1
|
Bertagnoli T, Durning S, Soh M, Merkebu J. Physicians have feelings: illuminating the relationship between emotional valence, clinical reasoning and context specificity. MEDICAL EDUCATION ONLINE 2024; 29:2404299. [PMID: 39312718 PMCID: PMC11421128 DOI: 10.1080/10872981.2024.2404299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Research demonstrates that emotions play an important role in clinical reasoning (CR); however, the relationship between emotional valence, CR, and the context in which reasoning takes place, remains to be empirically explored. While situated cognition has been used to investigate CR and context specificity (e.g. the presence of contextual factors, things other than the information directly related to establishing a diagnosis), it has not explicitly examined the role of emotional valence during CR encounters. Our research question was how do emotional valence and arousal emerge in CR, particularly in the presence or absence of contextual factors? METHODS Physicians (n = 45) reviewed two video cases, one with contextual factors and one without. Immediately afterwards, participants completed a 'think-aloud' while reviewing cases. Thematic analysis was used to code transcribed think-alouds for CR activities, emotional valence (positive, neutral or negative) and arousal by three researchers. Frequencies and relationships between codes were compared, both in the presence or absence of contextual factors. RESULTS The majority of emotional valence codes were neutral (85.2%), with negative valence more frequent (11.2%) than positive valence (3.5%). Five CR themes were consistently demonstrated: knowledge organization (with two sub-themes of linking and differential diagnosis formation), proceeding with caution, curiosity, assumption, and reflection. In the presence of contextual factors, there was an increase in negative valence with a decrease in positive valence, as well as a shift in CR from knowledge organization to curiosity and proceeding with caution. DISCUSSION The complex interaction between clinical reasoning themes, emotional valence, and changes with contextual factors have important implications for clinical practice, education, and future research on CR.
Collapse
Affiliation(s)
- Thomas Bertagnoli
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Pediatrics, Bethesda, MD, USA
| | - Steven Durning
- Center of Health Professions Education, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Soh
- Center of Health Professions Education, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jerusalem Merkebu
- Center of Health Professions Education, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
2
|
Dahl RE, Armstrong-Carter E, van den Bos W. Wanting to matter and learning to care: A neurodevelopmental window of opportunity for (Pro) social learning? Dev Cogn Neurosci 2024; 69:101430. [PMID: 39151254 PMCID: PMC11377138 DOI: 10.1016/j.dcn.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
Wanting to matter-to feel socially recognized, appreciated, and capable of actions that benefit others-represents a fundamental motivation in human development. The motivational salience of mattering appears to increase in adolescence. Evidence suggests this is related to pubertal increases in the incentive salience for gaining social value and personal agency. This can provide a useful heuristic for understanding motivational proclivities (i.e. wanting to matter) that influence action-outcome learning as young adolescents are exploring and learning how to navigate increasingly complex social and relational environments. Adolescence also brings new capacities, motives, and opportunities for learning to care about and contribute to the benefit of others. Together, these create a window of opportunity: a sensitive period for learning to gain salient feelings of mattering through caring prosocial actions and valued societal contributions. Successfully discovering ways of mattering by doing things that matter to others may contribute to formative socio-emotional learning about self/other. Advances in understanding these social and relational learning processes and their neurodevelopmental underpinnings can inform strategies to improve developmental trajectories of social competence and wellbeing among adolescents growing up in a rapidly changing and increasingly techno-centric world.
Collapse
Affiliation(s)
- Ronald E Dahl
- School of Public Health, Institute of Human Development, University of California, Berkeley, United States.
| | | | | |
Collapse
|
3
|
Ostos-Valverde A, Herrera-Solís A, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García OE. Sleep debt-induced anxiety and addiction to substances of abuse: A narrative review. Pharmacol Biochem Behav 2024; 245:173874. [PMID: 39260592 DOI: 10.1016/j.pbb.2024.173874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Substance Use Disorder (SUD) has been conceptualized as an outcome of a dysregulated reward system. However, individuals with SUD suffer from anxiety with an intensity depending on the abstinence period length. This review discusses the role of anxiety as a major contributor to the initiation and perpetuation of SUD, and its dependence on an up-regulated defense-antireward system. In addition, it is discussed that sleep debt, and its psychosocial consequences, promote anxiety, contributing to SUD generation and maintenance. Healthy sleep patterns can be disrupted by diverse medical conditions and negative psychosocial interactions, resulting in accumulated sleep debt and anxiety. Within this narrative review, we discuss the interplay between the motivation-reward and defense-antireward systems, framing the progression from recreational drug use to addiction. This interplay is nuanced by sleep debt-induced anxiety and its psychosocial consequences as contributory vulnerability factors in the genesis of addiction.
Collapse
Affiliation(s)
- Aline Ostos-Valverde
- Grupo de Neurociencias: Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| | - Andrea Herrera-Solís
- Grupo de Neurociencias: Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Secretaría de Salud, Mexico
| | - Alejandra E Ruiz-Contreras
- Grupo de Neurociencias: Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicofisiología y Neurociencias, Facultad de Psicología, UNAM, Mexico
| | - Mónica Méndez-Díaz
- Grupo de Neurociencias: Laboratorio de Ontogenia y Adicciones, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| | - Oscar E Prospéro-García
- Grupo de Neurociencias: Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico.
| |
Collapse
|
4
|
Torres-Berrío A, Estill M, Patel V, Ramakrishnan A, Kronman H, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee YY, Walker DM, Martínez-Rivera FJ, Lardner CK, Durand-de Cuttoli R, Russo SJ, Shen L, Sidoli S, Nestler EJ. Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress. Neuron 2024; 112:2973-2989.e10. [PMID: 38959894 PMCID: PMC11377169 DOI: 10.1016/j.neuron.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishwendra Patel
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
6
|
Jang G, Kragel PA. Understanding human amygdala function with artificial neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605621. [PMID: 39131372 PMCID: PMC11312467 DOI: 10.1101/2024.07.29.605621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The amygdala is a cluster of subcortical nuclei that receives diverse sensory inputs and projects to the cortex, midbrain and other subcortical structures. Numerous accounts of amygdalar contributions to social and emotional behavior have been offered, yet an overarching description of amygdala function remains elusive. Here we adopt a computationally explicit framework that aims to develop a model of amygdala function based on the types of sensory inputs it receives, rather than individual constructs such as threat, arousal, or valence. Characterizing human fMRI signal acquired as participants viewed a full-length film, we developed encoding models that predict both patterns of amygdala activity and self-reported valence evoked by naturalistic images. We use deep image synthesis to generate artificial stimuli that distinctly engage encoding models of amygdala subregions that systematically differ from one another in terms of their low-level visual properties. These findings characterize how the amygdala compresses high-dimensional sensory inputs into low-dimensional representations relevant for behavior.
Collapse
|
7
|
O'Malley CA, Norbury R, Smith SA, Fullerton CL, Mauger AR. Elevated muscle pain induced by a hypertonic saline injection reduces power output independent of physiological changes during fixed perceived effort cycling. J Appl Physiol (1985) 2024; 137:99-110. [PMID: 38813614 PMCID: PMC11389896 DOI: 10.1152/japplphysiol.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Pain is a naturally occurring phenomenon that consistently inhibits exercise performance by imposing unconscious, neurophysiological alterations (e.g., corticospinal changes) as well as conscious, psychophysiological pressures (e.g., shared effort demands). Although several studies indicate that pain would elicit lower task outputs for a set intensity of perceived effort, no study has tested this. Therefore, this study investigated the impact of elevated muscle pain through a hypertonic saline injection on the power output, psychophysiological, cerebral oxygenation, and perceptual changes during fixed perceived effort exercise. Ten participants completed three visits (1 familiarization + 2 fixed perceived effort trials). Fixed perceived effort cycling corresponded to 15% above gas exchange threshold (GET) [mean rating of perceived effort (RPE) = 15 "hard"]. Before the 30-min fixed perceived effort exercise, participants received a randomized bilateral hypertonic or isotonic saline injection in the vastus lateralis. Power output, cardiorespiratory, cerebral oxygenation, and perceptual markers (e.g., affective valence) were recorded during exercise. Linear mixed-model regression assessed the condition and time effects and condition × time interactions. Significant condition effects showed that power output was significantly lower during hypertonic conditions [t107 = 208, P = 0.040, β = 4.77 W, 95% confidence interval (95% CI) [0.27 to 9.26 W]]. Meanwhile, all physiological variables (e.g., heart rate, oxygen uptake, minute ventilation) demonstrated no significant condition effects. Condition effects were observed for deoxyhemoglobin changes from baseline (t107 = -3.29, P = 0.001, β = -1.50 ΔμM, 95% CI [-2.40 to -0.61 ΔμM]) and affective valence (t127 = 6.12, P = 0.001, β = 0.93, 95% CI [0.63 to 1.23]). Results infer that pain impacts the self-regulation of fixed perceived effort exercise, as differences in power output mainly occurred when pain ratings were higher after hypertonic versus isotonic saline administration.NEW & NOTEWORTHY This study identifies that elevated muscle pain through a hypertonic saline injection causes significantly lower power output when pain is experienced but does not seem to affect exercise behavior in a residual manner. Results provide some evidence that pain operates on a psychophysiological level to alter the self-regulation of exercise behavior due to differences between conditions in cerebral deoxyhemoglobin and other perceptual parameters.
Collapse
Affiliation(s)
- Callum A O'Malley
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Ryan Norbury
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- Faculty of Sport, Technology, and Health Sciences, St Mary's University Twickenham, London, United Kingdom
| | - Samuel A Smith
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Christopher L Fullerton
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Alexis R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
8
|
Lee SA, Lee JJ, Han J, Choi M, Wager TD, Woo CW. Brain representations of affective valence and intensity in sustained pleasure and pain. Proc Natl Acad Sci U S A 2024; 121:e2310433121. [PMID: 38857402 PMCID: PMC11194486 DOI: 10.1073/pnas.2310433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Pleasure and pain are two fundamental, intertwined aspects of human emotions. Pleasurable sensations can reduce subjective feelings of pain and vice versa, and we often perceive the termination of pain as pleasant and the absence of pleasure as unpleasant. This implies the existence of brain systems that integrate them into modality-general representations of affective experiences. Here, we examined representations of affective valence and intensity in an functional MRI (fMRI) study (n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, the anterior insula, and the amygdala were involved in decoding affective valence versus intensity. Affective valence and intensity predictive models showed significant decoding performance in an independent test dataset (n = 62). These models were differentially connected to distinct large-scale brain networks-the intensity model to the ventral attention network and the valence model to the limbic and default mode networks. Overall, this study identified the brain representations of affective valence and intensity across pleasure and pain, promoting a systems-level understanding of human affective experiences.
Collapse
Affiliation(s)
- Soo Ahn Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon16419, Republic of Korea
| |
Collapse
|
9
|
Yamasaki T, Kiyokawa Y, Munetomo A, Takeuchi Y. Naloxone increases conditioned fear responses during social buffering in male rats. Eur J Neurosci 2024; 59:3256-3272. [PMID: 38644789 DOI: 10.1111/ejn.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Social buffering is the phenomenon in which the presence of an affiliative conspecific mitigates stress responses. We previously demonstrated that social buffering completely ameliorates conditioned fear responses in rats. However, the neuromodulators involved in social buffering are poorly understood. Given that opioids, dopamine, oxytocin and vasopressin play an important role in affiliative behaviour, here, we assessed the effects of the most well-known antagonists, naloxone (opioid receptor antagonist), haloperidol (dopamine D2 receptor antagonist), atosiban (oxytocin receptor antagonist) and SR49059 (vasopressin V1a receptor antagonist), on social buffering. In Experiment 1, fear-conditioned male subjects were intraperitoneally administered one of the four antagonists 25 min prior to exposure to a conditioned stimulus with an unfamiliar non-conditioned rat. Naloxone, but not the other three antagonists, increased freezing and decreased walking and investigation as compared with saline administration. In Experiment 2, identical naloxone administration did not affect locomotor activity, anxiety-like behaviour or freezing in an open-field test. In Experiment 3, after confirming that the same naloxone administration again increased conditioned fear responses, as done in Experiment 1, we measured Fos expression in 16 brain regions. Compared with saline, naloxone increased Fos expression in the paraventricular nucleus of the hypothalamus and decreased Fos expression in the nucleus accumbens shell, anterior cingulate cortex and insular cortex and tended to decrease Fos expression in the nucleus accumbens core. Based on these results, we suggest that naloxone blocks social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Takumi Yamasaki
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Poggi G, Bergamini G, Dulinskas R, Madur L, Greter A, Ineichen C, Dagostino A, Kúkeľová D, Sigrist H, Bornemann KD, Hengerer B, Pryce CR. Engagement of basal amygdala-nucleus accumbens glutamate neurons in the processing of rewarding or aversive social stimuli. Eur J Neurosci 2024; 59:996-1015. [PMID: 38326849 DOI: 10.1111/ejn.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Basal amygdala (BA) neurons projecting to nucleus accumbens (NAc) core/shell are primarily glutamatergic and are integral to the circuitry of emotional processing. Several recent mouse studies have addressed whether neurons in this population(s) respond to reward, aversion or both emotional valences. The focus has been on processing of physical emotional stimuli, and here, we extend this to salient social stimuli. In male mice, an iterative study was conducted into engagement of BA-NAc neurons in response to estrous female (social reward, SR) and/or aggressive-dominant male (social aversion, SA). In BL/6J mice, SR and SA activated c-Fos expression in a high and similar number/density of BA-NAc neurons in the anteroposterior intermediate BA (int-BA), whereas activation was predominantly by SA in posterior (post-)BA. In Fos-TRAP2 mice, compared with SR-SR or SA-SA controls, exposure to successive presentation of SR-SA or SA-SR, followed by assessment of tdTomato reporter and/or c-Fos expression, demonstrated that many int-BA-NAc neurons were activated by only one of SR and SA; these SR/SA monovalent neurons were similar in number and present in both magnocellular and parvocellular int-BA subregions. In freely moving BL/6J mice exposed to SR, bulk GCaMP6 fibre photometry provided confirmatory in vivo evidence for engagement of int-BA-NAc neurons during social and sexual interactions. Therefore, populations of BA-NAc glutamate neurons are engaged by salient rewarding and aversive social stimuli in a topographic and valence-specific manner; this novel evidence is important to the overall understanding of the roles of this pathway in the circuitry of socio-emotional processing.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Redas Dulinskas
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Lorraine Madur
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology, Zurich, Zurich, Switzerland
| | - Alexandra Greter
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Christian Ineichen
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Amael Dagostino
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Diana Kúkeľová
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Klaus D Bornemann
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology, Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Wojick JA, Paranjapye A, Chiu JK, Mahmood M, Oswell C, Kimmey BA, Wooldridge LM, McCall NM, Han A, Ejoh LL, Chehimi SN, Crist RC, Reiner BC, Korb E, Corder G. A nociceptive amygdala-striatal pathway for chronic pain aversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579947. [PMID: 38405972 PMCID: PMC10888915 DOI: 10.1101/2024.02.12.579947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of nociceptive BLA projection neurons (BLAnoci ensemble). However, the role of the BLAnoci ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood. Here, we show that the same BLAnoci ensemble neurons are required for both acute and chronic neuropathic pain behavior. Using single nucleus RNA-sequencing, we characterized the effect of acute and chronic pain on the BLA and identified enrichment for genes with known functions in axonal and synaptic organization and pain perception. We thus examined the brain-wide targets of the BLAnoci ensemble and uncovered a previously undescribed nociceptive hotspot of the nucleus accumbens shell (NAcSh) that mirrors the stability and specificity of the BLAnoci ensemble and is recruited in chronic pain. Notably, BLAnoci ensemble axons transmit acute and neuropathic nociceptive information to the NAcSh, highlighting this nociceptive amygdala-striatal circuit as a unique pathway for affective-motivational responses across pain states.
Collapse
Affiliation(s)
- Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliann K. Chiu
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinna Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Han
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar Nasser Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Jiang Y, Gao Y, Dong D, Sun X, Situ W, Yao S. Brain Anatomy in Boys with Conduct Disorder: Differences Among Aggression Subtypes. Child Psychiatry Hum Dev 2024; 55:3-13. [PMID: 35704134 DOI: 10.1007/s10578-022-01360-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Aggression is a core feature of conduct disorder (CD), but the motivation, execution of aggression may vary. A deeper understanding of the neural substrates of aggressive behaviours is critical for effective clinical intervention. Seventy-six Boys with CD (50 with impulsive aggression (I-CD) and 26 with premeditated aggression (P-CD)) and 69 healthy controls (HCs) underwent a structural MRI scan and behavioural assessments. Whole-brain analyses revealed that, compared to HCs, the I-CD group showed significant cortical thinning in the right frontal cortex, while the P-CD group demonstrated significant folding deficits in the bilateral superior parietal cortex. Both types of aggression negatively correlated with the left amygdala volume, albeit in different ways. The present results demonstrated that the complex nature of aggression relies on differentiated anatomical substrates, highlighting the importance of exploring differential circuit-targeted interventions for CD patients.
Collapse
Affiliation(s)
- Yali Jiang
- Medical Psychological Center, the Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, 410011, Changsha, Hunan, People's Republic of China
- Department of Radiology, the Second Xiangya Hospital, Central South University, 139, Middle Renmin Road, 410011, Changsha, Hunan, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yidian Gao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Daifeng Dong
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaoqiang Sun
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Weijun Situ
- Department of Radiology, the Second Xiangya Hospital, Central South University, 139, Middle Renmin Road, 410011, Changsha, Hunan, People's Republic of China.
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Shuqiao Yao
- Medical Psychological Center, the Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, 410011, Changsha, Hunan, People's Republic of China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center on Psychiatry and Psychology, Changsha, China.
- Medical Psychological Institute of Central South University, Changsha, China.
| |
Collapse
|
13
|
Demidenko MI, Mumford JA, Ram N, Poldrack RA. A multi-sample evaluation of the measurement structure and function of the modified monetary incentive delay task in adolescents. Dev Cogn Neurosci 2024; 65:101337. [PMID: 38160517 PMCID: PMC10801229 DOI: 10.1016/j.dcn.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Interpreting the neural response elicited during task functional magnetic resonance imaging (fMRI) remains a challenge in neurodevelopmental research. The monetary incentive delay (MID) task is an fMRI reward processing task that is extensively used in the literature. However, modern psychometric tools have not been used to evaluate measurement properties of the MID task fMRI data. The current study uses data for a similar task design across three adolescent samples (N = 346 [Agemean 12.0; 44 % Female]; N = 97 [19.3; 58 %]; N = 112 [20.2; 38 %]) to evaluate multiple measurement properties of fMRI responses on the MID task. Confirmatory factor analysis (CFA) is used to evaluate an a priori theoretical model for the task and its measurement invariance across three samples. Exploratory factor analysis (EFA) is used to identify the data-driven measurement structure across the samples. CFA results suggest that the a priori model is a poor representation of these MID task fMRI data. Across the samples, the data-driven EFA models consistently identify a six-to-seven factor structure with run and bilateral brain region factors. This factor structure is moderately-to-highly congruent across the samples. Altogether, these findings demonstrate a need to evaluate theoretical frameworks for popular fMRI task designs to improve our understanding and interpretation of brain-behavior associations.
Collapse
Affiliation(s)
| | | | - Nilam Ram
- Department of Psychology, Stanford University, Stanford, United States
| | | |
Collapse
|
14
|
Wang F, Liu CB, Wang Y, Wang XX, Yang YY, Jiang CY, Le QM, Liu X, Ma L, Wang FF. Morphine- and foot shock-responsive neuronal ensembles in the VTA possess different connectivity and biased GPCR signaling pathway. Theranostics 2024; 14:1126-1146. [PMID: 38250036 PMCID: PMC10797299 DOI: 10.7150/thno.90792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Background: Neurons in the ventral tegmental area (VTA) are sensitive to stress and their maladaptation have been implicated in the psychiatric disorders such as anxiety and addiction, etc. The cellular properties of the VTA neurons in response to different stressors related to different emotional processing remain to be investigated. Methods: By combining immediate early gene (IEG)-dependent labeling, rabies virus tracing, ensemble-specific transcriptomic analysis and fiber photometry recording in the VTA of male mice, the spatial distribution, brain-wide connectivity and cellular signaling pathways in the VTA neuronal ensembles in response to morphine (Mor-Ens) or foot shock (Shock-Ens) stimuli were investigated. Results: Optogenetic activation of the Mor-Ens drove approach behavior, whereas chemogenetic activation of the Shock-Ens increased the anxiety level in mice. Mor-Ens were clustered and enriched in the ventral VTA, contained a higher proportion of dopaminergic neurons, received more inputs from the dorsal medial striatum and the medial hypothalamic zone, and exhibited greater axonal arborization in the zona incerta and ventral pallidum. Whereas Shock-Ens were more dispersed, contained a higher proportion of GABAergic neurons, and received more inputs from the ventral pallidum and the lateral hypothalamic area. The downstream targets of the G protein and β-arrestin pathways, PLCβ3 and phosphorylated AKT1Thr308, were relatively enriched in the Mor-Ens and Shock-Ens, respectively. Cariprazine, the G-protein-biased agonist for the dopamine D2 receptor, increased the response of Mor-Ens to sucrose water and decreased the anxiety-like behavior during morphine withdrawal, whereas the β-arrestin-biased agonist UNC9994 decreased the response of Shock-Ens to tail suspension. Conclusions: Taken together, these findings reveal the heterogeneous connectivity and signaling pathways of the VTA neurons in response to morphine and foot shock, providing new insights for development of specific interventions for psychiatric disorders caused by various stressors associated with different VTA neuronal functions.
Collapse
Affiliation(s)
- Fan Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chao-bao Liu
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xi-xi Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuan-yao Yang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chang-you Jiang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiu-min Le
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Fei-fei Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| |
Collapse
|
15
|
O'Malley CA, Fullerton CL, Mauger AR. Analysing experienced and inexperienced cyclists' attentional focus and self-regulatory strategies during varying intensities of fixed perceived effort cycling: A mixed method study. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 70:102544. [PMID: 37844746 DOI: 10.1016/j.psychsport.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Using a think aloud approach during fixed perceived effort exercise is a unique method to explore the decision-making processes that guide the self-regulation of perceived effort during endurance-based activity. In a two-part study, authors investigated the attentional focus and self-regulatory strategies associated with: Part A - perceived effort corresponding to (RPEGET) and above gas exchange threshold (RPE+15%GET); Part B - between experienced and inexperienced cyclists during fixed perceived effort cycling tasks. Eighteen (15 male, 3 female) healthy, active individuals completed three visits (visit 1 - ramped incremental test and familiarisation, visit 2 and 3-30-min fixed perceived effort cycling). During which, power output, heart rate, lactate, think aloud, and perceptual markers were taken. Random-intercepts linear mixed-effects models assessed the condition, time, and condition × time interactions on all dependent variables. Power output, heart rate, lactate and instances of internal sensory monitoring (t195=2.57,p=.011,β=0.95[0.23,1.68]) and self-regulation (t195=4.14,p=.001,β=1.69[0.89,2.49]) were significantly higher in the RPE+15%GET versus RPEGET trial. No significant differences between inexperienced and experienced cyclists for internal sensory monitoring (t196=-1.78,p=.095,β=-1.73[-3.64,0.18]) or self-regulatory thoughts (t196=-0.39,p=.699,β=-1.06[-6.32,4.21]) were noted but there were significant condition × time interactions for internal monitoring (t196=2.02,p=.045,β=0.44[0.01,0.87]) and self-regulation (t196=3.45,p=.001,β=0.85[0.37,1.33]). Seemingly, experienced athletes associatively attended to internal psychophysiological state and subsequently self-regulate their psychophysiological state at earlier stages of exercise than inexperienced athletes. This is the first study to exhibit the differences in attentional focus and self-regulatory strategies that are activated based on perceived effort intensity and experience level in cyclists.
Collapse
Affiliation(s)
- C A O'Malley
- School of Sport and Exercise Sciences, University of Kent, Canterbury, CT2 7PE, UK; Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | - C L Fullerton
- School of Sport and Exercise Sciences, University of Kent, Canterbury, CT2 7PE, UK; Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA, UK
| | - A R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, CT2 7PE, UK
| |
Collapse
|
16
|
Dong Y, Li Y, Xiang X, Xiao ZC, Hu J, Li Y, Li H, Hu H. Stress relief as a natural resilience mechanism against depression-like behaviors. Neuron 2023; 111:3789-3801.e6. [PMID: 37776853 DOI: 10.1016/j.neuron.2023.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Relief, the appetitive state after the termination of aversive stimuli, is evolutionarily conserved. Understanding the behavioral role of this well-conserved phenomenon and its underlying neurobiological mechanisms are open and important questions. Here, we discover that the magnitude of relief from physical stress strongly correlates with individual resilience to depression-like behaviors in chronic stressed mice. Notably, blocking stress relief causes vulnerability to depression-like behaviors, whereas natural rewards supplied shortly after stress promotes resilience. Stress relief is mediated by reward-related mesolimbic dopamine neurons, which show minute-long, persistent activation after stress termination. Circuitry-wise, activation or inhibition of circuits downstream of the ventral tegmental area during the transient relief period bi-directionally regulates depression resilience. These results reveal an evolutionary function of stress relief in depression resilience and identify the neural substrate mediating this effect. Importantly, our data suggest a behavioral strategy of augmenting positive valence of stress relief with natural rewards to prevent depression.
Collapse
Affiliation(s)
- Yiyan Dong
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yifei Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Xinkuan Xiang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zhuo-Cheng Xiao
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, USA
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Haohong Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China.
| |
Collapse
|
17
|
Latagliata EC, Orsini C, Cabib S, Biagioni F, Fornai F, Puglisi-Allegra S. Prefrontal Dopamine in Flexible Adaptation to Environmental Changes: A Game for Two Players. Biomedicines 2023; 11:3189. [PMID: 38137410 PMCID: PMC10740496 DOI: 10.3390/biomedicines11123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.
Collapse
Affiliation(s)
| | - Cristina Orsini
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Cabib
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
18
|
Berridge KC. Separating desire from prediction of outcome value. Trends Cogn Sci 2023; 27:932-946. [PMID: 37543439 PMCID: PMC10527990 DOI: 10.1016/j.tics.2023.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Individuals typically want what they expect to like, often based on memories of previous positive experiences. However, in some situations desire can decouple completely from memories and from learned predictions of outcome value. The potential for desire to separate from prediction arises from independent operating rules that control motivational incentive salience. Incentive salience, or 'wanting', is a type of mesolimbic desire that evolved for adaptive goals, but can also generate maladaptive addictions. Two proof-of-principle examples are presented here to show how motivational 'wanting' can soar above memory-based predictions of outcome value: (i) 'wanting what is remembered to be disgusting', and (ii) 'wanting what is predicted to hurt'. Consequently, even outcomes remembered and predicted to be negatively aversive can become positively 'wanted'. Similarly, in human addictions, people may experience powerful cue-triggered cravings for outcomes that are not predicted to be enjoyable.
Collapse
Affiliation(s)
- Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Savidge LE, Bales KL. Possible effects of pair bonds on general cognition: Evidence from shared roles of dopamine. Neurosci Biobehav Rev 2023; 152:105317. [PMID: 37442497 DOI: 10.1016/j.neubiorev.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Pair bonding builds on preexisting dopamine connectivity to help form and maintain the bond. The involvement of dopaminergic pathways in pair bonding has stimulated research linking pair bonds to other dopamine-dependent processes, like addiction and social cognition (Burkett & Young, 2012; Yetnikoff, Lavezzi, Reichard, & Zahm, 2014). Less studied is the relationship of pair bonding to non-social cognitive processes. The first half of this review will provide an overview of pair bonding and the role of dopamine within social processes. With a thorough review of the literature, the current study will identify the ways the dopaminergic pathways critical for pair bonding also overlap with cognitive processes. Highlighting dopamine as a key player in pair bonds and non-social cognition will provide evidence that pair bonding can alter general cognitive processes like attention, working memory, cognitive flexibility, and impulse control.
Collapse
Affiliation(s)
- Logan E Savidge
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States.
| | - Karen L Bales
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| |
Collapse
|
20
|
Kragel PA, Treadway MT, Admon R, Pizzagalli DA, Hahn EC. A mesocorticolimbic signature of pleasure in the human brain. Nat Hum Behav 2023; 7:1332-1343. [PMID: 37386105 DOI: 10.1038/s41562-023-01639-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Pleasure is a fundamental driver of human behaviour, yet its neural basis remains largely unknown. Rodent studies highlight opioidergic neural circuits connecting the nucleus accumbens, ventral pallidum, insula and orbitofrontal cortex as critical for the initiation and regulation of pleasure, and human neuroimaging studies exhibit some translational parity. However, whether activation in these regions conveys a generalizable representation of pleasure regulated by opioidergic mechanisms remains unclear. Here we use pattern recognition techniques to develop a human functional magnetic resonance imaging signature of mesocorticolimbic activity unique to states of pleasure. In independent validation tests, this signature is sensitive to pleasant tastes and affect evoked by humour. The signature is spatially co-extensive with mu-opioid receptor gene expression, and its response is attenuated by the opioid antagonist naloxone. These findings provide evidence for a basis of pleasure in humans that is distributed across brain systems.
Collapse
Affiliation(s)
- Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Roee Admon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Evan C Hahn
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
Affiliation(s)
- Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yixiao Luo
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
22
|
Werner M, Borgmann M, Laan E. Sexual Pleasure Matters - and How to Define and Assess It Too. A Conceptual Framework of Sexual Pleasure and the Sexual Response. INTERNATIONAL JOURNAL OF SEXUAL HEALTH : OFFICIAL JOURNAL OF THE WORLD ASSOCIATION FOR SEXUAL HEALTH 2023; 35:313-340. [PMID: 38595929 PMCID: PMC10903685 DOI: 10.1080/19317611.2023.2212663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 04/11/2024]
Abstract
Objective Sexual pleasure is central to current understandings of sexual function, health, and wellbeing. In this article, we suggest that we lack a sufficiently specific, yet encompassing, definition of sexual pleasure and that we therefore lack comprehensive assessments of sexual pleasure. We introduce a definition of sexual pleasure and position it centrally in an adapted framework of the sexual response. In the framework, we include a taxonomy of rewards which can be retrieved from sex and thereby aim to capture the multifaceted nature of sexual pleasure. Methods/Results Through narrative review, we arrive at the definition, framework, and taxonomy by integrating theories of sexual motivation and response with the literature on sexual pleasure and basic rewards. We position this literature within theories of affect and personality which allows us to differentiate between the experience of and the tendency to experience sexual pleasure (i.e., state versus trait sexual pleasure). We discuss how this conceptualization of sexual pleasure could be reflected in self-report assessments to quantitatively assess sexual pleasure. Conclusions The framework may aid to understand the role of the diverse facets of sexual pleasure in sexual function, health, and wellbeing and contribute to giving sexual pleasure the center position it deserves in sex research and therapy.
Collapse
Affiliation(s)
- Marlene Werner
- Department of Sexology and Psychosomatic Obstetrics and Gynaecology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michèle Borgmann
- Department of Health Psychology and Behavioral Medicine, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Ellen Laan
- Department of Sexology and Psychosomatic Obstetrics and Gynaecology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Manssuer L, Ding Q, Zhang Y, Gong H, Liu W, Yang R, Zhang C, Zhao Y, Pan Y, Zhan S, Li D, Sun B, Voon V. Risk and aversion coding in human habenula high gamma activity. Brain 2023; 146:2642-2653. [PMID: 36445730 PMCID: PMC10232252 DOI: 10.1093/brain/awac456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2023] Open
Abstract
Neurons in the primate lateral habenula fire in response to punishments and are inhibited by rewards. Through its modulation of midbrain monoaminergic activity, the habenula is believed to play an important role in adaptive behavioural responses to punishment and underlie depressive symptoms and their alleviation with ketamine. However, its role in value-based decision-making in humans is poorly understood due to limitations with non-invasive imaging methods which measure metabolic, not neural, activity with poor temporal resolution. Here, we overcome these limitations to more closely bridge the gap between species by recording local field potentials directly from the habenula in 12 human patients receiving deep brain stimulation treatment for bipolar disorder (n = 4), chronic pain (n = 3), depression (n = 3) and schizophrenia (n = 2). This allowed us to record neural activity during value-based decision-making tasks involving monetary rewards and losses. High-frequency gamma (60-240 Hz) activity, a proxy for population-level spiking involved in cognitive computations, increased during the receipt of loss and decreased during receipt of reward. Furthermore, habenula high gamma also encoded risk during decision-making, being larger in amplitude for high compared to low risk. For both risk and aversion, differences between conditions peaked approximately between 400 and 750 ms after stimulus onset. The findings not only demonstrate homologies with the primate habenula but also extend its role to human decision-making, showing its temporal dynamics and suggesting revisions to current models. The findings suggest that habenula high gamma could be used to optimize real-time closed-loop deep brain stimulation treatment for mood disturbances and impulsivity in psychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Qiong Ding
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yingying Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Hengfeng Gong
- Shanghai Pudong New Area Mental Health Centre, Tongji University School of Medicine, Shanghai 200124, China
| | - Wei Liu
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Ruoqi Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yijie Zhao
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yixin Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Valerie Voon
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Torres-Berrío A, Estill M, Ramakrishnan A, Kronman H, Patel V, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee Y, Walker D, Martínez-Rivera FJ, Lardner CK, Cuttoli RDD, Russo SJ, Shen L, Sidoli S, Nestler EJ. Monomethylation of Lysine 27 at Histone 3 Confers Lifelong Susceptibility to Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539829. [PMID: 37214877 PMCID: PMC10197593 DOI: 10.1101/2023.05.08.539829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling, and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice exposed to early life stress (ELS) or to chronic social defeat stress (CSDS) in adulthood displayed increased enrichment of H3K27me1, and transient decreases in H3K27me2, in the nucleus accumbens (NAc), a key brain-reward region. Stress induction of H3K27me1 was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which is induced by chronic stress and controls H3K27 methylation patterns. Overexpression of the VEFS domain led to social, emotional, and cognitive abnormalities, and altered excitability of NAc D1 mediums spiny neurons. Together, we describe a novel function of H3K27me1 in brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
|
25
|
Chen X. Valence processing in pons. Neuron 2023; 111:1353-1354. [PMID: 37141860 DOI: 10.1016/j.neuron.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
In this issue of Neuron, Xiao et al.1 reported that inhibitory and excitatory neurons in the pontine central gray encode and transmit opposite valences of sensory stimuli through parallel circuits to a distributed brain network.
Collapse
Affiliation(s)
- Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Xiao C, Wei J, Zhang GW, Tao C, Huang JJ, Shen L, Wickersham IR, Tao HW, Zhang LI. Glutamatergic and GABAergic neurons in pontine central gray mediate opposing valence-specific behaviors through a global network. Neuron 2023; 111:1486-1503.e7. [PMID: 36893756 PMCID: PMC10164086 DOI: 10.1016/j.neuron.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Extracting the valence of environmental cues is critical for animals' survival. How valence in sensory signals is encoded and transformed to produce distinct behavioral responses remains not well understood. Here, we report that the mouse pontine central gray (PCG) contributes to encoding both negative and positive valences. PCG glutamatergic neurons were activated selectively by aversive, but not reward, stimuli, whereas its GABAergic neurons were preferentially activated by reward signals. The optogenetic activation of these two populations resulted in avoidance and preference behavior, respectively, and was sufficient to induce conditioned place aversion/preference. Suppression of them reduced sensory-induced aversive and appetitive behaviors, respectively. These two functionally opponent populations, receiving a broad range of inputs from overlapping yet distinct sources, broadcast valence-specific information to a distributed brain network with distinguishable downstream effectors. Thus, PCG serves as a critical hub to process positive and negative valences of incoming sensory signals and drive valence-specific behaviors with distinct circuits.
Collapse
Affiliation(s)
- Cuiyu Xiao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinxing Wei
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Can Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biological and Biomedical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
27
|
Verharen JPH, de Jong JW, Zhu Y, Lammel S. A computational analysis of mouse behavior in the sucrose preference test. Nat Commun 2023; 14:2419. [PMID: 37105954 PMCID: PMC10140068 DOI: 10.1038/s41467-023-38028-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The sucrose preference test (SPT) measures the relative preference of sucrose over water to assess hedonic behaviors in rodents. Yet, it remains uncertain to what extent the SPT reflects other behavioral components, such as learning, memory, motivation, and choice. Here, we conducted an experimental and computational decomposition of mouse behavior in the SPT and discovered previously unrecognized behavioral subcomponents associated with changes in sucrose preference. We show that acute and chronic stress have sex-dependent effects on sucrose preference, but anhedonia was observed only in response to chronic stress in male mice. Additionally, reduced sucrose preference induced by optogenetics is not always indicative of anhedonia but can also reflect learning deficits. Even small variations in experimental conditions influence behavior, task outcome and interpretation. Thus, an ostensibly simple behavioral task can entail high levels of complexity, demonstrating the need for careful dissection of behavior into its subcomponents when studying the underlying neurobiology.
Collapse
Affiliation(s)
- Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
28
|
Madur L, Ineichen C, Bergamini G, Greter A, Poggi G, Cuomo-Haymour N, Sigrist H, Sych Y, Paterna JC, Bornemann KD, Viollet C, Fernandez-Albert F, Alanis-Lobato G, Hengerer B, Pryce CR. Stress deficits in reward behaviour are associated with and replicated by dysregulated amygdala-nucleus accumbens pathway function in mice. Commun Biol 2023; 6:422. [PMID: 37061616 PMCID: PMC10105726 DOI: 10.1038/s42003-023-04811-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023] Open
Abstract
Reduced reward interest/learning and reward-to-effort valuation are distinct, common symptoms in neuropsychiatric disorders for which chronic stress is a major aetiological factor. Glutamate neurons in basal amygdala (BA) project to various regions including nucleus accumbens (NAc). The BA-NAc neural pathway is activated by reward and aversion, with many neurons being monovalent. In adult male mice, chronic social stress (CSS) leads to reduced discriminative reward learning (DRL) associated with decreased BA-NAc activity, and to reduced reward-to-effort valuation (REV) associated, in contrast, with increased BA-NAc activity. Chronic tetanus toxin BA-NAc inhibition replicates the CSS-DRL effect and causes a mild REV reduction, whilst chronic DREADDs BA-NAc activation replicates the CSS effect on REV without affecting DRL. This study provides evidence that stress disruption of reward processing involves the BA-NAc neural pathway; the bi-directional effects implicate opposite activity changes in reward (learning) neurons and aversion (effort) neurons in the BA-NAc pathway following chronic stress.
Collapse
Affiliation(s)
- Lorraine Madur
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Ineichen
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Giorgio Bergamini
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Greter
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Giulia Poggi
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Nagiua Cuomo-Haymour
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Yaroslav Sych
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | | - Klaus D Bornemann
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Francesc Fernandez-Albert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Gregorio Alanis-Lobato
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christopher R Pryce
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zürich (PUK) and University of Zurich (UZH), Zurich, Switzerland.
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Esancy K, Conceicao LL, Curtright A, Tran T, Condon L, Lecamp B, Dhaka A. A novel small molecule, AS1, reverses the negative hedonic valence of noxious stimuli. BMC Biol 2023; 21:69. [PMID: 37013580 PMCID: PMC10071644 DOI: 10.1186/s12915-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Pain is the primary reason people seek medical care, with chronic pain affecting ~ 20% of people in the USA. However, many existing analgesics are ineffective in treating chronic pain, while others (e.g., opioids) have undesirable side effects. Here, we describe the screening of a small molecule library using a thermal place aversion assay in larval zebrafish to identify compounds that alter aversion to noxious thermal stimuli and could thus serve as potential analgesics. RESULTS From our behavioral screen, we discovered a small molecule, Analgesic Screen 1 (AS1), which surprisingly elicited attraction to noxious painful heat. When we further explored the effects of this compound using other behavioral place preference assays, we found that AS1 was similarly able to reverse the negative hedonic valence of other painful (chemical) and non-painful (dark) aversive stimuli without being inherently rewarding. Interestingly, targeting molecular pathways canonically associated with analgesia did not replicate the effects of AS1. A neuronal imaging assay revealed that clusters of dopaminergic neurons, as well as forebrain regions located in the teleost equivalent of the basal ganglia, were highly upregulated in the specific context of AS1 and aversive heat. Through a combination of behavioral assays and pharmacological manipulation of dopamine circuitry, we determined that AS1 acts via D1 dopamine receptor pathways to elicit this attraction to noxious stimuli. CONCLUSIONS Together, our results suggest that AS1 relieves an aversion-imposed "brake" on dopamine release, and that this unique mechanism may provide valuable insight into the development of new valence-targeting analgesic drugs, as well as medications for other valence-related neurological conditions, such as anxiety and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Lais L Conceicao
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Thanh Tran
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Bryce Lecamp
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, USA.
| |
Collapse
|
30
|
van Peer W. Jealousy: self-inflicted agony and ruin. Int Rev Psychiatry 2023; 35:25-32. [PMID: 37101372 DOI: 10.1080/09540261.2023.2168521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
This chapter analyses the concept of jealousy (as different from envy) in romantic and sexual relationships. It demonstrates that jealousy is both logically and empirically untenable, as it is: (1) a self-contradictory emotion; (2) a self-destructive activity. As to (1) feelings of jealousy are incompatible with true care for the well-being and satisfaction of the loved partner. Logically, the notion of jealousy is self-defeating: it professes to be an expression of love while at the same time forbidding the loved one the freedom to act autonomously, thus killing the very notion of love. As to (2) nearly all empirical data point to the destructive effects to relationships of the feeling of jealousy, Shakespeare's Othello being its archetypal expression and its scathing analysis. The astounding fact, however, is that in many (most?) cultures jealousy is seen as an expression of love, while in reality it is an emanation of possessive feeling void of affection for the person 'loved'. A thorough cultural analysis, coupled to recently available DNA analyses, however, reveal a wholly different picture of extra-pair offspring, fully undermining the foundations upon which the notion of jealousy if based. Recent developments like 'open relationships' and 'polyamory' may be signs of overthrowing the contradictory and destructive aspects of jealousy. They presuppose, however, to undo deeply ingrained social attitudes accompanying love relationships.
Collapse
Affiliation(s)
- Willie van Peer
- Faculty of Languages and Literatures, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
31
|
Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110643. [PMID: 36152737 DOI: 10.1016/j.pnpbp.2022.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Fear memory is critical for individual survival. However, the maladaptive fear response is one of the hallmarks of fear-related disorders, which is characterized by the failure to discriminate threatening signals from neutral or safe cues. The biological mechanisms of fear discrimination remain to be clarified. In this study, we found that the nucleus accumbens (NAc) was indispensable for the formation of cued fear memory in mice, during which the expression of DNA methyltransferase 3a gene (DNMT3a) increased. Injection of Zebularine, a nonspecific DNMT inhibitor, into NAc immediately after conditioning induced a maladaptive fear response to neutral cue (CS-). Using whole-genome bisulfite sequencing (WGBS), differentially methylated sites and methylated regions (DMRs) were investigated. 16,226 DMRs in the genenome were identified, in which, 214 genes with significant differences in their methylation levels and mRNA expression profiles were identified through correlation analysis. Notably, 15 genes were synaptic function-related and 8 genes were enriched in the cGMP-PKG signaling pathway. Moreover, inhibition of PKG impaired fear discrimination. Together, our results revealed the profile and role of genome-wide DNA methylation in NAc in the regulation of fear discrimination.
Collapse
|
32
|
Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology 2023; 48:90-103. [PMID: 36057649 PMCID: PMC9700729 DOI: 10.1038/s41386-022-01422-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that characterize depression. The review also highlights complementary human and preclinical findings that classical and novel antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These findings offer a useful path forward for designing better antidepressant compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
33
|
Emanuel A, Eldar E. Emotions as computations. Neurosci Biobehav Rev 2023; 144:104977. [PMID: 36435390 PMCID: PMC9805532 DOI: 10.1016/j.neubiorev.2022.104977] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Emotions ubiquitously impact action, learning, and perception, yet their essence and role remain widely debated. Computational accounts of emotion aspire to answer these questions with greater conceptual precision informed by normative principles and neurobiological data. We examine recent progress in this regard and find that emotions may implement three classes of computations, which serve to evaluate states, actions, and uncertain prospects. For each of these, we use the formalism of reinforcement learning to offer a new formulation that better accounts for existing evidence. We then consider how these distinct computations may map onto distinct emotions and moods. Integrating extensive research on the causes and consequences of different emotions suggests a parsimonious one-to-one mapping, according to which emotions are integral to how we evaluate outcomes (pleasure & pain), learn to predict them (happiness & sadness), use them to inform our (frustration & content) and others' (anger & gratitude) actions, and plan in order to realize (desire & hope) or avoid (fear & anxiety) uncertain outcomes.
Collapse
Affiliation(s)
- Aviv Emanuel
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 9190501, Israel; Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel.
| | - Eran Eldar
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 9190501, Israel; Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel.
| |
Collapse
|
34
|
Deming P, Heilicher M, Koenigs M. How reliable are amygdala findings in psychopathy? A systematic review of MRI studies. Neurosci Biobehav Rev 2022; 142:104875. [PMID: 36116578 DOI: 10.1016/j.neubiorev.2022.104875] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
The amygdala is a key component in predominant neural circuitry models of psychopathy. Yet, after two decades of neuroimaging research on psychopathy, the reproducibility of amygdala findings is questionable. We systematically reviewed MRI studies (81 of adults, 53 of juveniles) to determine the consistency of amygdala findings across studies, as well as within specific types of experimental tasks, community versus forensic populations, and the lowest- versus highest-powered studies. Three primary findings emerged. First, the majority of studies found null relationships between psychopathy and amygdala structure and function, even in the context of theoretically relevant tasks. Second, findings of reduced amygdala activity were more common in studies with low compared to high statistical power. Third, the majority of peak coordinates of reduced amygdala activity did not fall primarily within the anatomical bounds of the amygdala. Collectively, these findings demonstrate significant gaps in the empirical support for the theorized role of the amygdala in psychopathy and indicate the need for novel research perspectives and approaches in this field.
Collapse
Affiliation(s)
- Philip Deming
- Department of Psychology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA.
| | - Mickela Heilicher
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA
| | - Michael Koenigs
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA
| |
Collapse
|
35
|
Kim B, Andrews-Hanna JR, Han J, Lee E, Woo CW. When self comes to a wandering mind: Brain representations and dynamics of self-generated concepts in spontaneous thought. SCIENCE ADVANCES 2022; 8:eabn8616. [PMID: 36044582 PMCID: PMC9432827 DOI: 10.1126/sciadv.abn8616] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Self-relevant concepts are major building blocks of spontaneous thought, and their dynamics in a natural stream of thought are likely to reveal one's internal states that are important for mental health. Here, we conducted a functional magnetic resonance imaging experiment (n = 62) to examine brain representations and dynamics of self-generated concepts in the context of spontaneous thought using a newly developed free association-based thought sampling task. The dynamics of conceptual associations were predictive of individual differences in general negative affectivity, replicating across multiple datasets (n = 196). Reflecting on self-generated concepts strongly engaged brain regions linked to autobiographical memory, conceptual processes, emotion, and autonomic regulation, including the medial prefrontal and medial temporal subcortical structures. Multivariate pattern-based predictive modeling revealed that the neural representations of valence became more person-specific as the level of perceived self-relevance increased. Overall, this study sheds light on how self-generated concepts in spontaneous thought construct inner affective states and idiosyncrasies.
Collapse
Affiliation(s)
- Byeol Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Jessica R. Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Jihoon Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
36
|
Miguel Telega L, Ashouri Vajari D, Stieglitz T, Coenen VA, Döbrössy MD. New Insights into In Vivo Dopamine Physiology and Neurostimulation: A Fiber Photometry Study Highlighting the Impact of Medial Forebrain Bundle Deep Brain Stimulation on the Nucleus Accumbens. Brain Sci 2022; 12:brainsci12081105. [PMID: 36009169 PMCID: PMC9406226 DOI: 10.3390/brainsci12081105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
New technologies, such as fiber photometry, can overcome long-standing methodological limitations and promote a better understanding of neuronal mechanisms. This study, for the first time, aimed at employing the newly available dopamine indicator (GRABDA2m) in combination with this novel imaging technique. Here, we present a detailed methodological roadmap leading to longitudinal repetitive transmitter release monitoring in in vivo freely moving animals and provide proof-of-concept data. This novel approach enables a fresh look at dopamine release patterns in the nucleus accumbens, following the medial forebrain bundle (mfb) DBS in a rodent model. Our results suggest reliable readouts of dopamine levels over at least 14 days of DBS-induced photometric measurements. We show that mfb-DBS can elicit an increased dopamine response during stimulation (5 s and 20 s DBS) compared to its baseline dopamine activity state, reaching its maximum peak amplitude in about 1 s and then recovering back after stimulation. The effect of different DBS pulse widths (PWs) also suggests a potential differential effect on this neurotransmitter response, but future studies would need to verify this. Using the described approach, we aim to gain insights into the differences between pathological and healthy models and to elucidate more exhaustively the mechanisms under which DBS exerts its therapeutic action.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Danesh Ashouri Vajari
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Máté D. Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
37
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
38
|
Cho YT, Moujaes F, Schleifer CH, Starc M, Ji JL, Santamauro N, Adkinson B, Kolobaric A, Flynn M, Krystal JH, Murray JD, Repovs G, Anticevic A. Reward and loss incentives improve spatial working memory by shaping trial-by-trial posterior frontoparietal signals. Neuroimage 2022; 254:119139. [PMID: 35346841 PMCID: PMC9264479 DOI: 10.1016/j.neuroimage.2022.119139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/29/2022] Open
Abstract
Integrating motivational signals with cognition is critical for goal-directed activities. The mechanisms that link neural changes with motivated working memory continue to be understood. Here, we tested how externally cued and non-cued (internally represented) reward and loss impact spatial working memory precision and neural circuits in human subjects using fMRI. We translated the classic delayed-response spatial working memory paradigm from non-human primate studies to take advantage of a continuous numeric measure of working memory precision, and the wealth of translational neuroscience yielded by these studies. Our results demonstrated that both cued and non-cued reward and loss improved spatial working memory precision. Visual association regions of the posterior prefrontal and parietal cortices, specifically the precentral sulcus (PCS) and intraparietal sulcus (IPS), had increased BOLD signal during incentivized spatial working memory. A subset of these regions had trial-by-trial increases in BOLD signal that were associated with better working memory precision, suggesting that these regions may be critical for linking neural signals with motivated working memory. In contrast, regions straddling executive networks, including areas in the dorsolateral prefrontal cortex, anterior parietal cortex and cerebellum displayed decreased BOLD signal during incentivized working memory. While reward and loss similarly impacted working memory processes, they dissociated during feedback when money won or avoided in loss was given based on working memory performance. During feedback, the trial-by-trial amount and valence of reward/loss received was dissociated amongst regions such as the ventral striatum, habenula and periaqueductal gray. Overall, this work suggests motivated spatial working memory is supported by complex sensory processes, and that the IPS and PCS in the posterior frontoparietal cortices may be key regions for integrating motivational signals with spatial working memory precision.
Collapse
Affiliation(s)
- Youngsun T Cho
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, Child Study Center, 230 South Frontage Road, New Haven, CT, 06519, USA; Connecticut Mental Health Center, Clinical Neuroscience Research Unit, 34 Park Street, 3rd floor, New Haven, CT, 06519, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA.
| | - Flora Moujaes
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Charles H Schleifer
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | | | - Jie Lisa Ji
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Nicole Santamauro
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Brendan Adkinson
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Antonija Kolobaric
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Morgan Flynn
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - John H Krystal
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, NIAAA Center for Translational Neuroscience of Alcoholism, 34 Park Street, 3rd floor, New Haven, CT 06519 USA
| | - John D Murray
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA; Yale University, Department of Physics, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Grega Repovs
- University of Ljubljana, Department of Psychology
| | - Alan Anticevic
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Connecticut Mental Health Center, Clinical Neuroscience Research Unit, 34 Park Street, 3rd floor, New Haven, CT, 06519, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA; University of Zagreb, University Psychiatric Hospital Vrapce; Yale University, Department of Psychology, Box 208205, New Haven, CT, 06520-8205, USA; Yale University, NIAAA Center for Translational Neuroscience of Alcoholism, 34 Park Street, 3rd floor, New Haven, CT 06519 USA.
| |
Collapse
|
39
|
Liu X, Ardakani SP. A machine learning enabled affective E-learning system model. EDUCATION AND INFORMATION TECHNOLOGIES 2022; 27:9913-9934. [PMID: 35399782 PMCID: PMC8984673 DOI: 10.1007/s10639-022-11010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study is to propose an e-learning system model for learning content personalisation based on students' emotions. The proposed system collects learners' brainwaves using a portable Electroencephalogram and processes them via a supervised machine learning algorithm, named K-nearest neighbours (KNN), to recognise real-time emotional status. Besides, it uses a reinforcement learning approach to analyse the learners' emotional states and automatically recommend the best-fitted content that keeps the students in a positive mood. The performance of the proposed system is evaluated in two forms: 1) the system performance and 2) student engagement, satisfaction, and learning. A convenience sampling method is used to select 30 students from the pollution of 281 PartII-undergraduate students who study computer science during the 2020-21 academic year at the University of Nottingham Ningbo China. The selected students are divided into homogenous control and experimental groups for learning English listening and reading skills. According to the machine learning results, the trained KNN recognises the emotional states with an accuracy of 74.3%, the precision of 70.8%, and recall of 69.3%. In addition, the results of the t-Test demonstrate that the proposed e-learning system model has no significant impact on learners' learning and engagement but enhances the student's satisfaction compared to traditional e-learning systems (p < 0.05).
Collapse
Affiliation(s)
- Xinyang Liu
- School of Computer Science, University of Nottingham Ningbo China, 199 Taikang East road, Ningbi, 315100 Zhejiang China
| | - Saeid Pourroostaei Ardakani
- School of Computer Science, University of Nottingham Ningbo China, 199 Taikang East road, Ningbi, 315100 Zhejiang China
| |
Collapse
|
40
|
Coenen VA, Schlaepfer TE, Sajonz BEA, Reinacher PC, Döbrössy MD, Reisert M. "The Heart Asks Pleasure First"-Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive-Compulsive Disorder. Brain Sci 2022; 12:438. [PMID: 35447971 PMCID: PMC9028695 DOI: 10.3390/brainsci12040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
More than a decade ago, deep brain stimulation (DBS) of the superolateral medial forebrain bundle (slMFB), as part of the greater MFB system, had been proposed as a putative yet experimental treatment strategy for therapy refractory depression (TRD) and later for obsessive-compulsive disorders (OCD). Antidepressant and anti-OCD efficacy have been shown in open case series and smaller trials and were independently replicated. The MFB is anato-physiologically confluent with the SEEKING system promoting euphoric drive, reward anticipation and reward; functions realized through the mesocorticolimbic dopaminergic system. Growing clinical experience concerning surgical and stimulation aspects from a larger number of patients shows an MFB functionality beyond SEEKING and now re-informs the scientific rationale concerning the MFB's (patho-) physiology. In this white paper, we combine observations from more than 75 cases of slMFB DBS. We integrate these observations with a selected literature review to provide a new neuroethological view on the MFB. We here formulate a re-interpretation of the MFB as the main structure of an integrated SEEKING/MAINTENANCE circuitry, allowing for individual homeostasis and well-being through emotional arousal, basic and higher affect valence, bodily reactions, motor programing, vigor and flexible behavior, as the basis for the antidepressant and anti-OCD efficacy.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Thomas E. Schlaepfer
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Department of Interventional Biological Psychiatry, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Máté D. Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
41
|
Shen L, Zhang GW, Tao C, Seo MB, Zhang NK, Huang JJ, Zhang LI, Tao HW. A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nat Commun 2022; 13:1194. [PMID: 35256596 PMCID: PMC8901785 DOI: 10.1038/s41467-022-28854-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Valence detection and processing are essential for the survival of animals and their life quality in complex environments. Neural circuits underlying the transformation of external sensory signals into positive valence coding to generate appropriate behavioral responses remain not well-studied. Here, we report that somatostatin (SOM) subtype of GABAergic neurons in the mouse medial septum complex (MS), but not parvalbumin subtype or glutamatergic neurons, specifically encode reward signals and positive valence. Through an ascending pathway from the nucleus of solitary tract and then parabrachial nucleus, the MS SOM neurons receive rewarding taste signals and suppress the lateral habenula. They contribute essentially to appetitive associative learning via their projections to the lateral habenula: learning enhances their responses to reward-predictive sensory cues, and suppressing their responses to either conditioned or unconditioned stimulus impairs acquisition of reward learning. Thus, MS serves as a critical hub for transforming bottom-up sensory signals to mediate appetitive behaviors.
Collapse
Affiliation(s)
- Li Shen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Can Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Michelle B Seo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nicole K Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.,Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA. .,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA. .,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
42
|
Demidenko MI, Huntley ED, Weigard AS, Keating DP, Beltz AM. Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking. J Neurosci Res 2022; 100:762-779. [PMID: 35043448 PMCID: PMC8978150 DOI: 10.1002/jnr.25005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/08/2022]
Abstract
Adolescent risk-taking, including sensation seeking (SS), is often attributed to developmental changes in connectivity among brain regions implicated in cognitive control and reward processing. Despite considerable scientific and popular interest in this neurodevelopmental framework, there are few empirical investigations of adolescent functional connectivity, let alone examinations of its links to SS behavior. The studies that have been done focus on mean-based approaches and leave unanswered questions about individual differences in neurodevelopment and behavior. The goal of this paper is to take a person-specific approach to the study of adolescent functional connectivity during a continuous motivational state, and to examine links between connectivity and self-reported SS behavior in 104 adolescents (MAge = 19.3; SDAge = 1.3). Using Group Iterative Multiple Model Estimation (GIMME), person-specific connectivity during two neuroimaging runs of a monetary incentive delay task was estimated among 12 a priori brain regions of interest representing reward, cognitive, and salience networks. Two data-driven subgroups were detected, a finding that was consistent between both neuroimaging runs, but associations with SS were only found in the first run, potentially reflecting neural habituation in the second run. Specifically, the subgroup that had unique connections between reward-related regions had greater SS and showed a distinctive relation between connectivity strength in the reward regions and SS. These findings provide novel evidence for heterogeneity in adolescent brain-behavior relations by showing that subsets of adolescents have unique associations between neural motivational processing and SS. Findings have broader implications for future work on reward processing, as they demonstrate that brain-behavior relations may attenuate across runs.
Collapse
Affiliation(s)
| | - Edward D. Huntley
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P. Keating
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Adriene M. Beltz
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Puccetti NA, Villano WJ, Fadok JP, Heller AS. Temporal dynamics of affect in the brain: Evidence from human imaging and animal models. Neurosci Biobehav Rev 2022; 133:104491. [PMID: 34902442 PMCID: PMC8792368 DOI: 10.1016/j.neubiorev.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Emotions are time-varying internal states that promote survival in the face of dynamic environments and shifting homeostatic needs. Research in non-human organisms has recently afforded specific insights into the neural mechanisms that support the emergence, persistence, and decay of affective states. Concurrently, a separate affective neuroscience literature has begun to dissect the neural bases of affective dynamics in humans. However, the circuit-level mechanisms identified in animals lack a clear mapping to the human neuroscience literature. As a result, critical questions pertaining to the neural bases of affective dynamics in humans remain unanswered. To address these shortcomings, the present review integrates findings from humans and non-human organisms to highlight the neural mechanisms that govern the temporal features of emotional states. Using the theory of affective chronometry as an organizing framework, we describe the specific neural mechanisms and modulatory factors that arbitrate the rise-time, intensity, and duration of emotional states.
Collapse
Affiliation(s)
- Nikki A Puccetti
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - William J Villano
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - Jonathan P Fadok
- Department of Psychology and Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Aaron S Heller
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA.
| |
Collapse
|
44
|
Tong Y, Pfeiffer L, Serchov T, Coenen VA, Döbrössy MD. Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. J Neurosci Res 2022; 100:897-911. [PMID: 35088434 DOI: 10.1002/jnr.25014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/25/2021] [Accepted: 01/02/2022] [Indexed: 12/27/2022]
Abstract
Major depressive disorder is one of the most common mental disorders, and more than 300 million of people suffer from depression worldwide. Recent clinical trials indicate that deep brain stimulation of the superolateral medial forebrain bundle (mfb) can have rapid and long-term antidepressant effects in patients with treatment-resistant depression. However, the mechanisms of action are elusive. In this study, using female rats, we demonstrate the antidepressant effects of selective optogenetic stimulation of the ventral tegmental area's dopaminergic (DA) neurons passing through the mfb and compare different stimulation patterns. Chronic mild unpredictable stress (CMUS) induced depressive-like, but not anxiety-like phenotype. Short-term and long-term stimulation demonstrated antidepressant effect (OSST) and improved anxiolytic effect (EPM), while long-term stimulation during CMUS induction prevented depressive-like behavior (OSST and USV) and improved anxiolytic effect (EPM). The results highlight that long-term accumulative stimulation on DA pathways is required for antidepressant and anxiolytic effect.
Collapse
Affiliation(s)
- Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Lisa Pfeiffer
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Özümerzifon Y, Ross A, Brinza T, Gibney G, Garber CE. Exploring a Dance/Movement Program on Mental Health and Well-Being in Survivors of Intimate Partner Violence During a Pandemic. Front Psychiatry 2022; 13:887827. [PMID: 35722545 PMCID: PMC9204421 DOI: 10.3389/fpsyt.2022.887827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The aim of this study was to explore the feasibility and benefits of a 12-session dance/movement program for intimate partner violence survivors' mental health and PTSD symptoms during the COVID-19 Pandemic. The specific purposes were fourfold: (1) To determine the feasibility of delivering a virtual dance/movement workshop program; (2) to examine the effects of the program on symptoms of PTSD and psychological distress; (3) to determine whether heart rate variability improves; and (4) to describe the individual and shared experiences of a subgroup of participants of the program. METHODS Forty-five women ages 23-48 years were randomized to a 12-session virtual creative dance/movement program or a usual care control group, and completed questionnaires about PTSD and mental health symptoms, general health, physical activity, and underwent a brief measurement of heart rate variability. A subset of the intervention group participated in a semi-structured focus group. RESULTS The results of the study showed that the female survivors of intimate partner violence who participated in the virtual workshops felt better, and they experienced improved affect and reduced tension. They found new ways to express themselves, attune to their bodies, learn new self-care habits, and build community as they engaged in the workshops. Over the course of the study, the participants' symptoms of PTSD and psychological distress lessened. There were no changes in heart rate variability. CONCLUSIONS This complex study was successfully completed during a global pandemic and resulted in improvements in some mental health symptoms and overall well-being. Given the importance of this work with intimate partner violence survivors, further work exploring dance/movement workshops for participants virtually and in-person is needed.
Collapse
Affiliation(s)
| | - Allison Ross
- Sanctuary for Families, Inc., New York, NY, United States
| | - Tessa Brinza
- Gina Gibney Dance, Inc., New York, NY, United States
| | - Gina Gibney
- Gina Gibney Dance, Inc., New York, NY, United States
| | - Carol Ewing Garber
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States
| |
Collapse
|
46
|
Bagdas D, Rupprecht LE, Nunes EJ, Schillinger E, Immanuel JJ, Addy NA. Evaluation of Flavor Effects on Oral Nicotine Liking and/or Disliking Using the Taste Reactivity Test in Rats. Nicotine Tob Res 2021; 24:753-760. [PMID: 34918123 DOI: 10.1093/ntr/ntab241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Tobacco product flavors may change the sensory properties of nicotine, such as taste and olfactory cues, which may alter nicotine reward and aversion and nicotine taking behavior. The hedonic or aversive value of a taste stimulus can be evaluated by examining affective orofacial movements in rodents. AIMS AND METHODS We characterized taste responses to various oral nicotine concentrations using the taste reactivity test in rats. We also evaluated the impact of menthol and benzaldehyde (cherry, almond) flavorants on both ingestive and aversive responses to oral nicotine. Adult Sprague-Dawley rats (n = 5-10 per sex per group) were implanted with intraoral catheters and received 20 infusions (200 µl/ea). Nicotine (1-100 µg/mL) was evaluated in taste reactivity test to determine taste responses to nicotine. Later, the effects of menthol (50 µg/mL) and benzaldehyde (100 µg/mL) on the taste responses to nicotine were determined. RESULTS Nicotine at low concentrations (3 µg/mL in males, 1 µg/mL in females) elicited significantly greater ingestive responses compared with water, whereas higher nicotine concentrations (≥30 µg/mL in males, ≥10 µg/mL in females) elicited significant aversive reactions. Thus, intraoral nicotine induced both hedonic and aversive responses in a concentration- and sex-dependent manner. Females were more sensitive to nicotine's concentration. The addition of menthol or benzaldehyde significantly increased the hedonic responses to nicotine, and significantly decreased the aversive nicotine responses. CONCLUSIONS Oral nicotine induces both hedonic and aversive taste responses, which may represent liking and disliking. Menthol and benzaldehyde can alter the orosensory experience of nicotine, which may influence nicotine's abuse liability. IMPLICATIONS Our work represents a model to study impact of flavors on oral nicotine liking and disliking responses in rats. Moreover, our findings show that menthol and benzaldehyde alter the orosensory experience of nicotine, suggesting that both could influence nicotine's abuse liability.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Emma Schillinger
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Judah J Immanuel
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Fluoxetine incentivizes ventral striatum encoding of reward and punishment. Neuropsychopharmacology 2021; 46:2041-2042. [PMID: 33927342 PMCID: PMC8505626 DOI: 10.1038/s41386-021-01012-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022]
|
48
|
Schreiner DC, Yalcinbas EA, Gremel CM. A Push For Examining Subjective Experience in Value-Based Decision-Making. Curr Opin Behav Sci 2021; 41:45-49. [PMID: 34056054 PMCID: PMC8153361 DOI: 10.1016/j.cobeha.2021.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subjective experience is a powerful contributor to value-based decision-making. Not every decision is the same, nor made in isolation. Rather, decision-making relies on historical information and internal states for adaptive control. Hence, it is inherently continuous with respect to time - one decision or action evolves into the next. However, forays into the neurobiological underpinnings of decision-making have too frequently ignored the contribution of such continuous subjective experience, instead tying circuit activity and brain area involvement to discrete averaged behaviors and task parameters. While much information has been gained through these investigations, recent works have demonstrated the potential for a greater understanding of neural mechanisms when the continuous, experiential nature of behavior is integrated into the investigation. Such integration has important implications for disease states with disordered decision-making such as addiction, where subjective experience is a large contributor to the disorder.
Collapse
Affiliation(s)
- Drew C. Schreiner
- The Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ege A. Yalcinbas
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- The Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
49
|
Quinde-Zlibut JM, Williams ZJ, Gerdes M, Mash LE, Heflin BH, Cascio C. Multifaceted empathy differences in children and adults with autism. Sci Rep 2021; 11:19503. [PMID: 34593865 PMCID: PMC8484273 DOI: 10.1038/s41598-021-98516-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Although empathy impairments have been reported in autistic individuals, there is no clear consensus on how emotional valence influences this multidimensional process. In this study, we use the Multifaceted Empathy Test for juveniles (MET-J) to interrogate emotional and cognitive empathy in 184 participants (ages 8-59 years, 83 autistic) under the robust Bayesian inference framework. Group comparisons demonstrate previously unreported interaction effects between: (1) valence and autism diagnosis in predictions of emotional resonance, and (2) valence and age group in predictions of arousal to images portraying positive and negative facial expressions. These results extend previous studies using the MET by examining differential effects of emotional valence in a large sample of autistic children and adults with average or above-average intelligence. We report impaired cognitive empathy in autism, and subtle differences in emotional empathy characterized by less distinction between emotional resonance to positive vs. negative facial expressions in autism compared to neurotypicals. Reduced emotional differentiation between positive and negative affect in others could be a mechanism for diminished social reciprocity that poses a universal challenge for people with autism. These component- and valence- specific findings are of clinical relevance for the development and implementation of target-specific social interventions in autism.
Collapse
Affiliation(s)
- Jennifer M Quinde-Zlibut
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA.
| | - Zachary J Williams
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madison Gerdes
- Graduate Program in Criminology and Justice Policy, Northeastern University, Boston, MA, USA
| | - Lisa E Mash
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Brynna H Heflin
- Graduate Program in Clinical Psychology, Florida International University, Miami, FL, USA
| | - Carissa Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
50
|
Ben-Zion Z, Shany O, Admon R, Keynan NJ, Avisdris N, Balter SR, Shalev AY, Liberzon I, Hendler T. Neural Responsivity to Reward versus Punishment Shortly after Trauma Predicts Long-term Development of Post-Traumatic Stress Symptoms. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:150-161. [PMID: 34534702 DOI: 10.1016/j.bpsc.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Processing negative and positive valenced stimuli involve multiple brain regions including the amygdala and ventral striatum (VS). Post-Traumatic Stress Disorder (PTSD) is often associated with hyper-responsivity to negatively valenced, yet recent evidence also points to deficient positive valence functioning. It is yet unclear what is the relative contribution of such opposing valence processing shortly after trauma to the development of chronic PTSD. METHODS Neurobehavioral indicators of motivational positive vs. negative valence sensitivities were longitudinally assessed in 171 adults (87 females, age=34.19±11.47 years) at 1-, 6-, and 14-months following trauma exposure (TP1, TP2, TP3). Using a gambling fMRI paradigm, amygdala and VS functionality (activity and functional connectivity with the prefrontal cortex) in response to rewards vs. punishments were assessed with relation to PTSD severity at different time-points. The effect of valence processing was depicted behaviorally by the amount of risk taken to maximize reward. RESULTS PTSD severity at TP1 was associated with greater neural functionality in the amygdala (but not the VS) towards punishments vs. rewards, and fewer risky choices. PTSD severity at TP3 was associated with decreased neural functionality in both the VS and amygdala towards rewards vs. punishments at TP1 (but not with risky behavior). Explainable machine learning revealed the primacy of VS biased processing, over the amygdala, in predicting PTSD severity at TP3. CONCLUSIONS These results highlight the importance of biased neural responsivity to positive relative to negative motivational outcomes in PTSD development. Novel therapeutic strategies early after trauma may thus target both valence fronts.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Yale School of Medicine, Yale University, New Haven, Connecticut, United States; United States Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Ofir Shany
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Nimrod Jackob Keynan
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Netanell Avisdris
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Reznik Balter
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M Health Science Center, TX, USA
| | - Talma Hendler
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|