1
|
Bennett C, Ouellette B, Ramirez TK, Cahoon A, Cabasco H, Browning Y, Lakunina A, Lynch GF, McBride EG, Belski H, Gillis R, Grasso C, Howard R, Johnson T, Loeffler H, Smith H, Sullivan D, Williford A, Caldejon S, Durand S, Gale S, Guthrie A, Ha V, Han W, Hardcastle B, Mochizuki C, Sridhar A, Suarez L, Swapp J, Wilkes J, Siegle JH, Farrell C, Groblewski PA, Olsen SR. SHIELD: Skull-shaped hemispheric implants enabling large-scale electrophysiology datasets in the mouse brain. Neuron 2024; 112:2869-2885.e8. [PMID: 38996587 DOI: 10.1016/j.neuron.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. Although new technologies, such as Neuropixels probes, facilitate multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe skull-shaped hemispheric implants enabling large-scale electrophysiology datasets (SHIELD). These 3D-printed skull-replacement implants feature customizable insertion holes, allowing dozens of cortical and subcortical structures to be recorded in a single mouse using repeated multi-probe insertions over many days. We demonstrate the procedure's high success rate, biocompatibility, lack of adverse effects on behavior, and compatibility with imaging and optogenetics. To showcase SHIELD's scientific utility, we use multi-probe recordings to reveal novel insights into how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this method enables powerful, large-scale electrophysiological experiments for the study of distributed neural computation.
Collapse
Affiliation(s)
- Corbett Bennett
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA.
| | - Ben Ouellette
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | | | - Hannah Cabasco
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Yoni Browning
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Anna Lakunina
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Galen F Lynch
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | - Hannah Belski
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Ryan Gillis
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Conor Grasso
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Robert Howard
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Tye Johnson
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Henry Loeffler
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Heston Smith
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | | | | | | | - Samuel Gale
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Alan Guthrie
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Vivian Ha
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Warren Han
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Ben Hardcastle
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | - Arjun Sridhar
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Lucas Suarez
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Jackie Swapp
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Joshua Wilkes
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | | | | | - Shawn R Olsen
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. NEUROPHOTONICS 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
3
|
Yasar TB, Gombkoto P, Vyssotski AL, Vavladeli AD, Lewis CM, Wu B, Meienberg L, Lundegardh V, Helmchen F, von der Behrens W, Yanik MF. Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes. Nat Commun 2024; 15:4822. [PMID: 38844769 PMCID: PMC11156863 DOI: 10.1038/s41467-024-49226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.
Collapse
Affiliation(s)
- Tansel Baran Yasar
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Peter Gombkoto
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Angeliki D Vavladeli
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Christopher M Lewis
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Bifeng Wu
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linus Meienberg
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Valter Lundegardh
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Manley J, Lu S, Barber K, Demas J, Kim H, Meyer D, Traub FM, Vaziri A. Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron 2024; 112:1694-1709.e5. [PMID: 38452763 PMCID: PMC11098699 DOI: 10.1016/j.neuron.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/18/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The brain's remarkable properties arise from the collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, can such low-dimensional representations truly explain the vast range of brain activity, and if not, what is the appropriate resolution and scale of recording to capture them? Imaging neural activity at cellular resolution and near-simultaneously across the mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number in populations up to 1 million neurons. Although half of the neural variance is contained within sixteen dimensions correlated with behavior, our discovered scaling of dimensionality corresponds to an ever-increasing number of neuronal ensembles without immediate behavioral or sensory correlates. The activity patterns underlying these higher dimensions are fine grained and cortex wide, highlighting that large-scale, cellular-resolution recording is required to uncover the full substrates of neuronal computations.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sihao Lu
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Barber
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - David Meyer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Xu S, Xiao X, Manshaii F, Chen J. Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging. NANO LETTERS 2024. [PMID: 38606614 DOI: 10.1021/acs.nanolett.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Building on current explorations in chronic optical neural interfaces, it is essential to address the risk of photothermal damage in traditional optogenetics. By focusing on calcium fluorescence for imaging rather than stimulation, injectable fluorescent neural interfaces significantly minimize photothermal damage and improve the accuracy of neuronal imaging. Key advancements including the use of injectable microelectronics for targeted electrical stimulation and their integration with cell-specific genetically encoded calcium indicators have been discussed. These injectable electronics that allow for post-treatment retrieval offer a minimally invasive solution, enhancing both usability and reliability. Furthermore, the integration of genetically encoded fluorescent calcium indicators with injectable bioelectronics enables precise neuronal recording and imaging of individual neurons. This shift not only minimizes risks such as photothermal conversion but also boosts safety, specificity, and effectiveness of neural imaging. Embracing these advancements represents a significant leap forward in biomedical engineering and neuroscience, paving the way for advanced brain-machine interfaces.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Ramezani M, Kim JH, Liu X, Ren C, Alothman A, De-Eknamkul C, Wilson MN, Cubukcu E, Gilja V, Komiyama T, Kuzum D. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. NATURE NANOTECHNOLOGY 2024; 19:504-513. [PMID: 38212523 DOI: 10.1038/s41565-023-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological recordings from the brain surface with the optical imaging and stimulation of neural activity. A remaining challenge is to scale down the electrode dimensions to the single-cell size and increase the density to record neural activity with high spatial resolution across large areas to capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with ultrasmall openings and a large, transparent recording area without any gold extensions in the field of view with high-density microelectrode arrays up to 256 channels. We used platinum nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the microelectrode diameter to 20 µm. An interlayer-doped double-layer graphene was introduced to prevent open-circuit failures. We conducted multimodal experiments, combining the recordings of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse visual cortex. Our results revealed that visually evoked responses are spatially localized for high-frequency bands, particularly for the multiunit activity band. The multiunit activity power was found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality reduction techniques and neural networks to demonstrate that single-cell and average calcium activities can be decoded from surface potentials recorded by high-density transparent graphene arrays.
Collapse
Affiliation(s)
- Mehrdad Ramezani
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeong-Hoon Kim
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Xin Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chi Ren
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Abdullah Alothman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chawina De-Eknamkul
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Madison N Wilson
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ertugrul Cubukcu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Manley J, Vaziri A. Whole-brain neural substrates of behavioral variability in the larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583208. [PMID: 38496592 PMCID: PMC10942351 DOI: 10.1101/2024.03.03.583208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Animals engaged in naturalistic behavior can exhibit a large degree of behavioral variability even under sensory invariant conditions. Such behavioral variability can include not only variations of the same behavior, but also variability across qualitatively different behaviors driven by divergent cognitive states, such as fight-or-flight decisions. However, the neural circuit mechanisms that generate such divergent behaviors across trials are not well understood. To investigate this question, here we studied the visual-evoked responses of larval zebrafish to moving objects of various sizes, which we found exhibited highly variable and divergent responses across repetitions of the same stimulus. Given that the neuronal circuits underlying such behaviors span sensory, motor, and other brain areas, we built a novel Fourier light field microscope which enables high-resolution, whole-brain imaging of larval zebrafish during behavior. This enabled us to screen for neural loci which exhibited activity patterns correlated with behavioral variability. We found that despite the highly variable activity of single neurons, visual stimuli were robustly encoded at the population level, and the visual-encoding dimensions of neural activity did not explain behavioral variability. This robustness despite apparent single neuron variability was due to the multi-dimensional geometry of the neuronal population dynamics: almost all neural dimensions that were variable across individual trials, i.e. the "noise" modes, were orthogonal to those encoding for sensory information. Investigating this neuronal variability further, we identified two sparsely-distributed, brain-wide neuronal populations whose pre-motor activity predicted whether the larva would respond to a stimulus and, if so, which direction it would turn on a single-trial level. These populations predicted single-trial behavior seconds before stimulus onset, indicating they encoded time-varying internal modulating behavior, perhaps organizing behavior over longer timescales or enabling flexible behavior routines dependent on the animal's internal state. Our results provide the first whole-brain confirmation that sensory, motor, and internal variables are encoded in a highly mixed fashion throughout the brain and demonstrate that de-mixing each of these components at the neuronal population level is critical to understanding the mechanisms underlying the brain's remarkable flexibility and robustness.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
8
|
Manley J, Demas J, Kim H, Traub FM, Vaziri A. Simultaneous, cortex-wide and cellular-resolution neuronal population dynamics reveal an unbounded scaling of dimensionality with neuron number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575721. [PMID: 38293036 PMCID: PMC10827059 DOI: 10.1101/2024.01.15.575721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The brain's remarkable properties arise from collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, what would be the biological utility of such a redundant and metabolically costly encoding scheme and what is the appropriate resolution and scale of neural recording to understand brain function? Imaging the activity of one million neurons at cellular resolution and near-simultaneously across mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number. While half of the neural variance lies within sixteen behavior-related dimensions, we find this unbounded scaling of dimensionality to correspond to an ever-increasing number of internal variables without immediate behavioral correlates. The activity patterns underlying these higher dimensions are fine-grained and cortex-wide, highlighting that large-scale recording is required to uncover the full neural substrates of internal and potentially cognitive processes.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
9
|
Xue F, Li F, Zhang KM, Ding L, Wang Y, Zhao X, Xu F, Zhang D, Sun M, Lau PM, Zhu Q, Zhou P, Bi GQ. Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes. Natl Sci Rev 2024; 11:nwad294. [PMID: 38288367 PMCID: PMC10824555 DOI: 10.1093/nsr/nwad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024] Open
Abstract
To investigate the circuit-level neural mechanisms of behavior, simultaneous imaging of neuronal activity in multiple cortical and subcortical regions is highly desired. Miniature head-mounted microscopes offer the capability of calcium imaging in freely behaving animals. However, implanting multiple microscopes on a mouse brain remains challenging due to space constraints and the cumbersome weight of the equipment. Here, we present TINIscope, a Tightly Integrated Neuronal Imaging microscope optimized for electronic and opto-mechanical design. With its compact and lightweight design of 0.43 g, TINIscope enables unprecedented simultaneous imaging of behavior-relevant activity in up to four brain regions in mice. Proof-of-concept experiments with TINIscope recorded over 1000 neurons in four hippocampal subregions and revealed concurrent activity patterns spanning across these regions. Moreover, we explored potential multi-modal experimental designs by integrating additional modules for optogenetics, electrical stimulation or local field potential recordings. Overall, TINIscope represents a timely and indispensable tool for studying the brain-wide interregional coordination that underlies unrestrained behaviors.
Collapse
Affiliation(s)
- Feng Xue
- Department of Precision Machinery and Precision Instruments, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke-ming Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lufeng Ding
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xingtao Zhao
- Department of Modern Life Sciences and Biotecnology, Xiongan Institute of Innovation, Xiongan New Area, Xiongan 071899, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Danke Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingzhai Sun
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Pak-Ming Lau
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Qingyuan Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Zhou
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
10
|
Hoffmann M, Henninger J, Veith J, Richter L, Judkewitz B. Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity. Nat Commun 2023; 14:8019. [PMID: 38049412 PMCID: PMC10695970 DOI: 10.1038/s41467-023-43741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Due to the size and opacity of vertebrate brains, it has until now been impossible to simultaneously record neuronal activity at cellular resolution across the entire adult brain. As a result, scientists are forced to choose between cellular-resolution microscopy over limited fields-of-view or whole-brain imaging at coarse-grained resolution. Bridging the gap between these spatial scales of understanding remains a major challenge in neuroscience. Here, we introduce blazed oblique plane microscopy to perform brain-wide recording of neuronal activity at cellular resolution in an adult vertebrate. Contrary to common belief, we find that inferences of neuronal population activity are near-independent of spatial scale: a set of randomly sampled neurons has a comparable predictive power as the same number of coarse-grained macrovoxels. Our work thus links cellular resolution with brain-wide scope, challenges the prevailing view that macroscale methods are generally inferior to microscale techniques and underscores the value of multiscale approaches to studying brain-wide activity.
Collapse
Affiliation(s)
- Maximilian Hoffmann
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Rockefeller University, New York, USA
| | - Jörg Henninger
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Veith
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology, Humboldt University Berlin, Berlin, Germany
| | - Lars Richter
- Department of Chemistry and Center for NanoScience, Ludwig Maximilians University, Munich, Germany
| | - Benjamin Judkewitz
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Durstewitz D, Koppe G, Thurm MI. Reconstructing computational system dynamics from neural data with recurrent neural networks. Nat Rev Neurosci 2023; 24:693-710. [PMID: 37794121 DOI: 10.1038/s41583-023-00740-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.
Collapse
Affiliation(s)
- Daniel Durstewitz
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| | - Georgia Koppe
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Max Ingo Thurm
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Chia XW, Tan JK, Ang LF, Kamigaki T, Makino H. Emergence of cortical network motifs for short-term memory during learning. Nat Commun 2023; 14:6869. [PMID: 37898638 PMCID: PMC10613236 DOI: 10.1038/s41467-023-42609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Learning of adaptive behaviors requires the refinement of coordinated activity across multiple brain regions. However, how neural communications develop during learning remains poorly understood. Here, using two-photon calcium imaging, we simultaneously recorded the activity of layer 2/3 excitatory neurons in eight regions of the mouse dorsal cortex during learning of a delayed-response task. Across learning, while global functional connectivity became sparser, there emerged a subnetwork comprising of neurons in the anterior lateral motor cortex (ALM) and posterior parietal cortex (PPC). Neurons in this subnetwork shared a similar choice code during action preparation and formed recurrent functional connectivity across learning. Suppression of PPC activity disrupted choice selectivity in ALM and impaired task performance. Recurrent neural networks reconstructed from ALM activity revealed that PPC-ALM interactions rendered choice-related attractor dynamics more stable. Thus, learning constructs cortical network motifs by recruiting specific inter-areal communication channels to promote efficient and robust sensorimotor transformation.
Collapse
Affiliation(s)
- Xin Wei Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jian Kwang Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Lee Fang Ang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Hiroshi Makino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
13
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Jerjian SJ, Harsch DR, Fetsch CR. Self-motion perception and sequential decision-making: where are we heading? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220333. [PMID: 37545301 PMCID: PMC10404932 DOI: 10.1098/rstb.2022.0333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/18/2023] [Indexed: 08/08/2023] Open
Abstract
To navigate and guide adaptive behaviour in a dynamic environment, animals must accurately estimate their own motion relative to the external world. This is a fundamentally multisensory process involving integration of visual, vestibular and kinesthetic inputs. Ideal observer models, paired with careful neurophysiological investigation, helped to reveal how visual and vestibular signals are combined to support perception of linear self-motion direction, or heading. Recent work has extended these findings by emphasizing the dimension of time, both with regard to stimulus dynamics and the trade-off between speed and accuracy. Both time and certainty-i.e. the degree of confidence in a multisensory decision-are essential to the ecological goals of the system: terminating a decision process is necessary for timely action, and predicting one's accuracy is critical for making multiple decisions in a sequence, as in navigation. Here, we summarize a leading model for multisensory decision-making, then show how the model can be extended to study confidence in heading discrimination. Lastly, we preview ongoing efforts to bridge self-motion perception and navigation per se, including closed-loop virtual reality and active self-motion. The design of unconstrained, ethologically inspired tasks, accompanied by large-scale neural recordings, raise promise for a deeper understanding of spatial perception and decision-making in the behaving animal. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Steven J. Jerjian
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Devin R. Harsch
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Neuroscience and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher R. Fetsch
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Pysz PM, Hoskins JK, Zou M, Stenken JA. 3D Printed Customizable Microsampling Devices for Neuroscience Applications. ACS Chem Neurosci 2023; 14:3278-3287. [PMID: 37646856 DOI: 10.1021/acschemneuro.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Multifunctional devices that incorporate chemical or physical measurements combined with ways to manipulate brain tissue via drug delivery, electrical stimulation, or light for optogenetics are desired by neuroscientists. The next generation in vivo brain devices will likely utilize the extensive flexibility and rapid processing of 3D printing. This Perspective demonstrates how close we are to this reality for advanced neuroscience measurements. 3D printing provides the opportunity to improve microsampling-based devices in ways that have not been previously available. Not only can 3D printing be used for actual device creation, but it can also allow printing of peripheral objects necessary to assemble functional devices. The most probable 3D printing set up for microsampling devices with appropriate nm to μm feature size will likely require 2-photon polymerization-based printers. This Perspective describes the advantages and challenges for 3D printing of microsampling devices as an initial step to meet the next generation device needs of neuroscientists.
Collapse
Affiliation(s)
- Patrick M Pysz
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julia K Hoskins
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie A Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
16
|
Grogans SE, Bliss-Moreau E, Buss KA, Clark LA, Fox AS, Keltner D, Cowen AS, Kim JJ, Kragel PA, MacLeod C, Mobbs D, Naragon-Gainey K, Fullana MA, Shackman AJ. The nature and neurobiology of fear and anxiety: State of the science and opportunities for accelerating discovery. Neurosci Biobehav Rev 2023; 151:105237. [PMID: 37209932 PMCID: PMC10330657 DOI: 10.1016/j.neubiorev.2023.105237] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fear and anxiety play a central role in mammalian life, and there is considerable interest in clarifying their nature, identifying their biological underpinnings, and determining their consequences for health and disease. Here we provide a roundtable discussion on the nature and biological bases of fear- and anxiety-related states, traits, and disorders. The discussants include scientists familiar with a wide variety of populations and a broad spectrum of techniques. The goal of the roundtable was to take stock of the state of the science and provide a roadmap to the next generation of fear and anxiety research. Much of the discussion centered on the key challenges facing the field, the most fruitful avenues for future research, and emerging opportunities for accelerating discovery, with implications for scientists, funders, and other stakeholders. Understanding fear and anxiety is a matter of practical importance. Anxiety disorders are a leading burden on public health and existing treatments are far from curative, underscoring the urgency of developing a deeper understanding of the factors governing threat-related emotions.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Kristin A Buss
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lee Anna Clark
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Dacher Keltner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Colin MacLeod
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Naragon-Gainey
- School of Psychological Science, University of Western Australia, Perth, WA 6009, Australia
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Abdeladim L, Shin H, Jagadisan UK, Ogando MB, Adesnik H. Probing inter-areal computations with a cellular resolution two-photon holographic mesoscope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530875. [PMID: 37090604 PMCID: PMC10120651 DOI: 10.1101/2023.03.02.530875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brain computation depends on intricately connected yet highly distributed neural networks. Due to the absence of the requisite technologies, causally testing fundamental hypotheses on the nature of inter-areal processing have remained largely out-of-each. Here we developed the first two photon holographic mesoscope, a system capable of simultaneously reading and writing neural activity patterns with single cell resolution across large regions of the brain. We demonstrate the precise photo-activation of spatial and temporal sequences of neurons in one brain area while reading out the downstream effect in several other regions. Investigators can use this new platform to understand feed-forward and feed-back processing in distributed neural circuits with single cell precision for the first time.
Collapse
|
18
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
19
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
20
|
Kanaev IA. Entropy and Cross-Level Orderliness in Light of the Interconnection between the Neural System and Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:418. [PMID: 36981307 PMCID: PMC10047885 DOI: 10.3390/e25030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Despite recent advances, the origin and utility of consciousness remains under debate. Using an evolutionary perspective on the origin of consciousness, this review elaborates on the promising theoretical background suggested in the temporospatial theory of consciousness, which outlines world-brain alignment as a critical predisposition for controlling behavior and adaptation. Such a system can be evolutionarily effective only if it can provide instant cohesion between the subsystems, which is possible only if it performs an intrinsic activity modified in light of the incoming stimulation. One can assume that the world-brain interaction results in a particular interference pattern predetermined by connectome complexity. This is what organisms experience as their exclusive subjective state, allowing the anticipation of regularities in the environment. Thus, an anticipative system can emerge only in a regular environment, which guides natural selection by reinforcing corresponding reactions and decreasing the system entropy. Subsequent evolution requires complicated, layered structures and can be traced from simple organisms to human consciousness and society. This allows us to consider the mode of entropy as a subject of natural evolution rather than an individual entity.
Collapse
Affiliation(s)
- Ilya A Kanaev
- Department of Philosophy, Sun Yat-sen University, 135 Xingang Xi Rd, Guangzhou 510275, China
| |
Collapse
|