1
|
Long Q, Ajit K, Sedova K, Haluza V, Stefl R, Dokaneheifard S, Beckedorff F, Valencia MG, Sebesta M, Shiekhattar R, Gullerova M. Tetrameric INTS6-SOSS1 complex facilitates DNA:RNA hybrid autoregulation at double-strand breaks. Nucleic Acids Res 2024:gkae937. [PMID: 39445827 DOI: 10.1093/nar/gkae937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
Collapse
Affiliation(s)
- Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kamal Ajit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katerina Sedova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Vojtech Haluza
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monica G Valencia
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
2
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr J, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610517. [PMID: 39257755 PMCID: PMC11383676 DOI: 10.1101/2024.08.30.610517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo. We also detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout suggesting that INTS12 prevents full-length HIV RNA production in primary T cells.
Collapse
Affiliation(s)
- Carley N. Gray
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
Ren Y, Liao H, Yan J, Lu H, Mao X, Wang C, Li YF, Liu Y, Chen C, Chen L, Wang X, Zhou KY, Liu HM, Liu Y, Hua YM, Yu L, Xue Z. Capture of RNA-binding proteins across mouse tissues using HARD-AP. Nat Commun 2024; 15:8421. [PMID: 39341811 PMCID: PMC11438895 DOI: 10.1038/s41467-024-52765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly associated RNA regulatory complexes from cultured cells and fresh tissues. We successfully use HARD-AP to establish a comprehensive atlas of RBPs across mouse primary organs. We then systematically map RNA-binding sites of these RBPs using machine learning-based modeling. Notably, the modeling reveals that the LIM domain as an RNA-binding domain in many RBPs. We validate the LIM-domain-only protein Csrp1 as a tissue-dependent RNA binding protein. Taken together, HARD-AP is a powerful approach that can be used to identify RBPomes from any type of sample, allowing comprehensive and physiologically relevant networks of RNA-protein interactions.
Collapse
Affiliation(s)
- Yijia Ren
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyu Liao
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Yan
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Hongyu Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaowei Mao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, Sichuan, 641419, China
| | - Chuan Wang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi-Fei Li
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chong Chen
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangfeng Wang
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Kai-Yu Zhou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yi-Min Hua
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Lin Yu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhihong Xue
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Schou KB, Mandacaru S, Tahir M, Tom N, Nilsson AS, Andersen JS, Tiberti M, Papaleo E, Bartek J. Exploring the structural landscape of DNA maintenance proteins. Nat Commun 2024; 15:7748. [PMID: 39237506 PMCID: PMC11377751 DOI: 10.1038/s41467-024-49983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed. Still, these methods have not been systematically applied in the evolutionary annotation of GM proteins. Here, by applying profile-to-profile models, we systematically survey the repertoire of GM proteins from bacteria to man. We identify multiple GM protein candidates and annotate domains in numerous established GM proteins, among other PARP, OB-fold, Macro, TUDOR, SAP, BRCT, KU, MYB (SANT), and nuclease domains. We experimentally validate OB-fold and MIS18 (Yippee) domains in SPIDR and FAM72 protein families, respectively. Our results indicate that, surprisingly, despite the immense interest and long-term research efforts, the repertoire of genome stability caretakers is still not fully appreciated.
Collapse
Affiliation(s)
- Kenneth Bødkter Schou
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| | - Samuel Mandacaru
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute (DCI), DK-2100, Copenhagen, Denmark
| | - Ann-Sofie Nilsson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jiri Bartek
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
6
|
Tian B. Decoding the end of message: PASTA provides food for thought on mechanisms of alternative polyadenylation. Mol Cell 2024; 84:2804-2806. [PMID: 39121842 DOI: 10.1016/j.molcel.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
In a recent publication in Cell, Kowalski et al.1 developed an interdisciplinary and multiplexed approach to uncover regulatory modules of alternative polyadenylation, involving single-cell-based gene perturbation, isoform abundance analysis, machine learning of RNA motifs, and massively parallel reporter assays.
Collapse
Affiliation(s)
- Bin Tian
- Genome Regulation and Cell Signaling Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Ozbulut HC, Hilgers V. Neuronal RNA processing: cross-talk between transcriptional regulation and RNA-binding proteins. Front Mol Neurosci 2024; 17:1426410. [PMID: 39149613 PMCID: PMC11324583 DOI: 10.3389/fnmol.2024.1426410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
In the nervous system, alternative RNA processing is particularly prevalent, which results in the expression of thousands of transcript variants found in no other tissue. Neuron-specific RNA-binding proteins co-transcriptionally regulate alternative splicing, alternative polyadenylation, and RNA editing, thereby shaping the RNA identity of nervous system cells. Recent evidence suggests that interactions between RNA-binding proteins and cis-regulatory elements such as promoters and enhancers play a role in the determination of neuron-specific expression profiles. Here, we discuss possible mechanisms through which transcription and RNA processing cross-talk to generate the uniquely complex neuronal transcriptome, with a focus on alternative 3'-end formation.
Collapse
Affiliation(s)
- Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, Albert Ludwig University, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
8
|
Confino S, Wexler Y, Medvetzky A, Elazary Y, Ben-Moshe Z, Reiter J, Dor T, Edvardson S, Prag G, Harel T, Gothilf Y. A deleterious variant of INTS1 leads to disrupted sleep-wake cycles. Dis Model Mech 2024; 17:dmm050746. [PMID: 39189071 PMCID: PMC11381918 DOI: 10.1242/dmm.050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024] Open
Abstract
Sleep disturbances are common among children with neurodevelopmental disorders. Here, we report a syndrome characterized by prenatal microcephaly, intellectual disability and severe disruption of sleep-wake cycles in a consanguineous family. Exome sequencing revealed homozygous variants (c.5224G>A and c.6506G>T) leading to the missense mutations E1742K and G2169V in integrator complex subunit 1 (INTS1), the core subunit of the Integrator complex. Conservation and structural analyses suggest that G2169V has a minor impact on the structure and function of the complex, while E1742K significantly alters a negatively charged conserved patch on the surface of the protein. The severe sleep-wake cycles disruption in human carriers highlights a new aspect of Integrator complex impairment. To further study INTS1 pathogenicity, we generated Ints1-deficient zebrafish lines. Mutant zebrafish larvae displayed abnormal circadian rhythms of locomotor activity and sleep, as is the case with the affected humans. Furthermore, Ints1-deficent larvae exhibited elevated levels of dopamine β-hydroxylase (dbh) mRNA in the locus coeruleus, a wakefulness-inducing brainstem center. Altogether, these findings suggest a significant, likely indirect, effect of INTS1 and the Integrator complex on maintaining circadian rhythms of locomotor activity and sleep homeostasis across vertebrates.
Collapse
Affiliation(s)
- Shir Confino
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yair Wexler
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Adar Medvetzky
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yotam Elazary
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Zohar Ben-Moshe
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Joel Reiter
- Pediatric Pulmonary & Sleep Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Talya Dor
- ALYN - Children and Adolescent Rehabilitation Center, Jerusalem 9109002, Israel
| | - Simon Edvardson
- ALYN - Children and Adolescent Rehabilitation Center, Jerusalem 9109002, Israel
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
9
|
Yang J, Li J, Miao L, Gao X, Sun W, Linghu S, Ren G, Peng B, Chen S, Liu Z, Wang B, Dong A, Huang D, Yuan J, Dang Y, Lai F. Transcription directionality is licensed by Integrator at active human promoters. Nat Struct Mol Biol 2024; 31:1208-1221. [PMID: 38649617 DOI: 10.1038/s41594-024-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
A universal characteristic of eukaryotic transcription is that the promoter recruits RNA polymerase II (RNAPII) to produce both precursor mRNAs (pre-mRNAs) and short unstable promoter upstream transcripts (PROMPTs) toward the opposite direction. However, how the transcription machinery selects the correct direction to produce pre-mRNAs is largely unknown. Here, through multiple acute auxin-inducible degradation systems, we show that rapid depletion of an RNAPII-binding protein complex, Integrator, results in robust PROMPT accumulation throughout the genome. Interestingly, the accumulation of PROMPTs is compensated by the reduction of pre-mRNA transcripts in actively transcribed genes. Consistently, Integrator depletion alters the distribution of polymerase between the sense and antisense directions, which is marked by increased RNAPII-carboxy-terminal domain Tyr1 phosphorylation at PROMPT regions and a reduced Ser2 phosphorylation level at transcription start sites. Mechanistically, the endonuclease activity of Integrator is critical to suppress PROMPT production. Furthermore, our data indicate that the presence of U1 binding sites on nascent transcripts could counteract the cleavage activity of Integrator. In this process, the absence of robust U1 signal at most PROMPTs allows Integrator to suppress the antisense transcription and shift the transcriptional balance in favor of the sense direction.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Jingyang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Langxi Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Wenhao Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Shuo Linghu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Bangya Peng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhongqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Bo Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Ao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Duo Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jinrong Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China.
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
10
|
Jiang L, Wang Y, Zhang W, Zhang X, Gao F, Yuan Z. INTS11-related neurodevelopmental disorder: a case report and literature review. J Hum Genet 2024:10.1038/s10038-024-01276-z. [PMID: 39030370 DOI: 10.1038/s10038-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND INTS11 is a critical catalytic component of the Integrator complex that regulates RNA polymerase II termination and modulates gene expression. Until recently, INTS11 mutations were associated with human neurodevelopmental disorders, characterized by global developmental and language delays, generalized hypotonia, and progressive brain atrophy. CASE We report the case of a 2-year-old Chinese girl who presented with global developmental delay, generalized hypotonia, refractory epilepsy, craniofacial dysmorphism, and progressive brain atrophy. Novel variants were identified in exon 2 of INTS11 gene c.588_589del (p. Trp197AspfsTer2) and c.457_459del (p. Glu153del). CONCLUSION We identified a compound heterozygous mutation in INTS11, a clinical feature consistent with two previous reports of the variants in human INTS11, but her recurrent seizures were more pronounced and refractory to most antiepileptic drugs and ketogenic diets.
Collapse
Affiliation(s)
- Lihua Jiang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yilong Wang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Weiqin Zhang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xin Zhang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Zhefeng Yuan
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
11
|
Razew M, Fraudeau A, Pfleiderer MM, Linares R, Galej WP. Structural basis of the Integrator complex assembly and association with transcription factors. Mol Cell 2024; 84:2542-2552.e5. [PMID: 38823386 DOI: 10.1016/j.molcel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Integrator is a multi-subunit protein complex responsible for premature transcription termination of coding and non-coding RNAs. This is achieved via two enzymatic activities, RNA endonuclease and protein phosphatase, acting on the promoter-proximally paused RNA polymerase Ⅱ (RNAPⅡ). Yet, it remains unclear how Integrator assembly and recruitment are regulated and what the functions of many of its core subunits are. Here, we report the structures of two human Integrator sub-complexes: INTS10/13/14/15 and INTS5/8/10/15, and an integrative model of the fully assembled Integrator bound to the RNAPⅡ paused elongating complex (PEC). An in silico protein-protein interaction screen of over 1,500 human transcription factors (TFs) identified ZNF655 as a direct interacting partner of INTS13 within the fully assembled Integrator. We propose a model wherein INTS13 acts as a platform for the recruitment of TFs that could modulate the stability of the Integrator's association at specific loci and regulate transcription attenuation of the target genes.
Collapse
Affiliation(s)
- Michal Razew
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Angelique Fraudeau
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Romain Linares
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
12
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
13
|
Escrich V, Romero-Aranda C, López R, de Toro M, Metola Á, Ezcurra B, Gómez-Orte E, Cabello J. Unprocessed snRNAs Are a Prognostic Biomarker and Correlate with a Poorer Prognosis in Colorectal Cancer. Cancers (Basel) 2024; 16:2340. [PMID: 39001402 PMCID: PMC11240374 DOI: 10.3390/cancers16132340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
The human Integrator complex is a set of 15 subunits that mediates processing of small nuclear RNAs (snRNAs), and which later participates in splicing messenger RNAs (mRNAs). In addition, it controls the pause and release of RNA polymerase II (RNA pol II) at specific gene promoters in response to growth factors. Mutations in Integrator-complex subunit 6 (INTS6) are associated with different types of tumors. However, the INTS6 gene product does not have a significant prognostic value as a biomarker for tumor progression. Here we show that Integrator-complex deregulation is involved in 8.3% of the colorectal cancer cases diagnosed from the population screen carried out in La Rioja (Spain) from the years 2017 to 2019. Lack of Integrator-complex function, measured by an increased level of unprocessed snRNA, is a prognostic biomarker and correlates with a poorer prognosis in colorectal-cancer patients. The transcriptomic profile of all analyzed colorectal tumors shows a strong alteration of the metabolic state of tumor cells, which compromises standard energy production through mitochondrial respiration, known as the Warburg effect. Furthermore, there is a significant upregulation of genes involved in extracellular matrix organization and collagen rearrangement. This is consistent with tissue reorganization in a growing tumor forming a polyp. Crossing the molecular data generated in this study with the follow-up of patients from population screening indicates that population screening combined with early typing of tumors appears to be the most efficient way to increase patient survival.
Collapse
Affiliation(s)
- Víctor Escrich
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| | - Cristina Romero-Aranda
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| | - Rosario López
- Scientific Computing Group (GRUCACI), University of La Rioja, 26006 Logroño, Spain;
| | - María de Toro
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| | - Ángela Metola
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| | - Begoña Ezcurra
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| | - Eva Gómez-Orte
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| | - Juan Cabello
- Oncology Area, Center for Biomedical Research of La Rioja—CIBIR, 26006 Logrono, Spain; (V.E.); (C.R.-A.); (M.d.T.); (Á.M.); (B.E.)
| |
Collapse
|
14
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
15
|
Sood V, Holewinski R, Andresson T, Larson DR, Misteli T. Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597999. [PMID: 38903099 PMCID: PMC11188098 DOI: 10.1101/2024.06.08.597999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms for gene-specific stochastic bursting are largely unknown. We have developed and applied a high-throughput-imaging based screening strategy to identify cellular factors and molecular mechanisms that determine the bursting behavior of human genes. Focusing on epigenetic regulators, we find that protein acetylation is a strong acute modulator of burst frequency, burst size and heterogeneity of bursting. Acetylation globally affects the Off-time of genes but has gene-specific effects on the On-time. Yet, these effects are not strongly linked to promoter acetylation, which do not correlate with bursting properties, and forced promoter acetylation has variable effects on bursting. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting. Specifically, we find that elevated Integrator acetylation decreases bursting frequency. Taken together our results suggest a prominent role of non-histone proteins in determining gene bursting properties, and they identify histone-independent acetylation of a transcription cofactor as an allosteric modulator of bursting via a far-downstream bursting checkpoint.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, Bethesda, MD, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Tom Misteli
- National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
16
|
Zlotorynski E. Integrator and U1 snRNPs steer Pol II in the right direction. Nat Rev Mol Cell Biol 2024; 25:421. [PMID: 38730073 DOI: 10.1038/s41580-024-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
|
17
|
Wang Z, Zhang C, Guo J, Yang Y, Li P, Wang Z, Liu S, Zhang L, Zeng X, Zhai J, Wang X, Zhao Q, Chen Z, Zhu P, He Q. CRISPR-Cas9 screening identifies INTS3 as an anti-apoptotic RNA-binding protein and therapeutic target for colorectal cancer. iScience 2024; 27:109676. [PMID: 38665208 PMCID: PMC11043890 DOI: 10.1016/j.isci.2024.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Growing evidences indicate that RNA-binding proteins (RBPs) play critical roles in regulating the RNA splicing, polyadenylation, stability, localization, translation, and turnover. Abnormal expression of RBPs can promote tumorigenesis. Here, we performed a CRISPR screen using an RBP pooled CRISPR knockout library and identified 27 potential RBPs with role in supporting colorectal cancer (CRC) survival. We found that the deletion/depletion of INTS3 triggered apoptosis in CRC. The in vitro experiments and RNA sequencing revealed that INTS3 destabilized pro-apoptotic gene transcripts and contributed to the survival of CRC cells. INTS3 loss delayed CRC cells growth in vivo. Furthermore, delivery of DOTAP/cholesterol-mshINTS3 nanoparticles inhibited CRC tumor growth. Collectively, our work highlights the role of INTS3 in supporting CRC survival and provides several novel therapeutic targets for treatment.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Cheng Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jing Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Yanmei Yang
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peixian Li
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Ziyan Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Lulu Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiaoyu Zeng
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jincheng Zhai
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xinyong Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qi Zhao
- Department of oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
18
|
Heath JR, Fromuth DP, Dembowski JA. Integrator Complex Subunit 3 Knockdown Has Minimal Effect on Lytic Herpes Simplex Virus Type-1 Infection in Fibroblast Cells. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001171. [PMID: 38817634 PMCID: PMC11137619 DOI: 10.17912/micropub.biology.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Proteomic analysis of viral and cellular proteins that copurify with the herpes simplex virus type-1 (HSV-1) genome revealed that the cellular Integrator complex associates with viral DNA throughout infection. The Integrator complex plays a key role in the regulation of transcription of cellular coding and non-coding RNAs. We therefore predicted that it may regulate transcription of viral genes. Here, we demonstrate that knockdown of the Integrator complex subunit, Ints3, has minimal effect on HSV-1 infection. Despite reducing viral yield during low multiplicity infection, Ints3 knockdown had no effect on viral DNA replication, mRNA expression, or yield during high multiplicity infection.
Collapse
Affiliation(s)
- Joseph R Heath
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Daniel P Fromuth
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Jill A Dembowski
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
19
|
Fianu I, Ochmann M, Walshe JL, Dybkov O, Cruz JN, Urlaub H, Cramer P. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 2024; 629:219-227. [PMID: 38570683 PMCID: PMC11062913 DOI: 10.1038/s41586-024-07269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Moritz Ochmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - James L Walshe
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Joseph Neos Cruz
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
20
|
Waddell BM, Wu CW. A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing. PLoS Genet 2024; 20:e1011284. [PMID: 38743783 PMCID: PMC11125478 DOI: 10.1371/journal.pgen.1011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/24/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.
Collapse
Affiliation(s)
- Brandon M. Waddell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
21
|
Richter WF, Taatjes DJ. Changing structures, changing paradigms: NELF helps regulate paused or elongating RNA polymerase II. Mol Cell 2024; 84:1180-1182. [PMID: 38579674 DOI: 10.1016/j.molcel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Using cryo-EM and biochemical methods, Su and Vos1 discover an alternative NELF structural state that enables transcription and switches NELF-RNA polymerase II (RNAPII) compatibility with other RNAPII-associated factors that regulate pausing, elongation, termination, and transcription-coupled DNA repair.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
22
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
23
|
Vuong HL, Lan CT, Le HTT. The development and technologies of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:13-39. [PMID: 38359995 DOI: 10.1016/bs.pmbts.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Since it was discovered for over 20 years ago, the potentiality of siRNAs in gene silencing in vitro and in vivo models has been recognized. Several studies in the new generation, molecular mechanisms, target attachment, and purification of RNA have supported the development of RNA therapeutics for a variety of applications. RNA therapeutics are growing rapidly with various platforms contributing to the standard of personalized medicine and rare disease treatment. Therefore, understanding the development and technologies of RNA therapeutics becomes a crucial point for new drug generation. Here, the primary purpose of this review is to provide a general view of six therapeutic categories that make up RNA-based therapeutic approaches, including RNA-target therapeutics, protein-targeted therapeutics, cellular reprogramming and tissues engineering, RNA-based protein replacement therapeutics, RNA-based genome editing, and RNA-based immunotherapies based on non-coding RNAs and coding RNA. Furthermore, we present an overview of the RNA strategies regarding viral approaches and nonviral approaches in designing a new generation of RNA technologies. The advantages and challenges of using RNA therapeutics are also discussed along with various approaches for RNA delivery. Therefore, this review is designed to provide updated reference evidence of RNA therapeutics in the battle against rare or difficult-to-treat diseases for researchers in this field.
Collapse
Affiliation(s)
- Huong Lan Vuong
- Pharmacy Department, National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Chu Thanh Lan
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunghyang University, South Korea
| | - Hien Thi Thu Le
- Intestinal Signaling and Epigenetics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
24
|
Lu F, Park BJ, Fujiwara R, Wilusz JE, Gilmour DS, Lehmann R, Lionnet T. Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.07.561364. [PMID: 37873455 PMCID: PMC10592978 DOI: 10.1101/2023.10.07.561364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Numerous components of the transcription machinery, including RNA polymerase II (Pol II), accumulate in regions of high local concentration known as clusters, which are thought to facilitate transcription. Using the histone locus of Drosophila nurse cells as a model, we find that Pol II forms long-lived, transcriptionally poised clusters distinct from liquid droplets, which contain unbound and paused Pol II. Depletion of the Integrator complex endonuclease module, but not its phosphatase module or Pol II pausing factors disperses these Pol II clusters. Consequently, histone transcription fails to reach peak levels during S-phase and aberrantly continues throughout the cell cycle. We propose that Pol II clustering is a regulatory step occurring near promoters that limits rapid gene activation to defined times. One Sentence Summary Using the Drosophila histone locus as a model, we show that clustered RNA polymerase II is poised for synchronous activation.
Collapse
|
25
|
Kuang H, Li Y, Wang Y, Shi M, Duan R, Xiao Q, She H, Liu Y, Liang Q, Teng Y, Zhou M, Liang D, Li Z, Wu L. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder. Cell Rep 2023; 42:113445. [PMID: 37980560 DOI: 10.1016/j.celrep.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.
Collapse
Affiliation(s)
- Hanzhe Kuang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yixuan Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Meizhen Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiao Xiao
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Haoyuan She
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiaowei Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Miaojin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| |
Collapse
|
26
|
Fujiwara R, Zhai SN, Liang D, Shah AP, Tracey M, Ma XK, Fields CJ, Mendoza-Figueroa MS, Meline MC, Tatomer DC, Yang L, Wilusz JE. IntS6 and the Integrator phosphatase module tune the efficiency of select premature transcription termination events. Mol Cell 2023; 83:4445-4460.e7. [PMID: 37995689 PMCID: PMC10841813 DOI: 10.1016/j.molcel.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.
Collapse
Affiliation(s)
- Rina Fujiwara
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Si-Nan Zhai
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aayushi P Shah
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew Tracey
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher J Fields
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - María Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michele C Meline
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Jung JH, Jeon S, Kim H, Jung SH. Generation of ints14 Knockout Zebrafish using CRISPR/Cas9 for the Study of Development and Disease Mechanisms. Dev Reprod 2023; 27:205-211. [PMID: 38292235 PMCID: PMC10824568 DOI: 10.12717/dr.2023.27.4.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 02/01/2024]
Abstract
INTS14/VWA9, a component of the integrator complex subunits, plays a pivotal role in regulating the fate of numerous nascent RNAs transcribed by RNA polymerase II, particularly in the biogenesis of small nuclear RNAs and enhancer RNAs. Despite its significance, a comprehensive mutation model for developmental research has been lacking. To address this gap, we aimed to investigate the expression patterns of INTS14 during zebrafish embryonic development. We generated ints14 mutant strains using the CRISPR/Cas9 system. We validated the gRNA activity by co-injecting Cas9 protein and a single guide RNA into fertilized zebrafish eggs, subsequently confirming the presence of a 6- or 9-bp deletion in the ints14 gene. In addition, we examined the two mutant alleles through PCR analysis, T7E1 assay, TA-cloning, and sequencing. For the first time, we used the CRISPR/Cas9 system to create a model in which some sequences of the ints14 gene were removed. This breakthrough opens new avenues for in-depth exploration of the role of ints14 in animal diseases. The mutant strains generated in this study can provide a valuable resource for further investigations into the specific consequences of ints14 gene deletion during zebrafish development. This research establishes a foundation for future studies exploring the molecular mechanisms underlying the functions of ints14, its interactions with other genes or proteins, and its broader implications for biological processes.
Collapse
Affiliation(s)
- Ji Hye Jung
- Department of Genetic Resources, 75 National Marine
Biodiversity Institute of Korea, Seocheon 33662,
Korea
| | - Sanghoon Jeon
- Department of Genetic Resources, 75 National Marine
Biodiversity Institute of Korea, Seocheon 33662,
Korea
| | - Heabin Kim
- Department of Genetic Resources, 75 National Marine
Biodiversity Institute of Korea, Seocheon 33662,
Korea
| | - Seung-Hyun Jung
- Department of Genetic Resources, 75 National Marine
Biodiversity Institute of Korea, Seocheon 33662,
Korea
| |
Collapse
|
28
|
Zhang T, Zhu B. Integrator integrates transcription surveillance and genomic integrity. Sci Bull (Beijing) 2023; 68:2687-2688. [PMID: 37919159 DOI: 10.1016/j.scib.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Tiantian Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Lin YC, Chang PC, Hueng DY, Huang SM, Li YF. Decoding the prognostic significance of integrator complex subunit 9 (INTS9) in glioma: links to TP53 mutations, E2F signaling, and inflammatory microenvironments. Cancer Cell Int 2023; 23:154. [PMID: 37537630 PMCID: PMC10401760 DOI: 10.1186/s12935-023-03006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
INTRODUCTION Gliomas, a type of brain neoplasm, are prevalent and often fatal. Molecular diagnostics have improved understanding, but treatment options are limited. This study investigates the role of INTS9 in processing small nuclear RNA (snRNA), which is crucial to generating mature messenger RNA (mRNA). We aim to employ advanced bioinformatics analyses with large-scale databases and conduct functional experiments to elucidate its potential role in glioma therapeutics. MATERIALS AND METHODS We collected genomic, proteomic, and Whole-Exon-Sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) for bioinformatic analyses. Then, we validated INTS9 protein expression through immunohistochemistry and assessed its correlation with P53 and KI67 protein expression. Gene Set Enrichment Analysis (GSEA) was performed to identify altered signaling pathways, and functional experiments were conducted on three cell lines treated with siINTS9. Then, we also investigate the impacts of tumor heterogeneity on INTS9 expression by integrating single-cell sequencing, 12-cell state prediction, and CIBERSORT analyses. Finally, we also observed longitudinal changes in INTS9 using the Glioma Longitudinal Analysis (GLASS) dataset. RESULTS Our findings showed increased INTS9 levels in tumor tissue compared to non-neoplastic components, correlating with high tumor grading and proliferation index. TP53 mutation was the most notable factor associated with upregulated INTS9, along with other potential contributors, such as combined chromosome 7 gain/10 loss, TERT promoter mutation, and increased Tumor Mutational Burden (TMB). In GSEA analyses, we also linked INTS9 with enhanced cell proliferation and inflammation signaling. Downregulating INTS9 impacted cellular proliferation and cell cycle regulation during the function validation. In the context of the 12 cell states, INTS9 correlated with tumor-stem and tumor-proliferative-stem cells. CIBERSORT analyses revealed increased INTS9 associated with increased macrophage M0 and M2 but depletion of monocytes. Longitudinally, we also noticed that the INTS9 expression declined during recurrence in IDH wildtype. CONCLUSION This study assessed the role of INTS9 protein in glioma development and its potential as a therapeutic target. Results indicated elevated INTS9 levels were linked to increased proliferation capacity, higher tumor grading, and poorer prognosis, potentially resulting from TP53 mutations. This research highlights the potential of INTS9 as a promising target for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, 325, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Pei-Chi Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Department of Neurologic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Yao-Feng Li
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China.
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China.
| |
Collapse
|
31
|
Albert TK, Kerl K. A histone tale that enCOMPASSes pausing: new insights into the functional repertoire of H3K4me3. Signal Transduct Target Ther 2023; 8:270. [PMID: 37443139 PMCID: PMC10345018 DOI: 10.1038/s41392-023-01529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.
| |
Collapse
|
32
|
Bhowmick R, Mehta KPM, Lerdrup M, Cortez D. Integrator facilitates RNAPII removal to prevent transcription-replication collisions and genome instability. Mol Cell 2023; 83:2357-2366.e8. [PMID: 37295432 PMCID: PMC10330747 DOI: 10.1016/j.molcel.2023.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Mads Lerdrup
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| |
Collapse
|
33
|
Qiu M, Yin Z, Wang H, Lei L, Li C, Cui Y, Dai R, Yang P, Xiang Y, Li Q, Lv J, Hu Z, Chen M, Zhou HB, Fang P, Xiao R, Liang K. CDK12 and Integrator-PP2A complex modulates LEO1 phosphorylation for processive transcription elongation. SCIENCE ADVANCES 2023; 9:eadf8698. [PMID: 37205756 DOI: 10.1126/sciadv.adf8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Cyclin-dependent kinase 12 (CDK12) interacts with cyclin K to form a functional nuclear kinase that promotes processive transcription elongation through phosphorylation of the C-terminal domain of RNA polymerase II (Pol II). To gain a comprehensive understanding of CDK12's cellular function, we used chemical genetic and phosphoproteomic screening to identify a landscape of nuclear human CDK12 substrates, including regulators of transcription, chromatin organization, and RNA splicing. We further validated LEO1, a subunit of the polymerase-associated factor 1 complex (PAF1C), as a bona fide cellular substrate of CDK12. Acute depletion of LEO1, or substituting LEO1 phosphorylation sites with alanine, attenuated PAF1C association with elongating Pol II and impaired processive transcription elongation. Moreover, we discovered that LEO1 interacts with and is dephosphorylated by the Integrator-PP2A complex (INTAC) and that INTAC depletion promotes the association of PAF1C with Pol II. Together, this study reveals an uncharacterized role for CDK12 and INTAC in regulating LEO1 phosphorylation, providing important insights into gene transcription and its regulation.
Collapse
Affiliation(s)
- Min Qiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lingyu Lei
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Conghui Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yali Cui
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Rong Dai
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Peiyuan Yang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Xiang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Junhui Lv
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhuang Hu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Pingping Fang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiwei Liang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China
| |
Collapse
|
34
|
Offley SR, Pfleiderer MM, Zucco A, Fraudeau A, Welsh SA, Razew M, Galej WP, Gardini A. A combinatorial approach to uncover an additional Integrator subunit. Cell Rep 2023; 42:112244. [PMID: 36920904 DOI: 10.1016/j.celrep.2023.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
RNA polymerase II (RNAPII) controls expression of all protein-coding genes and most noncoding loci in higher eukaryotes. Calibrating RNAPII activity requires an assortment of polymerase-associated factors that are recruited at sites of active transcription. The Integrator complex is one of the most elusive transcriptional regulators in metazoans, deemed to be recruited after initiation to help establish and modulate paused RNAPII. Integrator is known to be composed of 14 subunits that assemble and operate in a modular fashion. We employed proteomics and machine-learning structure prediction (AlphaFold2) to identify an additional Integrator subunit, INTS15. We report that INTS15 assembles primarily with the INTS13/14/10 module and interfaces with the Int-PP2A module. Functional genomics analysis further reveals a role for INTS15 in modulating RNAPII pausing at a subset of genes. Our study shows that omics approaches combined with AlphaFold2-based predictions provide additional insights into the molecular architecture of large and dynamic multiprotein complexes.
Collapse
Affiliation(s)
- Sarah R Offley
- The Wistar Institute, Philadelphia, PA 19103, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Avery Zucco
- The Wistar Institute, Philadelphia, PA 19103, USA
| | - Angelique Fraudeau
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Michal Razew
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.
| | | |
Collapse
|
35
|
A novel regulator in cancer initiation and progression: long noncoding RNA SHNG9. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1512-1521. [PMID: 36586065 DOI: 10.1007/s12094-022-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Cancer has become the most common life-threatening disease in the world. Cancers presenting with advanced stages and metastasis show poor prognosis, even with the application of radiotherapy, surgery, chemotherapy and immunotherapy. It is of great importance to explore novel, efficient biomarkers and their internal mechanisms. Recently, it has been reported that long noncoding RNAs (lncRNAs) play important roles in tumor initiation and progression, influencing downstream mRNAs by interacting with miRNAs and functioning as sponges in competing endogenous RNA (ceRNA) networks. Small nucleolar RNA host gene 9 (SNHG9) binds with miRNAs, inducing miRNA downregulation. The downregulated miRNAs enhance downstream target gene expression via ceRNA networks. Dysregulation of SNHG9 is widely observed in tumors and is associated with clinical prognosis features, which makes it a valuable target for cancer biomarkers and therapeutics. Dysregulated SNHG9 in tumor cells also functions in tumor proliferation, colony formation, migration, invasion and inhibition of apoptosis and tumor cell metabolism. This systematic review of SNHG9 in tumors provides new perspectives on cancer diagnosis and treatment.
Collapse
|
36
|
Wu K, Tsai Y, Huang Y, Wu Y, Chang C, Liu Y, Hsu Y, Hung J. LINC02323 facilitates development of lung squamous cell carcinoma by miRNA sponge and RBP dysregulation and links to poor prognosis. Thorac Cancer 2022; 14:407-418. [PMID: 36516959 PMCID: PMC9891863 DOI: 10.1111/1759-7714.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The poor outcome of patients with lung squamous cell carcinoma (LUSC) highlights the importance of the identification of novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUSC. METHODS Here, we aimed to investigate the role of LINC02323 in LUSC and its potential mechanisms by performing comprehensive bioinformatic analyses. RESULTS LINC02323 was elevated and positively associated with unfavorable prognosis of LUSC patients. LINC02323 exerted oncogenic function by competitively binding to miR-1343-3p and miR-6783-3p, thereby upregulating L1CAM expression. Indeed, we also determined that LINC02323 could interact with the RNA-binding protein DDX3X, which regulates various stages of RNA expression and processing. CONCLUSION Taken together, we identified that LINC02323 and its indirect target L1CAM can act as novel biomarkers for determining the prognosis of patients with LUSC and thus deserves further study.
Collapse
Affiliation(s)
- Kuan‐Li Wu
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Division of Pulmonary and Critical Care MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ying‐Ming Tsai
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Division of Pulmonary and Critical Care MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yung‐Chi Huang
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yu‐Yuan Wu
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chao‐Yuan Chang
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Department of AnatomyKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yu‐Wei Liu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ya‐Ling Hsu
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jen‐Yu Hung
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Division of Pulmonary and Critical Care MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan,Department of Internal MedicineKaohsiung Municipal Ta‐Tung HospitalKaohsiungTaiwan
| |
Collapse
|