1
|
Chareyron LJ, Chong WK, Banks T, Burgess N, Saunders RC, Vargha-Khadem F. Anatomo-functional changes in neural substrates of cognitive memory in developmental amnesia: Insights from automated and manual Magnetic Resonance Imaging examinations. Hippocampus 2024; 34:645-658. [PMID: 39268888 PMCID: PMC11489024 DOI: 10.1002/hipo.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Despite bilateral hippocampal damage dating to the perinatal or early childhood period and severely impaired episodic memory, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganize to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate, and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40%, while the atrophy of the uncus was moderate (-24%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance, viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions. More severe hippocampal damage may be more likely to promote structural and/or functional reorganization in areas connected to the hippocampus. In this hypothesis, different levels of hippocampal function may be rescued following this variable reorganization. Our findings document not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.
Collapse
Affiliation(s)
- Loïc J. Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland
| | - W.K. Kling Chong
- Developmental Imaging & Biophysics, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| | - Tina Banks
- Developmental Imaging & Biophysics, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, WC1N 3AZ London, UK
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| |
Collapse
|
2
|
Zhao M, Xin Y, Deng H, Zuo Z, Wang X, Bi Y, Liu N. Object color knowledge representation occurs in the macaque brain despite the absence of a developed language system. PLoS Biol 2024; 22:e3002863. [PMID: 39466847 PMCID: PMC11542842 DOI: 10.1371/journal.pbio.3002863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024] Open
Abstract
Animals guide their behaviors through internal representations of the world in the brain. We aimed to understand how the macaque brain stores such general world knowledge, focusing on object color knowledge. Three functional magnetic resonance imaging (fMRI) experiments were conducted in macaque monkeys: viewing chromatic and achromatic gratings, viewing grayscale images of their familiar fruits and vegetables (e.g., grayscale strawberry), and viewing true- and false-colored objects (e.g., red strawberry and green strawberry). We observed robust object knowledge representations in the color patches, especially the one located around TEO: the activity patterns could classify grayscale pictures of objects based on their memory color and response patterns in these regions could translate between chromatic grating viewing and grayscale object viewing (e.g., red grating-grayscale images of strawberry), such that classifiers trained by viewing chromatic gratings could successfully classify grayscale object images according to their memory colors. Our results showed direct positive evidence of object color memory in macaque monkeys. These results indicate the perceptually grounded knowledge representation as a conservative memory mechanism and open a new avenue to study this particular (semantic) memory representation with macaque models.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haoyun Deng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Qi Z, Xiong H, Zhuo J, Cao D, Liu H, Shi W, Lang Y, Liu Y, Zhang G, Jiang T. Intracranial EEGs evidenced visual object processing in the human medial temporal lobe subregions. Neuroscience 2024; 555:205-212. [PMID: 39053670 DOI: 10.1016/j.neuroscience.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
Collapse
Affiliation(s)
- Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan 570228, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongcui Lang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
4
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Lee DG, McLachlan CA, Nogueira R, Kwon O, Carey AE, House G, Lagani GD, LaMay D, Fusi S, Chen JL. Perirhinal cortex learns a predictive map of the task environment. Nat Commun 2024; 15:5544. [PMID: 38956015 PMCID: PMC11219840 DOI: 10.1038/s41467-024-47365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/25/2024] [Indexed: 07/04/2024] Open
Abstract
Goal-directed tasks involve acquiring an internal model, known as a predictive map, of relevant stimuli and associated outcomes to guide behavior. Here, we identified neural signatures of a predictive map of task behavior in perirhinal cortex (Prh). Mice learned to perform a tactile working memory task by classifying sequential whisker stimuli over multiple training stages. Chronic two-photon calcium imaging, population analysis, and computational modeling revealed that Prh encodes stimulus features as sensory prediction errors. Prh forms stable stimulus-outcome associations that can progressively be decoded earlier in the trial as training advances and that generalize as animals learn new contingencies. Stimulus-outcome associations are linked to prospective network activity encoding possible expected outcomes. This link is mediated by cholinergic signaling to guide task performance, demonstrated by acetylcholine imaging and systemic pharmacological perturbation. We propose that Prh combines error-driven and map-like properties to acquire a predictive map of learned task behavior.
Collapse
Affiliation(s)
- David G Lee
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Center for Neurophotonics, Boston University, Boston, MA, 02215, USA
| | - Caroline A McLachlan
- Center for Neurophotonics, Boston University, Boston, MA, 02215, USA
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Ramon Nogueira
- Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
| | - Osung Kwon
- Center for Neurophotonics, Boston University, Boston, MA, 02215, USA
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Alanna E Carey
- Center for Neurophotonics, Boston University, Boston, MA, 02215, USA
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Garrett House
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Gavin D Lagani
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Danielle LaMay
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Center for Neurophotonics, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
She L, Benna MK, Shi Y, Fusi S, Tsao DY. Temporal multiplexing of perception and memory codes in IT cortex. Nature 2024; 629:861-868. [PMID: 38750353 PMCID: PMC11111405 DOI: 10.1038/s41586-024-07349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/25/2024] [Indexed: 05/24/2024]
Abstract
A central assumption of neuroscience is that long-term memories are represented by the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) cortex represent the sensory percept of visual objects using a distributed axis code2-4. Whether and how the same IT neural population represents the long-term memory of visual objects remains unclear. Here we examined how familiar faces are encoded in the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is rotated relative to that for unfamiliar faces at long latency; in TP this memory-related rotation was much weaker. Contrary to previous claims, the relative response magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity in any patch5-11. The mechanism underlying the memory-related axis change is likely intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics in AM. Overall, our results suggest that memories of familiar faces are represented in AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell population can encode both the percept and memory of faces.
Collapse
Affiliation(s)
- Liang She
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA.
| | - Marcus K Benna
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Yuelin Shi
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Stefano Fusi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Neuroscience, University of California, Berkeley, CA, USA.
| |
Collapse
|
8
|
Chareyron LJ, Chong WKK, Banks T, Burgess N, Saunders RC, Vargha-Khadem F. Anatomo-functional changes in neural substrates of cognitive memory in developmental amnesia: Insights from automated and manual MRI examinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.23.525152. [PMID: 36789443 PMCID: PMC9928053 DOI: 10.1101/2023.01.23.525152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite bilateral hippocampal damage dating to perinatal or early-childhood period, and severely-impaired episodic memory that unfolds in later childhood, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganise to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40% while the atrophy of the uncus was moderate (-23%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions, such that the greater the damage, the more likely it is that surrounding cortical areas will be recruited to rescue the putative functions of the damaged subregions. Our findings document for the first time not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.
Collapse
|
9
|
Miyamoto K. Neural circuits for retrospective and prospective introspection for the past, present and future in macaque monkeys and humans. Neurosci Res 2024; 201:46-49. [PMID: 38460842 DOI: 10.1016/j.neures.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 03/11/2024]
Abstract
For animals, including humans, to have self-awareness, the ability to reflect on one's own perceptions and cognitions, which is known as metacognition, and an understanding of consistency of the self from the past to the present and into the future based on metacognition is essential. Through the mediation of self-consciousness, animals are thought to be able to proactively act to change their environment rather than passively responding to changes in their environment. However, it has not been known whether animals have self-awareness, and, if so, how it is implemented neurobiologically. In this review article, I introduce our studies examining the neural basis of metacognitive abilities for past, present, and future actions in macaque monkeys and humans, and explore the evolutionary origins of self-awareness.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
10
|
Blokland A, Jackson M, Puustinen K, Soeterboek J, Heckman PRA. Acute sleep loss impairs object but not spatial pattern separation in humans. Neurosci Lett 2023; 818:137535. [PMID: 39491126 DOI: 10.1016/j.neulet.2023.137535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Pattern separation allows us to form discrete representations of information in memory. Pattern separation can be measured in several domains including spatial and object-based discrimination. The brain area largely involved in this process is the dentate gyrus of the hippocampus, which has been shown to be particularly sensitive to the effects of sleep loss. However, methodology in rodent and human studies varies greatly making translational conclusions difficult. Therefore, the aim of the current study was to measure the effects of sleep deprivation on human hippocampal function, using well-validated spatial and object-based pattern separation tests. The effects of acute sleep loss were examined, as this method is frequently used in rodent research but not human studies. Results show that sleep loss impaired performance on the object-based version of the test, but not spatial pattern separation. The findings support the notion that these discrimination projections represent separate but complimentary hippocampal processes, and further elucidates how they may be discretely affected by acute sleep loss.
Collapse
Affiliation(s)
- Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Meyra Jackson
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kia Puustinen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium; Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jens Soeterboek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Alzheimer Centrum Limburg, School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Pim R A Heckman
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Villard J, Chareyron LJ, Piguet O, Lambercy P, Lonchampt G, Lavenex PB, Amaral DG, Lavenex P. Structural plasticity in the entorhinal and perirhinal cortices following hippocampal lesions in rhesus monkeys. Hippocampus 2023; 33:1094-1112. [PMID: 37337377 PMCID: PMC10543642 DOI: 10.1002/hipo.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Immature neurons expressing the Bcl2 protein are present in various regions of the mammalian brain, including the amygdala and the entorhinal and perirhinal cortices. Their functional role is unknown but we have previously shown that neonatal and adult hippocampal lesions increase their differentiation in the monkey amygdala. Here, we assessed whether hippocampal lesions similarly affect immature neurons in the entorhinal and perirhinal cortices. Since Bcl2-positive cells were found mainly in areas Eo, Er, and Elr of the entorhinal cortex and in layer II of the perirhinal cortex, we also used Nissl-stained sections to determine the number and soma size of immature and mature neurons in layer III of area Er and layer II of area 36 of the perirhinal cortex. We found different structural changes in these regions following hippocampal lesions, which were influenced by the time of the lesion. In neonate-lesioned monkeys, the number of immature neurons in the entorhinal and perirhinal cortices was generally higher than in controls. The number of mature neurons was also higher in layer III of area Er of neonate-lesioned monkeys but no differences were found in layer II of area 36. In adult-lesioned monkeys, the number of immature neurons in the entorhinal cortex was lower than in controls but did not differ from controls in the perirhinal cortex. The number of mature neurons in layer III of area Er did not differ from controls, but the number of small, mature neurons in layer II of area 36 was lower than in controls. In sum, hippocampal lesions impacted populations of mature and immature neurons in discrete regions and layers of the entorhinal and perirhinal cortices, which are interconnected with the amygdala and provide major cortical inputs to the hippocampus. These structural changes may contribute to some functional recovery following hippocampal injury in an age-dependent manner.
Collapse
Affiliation(s)
- Justine Villard
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Loïc J. Chareyron
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Olivia Piguet
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pauline Lambercy
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Gianni Lonchampt
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
- Faculty of Psychology, UniDistance Suisse, Switzerland
| | - David G. Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| |
Collapse
|
12
|
Damera SR, Malone PS, Stevens BW, Klein R, Eberhardt SP, Auer ET, Bernstein LE, Riesenhuber M. Metamodal Coupling of Vibrotactile and Auditory Speech Processing Systems through Matched Stimulus Representations. J Neurosci 2023; 43:4984-4996. [PMID: 37197979 PMCID: PMC10324991 DOI: 10.1523/jneurosci.1710-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/10/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
It has been postulated that the brain is organized by "metamodal," sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both "standard" and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain.SIGNIFICANCE STATEMENT It has been proposed that the brain is organized by "metamodal," sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals "to see" by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential.
Collapse
Affiliation(s)
- Srikanth R Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Patrick S Malone
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Benson W Stevens
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Richard Klein
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Silvio P Eberhardt
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | - Edward T Auer
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | - Lynne E Bernstein
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | | |
Collapse
|
13
|
Yang C, Naya Y. Sequential involvements of the perirhinal cortex and hippocampus in the recall of item-location associative memory in macaques. PLoS Biol 2023; 21:e3002145. [PMID: 37289802 DOI: 10.1371/journal.pbio.3002145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
The standard consolidation theory suggests that the hippocampus (HPC) is critically involved in acquiring new memory, while storage and recall gradually become independent of it. Converging studies have shown separate involvements of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in item and spatial processes, whereas HPC relates the item to a spatial context. These 2 strands of literature raise the following question; which brain region is involved in the recall process of item-location associative memory? To solve this question, this study applied an item-location associative (ILA) paradigm in a single-unit study of nonhuman primates. We trained 2 macaques to associate 4 visual item pairs with 4 locations on a background map in an allocentric manner before the recording sessions. In each trial, 1 visual item and the map image at a tilt (-90° to 90°) were sequentially presented as the item-cue and the context-cue, respectively. The macaques chose the item-cue location relative to the context-cue by positioning their gaze. Neurons in the PRC, PHC, and HPC, but not area TE, exhibited item-cue responses which signaled retrieval of item-location associative memory. This retrieval signal first appeared in the PRC, followed by the HPC and PHC. We examined whether neural representations of the retrieved locations were related to the external space that the macaques viewed. A positive representation similarity was found in the HPC and PHC, but not in the PRC, thus suggesting a contribution of the HPC to relate the retrieved location from the PRC with a first-person perspective of the subjects and provide the self-referenced retrieved location to the PHC. These results imply distinct but complementary contributions of the PRC and HPC to recall of item-location associative memory that can be used across multiple spatial contexts.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Center for Life Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
14
|
Danieli K, Guyon A, Bethus I. Episodic Memory formation: A review of complex Hippocampus input pathways. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110757. [PMID: 37086812 DOI: 10.1016/j.pnpbp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Memories of everyday experiences involve the encoding of a rich and dynamic representation of present objects and their contextual features. Traditionally, the resulting mnemonic trace is referred to as Episodic Memory, i.e. the "what", "where" and "when" of a lived episode. The journey for such memory trace encoding begins with the perceptual data of an experienced episode handled in sensory brain regions. The information is then streamed to cortical areas located in the ventral Medio Temporal Lobe, which produces multi-modal representations concerning either the objects (in the Perirhinal cortex) or the spatial and contextual features (in the parahippocampal region) of the episode. Then, this high-level data is gated through the Entorhinal Cortex and forwarded to the Hippocampal Formation, where all the pieces get bound together. Eventually, the resulting encoded neural pattern is relayed back to the Neocortex for a stable consolidation. This review will detail these different stages and provide a systematic overview of the major cortical streams toward the Hippocampus relevant for Episodic Memory encoding.
Collapse
Affiliation(s)
| | - Alice Guyon
- Université Cote d'Azur, Neuromod Institute, France; Université Cote d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Ingrid Bethus
- Université Cote d'Azur, Neuromod Institute, France; Université Cote d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| |
Collapse
|
15
|
Lee DG, McLachlan CA, Nogueira R, Kwon O, Carey AE, House G, Lagani GD, LaMay D, Fusi S, Chen JL. PERIRHINAL CORTEX LEARNS A PREDICTIVE MAP (INTERNAL MODEL) OF THE TASK ENVIRONMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.532214. [PMID: 36993645 PMCID: PMC10055158 DOI: 10.1101/2023.03.17.532214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Goal-directed tasks involve acquiring an internal model, known as a predictive map, of relevant stimuli and associated outcomes to guide behavior. Here, we identified neural signatures of a predictive map of task behavior in perirhinal cortex (Prh). Mice learned to perform a tactile working memory task by classifying sequential whisker stimuli over multiple training stages. Chemogenetic inactivation demonstrated that Prh is involved in task learning. Chronic two-photon calcium imaging, population analysis, and computational modeling revealed that Prh encodes stimulus features as sensory prediction errors. Prh forms stable stimulus-outcome associations that expand in a retrospective manner and generalize as animals learn new contingencies. Stimulus-outcome associations are linked to prospective network activity encoding possible expected outcomes. This link is mediated by cholinergic signaling to guide task performance, demonstrated by acetylcholine imaging and perturbation. We propose that Prh combines error-driven and map-like properties to acquire a predictive map of learned task behavior.
Collapse
Affiliation(s)
- David G Lee
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
- Center for Neurophotonics, Boston University, Boston MA 02215, USA
| | - Caroline A McLachlan
- Center for Neurophotonics, Boston University, Boston MA 02215, USA
- Department of Biology, Boston University, Boston MA 02215, USA
| | - Ramon Nogueira
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York NY 10027, USA
| | - Osung Kwon
- Center for Neurophotonics, Boston University, Boston MA 02215, USA
- Department of Biology, Boston University, Boston MA 02215, USA
| | - Alanna E Carey
- Center for Neurophotonics, Boston University, Boston MA 02215, USA
- Department of Biology, Boston University, Boston MA 02215, USA
| | - Garrett House
- Department of Biology, Boston University, Boston MA 02215, USA
| | - Gavin D Lagani
- Department of Biology, Boston University, Boston MA 02215, USA
| | - Danielle LaMay
- Department of Biology, Boston University, Boston MA 02215, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York NY 10027, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
- Center for Neurophotonics, Boston University, Boston MA 02215, USA
- Department of Biology, Boston University, Boston MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston MA 02215, USA
| |
Collapse
|
16
|
Spets DS, Slotnick SD. Entorhinal Cortex Functional Connectivity during Item Long-Term Memory and the Role of Sex. Brain Sci 2023; 13:brainsci13030446. [PMID: 36979256 PMCID: PMC10046190 DOI: 10.3390/brainsci13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A growing body of literature shows there are sex differences in the patterns of brain activity during long-term memory. However, there is a paucity of evidence on sex differences in functional brain connectivity. We previously identified sex differences in the patterns of connections with the hippocampus, a medial temporal lobe (MTL) subregion, during spatial long-term memory. The perirhinal/entorhinal cortex, another MTL subregion, plays a critical role in item memory. In the current functional magnetic resonance imaging (fMRI) study, we investigated perirhinal/entorhinal functional connectivity and the role of sex during item memory. During the study phase, abstract shapes were presented to the left or right of fixation. During the test phase, abstract shapes were presented at fixation, and the participants classified each item as previously “old” or “new”. An entorhinal region of interest (ROI) was identified by contrasting item memory hits and misses. This ROI was connected to regions generally associated with visual memory, including the right inferior frontal gyrus (IFG) and visual-processing regions (the bilateral V1, bilateral cuneus, and left lingual gyrus). Males produced greater connectivity than females with the right IFG/insula and the right V1/bilateral cuneus. Broadly, these results contribute to a growing body of literature supporting sex differences in the brain.
Collapse
Affiliation(s)
- Dylan S. Spets
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott D. Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA
- Correspondence:
| |
Collapse
|
17
|
Schultz H, Yoo J, Meshi D, Heekeren HR. Category-specific memory encoding in the medial temporal lobe and beyond: the role of reward. Learn Mem 2022; 29:379-389. [PMID: 36180131 PMCID: PMC9536755 DOI: 10.1101/lm.053558.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
The medial temporal lobe (MTL), including the hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), is central to memory formation. Reward enhances memory through interplay between the HC and substantia nigra/ventral tegmental area (SNVTA). While the SNVTA also innervates the MTL cortex and amygdala (AMY), their role in reward-enhanced memory is unclear. Prior research suggests category specificity in the MTL cortex, with the PRC and PHC processing object and scene memory, respectively. It is unknown, however, whether reward modulates category-specific memory processes. Furthermore, no study has demonstrated clear category specificity in the MTL for encoding processes contributing to subsequent recognition memory. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while performing an incidental encoding task pairing objects or scenes with high or low reward, followed by a next-day recognition test. Behaviorally, high reward preferably enhanced object memory. Neural activity in the PRC and PHC reflected successful encoding of objects and scenes, respectively. Importantly, AMY encoding effects were selective for high-reward objects, with a similar pattern in the PRC. The SNVTA and HC showed no clear evidence of successful encoding. This behavioral and neural asymmetry may be conveyed through an anterior-temporal memory system, including the AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jungsun Yoo
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Cognitive Sciences, University of California at Irvine, Irvine, California 92697, USA
| | - Dar Meshi
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Advertising and Public Relations, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Executive University Board, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
18
|
Pudhiyidath A, Morton NW, Viveros Duran R, Schapiro AC, Momennejad I, Hinojosa-Rowland DM, Molitor RJ, Preston AR. Representations of Temporal Community Structure in Hippocampus and Precuneus Predict Inductive Reasoning Decisions. J Cogn Neurosci 2022; 34:1736-1760. [PMID: 35579986 PMCID: PMC10262802 DOI: 10.1162/jocn_a_01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our understanding of the world is shaped by inferences about underlying structure. For example, at the gym, you might notice that the same people tend to arrive around the same time and infer that they are friends that work out together. Consistent with this idea, after participants are presented with a temporal sequence of objects that follows an underlying community structure, they are biased to infer that objects from the same community share the same properties. Here, we used fMRI to measure neural representations of objects after temporal community structure learning and examine how these representations support inference about object relationships. We found that community structure learning affected inferred object similarity: When asked to spatially group items based on their experience, participants tended to group together objects from the same community. Neural representations in perirhinal cortex predicted individual differences in object grouping, suggesting that high-level object representations are affected by temporal community learning. Furthermore, participants were biased to infer that objects from the same community would share the same properties. Using computational modeling of temporal learning and inference decisions, we found that inductive reasoning is influenced by both detailed knowledge of temporal statistics and abstract knowledge of the temporal communities. The fidelity of temporal community representations in hippocampus and precuneus predicted the degree to which temporal community membership biased reasoning decisions. Our results suggest that temporal knowledge is represented at multiple levels of abstraction, and that perirhinal cortex, hippocampus, and precuneus may support inference based on this knowledge.
Collapse
|
19
|
Allen RJ, Atkinson AL, Vargha‐Khadem F, Baddeley AD. Intact high-resolution working memory binding in a patient with developmental amnesia and selective hippocampal damage. Hippocampus 2022; 32:597-609. [PMID: 35736516 PMCID: PMC9542612 DOI: 10.1002/hipo.23452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022]
Abstract
Debate continues regarding the possible role of the hippocampus across short-term and working memory tasks. The current study examined the possibility of a hippocampal contribution to precise, high-resolution cognition and conjunctive memory. We administered visual working memory tasks featuring a continuous response component to a well-established developmental amnesic patient with relatively selective bilateral hippocampal damage (Jon) and healthy controls. The patient was able to produce highly accurate response judgments regarding conjunctions of color and orientation or color and location, using simultaneous or sequential presentation of stimuli, with no evidence of any impairment in working memory binding, categorical accuracy, or continuous precision. These findings indicate that hippocampal damage does not necessarily lead to deficits in high-resolution cognitive performance, even when the damage is severe and bilateral.
Collapse
Affiliation(s)
| | | | - Faraneh Vargha‐Khadem
- Developmental Neurosciences DepartmentUniversity College London Great Ormand Street Institute of Child HealthLondonUK
| | | |
Collapse
|
20
|
Shao X, Chen C, Loftus EF, Xue G, Zhu B. Dynamic changes in neural representations underlie the repetition effect on false memory. Neuroimage 2022; 259:119442. [PMID: 35788042 DOI: 10.1016/j.neuroimage.2022.119442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Restudying word lists (e.g., dream, awake, and bed) strengthens true memory of the studied words and reduces false memory for unstudied but semantically related lures (e.g., sleep). Yet, the neural mechanisms involved in this repetition effect on false memory remain unclear. Possible mechanisms involve item-specific and semantic neural representations at encoding, and the memory strength between encoding and retrieval. This study first replicated the behavioral results (Exp. 1) and then investigated various neural mechanisms by using slow event-related functional magnetic resonance imaging (fMRI) and representational similarity analysis (Exp. 2). Behavioral results confirmed that restudy improved true memory and reduced false memory. The fMRI results showed that restudy induced item-specific neural representations at encoding in the left occipital pole, but reduced neural overlap between semantic representations at encoding in the left temporal pole. Individual differences in these two encoding neural mechanisms were correlated with the behavioral measure of false memory, with greater restudy-induced representational changes at encoding (item-specific neural representations and reduced neural overlap between semantic representations) being associated with lower false memory. Moreover, restudy enhanced the memory strength between encoding and retrieval in the visuoparietal cortex but reduced it in the frontal cortex. These findings suggest that dynamic changes in neural representations underlie the repetition effect on false memory, supporting a dual-coding neural framework.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Elizabeth F Loftus
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Morici JF, Cicuttin G, Silva A, Gallo FT, Miranda M, Beluscio M, Zold C, Bekinschtein P, Weisstaub NV. Serotonin Type 2a Receptor in the Prefrontal Cortex Controls Perirhinal Cortex Excitability During Object Recognition Memory Recall. Neuroscience 2022; 497:196-205. [PMID: 35597334 DOI: 10.1016/j.neuroscience.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Previous experiences can drive adaptive behavior based on different characteristics, including contextual ones. Indeed, contextual information can be used as a criterion to guide the recall of the most relevant memory trace and the inhibition of others. The medial Prefontal Cortex (mPFC) has been proposed as an area that plays a pivotal role in regulating the retrieval of memory traces in downstream regions. Also, we have shown that mPFC Serotonin 2a Receptors (5-HT2aR) modulates the retrieval of a contextually guided recognition memory task and modulates the retrieval and reconsolidation of memories in the Perirhinal Cortex (PRH). However, how the mPFC output mediated by the 5-HT2aR activity is modulating memory retrieval in the PRH is a question that remains unclear. To tackle this question, we analyzed neuronal activity in the PRH and mPFC, by measuring expression of the immediate early gene c-Fos. We combined behavioral, pharmacological and immunohistochemical techniques to examine how mPFC 5-HT2aR controls mPFC and the PRH activity. We found that blockade of mPFC 5-HT2aR increase the level of c-Fos expression in the PHR and that this increase correlates with animals' performance in the task. We also found an increase in c-Fos expression in the mPFC after mPFC 5-HT2aR blockade that does not correlate with the animals' behavioral response. However, these changes showed a significant correlation with those observed in the PRH. These results suggest that mPFC 5-HT2aR signaling may modulate the behavioral response during memory recall by controlling the neuronal activation in the PRH.
Collapse
Affiliation(s)
- J F Morici
- Instituto de Neurociencias Cognitiva y Traslacional, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro, Instituto de Neurología Cognitiva (INECO), Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - G Cicuttin
- Instituto de Neurociencias Cognitiva y Traslacional, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro, Instituto de Neurología Cognitiva (INECO), Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - A Silva
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - F T Gallo
- Instituto de Neurociencias Cognitiva y Traslacional, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro, Instituto de Neurología Cognitiva (INECO), Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - M Miranda
- Instituto de Neurociencias Cognitiva y Traslacional, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro, Instituto de Neurología Cognitiva (INECO), Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - M Beluscio
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - C Zold
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - P Bekinschtein
- Instituto de Neurociencias Cognitiva y Traslacional, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro, Instituto de Neurología Cognitiva (INECO), Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - N V Weisstaub
- Instituto de Neurociencias Cognitiva y Traslacional, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro, Instituto de Neurología Cognitiva (INECO), Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina.
| |
Collapse
|
22
|
Miyamoto K, Setsuie R, Miyashita Y. Conversion of concept-specific decision confidence into integrative introspection in primates. Cell Rep 2022; 38:110581. [PMID: 35354028 DOI: 10.1016/j.celrep.2022.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introspection based on the integration of uncertain evidence is critical for acting upon abstract thinking and imagining future scenarios. However, it is unknown how confidence read-outs from multiple sources of different concepts are integrated, especially considering the relationships among the concepts. In this study, monkeys performed wagering based on an estimation of their performance in a preceding mnemonic decision. We found that the longer the response times for post-decision wagering, the more relieved the impairments having been caused by frontal disruption. This suggests the existence of a time-consuming compensatory metacognitive process. We found posterior inferior parietal lobe (pIPL) as its candidate, which was not coding the wagering per se (i.e., just high bet or low bet), but became more active when monkeys successfully chose the optimal bet option based on mnemonic decision performance. Thereafter, the pIPL prompts dorsal anterior cingulate cortex to carry the chosen wagering option. Our findings suggest a role for the pIPL in metacognitive concept integration.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Experimental Psychology, University of Oxford, Oxford, OXON OX1 3TA, UK; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Rieko Setsuie
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan; Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| | - Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Roysommuti S, Wyss JM. Brain-Derived Neurotrophic Factor Potentiates Entorhinal-Dentate but not Hippocampus CA1 Pathway in Adult Male Rats: A Mechanism of Taurine-Modulated BDNF on Learning and Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:369-379. [PMID: 35882811 PMCID: PMC9467516 DOI: 10.1007/978-3-030-93337-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taurine plays an important role in neural growth and function from early to adult life, particularly in learning and memory via BDNF action. This study tested the hypothesis that BDNF differentially potentiates entorhinal-hippocampal synaptic transmission in vivo in adult rats. In anesthetized male Sprague-Dawley rats, a stainless steel recording electrode with an attached microinjector was placed into CA1 and the dentate gyrus to record fEPSP, and a paired stainless steel electrode was inserted into entorhinal cortex for continuous paired-pulse stimulation of that brain region. In the dentate gyrus, microinjection of BDNF resulted in a gradual increase in the peak slope of the fEPSP. Following the infusion, the peak fEPSP began to rise in about 8 min, reached a maximum of 120 ± 2% (from baseline) by about 20 min, and remained near peak elevation (~115%) for more than 30 min. In contrast, the same dose of BDNF when injected into CA1 had no consistent effect on fEPSP slopes in the CA1. Further, an equimolar cytochrome C (horse heart) infusion had no significant effect on fEPSP slopes in either the dentate gyrus or CA1. The potentiation effect of BDNF in the dentate gyrus is consistent with a significant increase in power spectral density of dentate gyrus field potentials at 70-200 Hz, but not at frequencies below 70 Hz. In addition, the CA1 power spectral density was not affected by BDNF (compared to cytochrome C). These data indicate that in vivo BDNF potentiates entorhinal-hippocampal synaptic transmission in dentate gyrus, but not in CA1.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - James Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
MIYASHITA Y. Operating principles of the cerebral cortex as a six-layered network in primates: beyond the classic canonical circuit model. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:93-111. [PMID: 35283409 PMCID: PMC8948418 DOI: 10.2183/pjab.98.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The cerebral cortex performs its computations with many six-layered fundamental units, collectively spreading along the cortical sheet. What is the local network structure and the operating dynamics of such a fundamental unit? Previous investigations of primary sensory areas revealed a classic "canonical" circuit model, leading to an expectation of similar circuit organization and dynamics throughout the cortex. This review clarifies the different circuit dynamics at play in the higher association cortex of primates that implements computation for high-level cognition such as memory and attention. Instead of feedforward processing of response selectivity through Layers 4 to 2/3 that the classic canonical circuit stipulates, memory recall in primates occurs in Layer 5/6 with local backward projection to Layer 2/3, after which the retrieved information is sent back from Layer 6 to lower-level cortical areas for further retrieval of nested associations of target attributes. In this review, a novel "dynamic multimode module (D3M)" in the primate association cortex is proposed, as a new "canonical" circuit model performing this operation.
Collapse
Affiliation(s)
- Yasushi MIYASHITA
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
- Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
What déjà vu and the “dreamy state” tell us about episodic memory networks. Clin Neurophysiol 2022; 136:173-181. [DOI: 10.1016/j.clinph.2022.01.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
|
26
|
Chen H, Naya Y. Reunification of Object and View-Center Background Information in the Primate Medial Temporal Lobe. Front Behav Neurosci 2021; 15:756801. [PMID: 34938164 PMCID: PMC8685287 DOI: 10.3389/fnbeh.2021.756801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent work has shown that the medial temporal lobe (MTL), including the hippocampus (HPC) and its surrounding limbic cortices, plays a role in scene perception in addition to episodic memory. The two basic factors of scene perception are the object (“what”) and location (“where”). In this review, we first summarize the anatomical knowledge related to visual inputs to the MTL and physiological studies examining object-related information processed along the ventral pathway briefly. Thereafter, we discuss the space-related information, the processing of which was unclear, presumably because of its multiple aspects and a lack of appropriate task paradigm in contrast to object-related information. Based on recent electrophysiological studies using non-human primates and the existing literature, we proposed the “reunification theory,” which explains brain mechanisms which construct object-location signals at each gaze. In this reunification theory, the ventral pathway signals a large-scale background image of the retina at each gaze position. This view-center background signal reflects the first person’s perspective and specifies the allocentric location in the environment by similarity matching between images. The spatially invariant object signal and view-center background signal, both of which are derived from the same retinal image, are integrated again (i.e., reunification) along the ventral pathway-MTL stream, particularly in the perirhinal cortex. The conjunctive signal, which represents a particular object at a particular location, may play a role in scene perception in the HPC as a key constituent element of an entire scene.
Collapse
Affiliation(s)
- He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavioral and Mental Health, Faculty of Science, College of Psychology and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Bonnen T, Yamins DLK, Wagner AD. When the ventral visual stream is not enough: A deep learning account of medial temporal lobe involvement in perception. Neuron 2021; 109:2755-2766.e6. [PMID: 34265252 PMCID: PMC10870832 DOI: 10.1016/j.neuron.2021.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
The medial temporal lobe (MTL) supports a constellation of memory-related behaviors. Its involvement in perceptual processing, however, has been subject to enduring debate. This debate centers on perirhinal cortex (PRC), an MTL structure at the apex of the ventral visual stream (VVS). Here we leverage a deep learning framework that approximates visual behaviors supported by the VVS (i.e., lacking PRC). We first apply this approach retroactively, modeling 30 published visual discrimination experiments: excluding non-diagnostic stimulus sets, there is a striking correspondence between VVS-modeled and PRC-lesioned behavior, while each is outperformed by PRC-intact participants. We corroborate and extend these results with a novel experiment, directly comparing PRC-intact human performance to electrophysiological recordings from the macaque VVS: PRC-intact participants outperform a linear readout of high-level visual cortex. By situating lesion, electrophysiological, and behavioral results within a shared computational framework, this work resolves decades of seemingly inconsistent findings surrounding PRC involvement in perception.
Collapse
Affiliation(s)
- Tyler Bonnen
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Daniel L K Yamins
- Department of Psychology, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Anthony D Wagner
- Department of Psychology, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Landi SM, Viswanathan P, Serene S, Freiwald WA. A fast link between face perception and memory in the temporal pole. Science 2021; 373:581-585. [PMID: 34210891 DOI: 10.1126/science.abi6671] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
The question of how the brain recognizes the faces of familiar individuals has been important throughout the history of neuroscience. Cells linking visual processing to person memory have been proposed but not found. Here, we report the discovery of such cells through recordings from an area in the macaque temporal pole identified with functional magnetic resonance imaging. These cells responded to faces that were personally familiar. They responded nonlinearly to stepwise changes in face visibility and detail and holistically to face parts, reflecting key signatures of familiar face recognition. They discriminated between familiar identities, as fast as a general face identity area. The discovery of these cells establishes a new pathway for the fast recognition of familiar individuals.
Collapse
Affiliation(s)
- Sofia M Landi
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA. .,Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Pooja Viswanathan
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA.,The Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen Serene
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA. .,The Center for Brains, Minds & Machines, Cambridge, MA, USA
| |
Collapse
|
29
|
Fiorilli J, Bos JJ, Grande X, Lim J, Düzel E, Pennartz CMA. Reconciling the object and spatial processing views of the perirhinal cortex through task-relevant unitization. Hippocampus 2021; 31:737-755. [PMID: 33523577 PMCID: PMC8359385 DOI: 10.1002/hipo.23304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/27/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
The perirhinal cortex is situated on the border between sensory association cortex and the hippocampal formation. It serves an important function as a transition area between the sensory neocortex and the medial temporal lobe. While the perirhinal cortex has traditionally been associated with object coding and the "what" pathway of the temporal lobe, current evidence suggests a broader function of the perirhinal cortex in solving feature ambiguity and processing complex stimuli. Besides fulfilling functions in object coding, recent neurophysiological findings in freely moving rodents indicate that the perirhinal cortex also contributes to spatial and contextual processing beyond individual sensory modalities. Here, we address how these two opposing views on perirhinal cortex-the object-centered and spatial-contextual processing hypotheses-may be reconciled. The perirhinal cortex is consistently recruited when different features can be merged perceptually or conceptually into a single entity. Features that are unitized in these entities include object information from multiple sensory domains, reward associations, semantic features and spatial/contextual associations. We propose that the same perirhinal network circuits can be flexibly deployed for multiple cognitive functions, such that the perirhinal cortex performs similar unitization operations on different types of information, depending on behavioral demands and ranging from the object-related domain to spatial, contextual and semantic information.
Collapse
Affiliation(s)
- Julien Fiorilli
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jeroen J. Bos
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud University and Radboud University Medical CentreNijmegenThe Netherlands
| | - Xenia Grande
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Judith Lim
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
30
|
García-Díaz C, Gil-Miravet I, Albert-Gasco H, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat. Front Neuroanat 2021; 15:674649. [PMID: 34239421 PMCID: PMC8258164 DOI: 10.3389/fnana.2021.674649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial learning and memory processes depend on anatomical and functional interactions between the hippocampus and the entorhinal cortex. A key neurophysiological component of these processes is hippocampal theta rhythm, which can be driven from subcortical areas including the pontine nucleus incertus (NI). The NI contains the largest population of neurons that produce and presumably release the neuropeptide, relaxin-3, which acts via the G i/o -protein-coupled receptor, relaxin-family peptide 3 receptor (RXFP3). NI activation induces general arousal including hippocampal theta, and inactivation induces impairment of spatial memory acquisition or retrieval. The primary aim of this study was to map the NI/relaxin-3 innervation of the parahippocampal cortex (PHC), including the medial and lateral entorhinal cortex, endopiriform cortex, perirhinal, postrhinal, and ectorhinal cortex, the amygdalohippocampal transition area and posteromedial cortical amygdala. Retrograde tracer injections were placed in different parts of the medial and lateral entorhinal cortex, which produced prominent retrograde labeling in the ipsilateral NI and some labeling in the contralateral NI. Anterograde tracer injections into the NI and immunostaining for relaxin-3 produced fiber labeling in deep layers of all parahippocampal areas and some dispersed fibers in superficial layers. Double-labeling studies revealed that both hippocampal projecting and calcium-binding protein-positive (presumed GABAergic) neurons received a relaxin-3 NI innervation. Some of these fibers also displayed synaptophysin (Syn) immunoreactivity, consistent with the presence of the peptide at synapses; and relaxin-3-positive fibers containing Syn bouton-like staining were frequently observed in contact with hippocampal-projecting or calcium-binding protein-positive neuronal somata and more distal elements. Finally, in situ hybridization studies revealed that entorhinal neurons in the superficial layers, and to a lesser extent in deep layers, contain RXFP3 mRNA. Together, our data support functional actions of the NI/relaxin-3-parahippocampal innervation on processes related to memory, spatial navigation and contextual analysis.
Collapse
Affiliation(s)
- Cristina García-Díaz
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Hector Albert-Gasco
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
31
|
Khandhadia AP, Murphy AP, Romanski LM, Bizley JK, Leopold DA. Audiovisual integration in macaque face patch neurons. Curr Biol 2021; 31:1826-1835.e3. [PMID: 33636119 PMCID: PMC8521527 DOI: 10.1016/j.cub.2021.01.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 12/03/2022]
Abstract
Primate social communication depends on the perceptual integration of visual and auditory cues, reflected in the multimodal mixing of sensory signals in certain cortical areas. The macaque cortical face patch network, identified through visual, face-selective responses measured with fMRI, is assumed to contribute to visual social interactions. However, whether face patch neurons are also influenced by acoustic information, such as the auditory component of a natural vocalization, remains unknown. Here, we recorded single-unit activity in the anterior fundus (AF) face patch, in the superior temporal sulcus, and anterior medial (AM) face patch, on the undersurface of the temporal lobe, in macaques presented with audiovisual, visual-only, and auditory-only renditions of natural movies of macaques vocalizing. The results revealed that 76% of neurons in face patch AF were significantly influenced by the auditory component of the movie, most often through enhancement of visual responses but sometimes in response to the auditory stimulus alone. By contrast, few neurons in face patch AM exhibited significant auditory responses or modulation. Control experiments in AF used an animated macaque avatar to demonstrate, first, that the structural elements of the face were often essential for audiovisual modulation and, second, that the temporal modulation of the acoustic stimulus was more important than its frequency spectrum. Together, these results identify a striking contrast between two face patches and specifically identify AF as playing a potential role in the integration of audiovisual cues during natural modes of social communication.
Collapse
Affiliation(s)
- Amit P Khandhadia
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Aidan P Murphy
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Lizabeth M Romanski
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Jennifer K Bizley
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Task set and instructions influence the weight of figural priors: A psychophysical study with extremal edges and familiar configuration. Atten Percept Psychophys 2021; 83:2709-2727. [PMID: 33880711 PMCID: PMC8302519 DOI: 10.3758/s13414-021-02282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
In figure-ground organization, the figure is defined as a region that is both "shaped" and "nearer." Here we test whether changes in task set and instructions can alter the outcome of the cross-border competition between figural priors that underlies figure assignment. Extremal edge (EE), a relative distance prior, has been established as a strong figural prior when the task is to report "which side is nearer?" In three experiments using bipartite stimuli, EEs competed and cooperated with familiar configuration, a shape prior for figure assignment in a "which side is shaped?" task." Experiment 1 showed small but significant effects of familiar configuration for displays sketching upright familiar objects, although "shaped-side" responses were predominantly determined by EEs. In Experiment 2, instructions regarding the possibility of perceiving familiar shapes were added. Now, although EE remained the dominant prior, the figure was perceived on the familiar-configuration side of the border on a significantly larger percentage of trials across all display types. In Experiment 3, both task set (nearer/shaped) and the presence versus absence of instructions emphasizing that familiar objects might be present were manipulated within subjects. With familiarity thus "primed," effects of task set emerged when EE and familiar configuration favored opposite sides as figure. Thus, changing instructions can modulate the weighing of figural priors for shape versus distance in figure assignment in a manner that interacts with task set. Moreover, we show that the influence of familiar parts emerges in participants without medial temporal lobe/ perirhinal cortex brain damage when instructions emphasize that familiar objects might be present.
Collapse
|
33
|
Umejima K, Ibaraki T, Yamazaki T, Sakai KL. Paper Notebooks vs. Mobile Devices: Brain Activation Differences During Memory Retrieval. Front Behav Neurosci 2021; 15:634158. [PMID: 33815075 PMCID: PMC8017158 DOI: 10.3389/fnbeh.2021.634158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
It remains to be determined how different inputs for memory-encoding, such as the use of paper notebooks or mobile devices, affect retrieval processes. We compared three groups of participants who read dialogues on personal schedules and wrote down the scheduled appointments on a calendar using a paper notebook (Note), an electronic tablet (Tablet), or a smartphone (Phone). After the retention period for an hour including an interference task, we tested recognition memory of those appointments with visually presented questions in a retrieval task, while scanned with functional magnetic resonance imaging. We obtained three major results. First, the duration of writing down schedules was significantly shorter for the Note group than the Tablet and Phone groups, and accuracy was much higher for the Note group in easier (i.e., more straightforward) questions. Because the input methods were equated as much as possible between the Note and Tablet groups, these results indicate that the cognitive processes for the Note group were deeper and more solid. Second, brain activations for all participants during the retrieval phase were localized in the bilateral hippocampus, precuneus, visual cortices, and language-related frontal regions, confirming the involvement of verbalized memory retrieval processes for appointments. Third, activations in these regions were significantly higher for the Note group than those for the Tablet and Phone groups. These enhanced activations for the Note group could not be explained by general cognitive loads or task difficulty, because overall task performances were similar among the groups. The significant superiority in both accuracy and activations for the Note group suggested that the use of a paper notebook promoted the acquisition of rich encoding information and/or spatial information of real papers and that this information could be utilized as effective retrieval clues, leading to higher activations in these specific regions.
Collapse
Affiliation(s)
- Keita Umejima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Ibaraki
- NTT Data Institute of Management Consulting, Inc., Tokyo, Japan
| | | | - Kuniyoshi L. Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Kitahara M, Inoue T, Mani H, Takamatsu Y, Ikegami R, Tohyama H, Maejima H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci Lett 2021; 749:135749. [PMID: 33610667 DOI: 10.1016/j.neulet.2021.135749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Exercise is recognized to increase the expression of neurotrophic genes in the hippocampus and prevent cognitive impairment. Histone deacetylase (HDAC) inhibitor acetylate histones and enhance gene transcription in epigenetic regulation. HDAC inhibitors are expected to be an efficacious pharmacological treatment for cognitive function. This study aimed to examine the effect of HDAC inhibitors and exercise on epigenetic markers and neurotrophic gene expression in the hippocampus to find a more enriched brain conditioning for cognitive function based on the synergic effects of pharmacological treatment and behavioral therapy. Thirteen-week-old male mice were divided into four groups. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately 10 m/min for 60 min) were performed 5 days a week for 4 weeks. NaB administration increased the expression of an immediate-early gene, a neurotrophin, and a neurotrophin receptor in the hippocampus. These results indicate that HDAC inhibition could present an enriched platform for neuronal plasticity in the hippocampus and cognitive function. The novel object recognition test showed that NaB administration increased the score. Notably, the step-through passive avoidance test showed improved learning and memory in the presence of exercise and exercise, indicating that the mice acquired fear memory, specifically in the presence of NaB administration plus exercise. This study found that repetitive administration of HDAC inhibitors improved cognitive function and HDAC inhibitor administration plus exercise has a synergic effect on learning and memory, accompanying the enhancement of crucial gene transcriptions for neuronal plasticity in the hippocampus.
Collapse
Affiliation(s)
- Mika Kitahara
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan; Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hiroki Mani
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Ryo Ikegami
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
35
|
Chivukula S, Zhang CY, Aflalo T, Jafari M, Pejsa K, Pouratian N, Andersen RA. Neural encoding of actual and imagined touch within human posterior parietal cortex. eLife 2021; 10:61646. [PMID: 33647233 PMCID: PMC7924956 DOI: 10.7554/elife.61646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the human posterior parietal cortex (PPC), single units encode high-dimensional information with partially mixed representations that enable small populations of neurons to encode many variables relevant to movement planning, execution, cognition, and perception. Here, we test whether a PPC neuronal population previously demonstrated to encode visual and motor information is similarly engaged in the somatosensory domain. We recorded neurons within the PPC of a human clinical trial participant during actual touch presentation and during a tactile imagery task. Neurons encoded actual touch at short latency with bilateral receptive fields, organized by body part, and covered all tested regions. The tactile imagery task evoked body part-specific responses that shared a neural substrate with actual touch. Our results are the first neuron-level evidence of touch encoding in human PPC and its cognitive engagement during a tactile imagery task, which may reflect semantic processing, attention, sensory anticipation, or imagined touch.
Collapse
Affiliation(s)
- Srinivas Chivukula
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States,Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Carey Y Zhang
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Tyson Aflalo
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Matiar Jafari
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States,Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Kelsie Pejsa
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Nader Pouratian
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States,Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Richard A Andersen
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
36
|
Popal H, Quimby M, Hochberg D, Dickerson BC, Collins JA. Altered functional connectivity of cortical networks in semantic variant Primary Progressive Aphasia. Neuroimage Clin 2020; 28:102494. [PMID: 33395985 PMCID: PMC7708956 DOI: 10.1016/j.nicl.2020.102494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
As their illness progresses, patients with the semantic variant of Primary Progressive Aphasia (svPPA) frequently exhibit peculiar behaviors indicative of altered visual attention or an increased interest in artistic endeavors. In the present study, we examined changes within and between large-scale functional brain networks that may explain this altered visual behavior. We first examined the connectivity of the visual association network, the dorsal attention network, and the default mode network in healthy young adults (n = 89) to understand the typical architecture of these networks in the healthy brain. We then compared the large-scale functional connectivity of these networks in a group of svPPA patients (n = 12) to a group of age-matched cognitively normal controls (n = 30). Our results showed that the between-network connectivity of the dorsal attention and visual association networks was elevated in svPPA patients relative to controls. We further showed that this heightened between-network connectivity was associated with a decrease in the within-network connectivity of the default mode network, possibly due to progressive degeneration of the anterior temporal lobes in svPPA. These results suggest that focal neurodegeneration can lead to the reorganization of large-scale cognitive networks beyond the primarily affected network(s), possibly contributing to cognitive or behavioral changes that are commonly present as part of the clinical phenotype of svPPA.
Collapse
Affiliation(s)
- Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jessica A Collins
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Aflalo T, Zhang CY, Rosario ER, Pouratian N, Orban GA, Andersen RA. A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. SCIENCE ADVANCES 2020; 6:6/43/eabb3984. [PMID: 33097536 PMCID: PMC7608826 DOI: 10.1126/sciadv.abb3984] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
High-level sensory and motor cortical areas are activated when processing the meaning of language, but it is unknown whether, and how, words share a neural substrate with corresponding sensorimotor representations. We recorded from single neurons in human posterior parietal cortex (PPC) while participants viewed action verbs and corresponding action videos from multiple views. We find that PPC neurons exhibit a common neural substrate for action verbs and observed actions. Further, videos were encoded with mixtures of invariant and idiosyncratic responses across views. Action verbs elicited selective responses from a fraction of these invariant and idiosyncratic neurons, without preference, thus associating with a statistical sampling of the diverse sensory representations related to the corresponding action concept. Controls indicated that the results are not the product of visual imagery or arbitrary learned associations. Our results suggest that language may activate the consolidated visual experience of the reader.
Collapse
Affiliation(s)
- T Aflalo
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA.
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA
| | - C Y Zhang
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA
| | - E R Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - N Pouratian
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - R A Andersen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
38
|
Bennett M. An Attempt at a Unified Theory of the Neocortical Microcircuit in Sensory Cortex. Front Neural Circuits 2020; 14:40. [PMID: 32848632 PMCID: PMC7416357 DOI: 10.3389/fncir.2020.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
The neocortex performs a wide range of functions, including working memory, sensory perception, and motor planning. Despite this diversity in function, evidence suggests that the neocortex is made up of repeating subunits ("macrocolumns"), each of which is largely identical in circuitry. As such, the specific computations performed by these macrocolumns are of great interest to neuroscientists and AI researchers. Leading theories of this microcircuit include models of predictive coding, hierarchical temporal memory (HTM), and Adaptive Resonance Theory (ART). However, these models have not yet explained: (1) how microcircuits learn sequences input with delay (i.e., working memory); (2) how networks of columns coordinate processing on precise timescales; or (3) how top-down attention modulates sensory processing. I provide a theory of the neocortical microcircuit that extends prior models in all three ways. Additionally, this theory provides a novel working memory circuit that extends prior models to support simultaneous multi-item storage without disrupting ongoing sensory processing. I then use this theory to explain the functional origin of a diverse set of experimental findings, such as cortical oscillations.
Collapse
Affiliation(s)
- Max Bennett
- Independent Researcher, New York, NY, United States
| |
Collapse
|
39
|
Clarke A. Dynamic activity patterns in the anterior temporal lobe represents object semantics. Cogn Neurosci 2020; 11:111-121. [PMID: 32249714 PMCID: PMC7446031 DOI: 10.1080/17588928.2020.1742678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The anterior temporal lobe (ATL) is considered a crucial area for the representation of transmodal concepts. Recent evidence suggests that specific regions within the ATL support the representation of individual object concepts, as shown by studies combining multivariate analysis methods and explicit measures of semantic knowledge. This research looks to further our understanding by probing conceptual representations at a spatially and temporally resolved neural scale. Representational similarity analysis was applied to human intracranial recordings from anatomically defined lateral to medial ATL sub-regions. Neural similarity patterns were tested against semantic similarity measures, where semantic similarity was defined by a hybrid corpus-based and feature-based approach. Analyses show that the perirhinal cortex, in the medial ATL, significantly related to semantic effects around 200 to 400 ms, and were greater than more lateral ATL regions. Further, semantic effects were present in low frequency (theta and alpha) oscillatory phase signals. These results provide converging support that more medial regions of the ATL support the representation of basic-level visual object concepts within the first 400 ms, and provide a bridge between prior fMRI and MEG work by offering detailed evidence for the presence of conceptual representations within the ATL.
Collapse
Affiliation(s)
- Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Renoult L, Irish M, Moscovitch M, Rugg MD. From Knowing to Remembering: The Semantic–Episodic Distinction. Trends Cogn Sci 2019; 23:1041-1057. [DOI: 10.1016/j.tics.2019.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023]
|