with simulation results. The force-extension relationship elucidates typical plasticity for separating two vesicles. The super extensibility in the mechanical response of vesicle is in stark contrast to soft particles with other morphologies, such as cylinder and sphere. Our work elucidates the fundamental physical chemistry based on intrinsic topological features of vesicle fusion/fission, which provides insights into various phenomena observed in experiments and simulations.
Collapse
Affiliation(s)
- Luofu Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
29
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
30
|
Puchkov D, Müller PM, Lehmann M, Matthaeus C. Analyzing the cellular plasma membrane by fast and efficient correlative STED and platinum replica EM. Front Cell Dev Biol 2023; 11:1305680. [PMID: 38099299 PMCID: PMC10720448 DOI: 10.3389/fcell.2023.1305680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
The plasma membrane of mammalian cells links transmembrane receptors, various structural components, and membrane-binding proteins to subcellular processes, allowing inter- and intracellular communication. Therefore, membrane-binding proteins, together with structural components such as actin filaments, modulate the cell membrane in their flexibility, stiffness, and curvature. Investigating membrane components and curvature in cells remains challenging due to the diffraction limit in light microscopy. Preparation of 5-15-nm-thin plasma membrane sheets and subsequent inspection by metal replica transmission electron microscopy (TEM) reveal detailed information about the cellular membrane topology, including the structure and curvature. However, electron microscopy cannot identify proteins associated with specific plasma membrane domains. Here, we describe a novel adaptation of correlative super-resolution light microscopy and platinum replica TEM (CLEM-PREM), allowing the analysis of plasma membrane sheets with respect to their structural details, curvature, and associated protein composition. We suggest a number of shortcuts and troubleshooting solutions to contemporary PREM protocols. Thus, implementation of super-resolution stimulated emission depletion (STED) microscopy offers significant reduction in sample preparation time and reduced technical challenges for imaging and analysis. Additionally, highly technical challenges associated with replica preparation and transfer on a TEM grid can be overcome by scanning electron microscopy (SEM) imaging. The combination of STED microscopy and platinum replica SEM or TEM provides the highest spatial resolution of plasma membrane proteins and their underlying membrane and is, therefore, a suitable method to study cellular events like endocytosis, membrane trafficking, or membrane tension adaptations.
Collapse
Affiliation(s)
- Dmytro Puchkov
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Paul Markus Müller
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Claudia Matthaeus
- Cellular Physiology of Nutrition, Institute for Nutritional Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
31
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
32
|
Jiang Q, Wang H, Qiao Z, Hou Y, Sui Z, Zhao B, Liang Z, Jiang B, Zhang Y, Zhang L. Metal organic layers enabled cell surface engineering coupling biomembrane fusion for dynamic membrane proteome profiling. Chem Sci 2023; 14:11727-11736. [PMID: 37920345 PMCID: PMC10619618 DOI: 10.1039/d3sc03725h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Systematically dissecting the highly dynamic and tightly communicating membrane proteome of living cells is essential for the system-level understanding of fundamental cellular processes and intricate relationship between membrane-bound organelles constructed through membrane traffic. While extensive efforts have been made to enrich membrane proteins, their comprehensive analysis with high selectivity and deep coverage remains a challenge, especially at the living cell state. To address this problem, we developed the cell surface engineering coupling biomembrane fusion method to map the whole membrane proteome from the plasma membrane to various organelle membranes taking advantage of the exquisite interaction between two-dimensional metal-organic layers and phospholipid bilayers on the membrane. This approach, which bypassed conventional biochemical fractionation and ultracentrifugation, facilitated the enrichment of membrane proteins in their native phospholipid bilayer environment, helping to map the membrane proteome with a specificity of 77% and realizing the deep coverage of the HeLa membrane proteome (5087 membrane proteins). Furthermore, membrane N-phosphoproteome was profiled by integrating the N-phosphoproteome analysis strategy, and the dynamic membrane proteome during apoptosis was deciphered in combination with quantitative proteomics. The features of membrane protein N-phosphorylation modifications and many differential proteins during apoptosis associated with mitochondrial dynamics and ER homeostasis were found. The method provided a simple and robust strategy for efficient analysis of membrane proteome, offered a reliable platform for research on membrane-related cell dynamic events and expanded the application of metal-organic layers.
Collapse
Affiliation(s)
- Qianqian Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zichun Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yutong Hou
- Dalian Medical University Dalian 116044 China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
33
|
Hua L, Kaiser M, Carabadjac I, Meister A, Hause G, Heerklotz H. Vesicle budding caused by lysolipid-induced asymmetry stress. Biophys J 2023; 122:4011-4022. [PMID: 37649254 PMCID: PMC10598287 DOI: 10.1016/j.bpj.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
Lysolipids such as lauroyl, myristoyl, and palmitoyl lysophosphatidylcholine (LPC) insert into the outer leaflet of liposomes but do not flip to the inner leaflet over many hours. This way, they create asymmetry stress between the intrinsic areas of the two leaflets. We have studied how this stress is relaxed with particular emphasis on the budding and fission of small (diameter 20-30 nm) daughter vesicles (DVs). Asymmetric flow field-flow fractionation was utilized to quantify the extent of budding from large unilamellar vesicles after exposure to LPC. Budding starts at a low threshold of the order of 2 mol% LPC in the outer (and ≈0 mol% LPC in the inner) leaflet. We see reason to assume that the fractional fluorescence intensity from DVs is a good approximation for the fraction of membrane lipid, POPC, transferred into DVs. Accordingly, budding starts with a "budding power" of ≈6 POPC molecules budding off per LPC added, corresponding to a more than 10-fold accumulation of LPC in the outer leaflet of DVs to ≈24 mol%. As long as budding is possible, little strain is built up in the membranes, a claim supported by the lack of changes in limiting fluorescence anisotropy, rotational correlation time, and fluorescence lifetime of symmetrically and asymmetrically inserted TMA-DPH. At physiological osmolarity, budding is typically limited to 20-30% of budded fraction with some batch-to-batch variation, but independent of the LPC species. We hypothesize that the budding limit is determined by the excess area of the liposomes upon preparation, which is then used up upon budding given the larger area-to-volume ratio of smaller liposomes. As the mother vesicles approach ideal spheres, budding must stop. This is qualitatively supported by increased and decreased budding limits of osmotically predeflated and preinflated vesicles, respectively.
Collapse
Affiliation(s)
- Lisa Hua
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Michael Kaiser
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Iulia Carabadjac
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Halle, Germany
| | - Gerd Hause
- Biozentrum, MLU Halle-Wittenberg, Halle, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada; Signaling Research Center BIOSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Zheng H, Li H, Li M, Zhai T, Xie X, Li C, Jing X, Liang C, Li Q, Zuo X, Li J, Fan J, Shen J, Peng X, Fan C. A Membrane Tension-Responsive Mechanosensitive DNA Nanomachine. Angew Chem Int Ed Engl 2023; 62:e202305896. [PMID: 37438325 DOI: 10.1002/anie.202305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Membrane curvature reflects physical forces operating on the lipid membrane, which plays important roles in cellular processes. Here, we design a mechanosensitive DNA (MSD) nanomachine that mimics natural mechanosensitive PIEZO channels to convert the membrane tension changes of lipid vesicles with different sizes into fluorescence signals in real time. The MSD nanomachine consists of an archetypical six-helix-bundle DNA nanopore, cholesterol-based membrane anchors, and a solvatochromic fluorophore, spiropyran (SP). We find that the DNA nanopore effectively amplifies subtle variations of the membrane tension, which effectively induces the isomerization of weakly emissive SP into highly emissive merocyanine isomers for visualizing membrane tension changes. By measuring the membrane tension via the fluorescence of MSD nanomachine, we establish the correlation between the membrane tension and the curvature that follows the Young-Laplace equation. This DNA nanotechnology-enabled strategy opens new routes to studying membrane mechanics in physiological and pathological settings.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Zhai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinxin Jing
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chengpin Liang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
35
|
Marín I. Emergence of the Synucleins. BIOLOGY 2023; 12:1053. [PMID: 37626939 PMCID: PMC10451939 DOI: 10.3390/biology12081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
This study establishes the origin and evolutionary history of the synuclein genes. A combination of phylogenetic analyses of the synucleins from twenty-two model species, characterization of local synteny similarities among humans, sharks and lampreys, and statistical comparisons among lamprey and human chromosomes, provides conclusive evidence for the current diversity of synuclein genes arising from the whole-genome duplications (WGDs) that occurred in vertebrates. An ancestral synuclein gene was duplicated in a first WGD, predating the diversification of all living vertebrates. The two resulting genes are still present in agnathan vertebrates. The second WGD, specific to the gnathostome lineage, led to the emergence of the three classical synuclein genes, SNCA, SNCB and SNCG, which are present in all jawed vertebrate lineages. Additional WGDs have added new genes in both agnathans and gnathostomes, while some gene losses have occurred in particular species. The emergence of synucleins through WGDs prevented these genes from experiencing dosage effects, thus avoiding the potential detrimental effects associated with individual duplications of genes that encode proteins prone to aggregation. Additional insights into the structural and functional features of synucleins are gained through the analysis of the highly divergent synuclein proteins present in chondrichthyans and agnathans.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
| |
Collapse
|
36
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthäus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546235. [PMID: 37503169 PMCID: PMC10370163 DOI: 10.1101/2023.06.23.546235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
|
37
|
Toledo PL, Vazquez DS, Gianotti AR, Abate MB, Wegbrod C, Torkko JM, Solimena M, Ermácora MR. Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain. Protein Sci 2023; 32:e4649. [PMID: 37159024 PMCID: PMC10201709 DOI: 10.1002/pro.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of β-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 μm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Diego S. Vazquez
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Milagros B. Abate
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Carolin Wegbrod
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Juha M. Torkko
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Michele Solimena
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Mario R. Ermácora
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| |
Collapse
|
38
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
39
|
Tsai HH, Huang PH, Lin LC, Yao BY, Liao WT, Pai CH, Liu YH, Chen HW, Hu CMJ. Lymph Node Follicle-Targeting STING Agonist Nanoshells Enable Single-Shot M2e Vaccination for Broad and Durable Influenza Protection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206521. [PMID: 37092580 DOI: 10.1002/advs.202206521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The highly conserved matrix protein 2 ectodomain (M2e) of influenza viruses presents a compelling vaccine antigen candidate for stemming the pandemic threat of the mutation-prone pathogen, yet the low immunogenicity of the diminutive M2e peptide renders vaccine development challenging. A highly potent M2e nanoshell vaccine that confers broad and durable influenza protectivity under a single vaccination is shown. Prepared via asymmetric ionic stabilization for nanoscopic curvature formation, polymeric nanoshells co-encapsulating high densities of M2e peptides and stimulator of interferon genes (STING) agonists are prepared. Robust and long-lasting protectivity against heterotypic influenza viruses is achieved with a single administration of the M2e nanoshells in mice. Mechanistically, molecular adjuvancy by the STING agonist and nanoshell-mediated prolongation of M2e antigen exposure in the lymph node follicles synergistically contribute to the heightened anti-M2e humoral responses. STING agonist-triggered T cell helper functions and extended residence of M2e peptides in the follicular dendritic cell network provide a favorable microenvironment that induces Th1-biased antibody production against the diminutive antigen. These findings highlight a versatile nanoparticulate design that leverages innate immune pathways for enhancing the immunogenicity of weak immunogens. The single-shot nanovaccine further provides a translationally viable platform for pandemic preparedness.
Collapse
Affiliation(s)
- Hsiao-Han Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan
| | - Ping-Han Huang
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Leon Cw Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Wan-Ting Liao
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chen-Hsueh Pai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Han Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 115, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
40
|
Close, but not too close: a mesoscopic description of (a)symmetry and membrane shaping mechanisms. Emerg Top Life Sci 2023; 7:81-93. [PMID: 36645200 DOI: 10.1042/etls20220078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Collapse
|