1
|
Sassi P, Comez L, D'Amico F, Rossi B, Bartolini G, Fioretto D, Paolantoni M. Ultraviolet Resonant Raman Scattering of Electrolyte Solutions. APPLIED SPECTROSCOPY 2024; 78:1270-1278. [PMID: 38632936 DOI: 10.1177/00037028241245443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Saltwater stands as the most prevalent liquid on Earth. Consequently, substantial interest has been directed toward its characterization, both as an independent system and as a solvent for complex structures such as biomacromolecules. In the last few decades, special emphasis was placed on the investigation of the hydration properties of ions for the fundamental role they play in numerous chemical processes. In this study, we employed multi-wavelength Raman spectroscopy to examine the hydration shell surrounding bromide ions in solutions of simple electrolytes, specifically lithium bromide, potassium bromide, and cesium bromide, at two different concentrations. Cation-induced differences among electrolytes were observed in connection to their tendency to form ion pairs. An increased sensitivity to reveal the structure of the first hydration shell was evidenced when employing ultraviolet excitation in the 228-266 nm range, under resonance conditions with the charge transfer transition to the solvent peaked at about 200 nm. Other than a significant increase in the Raman cross-section for the OH stretching band when shifting from pure water to the solution, a larger enhancement for the Raman signal of the H-O-H bending mode over the stretching vibration was observed. Thus, the bending band plays a crucial role in monitoring the H-bond structure of water around the anions related to the charge distribution within the first hydration shell of anions, being an effective probe of hydration phenomena.
Collapse
Affiliation(s)
- Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lucia Comez
- CNR-Istituto Officina dei Materiali (IOM), Perugia, Italy
| | - Francesco D'Amico
- Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Trieste, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Trieste, Italy
| | - Gabriele Bartolini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Daniele Fioretto
- Dipartimento di Fisica e Geologia, Università di Perugia, Perugia, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| |
Collapse
|
2
|
Qiu M, Sun P, Liang Y, Chen J, Wang ZL, Mai W. Tailoring tetrahedral and pair-correlation entropies of glass-forming liquids for energy storage applications at ultralow temperatures. Nat Commun 2024; 15:10420. [PMID: 39613740 DOI: 10.1038/s41467-024-54449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
Aqueous solution experiences either crystallization or vitrification as being cooled, yet the mechanism of this bifurcation is confused. Since the glass-transition temperature Tg is much lower than the melting temperature, we herein propose an entropy-driven glass-forming liquid (EDGFL) as an attractive concept to develop anti-freezing electrolytes. The Tg is delicately modulated via regulating local structural orders to avoid the energy-driven ice crystallization and enter an entropy-driven glass transition, which can be theoretically explained by the competitive effect between tetrahedral entropy of water and pair correlation entropy related to ions. The constructive EDGFL with a low Tg of -128 °C and a high boiling point of +145 °C enables stable energy storage over an ultra-wide temperature range of -95~+120 °C, realizes superior AC linear filtering function at -95 °C, and helps improve the performance of aqueous Zn-ion batteries at ultralow temperatures. This special electrolyte will provide both theoretical and practical directions for developing anti-freezing energy storage systems adapting to frigid environment.
Collapse
Affiliation(s)
- Meijia Qiu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Sun
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China
| | - Yuxuan Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Wenjie Mai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China.
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Liu L, Dienel T, Pignedoli CA, Widmer R, Song X, Wang Y, Gröning O. Two-Level Electronic Switching in Individual Manganese-Phthalocyanine Molecules with Jahn-Teller Distortion. ACS NANO 2024; 18:31967-31973. [PMID: 39520358 DOI: 10.1021/acsnano.4c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Understanding single molecular switches is a crucial step in designing and optimizing molecular electronic devices with highly nonlinear functionalities, e.g., gate voltage-dependent current switching. An atomically thin insulating template, in combination with scanning probe techniques, is an ideal platform to study such switches on the single-molecule level. In this study, we investigate manganese-phthalocyanine (MnPc) molecules on monolayer-thin epitaxial hexagonal boron nitride (h-BN) on Rh(111) by scanning tunneling microscopy (STM), spectroscopy (STS), and theoretical calculations. Several interesting phenomena are found: (1) high-resolution STM imaging of the molecular orbitals reveals symmetry breaking from D4h to D2h, observed in one type of MnPc. By comparison with simulations, this phenomenon can be attributed to the Jahn-Teller effect due to the negative charging of the molecule. (2) Ambipolar transitions at the molecule occur at fixed sample biases of about ±0.4 V, which manifest as negative differential conductance signatures in dI/dV spectroscopy. (3) The stochastic two-level switching, resulting in telegraphic noise in the tunneling current, manifests as a one-electron activated process. We present a two-level switching model to accurately describe a bias-dependent current-driven transition between the levels and reveal a first-order transition. The understanding and tailoring of molecular switches on the ultrathin insulating layer will be very helpful for future organic electronics design and application.
Collapse
Affiliation(s)
- Liwei Liu
- School of Integrated Circuit and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- Empa, nanotech@surfaces Laboratory, Dübendorf CH-8600, Switzerland
| | - Thomas Dienel
- Empa, nanotech@surfaces Laboratory, Dübendorf CH-8600, Switzerland
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Roland Widmer
- Empa, nanotech@surfaces Laboratory, Dübendorf CH-8600, Switzerland
| | - Xuan Song
- School of Integrated Circuit and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuit and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Oliver Gröning
- Empa, nanotech@surfaces Laboratory, Dübendorf CH-8600, Switzerland
| |
Collapse
|
4
|
Cao H, Wen X, Luo X, Ma L, Xu Z, Zhang Z, Zhang W. Dual-Site Bridging Mechanism for Bimetallic Electrochemical Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202411683. [PMID: 39119867 DOI: 10.1002/anie.202411683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Heterogeneous dual-site electrocatalysts are emerging cutting-edge materials for efficient electrochemical water splitting. However, the corresponding oxygen evolution reaction (OER) mechanism on these materials is still unclear. Herein, based on a series of in situ spectroscopy experiments and density function theory (DFT) calculations, a new heterogeneous dual-site O-O bridging mechanism (DSBM) is proposed. This mechanism is to elucidate the sequential appearance of dual active sites through in situ construction (hybrid ions undergo reconstruction initially), determine the crucial role of hybrid dual sites in this mechanism (with Ni sites preferentially adsorbing hydroxyls for catalysis followed by proton removal at Fe sites), assess the impact of O-O bond formation on the activation state of water (inducing orderliness of activated water), and investigate the universality (with Co doping in Ni(P4O11)). Under the guidance of this mechanism, with Fe-Ni(P4O11) as pre-catalyst, the in situ formed Fe-Ni(OH)2 electrocatalyst has reached a record-low overpotential of 156.4 mV at current density of 18.0 mA cm-2. Successfully constructed Fe-Ni(P4O11)/Ti uplifting the overall efficacy of the phosphate from moderate to superior, positioning it as an innovative and highly proficient electrocatalyst for OER.
Collapse
Affiliation(s)
- Hongshuai Cao
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xue Wen
- School of Electronics, Information and Electrical Engineering, Instrumental Analysis Center, Shanghai Jiao Tong University, Dong Chuan Road No. 800, 200240 Shanghai, China
| | - Xianzhu Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Linlin Ma
- School of Electronics, Information and Electrical Engineering, Instrumental Analysis Center, Shanghai Jiao Tong University, Dong Chuan Road No. 800, 200240 Shanghai, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 200062, Shanghai, China
| |
Collapse
|
5
|
Ding Z, Gu T, Zhang M, Wang K, Sun D, Li J. Angstrom-Scale 2D Channels Designed For Osmotic Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403593. [PMID: 39180252 DOI: 10.1002/smll.202403593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/04/2024] [Indexed: 08/26/2024]
Abstract
Confronting the impending exhaustion of traditional energy, it is urgent to devise and deploy sustainable clean energy alternatives. Osmotic energy contained in the salinity gradient of the sea-river interface is an innovative, abundant, clean, and renewable osmotic energy that has garnered considerable attention in recent years. Inspired by the impressively intelligent ion channels in nature, the developed angstrom-scale 2D channels with simple fabrication process, outstanding design flexibility, and substantial charge density exhibit excellent energy conversion performance, opening up a new era for osmotic energy harvesting. However, this attractive research field remains fraught with numerous challenges, particularly due to the complexities associated with the regulation at angstrom scale. In this review, the latest advancements in the design of angstrom-scale 2D channels are primarily outlined for harvesting osmotic energy. Drawing upon the analytical framework of osmotic power generation mechanisms and the insights gleaned from the biomimetic intelligent devices, the design strategies are highlighted for high-performance angstrom channels in terms of structure, functionalization, and application, with a particular emphasis on ion selectivity and ion transport resistance. Finally, current challenges and future prospects are discussed to anticipate the emergence of more anomalous properties and disruptive technologies that can promote large-scale power generation.
Collapse
Affiliation(s)
- Zhengmao Ding
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| | - Tiancheng Gu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minghao Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Kaiqiang Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinjin Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Huang B, Yun L, Yang Y, Han R, Chen K, Wang Z, Wang Y, Chen H, Du Y, Hao Y, Lv P, Ji P, Tan Y, Zheng L, Liu L, Li R, Yang J. Structural Study of Aqueous Electrolyte Solution by MeV Liquid Electron Scattering. J Phys Chem B 2024; 128:9197-9205. [PMID: 39268827 DOI: 10.1021/acs.jpcb.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The impact of ions on water has long been a subject of great interest, as it is closely tied to the hydration structure, dynamics, and properties of electrolyte solutions. Over centuries of investigation, the influence of ions on water's structure remains highly debated. Prevailing techniques, such as neutron and X-ray scattering, primarily focus on the microscopic structure of salt solutions at very high concentrations, mostly above 1 mol/L. In this study, we measured the structure of aqueous potassium iodide (KI) and potassium chloride (KCl) solutions using MeV liquid electron scattering (MeV-LES) across a concentration range of 0.10 to 0.75 mol/L. The obtained results provide detailed insights into the variations in ion-oxygen and oxygen-oxygen correlations as a function of concentration. The observed structural differences between KI and KCl solutions are in line with the structure maker/breaker theory, which suggests that iodide ions exert a more pronounced effect than chloride ions on disrupting the water shell. This work demonstrates the potency of MeV-LES for investigating the atomic structure in liquids, augmenting the modern analytical toolbox.
Collapse
Affiliation(s)
- Bo Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Longteng Yun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yining Yang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Ruinong Han
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Keke Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yian Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Haowei Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingchao Du
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yuxia Hao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Lv
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Pengju Ji
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuemei Tan
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lianmin Zheng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lihong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renkai Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Yang J, Zhang Y, Song Y, Ge Y, Tang S, Li J, Zhang H, Wu D, Tian X. Rechargeable Seawater-Based Chloride-Ion Batteries Enabled by Covalent Surface Chemistry in MXenes. J Am Chem Soc 2024; 146:25680-25688. [PMID: 39099150 DOI: 10.1021/jacs.4c07809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Rechargeable aqueous chloride-ion batteries (ACIBs) using Cl- ions as charge carriers represent a promising energy-storage technology, especially when natural seawater is introduced as the electrolyte, which can bring remarkable advantages in terms of cost-effectiveness, safety, and environmental sustainability. However, the implementation of this technology is hindered by the scarcity of electrodes capable of reversible chloride-anion storage. Here, we show that a Ti3C2Clx MXene with Cl surface terminations enables reversible Cl- ion storage in aqueous electrolytes. Further, we developed seawater-based ACIBs that show a high specific capacity and an exceptionally long lifespan (40000 cycles, more than 1 year) in natural seawater electrolyte. The pouch-type cells achieve a high energy density (50 Wh Lcell-1) and maintain stable performance across a broad temperature range (-20 to 50 °C). Our investigations reveal that the covalent interaction between Cl- ions and Cl-terminated MXene facilitates Cl- ion intercalation into the MXene interlayer, promoting rapid ion migration with a low energy barrier (0.10 eV). Moreover, this MXene variant also enables the reversible storage of Br- ions in an aqueous electrolyte with a long cycle life. This study may advance the design of anion storage electrodes and enable the development of sustainable aqueous batteries.
Collapse
Affiliation(s)
- Jinlin Yang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yiming Song
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yanzeng Ge
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Si Tang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Hui Zhang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
8
|
Liu L, He Z, Wu B, Song H, Zhong X, Wang J, Zou D, Cheng J. Layered CrO 2· nH 2O as a cathode material for aqueous zinc-ion batteries: ab initio study. Phys Chem Chem Phys 2024; 26:23811-23822. [PMID: 39229792 DOI: 10.1039/d4cp02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Aqueous zinc-ion batteries are considered potential large-scale energy storage systems due to their low cost, environmentally friendly nature, and high safety. However, the development of high energy density cathode materials and uncertain reaction mechanisms remains a major challenge. In this work, the reaction mechanism, discharge voltage and diffusion properties of layered CrO2 as a cathode material for aqueous zinc-ion batteries were studied using first-principles calculations, and the effect of pre-intercalated structural water on the electrochemical performance of CrO2 electrodes is also discussed. The results show that CrO2 exhibits high average discharge voltages (2.65 V for H insertion (pH = 7) and 1.97 V for Zn insertion) and medium theoretical capacities (319 mA h g-1 (H and Zn)). The H intercalation voltage strongly depends on the pH value of the electrolyte. The H/Zn co-insertion mechanism occurs at low hydrogen concentrations (c(H) ≤ 0.125), where the initial insertion of H reduces the total amount of subsequent Zn insertion. For the substrate containing structured water (CrO2·nH2O, n ≥ 0.5), the average voltage of Zn insertion is significantly increased, while the average voltage of H slightly decreases. In addition, the pre-intercalated water strategy significantly improved the diffusion properties of H and Zn. This study shows that layered CrO2·nH2O is a promising cathode material for aqueous zinc-ion batteries, and also provides theoretical guidance for the development of high-performance cathode materials for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Lu Liu
- School of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Zixi He
- School of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Binghan Wu
- School of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Hongjia Song
- School of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Xiangli Zhong
- School of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jinbin Wang
- School of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Daifeng Zou
- School of Materials Science and Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China.
| | - Juanjuan Cheng
- School of Materials Science and Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China.
| |
Collapse
|
9
|
Tian Y, Huang B, Song Y, Zhang Y, Guan D, Hong J, Cao D, Wang E, Xu L, Shao-Horn Y, Jiang Y. Effect of ion-specific water structures at metal surfaces on hydrogen production. Nat Commun 2024; 15:7834. [PMID: 39244565 PMCID: PMC11380671 DOI: 10.1038/s41467-024-52131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li+ cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li+ cations and the surface. In contrast, K+ and Cs+ cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li+ to a distorted hydrogen-bonding configuration with Cs+. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.
Collapse
Affiliation(s)
- Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China.
| | - Botao Huang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
- Department of Physics, Temple University, Philadelphia, Pennsylvania, USA
| | - Yirui Zhang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
| | - Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
| | - Duanyun Cao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
| | - Enge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, P. R. China
- Songshan Lake Materials Lab, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang, P. R. China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, P. R. China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, P. R. China.
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, P. R. China.
| |
Collapse
|
10
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Li M, Wang P, Yu X, Su Y, Zhao J. Impact of Nuclear Quantum Effects on the Structural Properties of Protonated Water Clusters. J Phys Chem A 2024; 128:5954-5962. [PMID: 39007820 DOI: 10.1021/acs.jpca.4c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nuclear quantum effects (NQEs) play a crucial role in hydrogen-bonded systems due to quantum tunneling and proton fluctuation. Our understanding of how NQEs affect microstructures mainly focuses on bulk phases of liquids and solids but remains deficient for water clusters, including their hydrogen nuclei, hydrogen-bonded configurations, and temperature dependence. Here, we conducted ab initio molecular dynamics (MD) and path integral MD simulations to investigate the influence of NQEs on the structural properties of protonated water clusters H+(H2O)n (n = 3, 6, 9, 12). The results reveal that the NQEs become less evident as the cluster size increases due to the competition between NQEs and electrostatic interactions. Simulations of several H+(H2O)6 isomers at different temperatures indicate that the effect of elevated temperature on proton transfer is related to the initial structure. Interestingly, the process of proton transfer also involves the interconversion between Zundel-type and Eigen-type isomers. These findings significantly deepen our understanding of ion-water and water-water interactions, opening new avenues for the study of hydrated ion clusters and related systems.
Collapse
Affiliation(s)
- Mengxu Li
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | | | - Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
13
|
Liang J, Li J, Dong H, Li Z, He X, Wang Y, Yao Y, Ren Y, Sun S, Luo Y, Zheng D, Li J, Liu Q, Luo F, Wu T, Chen G, Sun X, Tang B. Aqueous alternating electrolysis prolongs electrode lifespans under harsh operation conditions. Nat Commun 2024; 15:6208. [PMID: 39043681 PMCID: PMC11266351 DOI: 10.1038/s41467-024-50519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.
Collapse
Affiliation(s)
- Jie Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Zixiaozi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China.
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
- Laoshan Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Lu C, Chen Z, Wu Y, Zhang Y, Wang F, Hu C, Qu J. Response of Ionic Hydration Structure and Selective Transport Behavior to Aqueous Solution Chemistry during Nanofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11791-11801. [PMID: 38871647 DOI: 10.1021/acs.est.4c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The effect of aqueous solution chemistry on the ionic hydration structure and its corresponding nanofiltration (NF) selectivity is a research gap concerning ion-selective transport. In this study, the hydration distribution of two typical monovalent anions (Cl- and NO3-) under different aqueous solution chemical conditions and the corresponding transmembrane selectivity during NF were investigated by using in situ liquid time-of-flight secondary ion mass spectrometry in combination with molecular dynamics simulations. We demonstrate the inextricable link between the ion hydration structure and the pore steric effect and further find that ionic transmembrane transport can be regulated by breaking the balance between the hydrogen bond network (i.e., water-water) and ion hydration (i.e., ion-water) interactions of hydrated ion. For strongly hydrated (H2O)nCl- with more intense ion-water interactions, a higher salt concentration and coexisting ion competition led to a larger hydrated size and, thus, a higher ion rejection by the NF membrane, whereas weakly hydrated (H2O)nNO3- takes the reverse under the same conditions. Stronger OH--anion hydration competition resulted in a smaller hydrated size of (H2O)nCl- and (H2O)nNO3-, showing a lower observed average hydration number at pH 10.5. This study deepens the long-overlooked understanding of NF separation mechanisms, concerning the hydration structure.
Collapse
Affiliation(s)
- Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
O’Neill N, Shi BX, Fong K, Michaelides A, Schran C. To Pair or not to Pair? Machine-Learned Explicitly-Correlated Electronic Structure for NaCl in Water. J Phys Chem Lett 2024; 15:6081-6091. [PMID: 38820256 PMCID: PMC11181334 DOI: 10.1021/acs.jpclett.4c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The extent of ion pairing in solution is an important phenomenon to rationalize transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between solvated ions. The relative stabilities of the paired and solvent shared states in the PMF and the barrier between them are highly sensitive to the underlying potential energy surface. However, direct application of accurate electronic structure methods is challenging, since long simulations are required. We develop wave function based machine learning potentials with the random phase approximation (RPA) and second order Møller-Plesset (MP2) perturbation theory for the prototypical system of Na and Cl ions in water. We show both methods in agreement, predicting the paired and solvent shared states to have similar energies (within 0.2 kcal/mol). We also provide the same benchmarks for different DFT functionals as well as insight into the PMF based on simple analyses of the interactions in the system.
Collapse
Affiliation(s)
- Niamh O’Neill
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Benjamin X. Shi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Kara Fong
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Christoph Schran
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
16
|
Zhang T, Wang S, Yang K, Lin L, Yang P, Zhou K, Chen W, Chen M, Zhou X. Directly Converting Bulk Wood into Branch Micro-Nano Fibers to Synergistically Enhance the Strength and Toughness via Interface Engineering. NANO LETTERS 2024; 24:6576-6584. [PMID: 38775216 DOI: 10.1021/acs.nanolett.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hierarchical biobased micro/nanomaterials offer great potential as the next-generation building blocks for robust films or macroscopic fibers with high strength, while their capability in suppressing crack propagation when subject to damage is hindered by their limited length. Herein, we employed an approach to directly convert bulk wood into fibers with a high aspect ratio and nanosized branching structures. Particularly, the length of microfibers surpassed 1 mm with that of the nanosized branches reaching up to 300 μm. The presence of both interwoven micro- and nanofibers endowed the product with substantially improved tensile strength (393.99 MPa) and toughness (19.07 MJ m-3). The unique mechanical properties arose from mutual filling and the hierarchical deformation facilitated by branched nanofibers, which collectively contributed to effective energy dissipation. Hence, the nanotransformation strategy opens the door toward a facial, scalable method for building high-strength film or macroscopic fibers available in various advanced applications.
Collapse
Affiliation(s)
- Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Shijun Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Liangke Lin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Minzhi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| |
Collapse
|
17
|
Liang X, Zhou Y, Zhu W, Xu WW, Francisco JS, Zeng XC, Zhao W. Formation of compounds with diverse polyelectrolyte morphologies and nonlinear ion conductance in a two-dimensional nanofluidic channel. Chem Sci 2024; 15:8170-8180. [PMID: 38817585 PMCID: PMC11134406 DOI: 10.1039/d4sc01071j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Aqueous electrolytes subjected to angstrom-scale confinement have recently attracted increasing interest because of their distinctive structural and transport properties, as well as their promising applicability in bioinspired nanofluidic iontronics and ion batteries. Here, we performed microsecond-scale molecular dynamics simulations, which provided evidence of nonlinear ionic conductance under an external lateral electric field due to the self-assembly of cations and anions with diverse polyelectrolyte morphologies (e.g., extremely large ion clusters) in aqueous solutions within angstrom-scale slits. Specifically, we found that the cations and anions of Li2SO4 and CaSO4 formed chain-like polyelectrolyte structures, whereas those of Na2SO4 and MgSO4 predominantly formed a monolayer of hydrated salt. Additionally, the cations and anions of K2SO4 assembled into a hexagonal anhydrous ionic crystal. These ion-dependent diverse polyelectrolyte morphologies stemmed from the enhanced Coulomb interactions, weakened hydration and steric constraints within the angstrom-scale slits. More importantly, once the monolayer hydrated salt or ionic crystal structure was formed, the field-induced ion current exhibited an intriguing gating effect at a low field strength. This abnormal ion transport was attributed to the concerted movement of cations and anions within the solid polyelectrolytes, leading to the suppression of ion currents. When the electric field exceeded a critical strength, however, the ion current surged rapidly due to the dissolution of many cations and anions within a few nanoseconds in the aqueous solution.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Physics, Ningbo University Ningbo Zhejiang 315211 China
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University Ningbo 315211 China
| | - Weiduo Zhu
- Department of Physics, Hefei University of Technology Hefei Anhui 230009 China
| | - Wen Wu Xu
- Department of Physics, Ningbo University Ningbo Zhejiang 315211 China
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong Kowloon 999077 Hong Kong China
| | - Wenhui Zhao
- Department of Physics, Ningbo University Ningbo Zhejiang 315211 China
| |
Collapse
|
18
|
Martínez JA, Langguth IC, Olivenza-León D, Morgenstern K. The structure-giving role of Rb + ions for water-ice nanoislands supported on Cu(111). Phys Chem Chem Phys 2024; 26:13667-13674. [PMID: 38563329 DOI: 10.1039/d3cp05968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We characterize the effect of rubidium ions on water-ice nanoislands in terms of area, fractal dimension, and apparent height by low-temperature scanning tunneling microscopy. Water nanoislands on the pristine Cu(111) surface are compared to those at similar coverage on a Rb+ pre-covered Cu(111) surface to reveal the structure-giving effect of Rb+. The presence of Rb+ induces changes in the island shape, and hence, the water network, without affecting the nanoisland volume. The broad area distribution shifts to larger values while the height decreases from three bilayers to one or two bilayers. The nanoislands on the Rb+ pre-covered surface are also more compact, reflected in a shift in the fractal dimension distribution. We relate the changes to a weakening of the hydrogen-bond network by Rb+.
Collapse
Affiliation(s)
- Javier A Martínez
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Havana 10400, Cuba.
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Inga C Langguth
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - David Olivenza-León
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Karina Morgenstern
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| |
Collapse
|
19
|
Wang H, Gu JL, Guo YW, Ma Y, Yu NN, Sun Z. Absolute Structures of a Mirror Pair of Infinite Na(H2O)4 + -Connected ε-Keggin-Al13 Species. ACS OMEGA 2024; 9:20185-20195. [PMID: 38737014 PMCID: PMC11079914 DOI: 10.1021/acsomega.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
The absolute structures of a pair of infinite Na(H2O)4+-connected ε-Keggin-Al13 species (Na-ε-K-Al13) that were inversion structures and mirror images of each other were determined. Single crystals obtained by adding A2SO4 (A = Li, Na, K, Rb, or Cs) solution to NaOH-hydrolyzed AlCl3 solution were subjected to X-ray structure analyses. The statistical results for 36 single crystals showed that all the crystals had almost the same unit cell parameter, belonged to the same F4̅3m space group, and possessed the same structural formula [Na(H2O)4AlO4Al12(OH)24(H2O)12](SO4)4·10H2O. However, the crystals had two inverse absolute structures (denoted A and B), which had a crystallization ratio of 1:1. From Li+ to Cs+, with increasing volume of the cation coexisting in the mother solution, the degree of disorder of the four H2O molecules in the Na(H2O)4+ hydrated ion continuously decreased; they became ordered when the cation was Cs+. Absolute structures A and B are the first two infinite aluminum polycations connected by statistically occupied [(Na1/4)4(H2O)4]+ hydrated ions. The three-dimensional structure of the infinite Na-ε-K-Al13 species can be regarded as the assembly of finite ε-K-Al13 species linked by [(Na1/4)4(H2O)4]+ in a 1:1 ratio. In this assembly, each [(Na1/4)4(H2O)4]+ is connected to four ε-K-Al13 and each ε-K-Al13 is also connected to four [(Na1/4)4(H2O)4]+ in tetrahedral orientations to form a continuous rigid framework structure, which has an inverse spatial orientation between absolute structure A and B. This discovery clarifies that the ε-K-Al13 (or ε-K-GaAl12) species in Na[MO4Al12(OH)24(H2O)12](XO4)4·nH2O (M = Al, Ga; X = S, Se; n = 10-20) exists as discrete groups and deepens understanding of the formation and evolution process of polyaluminum species in forcibly hydrolyzed aluminum salt solution. The reason why Na+ statistically occupies the four sites was examined, and a formation and evolution mechanism of the infinite Na-ε-K-Al13 species was proposed.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry and
Chemical Engineering, Inner Mongolia University, 49 South Xilin Road, Hohhot 010020, China
| | - Jin-Liang Gu
- College of Chemistry and
Chemical Engineering, Inner Mongolia University, 49 South Xilin Road, Hohhot 010020, China
| | - Yu-Wei Guo
- College of Chemistry and
Chemical Engineering, Inner Mongolia University, 49 South Xilin Road, Hohhot 010020, China
| | - Yu Ma
- College of Chemistry and
Chemical Engineering, Inner Mongolia University, 49 South Xilin Road, Hohhot 010020, China
| | - Ning-Ning Yu
- College of Chemistry and
Chemical Engineering, Inner Mongolia University, 49 South Xilin Road, Hohhot 010020, China
| | - Zhong Sun
- College of Chemistry and
Chemical Engineering, Inner Mongolia University, 49 South Xilin Road, Hohhot 010020, China
| |
Collapse
|
20
|
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
The inherent discontinuity and unique dimensional attributes of nanomaterial surfaces and interfaces bestow them with various exceptional properties. These properties, however, also introduce difficulties for both experimental and computational studies. The advent of machine learning interatomic potential (MLIP) addresses some of the limitations associated with empirical force fields, presenting a valuable avenue for accurate simulations of these surfaces/interfaces of nanomaterials. Central to this approach is the idea of capturing the relationship between system configuration and potential energy, leveraging the proficiency of machine learning (ML) to precisely approximate high-dimensional functions. This review offers an in-depth examination of MLIP principles and their execution and elaborates on their applications in the realm of nanomaterial surface and interface systems. The prevailing challenges faced by this potent methodology are also discussed.
Collapse
Affiliation(s)
- Kaiwei Wan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jianxin He
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
21
|
Li Y, Liu H, Wang W. Modified Ion Migration via Multi-Ion Competitive Transportation for Stable Aqueous Zn Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307388. [PMID: 38059741 DOI: 10.1002/smll.202307388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Indexed: 12/08/2023]
Abstract
The application of metal batteries is seriously affected by active ions transport and deposition stability during operation. This article takes water-based Zn metal electrodes as an example to analyze the factors that affect ion distribution and the impact of ion distribution on electrodeposition morphology through electrochemical model simulation calculation, in situ observation and electrochemical experiment: 1) high concentration will reduce the concentration polarization and the overpotential; 2) The passage of active ions through channels are facilitated by small anion (Cl-) rather than bigger one (SO4 2-), which means small deposition overpotential; 3) The transportability-reaction properties of cations (Zn2+, Li+, Na+ and H+) depends on their concentration, solvent coordination structure, and the energy changes during redox reactions. Based on the diffusion and reaction properties, a Li+ coupled Zn2+ electrolyte is designed to achieve the rapid transportation of doped ions to cover uneven growth sites and maintain a stable interface for the steady deposition of active Zn2+, guiding the interface design for high stability metal batteries in addition to the traditional addition of organic solvents.
Collapse
Affiliation(s)
- Yuqian Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huanrong Liu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
22
|
Tian Y, Song Y, Xia Y, Hong J, Huang Y, Ma R, You S, Guan D, Cao D, Zhao M, Chen J, Song C, Liu K, Xu LM, Gao YQ, Wang EG, Jiang Y. Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction. NATURE NANOTECHNOLOGY 2024; 19:479-484. [PMID: 38049594 DOI: 10.1038/s41565-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
The permeability and selectivity of biological and artificial ion channels correlate with the specific hydration structure of single ions. However, fundamental understanding of the effect of ion-ion interaction remains elusive. Here, via non-contact atomic force microscopy measurements, we demonstrate that hydrated alkali metal cations (Na+ and K+) at charged surfaces could come into close contact with each other through partial dehydration and water rearrangement processes, forming one-dimensional chain structures. We prove that the interplay at the nanoscale between the water-ion and water-water interaction can lead to an effective ion-ion attraction overcoming the ionic Coulomb repulsion. The tendency for different ions to become closely packed follows the sequence K+ > Na+ > Li+, which is attributed to their different dehydration energies and charge densities. This work highlights the key role of water molecules in prompting close packing and concerted movement of ions at charged surfaces, which may provide new insights into the mechanism of ion transport under atomic confinement.
Collapse
Affiliation(s)
- Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Yijie Xia
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Yupeng Huang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Runze Ma
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Sifan You
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Duanyun Cao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Mengze Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ji Chen
- School of Physics, Peking University, Beijing, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
- Songshan Lake Materials Laboratory, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang, People's Republic of China.
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Zhang L, Tian J, Lin Z, Dong Z. Efficient Sodium Transmembrane Permeation through Helically Folded Nanopores with Natural Channel-Like Ion Selectivity. J Am Chem Soc 2024; 146:8500-8507. [PMID: 38483183 DOI: 10.1021/jacs.3c14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The selective transmembrane permeation of sodium ions achieved by biomimetic chemistry shows great potential to solve the problem of sodium ion transport blockade in diseases, but its implementation faces enormous difficulties. Herein, we design and synthesize a series of helically folded nanopores by employing a quinoline-oxadiazole structural sequence to finely replicate the pentahydrate structure of sodium ions. Surprisingly, these nanopores are capable of achieving sodium transmembrane permeation with ion selectivity at the level of natural sodium channels, as observed in rationally designed nanopores (M1-M5) with Na+/K+ ion selectivity ratio of up to 20.4. Moreover, slight structural variations in nanopore structures can switch ion transport modes between the channel and carrier. We found that, compared to the carrier mode, the channel mode not only transports ions faster but also has higher ion selectivity during transmembrane conduction, clearly illustrating that the trade-off phenomenon between ion selectivity and transport activity does not occur between the two transport modes of channel and carrier. At the same time, we also found that the spatial position and numbers of coordination sites are crucial for the sodium ion selectivity of the nanopores. Moreover, carrier M1 reported in this work is totally superior to the commercial Na+ carrier ETH2120, especially in terms of Na+/K+ ion selectivity, thus being a potentially practical Na+ carrier. Our study provides a new paradigm on the rational design of sodium-specific synthetic nanopores, which will open up the possibility for the application of artificial sodium-specific transmembrane permeation in biomedicine and disease treatment.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tian
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Lin
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Zhang X, Cheng S, Chen C, Wen X, Miao J, Zhou B, Long M, Zhang L. Keto-anthraquinone covalent organic framework for H 2O 2 photosynthesis with oxygen and alkaline water. Nat Commun 2024; 15:2649. [PMID: 38531862 PMCID: PMC11258313 DOI: 10.1038/s41467-024-47023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogen peroxide photosynthesis suffers from insufficient catalytic activity due to the high energy barrier of hydrogen extraction from H2O. Herein, we report that mechanochemically synthesized keto-form anthraquinone covalent organic framework which is able to directly synthesize H2O2 (4784 μmol h-1 g-1 at λ > 400 nm) from oxygen and alkaline water (pH = 13) in the absence of any sacrificial reagents. The strong alkalinity resulted in the formation of OH-(H2O)n clusters in water, which were adsorbed on keto moieties within the framework and then dissociated into O2 and active hydrogen, because the energy barrier of hydrogen extraction was largely lowered. The produced hydrogen reacted with anthraquinone to generate anthrahydroquinone, which was subsequently oxidized by O2 to produce H2O2. This study ultimately sheds light on the importance of hydrogen extraction from H2O for H2O2 photosynthesis and demonstrates that H2O2 synthesis is achievable under alkaline conditions.
Collapse
Affiliation(s)
- Xiangcheng Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Silian Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Chen
- School of Ecological and Environmental Science, Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Xue Wen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Miao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Li N, Pang Y, Sun Z, Sun X, Li W, Sun Y, Zhu L, Li B, Wang Z, Zeng H. Unraveling Partial Coalescence Between Droplet and Oil-Water Interface in Water-in-Oil Emulsions under a Direct-Current Electric Field via Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5992-6003. [PMID: 38445586 DOI: 10.1021/acs.langmuir.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
When the electric field strength (E) surpasses a certain threshold, secondary droplets are generated during the coalescence between water droplets in oil and the oil-water interface (so-called the droplet-interface partial coalescence phenomenon), resulting in a lower efficiency of droplet electrocoalescence. This study employs molecular dynamics (MD) simulations to investigate the droplet-interface partial coalescence phenomenon under direct current (DC) electric fields. The results demonstrate that intermolecular interactions, particularly the formation of hydrogen bonds, play a crucial role in dipole-dipole coalescence. Droplet-interface partial coalescence is categorized into five regimes based on droplet morphology. During the contact and fusion of the droplet with the water layer, the dipole moment of the droplet exhibits alternating increases and decreases along the electric field direction. Electric field forces acting on sodium ions and the internal interactions within droplets promote the process of droplet-interface partial coalescence. High field strengths cause significant elongation of the droplet, leading to its fragmentation into multiple segments. The migration of hydrated ions has a dual impact on the droplet-interface partial coalescence, with both facilitative and suppressive effects. The time required for droplet-interface partial coalescence initially decreases and subsequently increases as the field strength increases, depending on the competitive relationship between the extent of droplet stretching and the electric field force. This work provides molecular insights into the droplet-interface coalescence mechanisms in water-in-oil emulsions under DC electric fields.
Collapse
Affiliation(s)
- Ning Li
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9, Canada
| | - Yunhui Pang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqian Sun
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyu Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9, Canada
| | - Wangqing Li
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9, Canada
| | - Liyun Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenbo Wang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9, Canada
| |
Collapse
|
26
|
Guan D, Tian Y, Song Y, Zhao M, Liu K, Xu LM, Wang EG, Jiang Y. The effect of surface hydrophobicity and hydrophilicity on ion-ion interactions at water-solid interfaces. Faraday Discuss 2024; 249:38-49. [PMID: 37786316 DOI: 10.1039/d3fd00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Condensation and arrangement of ions at water-solid interfaces are of great importance in the formation of electrical double layers (EDL) and the transport of ions under a confined geometry. So far, the microscopic understanding of interfacial ion configurations is still far from complete, especially when the local ion concentration is high and ion-ion interactions become prominent. In this study, we directly visualized alkali metal cations within the hydrogen-bonding network of water on graphite and Cu(111)-supported graphene surfaces, using qPlus-based noncontact atomic force microscopy (NC-AFM). We found that the codeposition of the alkali cations and water molecules on the hydrophobic graphite surface leads to the formation of an ion-doped bilayer hexagonal ice (BHI) structure, where the ions are repelled from each other and scattered in a disordered distribution. In contrast, the hydrated alkali cations aggregate in one dimension on the more hydrophilic graphene/Cu(111) surface, forming a nematic state with a long-range order. Such a nematic state arises from the delicate interplay between water-ion and water-water interactions under surface confinement. These results reveal the high sensitivity of ion-ion interactions and ionic ordering to the surface hydrophobicity and hydrophilicity.
Collapse
Affiliation(s)
- Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China.
| | - Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China.
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China.
| | - Mengze Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, P. R. China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
27
|
Franceschi G, Brandstetter S, Balajka J, Sokolović I, Pavelec J, Setvín M, Schmid M, Diebold U. Interaction of surface cations of cleaved mica with water in vapor and liquid forms. Faraday Discuss 2024; 249:84-97. [PMID: 37791454 PMCID: PMC10845011 DOI: 10.1039/d3fd00093a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 10/05/2023]
Abstract
Natural minerals contain ions that become hydrated when they come into contact with water in vapor and liquid forms. Muscovite mica - a common phyllosilicate with perfect cleavage planes - is an ideal system to investigate the details of ion hydration. The cleaved mica surface is decorated by an array of K+ ions that can be easily exchanged with other ions or protons when immersed in an aqueous solution. Despite the vast interest in the atomic-scale hydration processes of these K+ ions, experimental data under controlled conditions have remained elusive. Here, atomically resolved non-contact atomic force microscopy (nc-AFM) is combined with X-ray photoelectron spectroscopy (XPS) to investigate the cation hydration upon dosing water vapor at 100 K in ultra-high vacuum (UHV). The cleaved surface is further exposed to ultra-clean liquid water at room temperature, which promotes ion mobility and partial ion-to-proton substitution. The results offer the first direct experimental views of the interaction of water with muscovite mica under UHV. The findings are in line with previous theoretical predictions.
Collapse
Affiliation(s)
- Giada Franceschi
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| | - Sebastian Brandstetter
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| | - Jan Balajka
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| | - Igor Sokolović
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| | - Jiří Pavelec
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| | - Martin Setvín
- Department of Surface and Plasma Science, Charles University in Prague, V Holesovickach 2, 180 00 Praha, Czech Republic
| | - Michael Schmid
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| | - Ulrike Diebold
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria.
| |
Collapse
|
28
|
Huang YP, Xia Y, Yang L, Gao YQ. PMC-IZ: A Simple Algorithm for the Electrostatics Calculation in Slab Geometric Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:832-841. [PMID: 38196086 DOI: 10.1021/acs.jctc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Slab geometric systems are widely utilized in molecular simulations. However, an efficient, straightforward, and accurate method for calculating electrostatic interactions in these systems for molecular dynamics (MD) simulations is still needed. This review introduces a PME-like approach called PMC-IZ, specifically designed for slab geometric systems. Traditional approaches for long-range electrostatic interaction calculations in slab geometry typically involve Ewald summation, where the Gaussian charge density is summed within 3D unit cells and then integrated in the 2D periodic space. In the proposed approach here, the Poisson equation was solved for a single Gaussian charge density within 2Dl periodic space, followed by convolution within 3D unit cells using an effective potential as the convolution kernel for summation. The effective potential ensures that the solution within the region of interest adheres strictly to 2D periodic boundary conditions while inherently possessing 3D periodic boundary condition properties. The PMC-IZ method provides for such systems accurate treatment of electrostatic interactions, overcomes limitations associated with finite vacuum layers, and offers improved computational efficiency. We thus postulate that this method provides a valuable tool for studying electrostatic interactions in slab geometric system MD simulations. It has promising applications in various areas such as surface science, catalysis, and materials research, where accurate modeling of slab geometric electrostatic interactions is essential.
Collapse
Affiliation(s)
- Yu-Peng Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Yijie Xia
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Franceschi G, Conti A, Lezuo L, Abart R, Mittendorfer F, Schmid M, Diebold U. How Water Binds to Microcline Feldspar (001). J Phys Chem Lett 2024; 15:15-22. [PMID: 38156776 PMCID: PMC10788961 DOI: 10.1021/acs.jpclett.3c03235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Microcline feldspar (KAlSi3O8) is a common mineral with important roles in Earth's ecological balance. It participates in carbon, potassium, and water cycles, contributing to CO2 sequestration, soil formation, and atmospheric ice nucleation. To understand the fundamentals of these processes, it is essential to establish microcline's surface atomic structure and its interaction with the omnipresent water molecules. This work presents atomic-scale results on microcline's lowest-energy surface and its interaction with water, combining ultrahigh vacuum investigations by noncontact atomic force microscopy and X-ray photoelectron spectroscopy with density functional theory calculations. An ordered array of hydroxyls bonded to silicon or aluminum readily forms on the cleaved surface at room temperature. The distinct proton affinities of these hydroxyls influence the arrangement and orientation of the first water molecules binding to the surface, holding potential implications for the subsequent condensation of water.
Collapse
Affiliation(s)
| | - Andrea Conti
- Institute
of Applied Physics, TU Wien, 1040 Vienna, Austria
| | - Luca Lezuo
- Institute
of Applied Physics, TU Wien, 1040 Vienna, Austria
| | - Rainer Abart
- Department
of Lithospheric Research, Universität
Wien, 1090 Vienna, Austria
| | | | - Michael Schmid
- Institute
of Applied Physics, TU Wien, 1040 Vienna, Austria
| | - Ulrike Diebold
- Institute
of Applied Physics, TU Wien, 1040 Vienna, Austria
| |
Collapse
|
30
|
Yang P, Liu H, Jin Q, Lai Y, Zeng Y, Zhang C, Dong J, Sun W, Guo Q, Cao D, Guo J. Visualizing the Promoting Role of Interfacial Water in the Deprotonation of Formic Acid on Cu(111). J Am Chem Soc 2024; 146:210-217. [PMID: 38037330 DOI: 10.1021/jacs.3c07726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Water plays a crucial role in various heterogeneous catalytic reactions, but the atomic-scale characterization of how water participates in these chemical processes remains a significant challenge. Here we directly visualize the promoting role of interfacial water in the deprotonation of formic acid (FA) on a metal surface, using combined scanning tunneling microscopy and qPlus-based noncontact atomic force microscopy. We find the dissociation of FA when coadsorbed with water on the Cu(111) surface, resulting in the formation of hydronium and formate ions. Interestingly, most of the hydrated proton and formate ions exhibit a phase-separated behavior on Cu(111), in which Eigen and Zundel cations assemble into a monolayer hexagonal hydrogen-bonding (H-bonding) network, and bidentate formate ions are solvated with water and aggregate into one-dimensional chains or two-dimensional H-bonding networks. This phase-separated behavior is essential for preventing the proton transfer back from hydronium to formate and the reformation of FA. Density functional theory calculations reveal that the participation of water significantly reduces the deprotonation barrier of FA on Cu(111), in which water catalyzes the decomposition of FA through the Grotthuss proton transfer mechanism. In addition, the separate solvation of hydronium and bidentate formate ions is energetically preferred due to the enhanced interaction with the copper substrate. The promoting role of water in the deprotonation of FA is further confirmed by the temperature-programmed desorption experiment, which shows that the intensity of the H2 desorption peak significantly increases and the desorption of FA declines when water and FA coadsorbed on the Cu(111) surface.
Collapse
Affiliation(s)
- Pu Yang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Honggang Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qingwei Jin
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Yuemiao Lai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yi Zeng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Zhang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Dong
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Wenyu Sun
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Jing Guo
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Sun X, Hao Z, Zhou X, Chen J, Zhang Y. Advanced capacitive deionization for ion selective separation: Insights into mechanism over a functional classification. CHEMOSPHERE 2024; 346:140601. [PMID: 37918536 DOI: 10.1016/j.chemosphere.2023.140601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Due to the diversity and variability of harmful ions in polluted water bodies, the selective removal and separation for specific ions is of great significance in water purification and resource processes. Capacitive deionization (CDI), an emerging desalination technology, shows great potential to selectively remove harmful ionic pollutants and further recover valuable ions because of the simple operation and low energy consumption. Researchers have done a lot of work to investigate ion selectivity utilizing CDI, including both theoretical and experimental studies. Nevertheless, in the investigation of selective mechanisms, phenomena where carbon materials exhibit entirely opposite selectivity require further analysis. Furthermore, there is a need to summarize the specific chemical reaction mechanisms, including the formation of hydrogen bonds, complexation reactions, and ligand exchanges, within selective electrodes, which have not been thoroughly examined in detail previously. In order to fill these gaps, in this review, we summarized the recent progress of CDI technologies for ion selective separation, and explored the selective separation mechanism of CDI from three aspects: selective physical adsorption, specific chemical reaction, and the utilization of selective barriers. Additionally, this review analyzes in detail the formation process of chemical bonds and ion conversion pathways when ions interact with electrode materials. Finally, some significant development prospects and challenges were offered for the future selective CDI systems. We believe the review will provide new insights for researchers in the field of ion selective separation.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zewei Hao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
32
|
Mao X, Ding X, Wang Q, Sun X, Qin L, Huang F, Wen L, Xiang X. Oriented Self-assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308739. [PMID: 38054629 DOI: 10.1002/smll.202308739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Building of metal-organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super-assembly strategy to construct micro-scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium-oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self-assembly of flexible nanoribbons into pumpkin-like microspheres. The confined effect between water-flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self-assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g-1 ) accompanied with heavy metal removal (1331.67 mg g-1 ) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinqi Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wang
- Marine Academy of Zhejiang Province, Hangzhou, 310014, China
| | - Xiping Sun
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fei Huang
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luhong Wen
- Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, China
| | - Xingwei Xiang
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
33
|
Zeng R, Ye Y, Ou H, Hua Y, Su Y, Hu J, Lu H, Tang J, Liu J, Xiao T, Wu Z, Tang W, Li ZY, Lin SJ, Zhuang S, Xu G, Lin Y, Li Y, Huang F, Zhang HT. Early osteoarthritis diagnosis based on near-infrared spectroscopy combined with aquaphotomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123120. [PMID: 37453381 DOI: 10.1016/j.saa.2023.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease and the leading cause of disability in elderly individuals. Despite rapid advances in imaging techniques, early OA diagnosis remains a clinical challenge. In the present study, the feasibility of early OA diagnosis was explored via near-infrared spectroscopy (NIRS) combined with aquaphotomics. Synovial fluid samples from 65 cases of OA categorized as mild, moderate, and severe according to theKellgrenandLawrence classification criteria were analyzed via NIRS. The 1st overtone of water (1300-1600 nm) was considered as the research object for an aquaphotomics model, and aquagrams of the mild, moderate, and severe OA cases were generated using 12 water absorption patterns for early OA diagnosis.The aquaphotomics results exhibited clear differences in the region of 1300-1500 nm, and the number of hydrogen bonds of different water species (1412,1424, 1482, and 1496 nm) evidently correlated with OA occurrence and development. With OA progression, the absorption intensity of water molecules without hydrogen bonds (1412 nm/1424 nm) became stronger, while the absorption intensity of water molecules with four hydrogen bonds (1482 nm/1496 nm) decreased.These results together reveal that the established accurate and rapid early OA diagnosis model based on NIRS combined with aquaphotomics is effective and feasible, and that the number of hydrogen bonds can be used as a biomarker for early OA diagnosis.
Collapse
Affiliation(s)
- Rui Zeng
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yongsheng Ye
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; Department of Orthopedics, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China
| | - Haisheng Ou
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yisheng Hua
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yuancui Su
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Junhui Hu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hanglin Lu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Jian Tang
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Jun Liu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Teng Xiao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhaosheng Wu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Su-Juan Lin
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Shabin Zhuang
- Department of Orthopedics, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China
| | - Guisheng Xu
- Department of Joint and Sports Medicine, the First People's Hospital of Zhaoqing, Zhaoqing, Guangdong 526000, China
| | - Yuning Lin
- Department of Joint and Sports Medicine, the First People's Hospital of Zhaoqing, Zhaoqing, Guangdong 526000, China
| | - Yuanpeng Li
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Furong Huang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
34
|
Gao Y, Li M, Zhan C, Zhang H, Yin M, Lu W, Xu B. A Nanoconfined Water-Ion Coordination Network for Flexible Energy-Dissipation Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303759. [PMID: 37410996 DOI: 10.1002/adma.202303759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
Water-ion interaction in a nanoconfined environment that deeply constrains spatial freedoms of local atomistic motion with unconventional coupling mechanisms beyond that in a free, bulk state is essential to spark designs of a broad spectrum of nanofluidic devices with unique properties and functionalities. Here, it is reported that the interaction between ions and water molecules in a hydrophobic nanopore forms a coordination network with an interaction density that is nearly fourfold that of the bulk counterpart. Such strong interaction facilitates the connectivity of the water-ion network and is uncovered by corroborating the formation of ion clusters and the reduction of particle dynamics. A liquid-nanopore energy-dissipation system is designed and demonstrated in both molecular simulations and experiments that the formed coordination network controls the outflow of confined electrolytes along with a pressure reduction, capable of providing flexible protection for personnel and devices and instrumentations against external mechanical impact and attack.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mingzhe Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Chi Zhan
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Haozhe Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mengtian Yin
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Weiyi Lu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
35
|
Han T, Zhao M, Sun C, Zhao R, Xu W, Zhang S, Singh S, Luo J, Zhang C. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42094-42103. [PMID: 37625155 DOI: 10.1021/acsami.3c09277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cations can achieve excellent hydration lubrication at smooth interfaces under both microscale and macroscale conditions due to the boundary layer composed of hydration shells surrounding charges, but what about anions? Commonly used friction pairs are negatively charged at the solid/solution interface. Achieving anionic adsorption through constructing positively charged surfaces is a prerequisite for studying the hydration lubrication of anions. Here we report the hydration layer composed of anions adsorbed on the positively charged polymer/sapphire interface at acidic electrolyte solutions with pH below the isoelectric point, which contributes to the hydration lubrication of anions. Strongly hydrated anions (for the case of SO42-) exhibit stable superlubricity comparable to cations, with strikingly low boundary friction coefficient of 0.003-0.007 under contact pressures above 15 MPa without a running-in period. The hydration lubrication performance of anions is determined by both the ionic hydration strength and ion adsorption density based on the surface potential and tribological experiments. The results shed light on the role of anions in superlubricity and hydration lubrication, which may be relevant for understanding the lubrication mechanism and improving lubrication performance in acidic environments, for example, in acid pumps, sealing rings of compressors for handling acidic media, and processing devices of nuclear waste.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Mingbo Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chuan Sun
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Ruiqi Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Wanxing Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Shumin Zhang
- Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China
| | - Sudesh Singh
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chenhui Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Shi R, Cooper AJ, Tanaka H. Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions. Nat Commun 2023; 14:4616. [PMID: 37550299 PMCID: PMC10406952 DOI: 10.1038/s41467-023-40278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Ions exhibit highly ion-specific complex behaviours when solvated in water, which remains a mystery despite the fundamental importance of ion solvation in nature, science, and technology. Here we explain these ion-specific properties by the ion-induced hierarchical dipolar, translational, and bond-orientational orderings of ion hydration shell under the competition between ion-water electrostatic interactions and inter-water hydrogen bonding. We first characterise this competition by a new length λHB(q), explaining the ion-specific effects on solution dynamics. Then, by continuously tuning ion size and charge, we find that the bond-orientational order of the ion hydration shell highly develops for specific ion size and charge combinations. This ordering drastically stabilises the hydration shell; its degree changes the water residence time around ions by 11 orders of magnitude for main-group ions. These findings are fundamental to ionic processes in aqueous solutions, providing a physical principle for electrolyte design and application.
Collapse
Affiliation(s)
- Rui Shi
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Anthony J Cooper
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Physics, University of California, Santa Barbara, CA, 93106-9530, USA
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
37
|
Lin S, Liu C, Chen X, Zhang Y, Lin H, Yu X, Bo Y, Lu Y. Self-Driven Photo-Polarized Water Molecule-Triggered Graphene-Based Photodetector. RESEARCH (WASHINGTON, D.C.) 2023; 6:0202. [PMID: 37529624 PMCID: PMC10389694 DOI: 10.34133/research.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
Flowing water can be used as an energy source for generators, providing a major part of the energy for daily life. However, water is rarely used for information or electronic devices. Herein, we present the feasibility of a polarized liquid-triggered photodetector in which polarized water is sandwiched between graphene and a semiconductor. Due to the polarization and depolarization processes of water molecules driven by photogenerated carriers, a photo-sensitive current can be repeatedly produced, resulting in a high-performance photodetector. The response wavelength of the photodetector can be fine-tuned as a result of the free choice of semiconductors as there is no requirement of lattice match between graphene and the semiconductors. Under zero voltage bias, the responsivity and specific detectivity of Gr/NaCl (0.5 M)W/N-GaN reach values of 130.7 mA/W and 2.3 × 109 Jones under 350 nm illumination, respectively. Meanwhile, using a polar liquid photodetector can successfully read the photoplethysmography signals to produce accurate oxygen blood saturation and heart rate. Compared with the commercial pulse oximetry sensor, the average errors of oxygen saturation and heart rate in the designed photoplethysmography sensor are ~1.9% and ~2.1%, respectively. This study reveals that water can be used as a high-performance photodetector in informative industries.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Hangzhou Gelanfeng Technology Co. Ltd, Hangzhou 310051, P. R. China
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chang Liu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xin Chen
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yi Zhang
- Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, HCSemitek Corporation, Yiwu 322009, P. R. China
| | - Hongtao Lin
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xutao Yu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujiao Bo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanghua Lu
- Hangzhou Gelanfeng Technology Co. Ltd, Hangzhou 310051, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| |
Collapse
|
38
|
Han T, Cao W, Xu Z, Adibnia V, Olgiati M, Valtiner M, Ma L, Zhang C, Ma M, Luo J, Banquy X. Hydration layer structure modulates superlubrication by trivalent La 3+ electrolytes. SCIENCE ADVANCES 2023; 9:eadf3902. [PMID: 37436992 DOI: 10.1126/sciadv.adf3902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Water-based lubricants provide lubrication of rubbing surfaces in many technical, biological, and physiological applications. The structure of hydrated ion layers adsorbed on solid surfaces that determine the lubricating properties of aqueous lubricants is thought to be invariable in hydration lubrication. However, we prove that the ion surface coverage dictates the roughness of the hydration layer and its lubricating properties, especially under subnanometer confinement. We characterize different hydration layer structures on surfaces lubricated by aqueous trivalent electrolytes. Two superlubrication regimes are observed with friction coefficients of 10-4 and 10-3, depending on the structure and thickness of the hydration layer. Each regime exhibits a distinct energy dissipation pathway and a different dependence to the hydration layer structure. Our analysis supports the idea of an intimate relationship between the dynamic structure of a boundary lubricant film and its tribological properties and offers a framework to study such relationship at the molecular level.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Wei Cao
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zhi Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Vahid Adibnia
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Matteo Olgiati
- Institute of Applied Physics, Vienna University of Technology, Vienna A-1040, Austria
| | - Markus Valtiner
- Institute of Applied Physics, Vienna University of Technology, Vienna A-1040, Austria
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chenhui Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Ming Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec H3C 3J7, Canada
- Department of Chemistry, Faculty of Art and Science, Université de Montréal, Montreal, Québec H3C 3J7, Canada
- Institute of Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| |
Collapse
|
39
|
Tang B, Song Y, Qin M, Tian Y, Wu ZW, Jiang Y, Cao D, Xu L. Machine learning-aided atomic structure identification of interfacial ionic hydrates from AFM images. Natl Sci Rev 2023; 10:nwac282. [PMID: 37266561 PMCID: PMC10232042 DOI: 10.1093/nsr/nwac282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/21/2024] Open
Abstract
Relevant to broad applied fields and natural processes, interfacial ionic hydrates have been widely studied by using ultrahigh-resolution atomic force microscopy (AFM). However, the complex relationship between the AFM signal and the investigated system makes it difficult to determine the atomic structure of such a complex system from AFM images alone. Using machine learning, we achieved precise identification of the atomic structures of interfacial water/ionic hydrates based on AFM images, including the position of each atom and the orientations of water molecules. Furthermore, it was found that structure prediction of ionic hydrates can be achieved cost-effectively by transfer learning using neural network trained with easily available interfacial water data. Thus, this work provides an efficient and economical methodology that not only opens up avenues to determine atomic structures of more complex systems from AFM images, but may also help to interpret other scientific studies involving sophisticated experimental results.
Collapse
Affiliation(s)
- Binze Tang
- International Center for Quantum Materials, Peking University, Beijing100871, China
- School of Physics, Peking University, Beijing100871, China
| | - Yizhi Song
- International Center for Quantum Materials, Peking University, Beijing100871, China
- School of Physics, Peking University, Beijing100871, China
| | - Mian Qin
- School of Physics, Peking University, Beijing100871, China
| | - Ye Tian
- International Center for Quantum Materials, Peking University, Beijing100871, China
- School of Physics, Peking University, Beijing100871, China
| | - Zhen Wei Wu
- Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Ying Jiang
- International Center for Quantum Materials, Peking University, Beijing100871, China
- School of Physics, Peking University, Beijing100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing100871, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing401120, China
| | - Limei Xu
- International Center for Quantum Materials, Peking University, Beijing100871, China
- School of Physics, Peking University, Beijing100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing100871, China
| |
Collapse
|
40
|
Wang Y, Fu Q, Shen X. Promotion Effect of Well-Defined Deposited Water Layer on Carbon Monoxide Oxidation Catalyzed by Single-Atom Alloys. J Phys Chem Lett 2023; 14:3498-3505. [PMID: 37014142 DOI: 10.1021/acs.jpclett.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single-atom alloys (SAAs) exhibit excellent catalytic performance and unique electronic structures, emerging as promising catalysts for potential industrial reactions. While most of them have been widely employed under reducing conditions, few are applied in oxidation reactions. Herein, using density functional theory calculations and microkinetic simulations, we demonstrate that a well-defined one water layer can improve CO oxidation on model SAAs, with reaction rates increased by orders of magnitude. It is found that the formation of hydrogen bonds and the transfer of charges effectively enhance the adsorption and activation of oxygen molecules at the H2O/SAA interfaces, which not only increases the surface coverage of O2 species but also reduces the energy barrier of CO oxidation. The proposed strategy in this work would extend the application range of SAA catalysts to oxidation reactions.
Collapse
Affiliation(s)
- Yan Wang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Future Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xiangjian Shen
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
41
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
42
|
Li Y, Tang N, Zhang L, Li J. Fabrication of Fe-doped Lithium-aluminum-layered Hydroxide Chloride with Enhanced Reusable Stability Inspired by Computational Theory and its Application in Lithium Extraction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Transmission of sodium chloride in PDMS membrane during Pervaporation based on polymer relaxation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Ritt CL, de Souza JP, Barsukov MG, Yosinski S, Bazant MZ, Reed MA, Elimelech M. Thermodynamics of Charge Regulation during Ion Transport through Silica Nanochannels. ACS NANO 2022; 16:15249-15260. [PMID: 36075111 DOI: 10.1021/acsnano.2c06633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ion-surface interactions can alter the properties of nanopores and dictate nanofluidic transport in engineered and biological systems central to the water-energy nexus. The ion adsorption process, known as "charge regulation", is ion-specific and is dependent on the extent of confinement when the electric double layers (EDLs) between two charged surfaces overlap. A fundamental understanding of the mechanisms behind charge regulation remains lacking. Herein, we study the thermodynamics of charge regulation reactions in 20 nm SiO2 channels via conductance measurements at various concentrations and temperatures. The effective activation energies (Ea) for ion conductance at low concentrations (strong EDL overlap) are ∼2-fold higher than at high concentrations (no EDL overlap) for the electrolytes studied here: LiCl, NaCl, KCl, and CsCl. We find that Ea values measured at high concentrations result from the temperature dependence of viscosity and its influence on ion mobility, whereas Ea values measured at low concentrations result from the combined effects of ion mobility and the enthalpy of cation adsorption to the charged surface. Notably, the Ea for surface reactions increases from 7.03 kJ mol-1 for NaCl to 16.72 ± 0.48 kJ mol-1 for KCl, corresponding to a difference in surface charge of -8.2 to -0.8 mC m-2, respectively. We construct a charge regulation model to rationalize the cation-specific charge regulation behavior based on an adsorption equilibrium. Our findings show that temperature- and concentration-dependent conductance measurements can help indirectly probe the ion-surface interactions that govern transport and colloidal interactions at the nanoscale─representing a critical step forward in our understanding of charge regulation and adsorption phenomena under nanoconfinement.
Collapse
Affiliation(s)
- Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michelle G Barsukov
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Shari Yosinski
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
45
|
Tian Y, Guo J, Hong J, Jiang Y. Visualization and manipulation of hydronium ions in two-dimensional ice. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Liu R, Wang R, Li D, Zhu Y, Yang X, Wang Z. An ab initio study on boundaries for characterizing cooperative effect of hydrogen bonds by intermolecular compression. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Liang F, Pan G, Wang W, Lu J, Wei X, Ding J, Liu S. Enhanced thermal transport at metal/molten salt interface in nanoconfinement: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Yang P, Zhang C, Sun W, Dong J, Cao D, Guo J, Jiang Y. Robustness of Bilayer Hexagonal Ice against Surface Symmetry and Corrugation. PHYSICAL REVIEW LETTERS 2022; 129:046001. [PMID: 35939030 DOI: 10.1103/physrevlett.129.046001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) bilayer hexagonal ice (BHI) is regarded as the first intrinsic 2D ice crystal. However, the robustness of such a structure or its derivatives against surface symmetry and corrugation is still unclear. Here, we report the formation of 2D BHI on gold surfaces with 1D corrugation, using noncontact atomic force microscopy. The hexagonal arrangement of the first wetting layer was visualized on the Au(110)-1×2 surface. Upon depositing more water molecules, the first layer would rearrange and shrink, resulting in the formation of buckled BHI. Such a buckled BHI is hydrophobic despite the appearance of dangling OH, due to the strong interlayer bonding. Furthermore, the BHI is also stable on the Au(100)-5×28 surface. This work reveals the unexpected generality of the BHI on corrugated surfaces with nonhexagonal symmetry, thus shedding new light on the microscopic understandings of the low-dimensional ice formation on solid surfaces or under confinement.
Collapse
Affiliation(s)
- Pu Yang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Wenyu Sun
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Dong
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jing Guo
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Tian Y, Hong J, Cao D, You S, Song Y, Cheng B, Wang Z, Guan D, Liu X, Zhao Z, Li XZ, Xu LM, Guo J, Chen J, Wang EG, Jiang Y. Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 2022; 377:315-319. [DOI: 10.1126/science.abo0823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects. Two Eigen cations could combine into one Zundel cation accompanied with a simultaneous proton transfer to the surface. Moreover, we revealed that the Zundel configuration was preferred over the Eigen on Pt(111), and such a preference was absent on Au(111).
Collapse
Affiliation(s)
- Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Sifan You
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Bowei Cheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhichang Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xinmeng Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhengpu Zhao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xin-Zheng Li
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Jing Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Songshan Lake Materials Lab, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang 110036, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
50
|
Schneider S, Brodrecht M, Breitzke H, Wissel T, Buntkowsky G, Varol HS, Brilmayer R, Andrieu-Brunsen A, Vogel M. Local and diffusive dynamics of LiCl aqueous solutions in pristine and modified silica nanopores. J Chem Phys 2022; 157:034503. [DOI: 10.1063/5.0098483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use 1H, 2H, and 7Li NMR to investigate local and diffusive dynamics of LiCl-7H2O and LiCl-7D2O solutions in pristine and functionalized silica nanopores in a component-selective manner. Recently, we showed that the solution dynamics become slower when the diameter of the pristine pores is reduced. Here, we determine the effects of (aminopropyl)triethoxysilane and dye surface functionalizations on the motions of the water molecules and lithium ions from ambient temperatures down to the glass transition. The local and diffusive solution dynamics are similar in both functionalized pores but, on average, slower than in pristine pores with comparable diameters. When the exchange between different confinement regions is sufficiently slow at reduced temperatures, bimodal water and lithium dynamics may be observed. We attribute this bimodality to bulk-like motion in the pore centers and slowed-down motion at the pore walls. For the lithium ions, a bimodality observed in the pristine pores is absent in the functionalized ones. We conjecture that the steric hindrance and electrostatic interactions associated with the grafted functional groups interfere with the formation of a defined electric double layer, while the enhanced surface roughness and unequal charge distribution result in overall slower dynamics. Thus, the nature of the walls is an important parameter for the solution dynamics. Thereby, in-situ measurements of the pH value inside the silica pores using the grafted dye molecules reveal that observed changes in the pH value in response to the surface functionalization are of limited relevance for the water reorientation.
Collapse
Affiliation(s)
| | | | | | | | - Gerd Buntkowsky
- Physical Chemistry, Darmstadt University of Technology, Germany
| | | | | | | | - Michael Vogel
- Institute of Condensed Matter Physics, TU Darmstadt, Germany
| |
Collapse
|