1
|
Yasmin S, Ashique S, Taj T, Garg A, Das J, Shorog E, Bhui U, Pal R, Selim S, Panigrahy UP, Begum N, Islam A, Ansari MY. The role of ACE inhibitors and ARBs in preserving cognitive function via hypertension Management: A critical Update. Brain Res 2024; 1850:149400. [PMID: 39681155 DOI: 10.1016/j.brainres.2024.149400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Hypertension poses a significant risk to cognition-related disorders like dementia. As the global population ages, age-related neurological illnesses such as Alzheimer's disease are becoming increasingly prevalent. The primary hypertension treatments, angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors, exhibit neuroprotective properties. However, observational studies suggest that they may independently contribute to cognitive decline and dementia. Some of these medications have shown promise in reducing cognitive impairment and amyloid buildup in Alzheimer's models. While direct comparisons between the two drug classes are limited, angiotensin receptor blockers have been associated with less brain shrinkage, lower dementia incidence, and slower cognitive decline compared to angiotensin-converting enzyme inhibitors. Both types of medications can influence cognition by passing the blood-brain barrier, with angiotensin receptor blockers potentially offering superior neuroprotective effects due to their selective blockade of the angiotensin type 1 receptor.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018 , India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Joy Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Eman Shorog
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Utpal Bhui
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Radheshyam Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Uttam Prasad Panigrahy
- Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Science, Assam down town University, SankarMadhab Path,Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha-62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
2
|
Yin H, Duo H, Li S, Qin D, Xie L, Xiao Y, Sun J, Tao J, Zhang X, Li Y, Zou Y, Yang Q, Yang X, Hao Y, Li B. Unlocking biological insights from differentially expressed genes: Concepts, methods, and future perspectives. J Adv Res 2024:S2090-1232(24)00560-5. [PMID: 39647635 DOI: 10.1016/j.jare.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Identifying differentially expressed genes (DEGs) is a core task of transcriptome analysis, as DEGs can reveal the molecular mechanisms underlying biological processes. However, interpreting the biological significance of large DEG lists is challenging. Currently, gene ontology, pathway enrichment and protein-protein interaction analysis are common strategies employed by biologists. Additionally, emerging analytical strategies/approaches (such as network module analysis, knowledge graph, drug repurposing, cell marker discovery, trajectory analysis, and cell communication analysis) have been proposed. Despite these advances, comprehensive guidelines for systematically and thoroughly mining the biological information within DEGs remain lacking. AIM OF REVIEW This review aims to provide an overview of essential concepts and methodologies for the biological interpretation of DEGs, enhancing the contextual understanding. It also addresses the current limitations and future perspectives of these approaches, highlighting their broad applications in deciphering the molecular mechanism of complex diseases and phenotypes. To assist users in extracting insights from extensive datasets, especially various DEG lists, we developed DEGMiner (https://www.ciblab.net/DEGMiner/), which integrates over 300 easily accessible databases and tools. KEY SCIENTIFIC CONCEPTS OF REVIEW This review offers strong support and guidance for exploring DEGs, and also will accelerate the discovery of hidden biological insights within genomes.
Collapse
Affiliation(s)
- Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China; Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China; Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing 400038, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China
| | - Dan Qin
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Lingling Xie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yingxue Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jing Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yue Zou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xian Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
3
|
Chakraborty S, Vishwas S, Harish V, Gupta G, Paudel KR, Dhanasekaran M, Goh BH, Zacconi F, de Jesus Andreoli Pinto T, Kumbhar P, Disouza J, Dua K, Singh SK. Exploring nanoparticular platform in delivery of repurposed drug for Alzheimer's disease: current approaches and future perspectives. Expert Opin Drug Deliv 2024; 21:1771-1792. [PMID: 39397403 DOI: 10.1080/17425247.2024.2414768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) stands as significant challenge in realm of neurodegenerative disorder. It is characterized by gradual decline in cognitive function and memory loss. It has already expanded its prevalence to 55 million people worldwide and is expected to rise significantly. Unfortunately, there exists a limited therapeutic option that would mitigate its progression. Repurposing existing drugs and employing nanoparticle as delivery agent presents a potential solution to address the intricate pathology of AD. AREAS COVERED In this review, we delve into utilization of nanoparticular platforms to enhance the delivery of repurposed drugs for treatment of AD. Firstly, the review begins with the elucidation of intricate pathology underpinning AD, subsequently followed by rationale behind drug repurposing in AD. Covered are explorations of nanoparticle-based repurposing of drugs in AD, highlighting their clinical implication. Further, the associated challenges and probable future perspective are delineated. EXPERT OPINION The article has highlighted that extensive research has been carried out on the delivery of repurposed nanomedicines against AD. However, there is a need for advanced and long-term research including clinical trials required to shed light upon their safety and toxicity profile. Furthermore, their scalability in pharmaceutical set-up should also be validated.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Overseas R & D Centre, Overseas HealthCare Pvt. Ltd, Phillaur, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, Alabama, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Darul Ehsan, Selangor, Malaysia
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Cat´ olica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Santiago, Chile
| | | | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| |
Collapse
|
4
|
Cui H, Duan M, Bi H, Li X, Hou X, Zhang Y. Heterogeneous graph contrastive learning with gradient balance for drug repositioning. Brief Bioinform 2024; 26:bbae650. [PMID: 39692448 DOI: 10.1093/bib/bbae650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/02/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Drug repositioning, which involves identifying new therapeutic indications for approved drugs, is pivotal in accelerating drug discovery. Recently, to mitigate the effect of label sparsity on inferring potential drug-disease associations (DDAs), graph contrastive learning (GCL) has emerged as a promising paradigm to supplement high-quality self-supervised signals through designing auxiliary tasks, then transfer shareable knowledge to main task, i.e. DDA prediction. However, existing approaches still encounter two limitations. The first is how to generate augmented views for fully capturing higher-order interaction semantics. The second is the optimization imbalance issue between auxiliary and main tasks. In this paper, we propose a novel heterogeneous Graph Contrastive learning method with Gradient Balance for DDA prediction, namely GCGB. To handle the first challenge, a fusion view is introduced to integrate both semantic views (drug and disease similarity networks) and interaction view (heterogeneous biomedical network). Next, inter-view contrastive learning auxiliary tasks are designed to contrast the fusion view with semantic and interaction views, respectively. For the second challenge, we adaptively adjust the gradient of GCL auxiliary tasks from the perspective of gradient direction and magnitude for better guiding parameter update toward main task. Extensive experiments conducted on three benchmarks under 10-fold cross-validation demonstrate the model effectiveness.
Collapse
Affiliation(s)
- Hai Cui
- Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, Liaoning, China
| | - Meiyu Duan
- Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, Liaoning, China
| | - Haijia Bi
- College of Computer Science and Technology, Jilin University, No.2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Xiaobo Li
- Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, Liaoning, China
| | - Xiaodi Hou
- Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, Liaoning, China
| | - Yijia Zhang
- Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, Liaoning, China
| |
Collapse
|
5
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
6
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
7
|
Koychev I, Reid G, Nguyen M, Mentz RJ, Joyce D, Shah SH, Holman RR. Inflammatory proteins associated with Alzheimer's disease reduced by a GLP1 receptor agonist: a post hoc analysis of the EXSCEL randomized placebo controlled trial. Alzheimers Res Ther 2024; 16:212. [PMID: 39358806 PMCID: PMC11448378 DOI: 10.1186/s13195-024-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists are a viable option for the prevention of Alzheimer's disease (AD) but the mechanisms of this potential disease modifying action are unclear. We investigated the effects of once-weekly exenatide (EQW) on AD associated proteomic clusters. METHODS The Exenatide Study of Cardiovascular Event Lowering study compared the cardiovascular effects of EQW 2 mg with placebo in 13,752 people with type 2 diabetes mellitus. 4,979 proteins were measured (Somascan V0.4) on baseline and 1-year plasma samples of 3,973 participants. C-reactive protein (CRP), ficolin-2 (FCN2), plasminogen activator inhibitor 1 (PAI-1), soluble vascular cell adhesion protein 1 (sVCAM1) and 4 protein clusters were tested in multivariable mixed models. RESULTS EQW affected FCN2 (Cohen's d -0.019), PAI-1 (Cohen's d -0.033), sVCAM-1 (Cohen's d 0.035) and a cytokine-cytokine cluster (Cohen's d 0.037) significantly compared with placebo. These effects were sustained in individuals over the age of 65 but not in those under 65. CONCLUSIONS EQW treatment was associated with significant change in inflammatory proteins associated with AD. TRIAL REGISTRATION EXSCEL is registered on ClinicalTrials.gov: NCT01144338 on 10th of June 2010.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Graham Reid
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Maggie Nguyen
- Duke Center for Precision Health, Duke University School of Medicine, Durham, NC, USA
| | | | - Dan Joyce
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Svati H Shah
- Duke Center for Precision Health, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Xu F, Li J, Ai M, Zhang T, Ming Y, Li C, Pu W, Yang Y, Li Z, Qi Y, Xu X, Sun Q, Yuan Z, Xia Y, Peng Y. Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel‒Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation. MedComm (Beijing) 2024; 5:e758. [PMID: 39399646 PMCID: PMC11470999 DOI: 10.1002/mco2.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma's high metastatic potential, especially to the brain, poses significant challenges to patient survival. The blood‒brain barrier (BBB) is a major obstacle to the effective treatment of melanoma brain metastases. We screened antipsychotic drugs capable of crossing the BBB and identified penfluridol (PF) as the most active candidate. PF reduced melanoma cell viability and induced apoptosis. In animal models, PF effectively inhibited melanoma growth and metastasis to the lung and brain. Using immunoprecipitation combined with high-resolution mass spectrometry, and other techniques such as drug affinity responsive target stability, we identified CIP2A as a direct binding protein of PF. CIP2A is highly expressed in melanoma and its metastases, and is linked to poor prognosis. PF can restore Protein Phosphatase 2A activity by promoting CIP2A degradation, thereby inhibiting several key oncogenic pathways, including AKT and c-Myc. Additionally, von Hippel‒Lindau (VHL) is the endogenous E3 ligase for CIP2A, and PF enhances the interaction between VHL and CIP2A, promoting the ubiquitin‒proteasome degradation of CIP2A, thereby inhibiting melanoma growth and metastasis. Overall, this study not only suggests PF's potential in treating melanoma and its brain metastases but also highlights CIP2A degradation as a therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fuyan Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Min Ai
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Tingting Zhang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yue Ming
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Cong Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Wenchen Pu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Yang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhang Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yucheng Qi
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaomin Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Qingxiang Sun
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhu Yuan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Xia
- Rehabilitation Medicine CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Peng
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
9
|
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, Mamourian E, Zhao B, Toga AW, Zalesky A, Davatzikos C. The genetic architecture of biological age in nine human organ systems. NATURE AGING 2024; 4:1290-1307. [PMID: 38942983 PMCID: PMC11446180 DOI: 10.1038/s43587-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA.
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Xie S, Liang Y, Song Y, Li T, Jia J. Repurposing Anidulafungin for Alzheimer's Disease via Fragment-Based Drug Discovery. ACS Chem Neurosci 2024; 15:2995-3008. [PMID: 39096284 PMCID: PMC11342299 DOI: 10.1021/acschemneuro.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
The misfolding and aggregation of beta-amyloid (Aβ) peptides have been implicated as key pathogenic events in the early stages of Alzheimer's disease (AD). Inhibiting Aβ aggregation represents a potential disease-modifying therapeutic approach to AD treatment. Previous studies have identified various molecules that inhibit Aβ aggregation, some of which share common chemical substructures (fragments) that may be key to their inhibitory activity. Employing fragment-based drug discovery (FBDD) methods may facilitate the identification of these fragments, which can subsequently be used to screen new inhibitors and provide leads for further drug development. In this study, we used an in silico FBDD approach to identify 17 fragment clusters that are significantly enriched among Aβ aggregation inhibitors. These fragments were then used to screen anti-infective agents, a promising drug class for repurposing against amyloid aggregation. This screening process identified 16 anti-infective drugs, 5 of which were chosen for further investigation. Among the 5 candidates, anidulafungin, an antifungal compound, showed high efficacy in inhibiting Aβ aggregation in vitro. Kinetic analysis revealed that anidulafungin selectively blocks the primary nucleation step of Aβ aggregation, substantially delaying Aβ fibril formation. Cell viability assays demonstrated that anidulafungin can reduce the toxicity of oligomeric Aβ on BV2 microglia cells. Molecular docking simulations predicted that anidulafungin interacted with various Aβ species, including monomers, oligomers, and fibrils, potentially explaining its activity against Aβ aggregation and toxicity. This study suggests that anidulafungin is a potential drug to be repurposed for AD, and FBDD is a promising approach for discovering drugs to combat Aβ aggregation.
Collapse
Affiliation(s)
- Siqi Xie
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Yumei Liang
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Yang Song
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Tingting Li
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Jianping Jia
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
- Beijing
Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, P. R. China
- Clinical
Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, P. R. China
- Center
of Alzheimer’s Disease, Beijing Institute of Brain Disorders,
Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, P. R. China
- Key
Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, P. R. China
| |
Collapse
|
12
|
Catto F, Dadgar-Kiani E, Kirschenbaum D, Economides A, Reuss AM, Trevisan C, Caredio D, Mirzet D, Frick L, Weber-Stadlbauer U, Litvinov S, Koumoutsakos P, Hyung Lee J, Aguzzi A. Quantitative 3D histochemistry reveals region-specific amyloid-β reduction by the antidiabetic drug netoglitazone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608042. [PMID: 39185170 PMCID: PMC11343181 DOI: 10.1101/2024.08.15.608042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aβ) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aβ aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aβ plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.
Collapse
Affiliation(s)
- Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
- IMAI MedTech, Wagistrasse 18, 8952 Schlieren, Zurich, Switzerland
| | - Ehsan Dadgar-Kiani
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Athena Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Delic Mirzet
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, ETH Zürich, Clausiusstrasse 33, 8092, Zurich, Switzerland
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| |
Collapse
|
13
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
14
|
Morales J, Gabriel N, Natarajan L, LaCroix AZ, Shadyab AH, Xu R, Silverman J, Feldman HH, Hernandez I. Pharmacoepidemiology evaluation of bumetanide as a potential candidate for drug repurposing for Alzheimer's disease. Alzheimers Dement 2024; 20:5236-5246. [PMID: 39030734 PMCID: PMC11350022 DOI: 10.1002/alz.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Bumetanide, a loop diuretic, was identified as a candidate drug for repurposing for Alzheimer's disease (AD) based on its effects on transcriptomic apolipoprotein E signatures. Cross-sectional analyses of electronic health records suggest that bumetanide is associated with decreased prevalence of AD; however, temporality between bumetanide exposure and AD development has not been established. METHODS We evaluated Medicare claims data using Cox proportional hazards regression to evaluate the association between time-dependent use of bumetanide and time to first AD diagnosis while controlling for patient characteristics. Multiple sensitivity analyses were conducted to test the robustness of the findings. RESULTS We sampled 833,561 Medicare beneficiaries, 60.8% female, with mean (standard deviation) age of 70.4 (12). Bumetanide use was not significantly associated with AD risk (hazard ratio 1.05; 95% confidence interval, 0.99-1.10). DISCUSSION Using a nationwide dataset and a retrospective cohort study design, we were not able to identify a time-dependent effect of bumetanide lowering AD risk. HIGHLIGHTS Bumetanide was identified as a candidate for repurposing for Alzheimer's disease (AD). We evaluated the association between bumetanide use and risk of AD. We used Medicare data and accounted for duration of bumetanide use. Bumetanide use was not significantly associated with risk of AD.
Collapse
Affiliation(s)
- Jasmine Morales
- Herbert Wertheim School of Public Health & Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nico Gabriel
- Division of Clinical PharmacySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Loki Natarajan
- Herbert Wertheim School of Public Health & Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Andrea Z. LaCroix
- Herbert Wertheim School of Public Health & Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health & Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
- Division of Geriatrics, Gerontology, and Palliative CareDepartment of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ronghui Xu
- Herbert Wertheim School of Public Health & Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of MathematicsUniversity of California, San DiegoLa JollaCaliforniaUSA
- Halicioglu Data Science InstituteUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - James Silverman
- Alzheimer's Disease Cooperative StudyUniversity of CaliforniaSan Diego, School of MedicineLa JollaCaliforniaUSA
| | - Howard H. Feldman
- Alzheimer's Disease Cooperative StudyUniversity of CaliforniaSan Diego, School of MedicineLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Inmaculada Hernandez
- Division of Clinical PharmacySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
15
|
Yuan Y, Hu R, Chen S, Zhang X, Liu Z, Zhou G. CKG-IMC: An inductive matrix completion method enhanced by CKG and GNN for Alzheimer's disease compound-protein interactions prediction. Comput Biol Med 2024; 177:108612. [PMID: 38838556 DOI: 10.1016/j.compbiomed.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is one of the most prevalent chronic neurodegenerative disorders globally, with a rapidly growing population of AD patients and currently no effective therapeutic interventions available. Consequently, the development of therapeutic anti-AD drugs and the identification of AD targets represent one of the most urgent tasks. In this study, in addition to considering known drugs and targets, we explore compound-protein interactions (CPIs) between compounds and proteins relevant to AD. We propose a deep learning model called CKG-IMC to predict Alzheimer's disease compound-protein interaction relationships. CKG-IMC comprises three modules: a collaborative knowledge graph (CKG), a principal neighborhood aggregation graph neural network (PNA), and an inductive matrix completion (IMC). The collaborative knowledge graph is used to learn semantic associations between entities, PNA is employed to extract structural features of the relationship network, and IMC is utilized for CPIs prediction. Compared with a total of 16 baseline models based on similarities, knowledge graphs, and graph neural networks, our model achieves state-of-the-art performance in experiments of 10-fold cross-validation and independent test. Furthermore, we use CKG-IMC to predict compounds interacting with two confirmed AD targets, 42-amino-acid β-amyloid (Aβ42) protein and microtubule-associated protein tau (tau protein), as well as proteins interacting with five FDA-approved anti-AD drugs. The results indicate that the majority of predictions are supported by literature, and molecular docking experiments demonstrate a strong affinity between the predicted compounds and targets.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China.
| | - Rizhen Hu
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Siming Chen
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Xiaopeng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Zhenyu Liu
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China; School of Cyberspace Security, Gansu University of Political Science and Law, Anning West Road, Lanzhou, 730070, Gansu, China
| | - Gonghai Zhou
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| |
Collapse
|
16
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
17
|
Bagetta G, Bano D, Scuteri D. Basic, Translational, and Clinical Research on Dementia. Int J Mol Sci 2024; 25:6861. [PMID: 38999974 PMCID: PMC11241002 DOI: 10.3390/ijms25136861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The global impact of dementia is an increasing area of concern and, according to the Alzheimer's Disease International (ADI) World Alzheimer Report 2021, up to 90% of dementia patients in low- and middle-income countries are not diagnosed [...].
Collapse
Affiliation(s)
- Giacinto Bagetta
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Damiana Scuteri
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Koychev I, Adler AI, Edison P, Tom B, Milton JE, Butchart J, Hampshire A, Marshall C, Coulthard E, Zetterberg H, Hellyer P, Cormack F, Underwood BR, Mummery CJ, Holman RR. Protocol for a double-blind placebo-controlled randomised controlled trial assessing the impact of oral semaglutide in amyloid positivity (ISAP) in community dwelling UK adults. BMJ Open 2024; 14:e081401. [PMID: 38908839 PMCID: PMC11328662 DOI: 10.1136/bmjopen-2023-081401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), currently marketed for type 2 diabetes and obesity, may offer novel mechanisms to delay or prevent neurotoxicity associated with Alzheimer's disease (AD). The impact of semaglutide in amyloid positivity (ISAP) trial is investigating whether the GLP-1 RA semaglutide reduces accumulation in the brain of cortical tau protein and neuroinflammation in individuals with preclinical/prodromal AD. METHODS AND ANALYSIS ISAP is an investigator-led, randomised, double-blind, superiority trial of oral semaglutide compared with placebo. Up to 88 individuals aged ≥55 years with brain amyloid positivity as assessed by positron emission tomography (PET) or cerebrospinal fluid, and no or mild cognitive impairment, will be randomised. People with the low-affinity binding variant of the rs6971 allele of the Translocator Protein 18 kDa (TSPO) gene, which can interfere with interpreting TSPO PET scans (a measure of neuroinflammation), will be excluded.At baseline, participants undergo tau, TSPO PET and MRI scanning, and provide data on physical activity and cognition. Eligible individuals are randomised in a 1:1 ratio to once-daily oral semaglutide or placebo, starting at 3 mg and up-titrating to 14 mg over 8 weeks. They will attend safety visits and provide blood samples to measure AD biomarkers at weeks 4, 8, 26 and 39. All cognitive assessments are repeated at week 26. The last study visit will be at week 52, when all baseline measurements will be repeated. The primary end point is the 1-year change in tau PET signal. ETHICS AND DISSEMINATION The study was approved by the West Midlands-Edgbaston Research Ethics Committee (22/WM/0013). The results of the study will be disseminated through scientific presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN71283871.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Amanda I Adler
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Edison
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Brian Tom
- Medical Research Council Biostatistics Unit, University of Cambridge, UK
| | - Joanne E Milton
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe Butchart
- Royal Devon University Healthcare Foundation Trust, Exeter, UK
- University of Exeter Medical School, Exeter, UK
| | - Adam Hampshire
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Charles Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA18 Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | - Peter Hellyer
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | | | - Benjamin R Underwood
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation trust, Cambridge, UK
| | - Catherine J Mummery
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Carraro C, Montgomery JV, Klimmt J, Paquet D, Schultze JL, Beyer MD. Tackling neurodegeneration in vitro with omics: a path towards new targets and drugs. Front Mol Neurosci 2024; 17:1414886. [PMID: 38952421 PMCID: PMC11215216 DOI: 10.3389/fnmol.2024.1414886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous and multifactorial, this process is further complicated by the fact that current experimental models only partially recapitulate the major phenotypes observed in humans. In such a scenario, multi-omic approaches have the potential to accelerate the identification of new or repurposed drugs against a multitude of the underlying mechanisms driving NDDs. One major advantage for the implementation of multi-omic approaches in the drug discovery process is that these overarching tools are able to disentangle disease states and model perturbations through the comprehensive characterization of distinct molecular layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. Because of recent advances increasing their affordability and scalability, the use of omics technologies to drive drug discovery is nascent, but rapidly expanding in the neuroscience field. Combined with increasingly advanced in vitro models, which particularly benefited from the introduction of human iPSCs, multi-omics are shaping a new paradigm in drug discovery for NDDs, from disease characterization to therapeutics prediction and experimental screening. In this review, we discuss examples, main advantages and open challenges in the use of multi-omic approaches for the in vitro discovery of targets and therapies against NDDs.
Collapse
Affiliation(s)
- Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jessica V. Montgomery
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| | - Julien Klimmt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| |
Collapse
|
20
|
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, Mamourian E, Zhao B, Toga AW, Zaleskey A, Davatzikos C. The Genetic Architecture of Biological Age in Nine Human Organ Systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.08.23291168. [PMID: 37398441 PMCID: PMC10312870 DOI: 10.1101/2023.06.08.23291168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the genetic basis of biological aging in multi-organ systems is vital for elucidating age-related disease mechanisms and identifying therapeutic interventions. This study characterized the genetic architecture of the biological age gap (BAG) across nine human organ systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 genomic loci-BAG pairs (P-value<5×10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ specificity and inter-organ connections. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system while exerting pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 - the genetic correlation between BAGs mirrors their phenotypic correlation. A causal network revealed potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of multiple organ systems. Our findings shed light on promising therapeutic interventions to enhance human organ health within a complex multi-organ network, including lifestyle modifications and potential drug repositioning strategies for treating chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Andrew Zaleskey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
21
|
Newby D, Taylor N, Joyce DW, Winchester LM. Optimising the use of electronic medical records for large scale research in psychiatry. Transl Psychiatry 2024; 14:232. [PMID: 38824136 PMCID: PMC11144247 DOI: 10.1038/s41398-024-02911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 06/03/2024] Open
Abstract
The explosion and abundance of digital data could facilitate large-scale research for psychiatry and mental health. Research using so-called "real world data"-such as electronic medical/health records-can be resource-efficient, facilitate rapid hypothesis generation and testing, complement existing evidence (e.g. from trials and evidence-synthesis) and may enable a route to translate evidence into clinically effective, outcomes-driven care for patient populations that may be under-represented. However, the interpretation and processing of real-world data sources is complex because the clinically important 'signal' is often contained in both structured and unstructured (narrative or "free-text") data. Techniques for extracting meaningful information (signal) from unstructured text exist and have advanced the re-use of routinely collected clinical data, but these techniques require cautious evaluation. In this paper, we survey the opportunities, risks and progress made in the use of electronic medical record (real-world) data for psychiatric research.
Collapse
Affiliation(s)
- Danielle Newby
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Niall Taylor
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dan W Joyce
- Department of Primary Care and Mental Health and Civic Health, Innovation Labs, Institute of Population Health, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
22
|
Xie Z, Liu Y, Huang M, Zhong S, Lai W. Effects of antidiabetic agents on platelet characteristics with implications in Alzheimer's disease: Mendelian randomization and colocalization study. Heliyon 2024; 10:e30909. [PMID: 38778961 PMCID: PMC11108824 DOI: 10.1016/j.heliyon.2024.e30909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Background Observational studies have found a potential link between the use of thiazolidinediones (TZDs) and a lower risk of Alzheimer's disease (AD) development. Platelets were the great source of amyloid-β (Aβ) and involved in the development of AD. This study aimed to assess the correlation between antidiabetic agents and platelet characteristics, hoping to provide a potential mechanism of TZDs neuroprotection in AD. Method Drug-targeted Mendelian randomization (MR) was performed to systematically illustrate the long-term effects of antidiabetic agents on platelet characteristics. Four antidiabetic agent targets were considered. Positive control analysis for type 2 diabetes (T2D) was conducted to validate the selection of instrumental variables (IVs). Colocalization analysis was used to further strengthen the robustness of the results. Result Positive control analysis showed an association of four antidiabetic agents with lower risk of T2D, which was consistent with their mechanisms of action and previous evidence from clinical trials. Genetically proxied TZDs were associated with lower platelet count (β[IRNT] = -0.410 [95 % CI -0.533 to -0.288], P = 5.32E-11) and a lower plateletcrit (β[IRNT] = -0.344 [95 % CI -0.481 to -0.206], P = 1.04E-6). Colocalization suggested the posterior probability of hypothesis 4 (PPH4) > 0.8, which further strengthened the MR results. Conclusion Genetically proxied TZDs were causally associated with lower platelet characteristics, particularly platelet count and plateletcrit, providing insight into the involvement of platelet-related pathways in the neuroprotection of TZDs against AD. Future studies are warranted to reveal the underlying molecular mechanism of TZDs' neuroprotective effects through platelet pathways.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yijie Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shilong Zhong
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weihua Lai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Cheng F, Wang F, Tang J, Zhou Y, Fu Z, Zhang P, Haines JL, Leverenz JB, Gan L, Hu J, Rosen-Zvi M, Pieper AA, Cummings J. Artificial intelligence and open science in discovery of disease-modifying medicines for Alzheimer's disease. Cell Rep Med 2024; 5:101379. [PMID: 38382465 PMCID: PMC10897520 DOI: 10.1016/j.xcrm.2023.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The high failure rate of clinical trials in Alzheimer's disease (AD) and AD-related dementia (ADRD) is due to a lack of understanding of the pathophysiology of disease, and this deficit may be addressed by applying artificial intelligence (AI) to "big data" to rapidly and effectively expand therapeutic development efforts. Recent accelerations in computing power and availability of big data, including electronic health records and multi-omics profiles, have converged to provide opportunities for scientific discovery and treatment development. Here, we review the potential utility of applying AI approaches to big data for discovery of disease-modifying medicines for AD/ADRD. We illustrate how AI tools can be applied to the AD/ADRD drug development pipeline through collaborative efforts among neurologists, gerontologists, geneticists, pharmacologists, medicinal chemists, and computational scientists. AI and open data science expedite drug discovery and development of disease-modifying therapeutics for AD/ADRD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jian Tang
- Mila-Quebec Institute for Learning Algorithms and CIFAR AI Research Chair, HEC Montreal, Montréal, QC H3T 2A7, Canada
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhimin Fu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46037, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, and Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianying Hu
- IBM Research, Yorktown Heights, New York, NY 10598, USA
| | - Michal Rosen-Zvi
- AI for Accelerated Healthcare and Life Sciences Discovery, IBM Research Labs, Haifa 3498825, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| |
Collapse
|
24
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
25
|
Jamshidnejad-Tosaramandani T, Kashanian S, Karimi I, Schiöth HB. Synthesis of a Rivastigmine and Insulin Combinational Mucoadhesive Nanoparticle for Intranasal Delivery. Polymers (Basel) 2024; 16:510. [PMID: 38399888 PMCID: PMC10891873 DOI: 10.3390/polym16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient drug delivery remains a critical challenge for treating neurodegenerative diseases, such as Alzheimer's disease (AD). Using innovative nanomaterials, delivering current medications like acetylcholinesterase inhibitors to the brain through the intranasal route is a promising strategy for managing AD. Here, we developed a unique combinational drug delivery system based on N,N,N-trimethyl chitosan nanoparticles (NPs). These NPs encapsulate rivastigmine, the most potent acetylcholinesterase inhibitor, along with insulin, a complementary therapeutic agent. The spherical NPs exhibited a zeta potential of 17.6 mV, a size of 187.00 nm, and a polydispersity index (PDI) of 0.29. Our findings demonstrate significantly improved drug transport efficiency through sheep nasal mucosa using the NPs compared to drug solutions. The NPs exhibited transport efficiencies of 73.3% for rivastigmine and 96.9% for insulin, surpassing the efficiencies of the drug solutions, which showed transport efficiencies of 52% for rivastigmine and 21% for insulin ex vivo. These results highlight the potential of a new drug delivery system as a promising approach for enhancing nasal transport efficiency. These combinational mucoadhesive NPs offer a novel strategy for the simultaneous cerebral delivery of rivastigmine and insulin, which could prove helpful in developing effective treatments of AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
| | - Isaac Karimi
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| |
Collapse
|
26
|
Corasaniti MT, Bagetta G, Nicotera P, Maione S, Tonin P, Guida F, Scuteri D. Exploitation of Autophagy Inducers in the Management of Dementia: A Systematic Review. Int J Mol Sci 2024; 25:1264. [PMID: 38279266 PMCID: PMC10816917 DOI: 10.3390/ijms25021264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The social burden of dementia is remarkable since it affects some 57.4 million people all over the world. Impairment of autophagy in age-related diseases, such as dementia, deserves deep investigation for the detection of novel disease-modifying approaches. Several drugs belonging to different classes were suggested to be effective in managing Alzheimer's disease (AD) by means of autophagy induction. Useful autophagy inducers in AD should be endowed with a direct, measurable effect on autophagy, have a safe tolerability profile, and have the capability to cross the blood-brain barrier, at least with poor penetration. According to the PRISMA 2020 recommendations, we propose here a systematic review to appraise the measurable effectiveness of autophagy inducers in the improvement of cognitive decline and neuropsychiatric symptoms in clinical trials and retrospective studies. The systematic search retrieved 3067 records, 10 of which met the eligibility criteria. The outcomes most influenced by the treatment were cognition and executive functioning, pointing at a role for metformin, resveratrol, masitinib and TPI-287, with an overall tolerable safety profile. Differences in sample power, intervention, patients enrolled, assessment, and measure of outcomes prevents generalization of results. Moreover, the domain of behavioral symptoms was found to be less investigated, thus prompting new prospective studies with homogeneous design. PROSPERO registration: CRD42023393456.
Collapse
Affiliation(s)
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (S.M.); (F.G.)
- Laboratory of Biomolecules, Venoms and Theranostic Application, Institute Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy;
| | - Francesca Guida
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (S.M.); (F.G.)
| | - Damiana Scuteri
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
27
|
Cho SY, Kim EW, Park SJ, Phillips BU, Jeong J, Kim H, Heath CJ, Kim D, Jang Y, López-Cruz L, Saksida LM, Bussey TJ, Lee DY, Kim E. Reconsidering repurposing: long-term metformin treatment impairs cognition in Alzheimer's model mice. Transl Psychiatry 2024; 14:34. [PMID: 38238285 PMCID: PMC10796941 DOI: 10.1038/s41398-024-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Metformin, a primary anti-diabetic medication, has been anticipated to provide benefits for Alzheimer's disease (AD), also known as "type 3 diabetes". Nevertheless, some studies have demonstrated that metformin may trigger AD pathology and even elevate AD risk in humans. Despite this, limited research has elucidated the behavioral outcomes of metformin treatment, which would hold significant translational value. Thus, we aimed to perform thorough behavioral research on the prolonged administration of metformin to mice: We administered metformin (300 mg/kg/day) to transgenic 3xTg-AD and non-transgenic (NT) C57BL/6 mice over 1 and 2 years, respectively, and evaluated their behaviors across multiple domains via touchscreen operant chambers, including motivation, attention, memory, visual discrimination, and cognitive flexibility. We found metformin enhanced attention, inhibitory control, and associative learning in younger NT mice (≤16 months). However, chronic treatment led to impairments in memory retention and discrimination learning at older age. Furthermore, metformin caused learning and memory impairment and increased levels of AMPKα1-subunit, β-amyloid oligomers, plaques, phosphorylated tau, and GSK3β expression in AD mice. No changes in potential confounding factors on cognition, including levels of motivation, locomotion, appetite, body weight, blood glucose, and serum vitamin B12, were observed in metformin-treated AD mice. We also identified an enhanced amyloidogenic pathway in db/db mice, as well as in Neuro2a-APP695 cells and a decrease in synaptic markers, such as PSD-95 and synaptophysin in primary neurons, upon metformin treatment. Our findings collectively suggest that the repurposing of metformin should be carefully reconsidered when this drug is used for individuals with AD.
Collapse
Affiliation(s)
- So Yeon Cho
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun Woo Kim
- Graduate School of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Nursing, Seoyeong University, Gwangju, 61268, Republic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Benjamin U Phillips
- Department of Psychology, The University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jihyeon Jeong
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Daehwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yurim Jang
- Interdisciplinary Program in Agricultural Genomics, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Laura López-Cruz
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, N6A 5K8, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, N6A 5K8, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Agricultural Genomics, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eosu Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Graduate School of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
28
|
Singh S, Chib S, Akhtar MJ, Kumar B, Chawla PA, Bhatia R. Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs). Curr Neuropharmacol 2024; 22:992-1015. [PMID: 36606589 PMCID: PMC10964107 DOI: 10.2174/1570159x21666230105110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Md. Jawaid Akhtar
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO620, PC 130 Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| |
Collapse
|
29
|
Giraldo-Berrio D, Jimenez-Del-Rio M, Velez-Pardo C. Sildenafil Reverses the Neuropathological Alzheimer's Disease Phenotype in Cholinergic-Like Neurons Carrying the Presenilin 1 E280A Mutation. J Alzheimers Dis 2024; 99:639-656. [PMID: 38728184 DOI: 10.3233/jad-231169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-β (Aβ) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25μM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aβ fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Medellín, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
30
|
Rohilla A, Rohilla S. Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs. Curr Drug Discov Technol 2024; 21:e101023222023. [PMID: 38629171 DOI: 10.2174/0115701638253929230922115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 04/19/2024]
Abstract
Drug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer's, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
31
|
Roberts JA, Varma VR, Jones A, Thambisetty M. Drug Repurposing for Effective Alzheimer's Disease Medicines: Existing Methods and Novel Pharmacoepidemiological Approaches. J Alzheimers Dis 2024; 101:S299-S315. [PMID: 39422962 DOI: 10.3233/jad-240680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Drug repurposing is a methodology used to identify new clinical indications for existing drugs developed for other indications and has been successfully applied in the treatment of numerous conditions. Alzheimer's disease (AD) may be particularly well-suited to the application of drug repurposing methods given the absence of effective therapies and abundance of multi-omic data that has been generated in AD patients recently that may facilitate discovery of candidate AD drugs. A recent focus of drug repurposing has been in the application of pharmacoepidemiologic approaches to drug evaluation. Here, real-world clinical datasets with large numbers of patients are leveraged to establish observational efficacy of candidate drugs for further evaluation in disease models and clinical trials. In this review, we provide a selected overview of methods for drug repurposing, including signature matching, network analysis, molecular docking, phenotypic screening, semantic network, and pharmacoepidemiological analyses. Numerous methods have also been applied specifically to AD with the aim of nominating novel drug candidates for evaluation. These approaches, however, are prone to numerous limitations and potential biases that we have sought to address in the Drug Repurposing for Effective Alzheimer's Medicines (DREAM) study, a multi-step framework for selection and validation of potential drug candidates that has demonstrated the promise of STAT3 inhibitors and re-evaluated evidence for other drug candidates, such as phosphodiesterase inhibitors. Taken together, drug repurposing holds significant promise for development of novel AD therapeutics, particularly as the pace of data generation and development of analytical methods continue to accelerate.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Massachusetts General Brigham, Boston, MA, USA
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Attila Jones
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
32
|
Cartas-Cejudo P, Cortés A, Lachén-Montes M, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Mapping the human brain proteome: opportunities, challenges, and clinical potential. Expert Rev Proteomics 2024; 21:55-63. [PMID: 38299555 DOI: 10.1080/14789450.2024.2313073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases. AREAS COVERED Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification. EXPERT OPINION Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Elena Anaya-Cubero
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Erika Peral
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Karina Ausín
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ramón Díaz-Peña
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
33
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
34
|
Abbasi R, Mesgin RM, Nazari-Khanamiri F, Abdyazdani N, Imani Z, Talatapeh SP, Nourmohammadi A, Nejati V, Rezaie J. Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer. Eur J Med Res 2023; 28:579. [PMID: 38071346 PMCID: PMC10709841 DOI: 10.1186/s40001-023-01556-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The advancement in novel cancer therapeutics brought a platform combining the properties of exosomes with nanoparticles to precision medicine. The novel therapeutic approach aim is cancer-targeted therapy. Exosomes from mesenchymal stem cells (MSCs-Exo) exhibit unique properties in cancer therapies, which makes them an ideal tool for delivering therapeutic agents into tumor cells. The key role of natural MSCs-Exo is controversial in cancer therapy; however, they can be engineered at their surface or cargo to serve as a smart drug delivery system for cancer-targeted therapy. In the last few years, researchers harnessed nanotechnology to enforce MSCs-Exo for cancer management including, tumor cell tracking, imaging, and tumor cell killing. Different nanoparticles such as gold nanoparticles have particularly been incorporated into MSCs-Exo, which showed an efficient accumulation at the site of tumor with improved anticancer impact. These findings indicate that a hybrid of exosomes-nanoparticles may serve as combination therapy for the effective removal of cancers. SHORT CONCLUSION Although exhibiting impressive potential, the use of nanoparticle-loaded MSCs-Exo as a drug-delivery tool has been troubled by some challenges, therefore, translation to clinic prerequisites further scrutiny. In this review, we focus on nanoparticle-loaded MSCs-Exo as a new cancer therapy and discuss engineered MSC-Exo for target therapy.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | | | - Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, Urmia, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Imani
- Department of Biology, Urmia University, Urmia, Iran
| | | | - Aidin Nourmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Nejati
- Department of Biology, Urmia University, Urmia, Iran.
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, Urmia, Iran.
| |
Collapse
|
35
|
Iyaswamy A, Thakur A, Guan XJ, Krishnamoorthi S, Fung TY, Lu K, Gaurav I, Yang Z, Su CF, Lau KF, Zhang K, Ng RCL, Lian Q, Cheung KH, Ye K, Chen HJ, Li M. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer's disease. Signal Transduct Target Ther 2023; 8:404. [PMID: 37867176 PMCID: PMC10590775 DOI: 10.1038/s41392-023-01657-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-β precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-β and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tsz Yan Fung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kejia Lu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Roy Chun-Laam Ng
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
36
|
Dobbs Spendlove M, M. Gibson T, McCain S, Stone BC, Gill T, Pickett BE. Pathway2Targets: an open-source pathway-based approach to repurpose therapeutic drugs and prioritize human targets. PeerJ 2023; 11:e16088. [PMID: 37790614 PMCID: PMC10544355 DOI: 10.7717/peerj.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Background Recent efforts to repurpose existing drugs to different indications have been accompanied by a number of computational methods, which incorporate protein-protein interaction networks and signaling pathways, to aid with prioritizing existing targets and/or drugs. However, many of these existing methods are focused on integrating additional data that are only available for a small subset of diseases or conditions. Methods We have designed and implemented a new R-based open-source target prioritization and repurposing method that integrates both canonical intracellular signaling information from five public pathway databases and target information from public sources including OpenTargets.org. The Pathway2Targets algorithm takes a list of significant pathways as input, then retrieves and integrates public data for all targets within those pathways for a given condition. It also incorporates a weighting scheme that is customizable by the user to support a variety of use cases including target prioritization, drug repurposing, and identifying novel targets that are biologically relevant for a different indication. Results As a proof of concept, we applied this algorithm to a public colorectal cancer RNA-sequencing dataset with 144 case and control samples. Our analysis identified 430 targets and ~700 unique drugs based on differential gene expression and signaling pathway enrichment. We found that our highest-ranked predicted targets were significantly enriched in targets with FDA-approved therapeutics for colorectal cancer (p-value < 0.025) that included EGFR, VEGFA, and PTGS2. Interestingly, there was no statistically significant enrichment of targets for other cancers in this same list suggesting high specificity of the results. We also adjusted the weighting scheme to prioritize more novel targets for CRC. This second analysis revealed epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), and two mitogen-activated protein kinases (MAPK14 and MAPK3). These observations suggest that our open-source method with a customizable weighting scheme can accurately prioritize targets that are specific and relevant to the disease or condition of interest, as well as targets that are at earlier stages of development. We anticipate that this method will complement other approaches to repurpose drugs for a variety of indications, which can contribute to the improvement of the quality of life and overall health of such patients.
Collapse
Affiliation(s)
- Mauri Dobbs Spendlove
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Trenton M. Gibson
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Shaney McCain
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Benjamin C. Stone
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | | | - Brett E. Pickett
- Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
37
|
Younis MK, Khalil IA, Younis NS, Fakhr Eldeen RR, Abdelnaby RM, Aldeeb RA, Taha AA, Hassan DH. Aceclofenac/Citronellol Oil Nanoemulsion Repurposing Study: Formulation, In Vitro Characterization, and In Silico Evaluation of Their Antiproliferative and Pro-Apoptotic Activity against Melanoma Cell Line. Biomedicines 2023; 11:2531. [PMID: 37760972 PMCID: PMC10525854 DOI: 10.3390/biomedicines11092531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aceclofenac (ACF) is a widely used non-steroidal anti-inflammatory drug (NSAID) known for its effectiveness in treating pain and inflammation. Recent studies have demonstrated that ACF possesses antiproliferative properties, inhibiting the growth of cancer cells in various cancer cell lines. Citronellol, a monoterpenoid alcohol found in essential oils, exhibits antioxidant properties and activities such as inhibiting cell growth and acetylcholinesterase inhibition. In this study, the objective was to formulate and evaluate an aceclofenac/citronellol oil nanoemulsion for its antiproliferative effects on melanoma. The optimal concentrations of citronellol oil, Tween 80, and Transcutol HP were determined using a pseudoternary phase diagram. The formulated nanoemulsions were characterized for droplet size, zeta potential, thermophysical stability, and in vitro release. The selected formula (F1) consisted of citronellol oil (1 gm%), Tween 80 (4 gm%), and Transcutol HP (1 gm%). F1 exhibited a spherical appearance with high drug content, small droplet size, and acceptable negative zeta potential. The amorphous state of the drug in the nanoemulsion was confirmed by Differential Scanning Calorimetry, while FTIR analysis indicated its homogenous solubility. The nanoemulsion showed significant antiproliferative activity, with a lower IC50 value compared to aceclofenac or citronellol alone. Flow cytometric analysis revealed cell cycle arrest and increased apoptosis induced by the nanoemulsion. In silico studies provided insights into the molecular mechanism underlying the observed antitumor activity. In conclusion, the developed aceclofenac/citronellol oil nanoemulsion exhibited potent cytotoxicity and pro-apoptotic effects, suggesting its potential as a repurposed antiproliferative agent for melanoma treatment. In a future plan, further animal model research for validation is suggested.
Collapse
Affiliation(s)
- Mona K. Younis
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Zagazig University Hospitals, Zagazig 44519, Egypt
| | - Rasha R. Fakhr Eldeen
- Department of Biochemistry, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt;
| | - Rana M. Abdelnaby
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem A. Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Amal A. Taha
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| |
Collapse
|
38
|
Sakai N, Kamimura K, Terai S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics 2023; 15:2190. [PMID: 37765160 PMCID: PMC10536625 DOI: 10.3390/pharmaceutics15092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional drug discovery involves significant steps, time, and expenses; therefore, novel methods for drug discovery remain unmet, particularly for patients with intractable diseases. For this purpose, the drug repurposing method has been recently used to search for new therapeutic agents. Repurposed drugs are mostly previously approved drugs, which were carefully tested for their efficacy for other diseases and had their safety for the human body confirmed following careful pre-clinical trials, clinical trials, and post-marketing surveillance. Therefore, using these approved drugs for other diseases that cannot be treated using conventional therapeutic methods could save time and economic costs for testing their clinical applicability. In this review, we have summarized the methods for identifying repurposable drugs focusing on immunotherapy.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| |
Collapse
|
39
|
Killick R, Elliott C, Ribe E, Broadstock M, Ballard C, Aarsland D, Williams G. Neurodegenerative Disease Associated Pathways in the Brains of Triple Transgenic Alzheimer's Model Mice Are Reversed Following Two Weeks of Peripheral Administration of Fasudil. Int J Mol Sci 2023; 24:11219. [PMID: 37446396 PMCID: PMC10342807 DOI: 10.3390/ijms241311219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The pan Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor fasudil acts as a vasodilator and has been used as a medication for post-cerebral stroke for the past 29 years in Japan and China. More recently, based on the involvement of ROCK inhibition in synaptic function, neuronal survival, and processes associated with neuroinflammation, it has been suggested that the drug may be repurposed for neurodegenerative diseases. Indeed, fasudil has demonstrated preclinical efficacy in many neurodegenerative disease models. To facilitate an understanding of the wider biological processes at play due to ROCK inhibition in the context of neurodegeneration, we performed a global gene expression analysis on the brains of Alzheimer's disease model mice treated with fasudil via peripheral IP injection. We then performed a comparative analysis of the fasudil-driven transcriptional profile with profiles generated from a meta-analysis of multiple neurodegenerative diseases. Our results show that fasudil tends to drive gene expression in a reverse sense to that seen in brains with post-mortem neurodegenerative disease. The results are most striking in terms of pathway enrichment analysis, where pathways perturbed in Alzheimer's and Parkinson's diseases are overwhelmingly driven in the opposite direction by fasudil treatment. Thus, our results bolster the repurposing potential of fasudil by demonstrating an anti-neurodegenerative phenotype in a disease context and highlight the potential of in vivo transcriptional profiling of drug activity.
Collapse
Affiliation(s)
- Richard Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Christina Elliott
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Elena Ribe
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Martin Broadstock
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Gareth Williams
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| |
Collapse
|
40
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
41
|
Sánchez JD, Alcántara AR, González JF, Sánchez-Montero JM. Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease. Expert Opin Drug Discov 2023; 18:1413-1428. [PMID: 37800875 DOI: 10.1080/17460441.2023.2264766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's. AREAS COVERED This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases. EXPERT OPINION The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Juan D Sánchez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan F González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D, Kumar H. Thiazolidinedione-triazole conjugates: design, synthesis and probing of the α-amylase inhibitory potential. Future Med Chem 2023; 15:1273-1294. [PMID: 37551699 DOI: 10.4155/fmc-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (7a-7aa). Materials & methods: The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating in vitro and in silico studies. Results: The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC50 values ranging between 0.028 and 0.088 μmol ml-1. Various computational approaches were employed to get detailed information about the inhibition mechanism. Conclusion: The thiazolidinedione-triazole conjugate 7p, with IC50 = 0.028 μmol ml-1, was identified as the best hit for inhibiting α-amylase.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123029, India
| |
Collapse
|
43
|
Wang Y, Li M, Kazis LE, Xia W. The Comparative Effectiveness of Monotherapy and Combination Therapies: Impact of Angiotensin Receptor Blockers on the Onset of Alzheimer's Disease. JAR LIFE 2023; 12:35-45. [PMID: 37441415 PMCID: PMC10333644 DOI: 10.14283/jarlife.2023.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/15/2023]
Abstract
Background The criteria for use of Alzheimer's disease (AD) drug Leqembi recommended by the Department of Veterans Affairs (VA) include patients aged 65 years or older with mild cognitive impairment (MCI) or mild AD. Comorbidities that include hypertension, hyperlipidemia, and diabetes are common among these patients. Objectives Our objective is to investigate the comparative effectiveness of the administration of one, two, or three medications belonging to the categories of angiotensin receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs), Beta Blockers, Statins, and Metformin, for their potential to delay the clinical onset of AD and provide a window of opportunity for therapeutic intervention. Design Retrospective matched case-control study. Setting Data from the Department of Veterans Affairs national corporate data warehouse. Participants We conducted an analysis of 122,351 participants (13,611 with AD and 108,740 without AD), aged 65-89, who began at least one of the prescribed medication classes under investigation between October 1998 and April 2018. Measurements We utilized Cox proportional hazard regressions, both with and without propensity score weighting, to estimate hazard ratios (HR) associated with the use of different medication combinations for the pre-symptomatic survival time of AD onset. Additionally, we employed a supervised machine learning algorithm (random forest) to assess the relative importance of various therapies in predicting the occurrence of AD. Result Adding Metformin to the combination of ACEI+Beta Blocker (HR = 0.56, 95% CI (0.41, 0.77)) reduced the risk of AD onset compared to ACEI monotherapy alone (HR = 0.91, (0.85, 0.98)), Beta Blocker monotherapy (HR = 0.86, 95% CI (0.80, 0.92)), or combined ACEI+Beta Blocker (HR=0.85, 95%CI (0.77, 0.94)), when statin prescribers were used as a reference. Prescriptions of ARB alone or the combination of ARB with Beta Blocker showed an association with a lower risk of AD onset. Conclusion Selected medications for the treatment of multiple chronic conditions among elderly individuals with hypertension, hyperlipidemia, and diabetes as monotherapy or combination therapies lengthen the pre-symptomatic period before the onset of AD.
Collapse
Affiliation(s)
- Y Wang
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Mathematical Sciences, Bentley University, Waltham, MA, USA
| | - M Li
- Department of Mathematical Sciences, Bentley University, Waltham, MA, USA
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA
| | - L E Kazis
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA, USA
- Harvard Medical School and Rehabilitation Outcomes Center (ROC), Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - W Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Biological Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
44
|
Lin KH, Hsieh KL, Jiang X, Kim Y. Integrating Comorbidity Knowledge for Alzheimer's Disease Drug Repurposing using Multi-task Graph Neural Network. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2023; 2023:378-387. [PMID: 37350918 PMCID: PMC10283123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Alzheimer's Disease (AD) is a multifactorial disease that shares common etiologies with its multiple comorbidities, especially vascular diseases. To predict repurposable drugs for AD utilizing the relatively well-investigated comorbidities' knowledge, we proposed a multi-task graph neural network (GNN)-based pipeline that incorporates the corresponding biomedical interactome of these diseases with their genetic markers and effective therapeutics. Our pipeline can accurately capture the interactions and disease classification in the network. Next, we predicted drugs that might interact with the AD module by the node embedding similarity. Our candidates are mostly BBB permeable, and literature evidence showed their potential for treating AD pathologies, accompanying symptoms, or cotreating AD pathology and its common comorbidities. Our pipeline demonstrated a workable strategy that predicts drug candidates with current knowledge of biological interplays between AD and several vascular diseases.
Collapse
Affiliation(s)
- Ko-Hong Lin
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Kang-Lin Hsieh
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Yejin Kim
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
45
|
Aleksandrova Y, Munkuev A, Mozhaitsev E, Suslov E, Tsypyshev D, Chaprov K, Begunov R, Volcho K, Salakhutdinov N, Neganova M. Elaboration of the Effective Multi-Target Therapeutic Platform for the Treatment of Alzheimer's Disease Based on Novel Monoterpene-Derived Hydroxamic Acids. Int J Mol Sci 2023; 24:ijms24119743. [PMID: 37298694 DOI: 10.3390/ijms24119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Novel monoterpene-based hydroxamic acids of two structural types were synthesized for the first time. The first type consisted of compounds with a hydroxamate group directly bound to acyclic, monocyclic and bicyclic monoterpene scaffolds. The second type included hydroxamic acids connected with the monoterpene moiety through aliphatic (hexa/heptamethylene) or aromatic linkers. An in vitro analysis of biological activity demonstrated that some of these molecules had powerful HDAC6 inhibitory activity, with the presence of a linker area in the structure of compounds playing a key role. In particular, it was found that hydroxamic acids containing a hexa- and heptamethylene linker and (-)-perill fragment in the Cap group exhibit excellent inhibitory activity against HDAC6 with IC50 in the submicromolar range from 0.56 ± 0.01 µM to 0.74 ± 0.02 µM. The results of the study of antiradical activity demonstrated the presence of moderate ability for some hydroxamic acids to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2ROO• radicals. The correlation coefficient between the DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC) value was R2 = 0.8400. In addition, compounds with an aromatic linker based on para-substituted cinnamic acids, having a monocyclic para-menthene skeleton as a Cap group, 35a, 38a, 35b and 38b, demonstrated a significant ability to suppress the aggregation of the pathological β-amyloid peptide 1-42. The 35a lead compound with a promising profile of biological activity, discovered in the in vitro experiments, demonstrated neuroprotective effects on in vivo models of Alzheimer's disease using 5xFAD transgenic mice. Together, the results obtained demonstrate a potential strategy for the use of monoterpene-derived hydroxamic acids for treatment of various aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Aldar Munkuev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Mozhaitsev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Suslov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Roman Begunov
- Biology and Ecology Faculty of P. G. Demidov Yaroslavl State University, Matrosova Ave., 9, Yaroslavl 150003, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| |
Collapse
|
46
|
Chauhan A, Singh J, Sangwan N, Singh H, Prakash A, Medhi B, Avti PK. Designing the 5HT 2BR structure and its modulation as a therapeutic target for repurposing approach in drug-resistant epilepsy. Epilepsy Res 2023; 194:107168. [PMID: 37302343 DOI: 10.1016/j.eplepsyres.2023.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
The study intends to repurpose FDA drugs and investigate the mechanism of (5HT2BR) activation by comprehending inter-residue interactions. The 5HT2BR is a novel thread, and its role in reducing seizures in Dravet syndrome is emerging. The crystal structure (5HT2BR) is a chimera with mutations; hence 3D-structure is modeled (4IB4: 5HT2BRM). The structure is cross-validated to simulate the human receptor using enrichment analysis (ROC: 0.79) and SAVESv6.0. Virtual screening of 2456 approved drugs yielded the best hits that are subjected to MM/GBSA and molecular dynamic (MD) simulations. The 2 top drugs Cabergoline (-53.44 kcal/mol) and Methylergonovine (-40.42 kcal/mol), display strong binding affinity, and ADMET/SAR analysis also suggests their non-mutagenic or non-carcinogenic nature. Methylergonovine has a weaker binding affinity and lower potency than standards [Ergotamine (agonist) and Methysergide (antagonist)] due to its higher Ki (1.32 M) and Kd (6.44 ×10-8 M) values. Compared to standards, Cabergoline has moderate binding affinity and potency [Ki = 0.85 M and Kd = 5.53 × 10-8 M]. The top 2 drugs primarily interact with conserved residues (ASP135, LEU209, GLY221, ALA225, and THR140) as in agonists, unlike the antagonist. The top 2 drugs, upon binding to the 5HT2BRM, modify the helices VI, V, and III and shift the RMSD 2.48 Å and 3.07 Å. LEU209 forms a latch with residues 207-214 (forms a lid) in the 5HT2BRM receptor, which enhances agonist binding and prevents drug escape. Methylergonovine and Cabergoline interact more stongly with ALA225 than the antagonist. The post-MD analysis of Cabergoline suggests a better MM/GBSA value (-89.21 kcal/mol) than Methylergonovine (-63.54 kcal/mol). In this study, Cabergoline and Methylergonovine's agonistic mechanism and solid binding properties suggest their strong role in regulating the 5HT2BR and might target drug-resistant epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, PGIMER, Chandigarh, India.
| |
Collapse
|
47
|
Yao Q, Jiang K, Lin F, Zhu T, Khan NH, Jiang E. Pathophysiological Association of Alzheimer's Disease and Hypertension: A Clinical Concern for Elderly Population. Clin Interv Aging 2023; 18:713-728. [PMID: 37181536 PMCID: PMC10167960 DOI: 10.2147/cia.s400527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/22/2023] [Indexed: 05/16/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia and the fifth leading cause of death in the adult population has a complex pathophysiological link with hypertension (HTN). A growing volume of published literature on a parallel elevation of blood pressure (BP), amyloid plaques, and neurofibrillary tangles formation in post-middle of human brain cells has developed new, widely accepting foundations on this association. In particular, HTN in elderly life mediates cerebral blood flow dysfunction, neuronal dysfunction, and significant decline in cognitive impairment, primarily in the late-life populace, governing the onset of AD. Thus, HTN is an established risk factor for AD. Considering the impact of AD, 1.89 million deaths annually, and the failure of palliative therapies to cure AD, the scientific research community is looking to adopt integrated approaches to target early modified risk factors like HTN to reduce AD burden. The current review highlights the significance and impact of HTN-based prevention in lowering the AD burden in the elderly by providing a comprehensive overview of the physiological relationship between AD and HTN with an in-detail explanation of the role and applications of pathological biomarkers in this clinical association. The review will gain worth in presenting new insights and providing inclusive discussion on the correlation between HTN and cognitive impairment. It will increase across a wider scientific audience to expand understanding of this pathophysiological association.
Collapse
Affiliation(s)
- Qianqian Yao
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
| | - Kexin Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
| | - Fei Lin
- School of Medicine, Shangqiu Institute of Technology, Shangqiu, People’s Republic of China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, People’s Republic of China
| | - Nazeer Hussain Khan
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, People’s Republic of China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, People’s Republic of China
| |
Collapse
|
48
|
Neha, Parvez S. Emerging therapeutics agents and recent advances in drug repurposing for Alzheimer's disease. Ageing Res Rev 2023; 85:101815. [PMID: 36529440 DOI: 10.1016/j.arr.2022.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a multivariate and diversified disease and affects the most sensitive areas of the brain, the cerebral cortex, and the hippocampus. AD is a progressive age-related neurodegenerative disease most often associated with memory deficits and cognition that get more worsen over time. The central theory on the pathophysiological hallmark features of AD is characterized by the accumulation of amyloid β (Aβ) peptides, also associated with tau proteins (τ) dysfunctioning which leads to distorted microtubular structure, affects the cholinergic system, and mitochondrial biogenesis. This review emphasizes how simple it is to find novel treatments for AD and focuses on several recently developed medications through repurposing that can speed up traditional drug development.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
49
|
Atiya A, Das Gupta D, Alsayari A, Alrouji M, Alotaibi A, Sharaf SE, Abdulmonem WA, Alorfi NM, Abdullah KM, Shamsi A. Linagliptin and Empagliflozin Inhibit Microtubule Affinity Regulatory Kinase 4: Repurposing Anti-Diabetic Drugs in Neurodegenerative Disorders Using In Silico and In Vitro Approaches. ACS OMEGA 2023; 8:6423-6430. [PMID: 36844587 PMCID: PMC9948186 DOI: 10.1021/acsomega.2c06634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant public health burdens. Many studies have revealed the possibility of common pathophysiology between T2DM and AD. Thus, in recent years, studies deciphering the action mechanism of anti-diabetic drugs with their future use in AD and related pathologies are on high demand. Drug repurposing is a safe and effective approach owing to its low cost and time-saving attributes. Microtubule affinity regulating kinase 4 (MARK4) is a druggable target for various diseases and is found to be linked with AD and diabetes mellitus. MARK4 plays a vital role in energy metabolism and regulation and thus serves as an irrefutable target to treat T2DM. The present study was intended to identify the potent MARK4 inhibitors among FDA-approved anti-diabetic drugs. We performed structure-based virtual screening of FDA-approved drugs to identify the top hits against MARK4. We identified five FDA-approved drugs having an appreciable affinity and specificity toward the binding pocket of MARK4. Among these identified hits, two drugs, linagliptin, and empagliflozin, favorably bind to the MARK4 binding pocket, interacting with its critical residues and thus subjected to detailed analysis. All-atom detailed molecular dynamics (MD) simulations revealed the dynamics of binding of linagliptin and empagliflozin with MARK4. Kinase assay showed significant inhibition of MARK4 kinase activity in the presence of these drugs, implying them as potent MARK4 inhibitors. In conclusion, linagliptin and empagliflozin may be promising MARK4 inhibitors, which can further be exploited as potential lead molecules against MARK4-directed neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 2428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Abdulrhman Alsayari
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
- Complementary
and Alternative Medicine Unit, King Khalid
University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammed Alrouji
- Department
of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmajeed Alotaibi
- College
of Applied Medical Sciences, King Saud bin
Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Nasser M. Alorfi
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - K. M. Abdullah
- Department
of Biochemistry, Jain University, Bengaluru 560069, India
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
50
|
Chintha N, Jupudi S, Palathoti N, Bharathi J J, Justin A. In-silico docking and molecular dynamic introspective study of multiple targets of AChE with Rivastigmine and NMDA receptors with Riluzole for Alzheimer's disease. J Biomol Struct Dyn 2023; 41:12620-12631. [PMID: 36644856 DOI: 10.1080/07391102.2023.2167119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
The present study was initiated with PDB selection and validation where 11 acetylcholinesterase (AChE) and 4 N-methyl-D-aspartate receptor (NMDAR) proteins were considered for docking with Rivastigmine and Riluzole respectively. Out of the 15 proteins, selected significant binding was observed for AChE, with 5FPQ, and NMDA receptors with 5I2K. Molecular docking studies of 5FPQ/Rivastigmine complex displayed a binding score of -8.6 kcal/mol, and the predicted inhibitory concentration (Ki) was found to be 31 nM, whereas the 5I2K/Riluzole complex showed a binding score of -9.6 kcal/mol, with an inhibitory concentration (Ki) of 21 nM. Riluzole in complex with 5I2K formed predominant π-π stacking interactions with Tyr144, pi-alkyl interaction with Pro129, and conventional hydrogen bond with Phe130. In contrast, Rivastigmine in a complex with 5FPQ formed a hydrogen bond with Gln413 and pi-alkyl with Pro537. Molecular dynamics simulation study of both complexes 5FPQ/Rivastigmine and 5I2K/Riluzole exhibited stable RMSD, RMSF, Rg, and significant numbers of hydrogen bonds. From free energy landscape (FEL) analysis both complexes were observed to achieve global minima. Overall, molecular docking and MD simulation with subsequent binding free energies studies (MM-PBSA) elucidate the binding conformations and stability of these reprogrammed drugs in the AChE and NMDAR targets. From these in-silico predictions, it can be suggested that both Rivastigmine and Riluzole combination may provide better insights as a starting point combination therapy for the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Narendar Chintha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Nagarjuna Palathoti
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jeyaram Bharathi J
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|