1
|
Li M, Wu Y, Li H, Song W, Chen Z, Peng Y, Yang B, Xu C, Zhang J, Xing L, Weng Z, Liu Y, Liang H. Mutagenesis studies suggest a mechanism for influenza polymerase stalling during polyadenylation. Nucleic Acids Res 2024:gkae1225. [PMID: 39676676 DOI: 10.1093/nar/gkae1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Influenza polymerase (FluPol) carries out both viral transcription and replication using the same viral genome segment as a template to yield distinct end products. However, it remains largely unclear how FluPol synthesizes transcripts containing poly (A) tails during transcription termination, while producing fully complementary products during replication termination. In this study, through structural analysis combined with cell-based and biochemical assays, we identified that the PB1 Leu675/Asn676 and PB2 Arg38 residues of FluPol are critical for transcription termination and polyadenylation. During transcription termination, these three residues adopt the PB1 Leu675/Asn676down and PB2 Arg38out conformations, with their side chains positioned against the G12 and G14 residues of the RNA template at the 5' end. These steric hindrances block template translocation and facilitate FluPol 'stuttering' at U17, which is required for viral messenger RNA polyadenylation. Importantly, both structural analysis and mutational studies suggest that this specific conformation of these residues is unique to the transcription termination state. Overall, our findings provide novel insights into the mechanisms by which FluPol generates distinct 3' end products during transcription and replication termination.
Collapse
Affiliation(s)
- Minke Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Yixi Wu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Huanhuan Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Wenjun Song
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Zhenxing Chen
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Yuzhou Peng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Boyao Yang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Chang Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Jihua Zhang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Lei Xing
- School of Life Science, YunNan University, East Outer Ring Road, Chenggong District, KunMing, 650500, Yunnan, China
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Yingfang Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Huanhuan Liang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
2
|
Williams SL, Qi L, Sheng ZM, Xiao Y, Freeman A, Matthews L, Legaspi SF, Fodor E, Taubenberger JK. Effect of pandemic influenza A virus PB1 genes of avian origin on viral RNA polymerase activity and pathogenicity. SCIENCE ADVANCES 2024; 10:eads5735. [PMID: 39671482 PMCID: PMC11641000 DOI: 10.1126/sciadv.ads5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Zoonotic influenza A virus (IAV) infections pose a substantial threat to global health. The influenza RNA-dependent RNA polymerase (RdRp) comprises the PB2, PB1, and PA proteins. Of the last four pandemic IAVs, three featured avian-origin PB1 genes. Prior research linked these avian PB1 genes to increased viral fitness when reassorted with human IAV genes. This study evaluated chimeric RdRps with PB1 genes from the 1918, 1957, and 1968 pandemic IAVs in a low pathogenic avian influenza (LPAI) virus background to assess polymerase activity and pathogenicity. Substituting in the pandemic PB1 genes reduced polymerase activity, virulence, and altered lung pathology, while the native LPAI PB1 showed the highest pathogenicity and polymerase activity. The native LPAI PB1 virus caused severe pneumonia and high early viral RNA levels, correlating with elevated host cytokine signaling. Increased genetic distance from the LPAI PB1 sequence correlated with reduced polymerase activity, IFN-β expression, viral replication, and pathogenicity.
Collapse
Affiliation(s)
- Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ashley Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lex Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sharon Fong Legaspi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
3
|
Elshina E, Pitre E, Mendes M, Schweibenz B, Fan RLY, French H, Park JW, Wang W, Poon LLM, Marcotrigiano J, Russell AB, Te Velthuis AJW. Influenza A virus transcription generates capped cRNAs that activate RIG-I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623191. [PMID: 39605425 PMCID: PMC11601390 DOI: 10.1101/2024.11.12.623191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During influenza A virus (IAV) infection, host pathogen receptor retinoic acid-inducible gene I (RIG-I) detects the partially complementary, 5'-triphosphorylated ends of the viral genome segments and non-canonical replication products. However, it has also been suggested that innate immune responses may be triggered by viral transcription. In this study, we investigated whether an immunostimulatory RNA is produced during IAV transcription. We show that the IAV RNA polymerase can read though the polyadenylation signal during transcription termination, generating a capped complementary RNA (ccRNA), which contains the 5' cap of an IAV mRNA and the 3' terminus of a cRNA instead of a poly(A) tail. ccRNAs are detectable in vitro and in both ribonucleoprotein reconstitution assays and IAV infections. Mutations that disrupt polyadenylation enhance ccRNA synthesis and increase RIG-I-dependent innate immune activation. Notably, while ccRNA itself is not immunostimulatory, it forms a RIG-I agonist by hybridizing with a complementary negative-sense viral RNA. These findings thus identify a novel non-canonical IAV RNA species and suggest an alternative mechanism for RIG-I activation during IAV infection.
Collapse
|
4
|
Keown JR, Carrique L, Nilsson-Payant BE, Fodor E, Grimes JM. Structural characterization of the full-length Hantaan virus polymerase. PLoS Pathog 2024; 20:e1012781. [PMID: 39652621 DOI: 10.1371/journal.ppat.1012781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/19/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Hantaviridae are a family of segmented negative-sense RNA viruses that contain important human and animal pathogens. Hantaviridae contain a viral RNA-dependent RNA polymerase that replicates and transcribes the viral genome. Here we establish the expression and purification of the polymerase from the Old World Hantaan virus and characterise the structure using Cryo-EM. We determine a series of structures at resolutions between 2.7 and 3.3 Å of RNA free polymerase comprising the core, core and endonuclease, and a full-length polymerase. The full-length polymerase structure depicts the location of the cap binding and C-terminal domains which are arranged in a conformation that is incompatible with transcription and in a novel conformation not observed in previous conformations of cap-snatching viral polymerases. We further describe structures with 5' vRNA promoter in the presence and absence of a nucleotide triphosphate. The nucleotide bound structure mimics a replication pre-initiation complex and the nucleotide stabilises the motif E in a conformation distinct from those previously observed. We observe motif E in four distinct conformations including β-sheet, two helical arrangements, and nucleotide primed arrangement. The insights gained here guide future mechanistic studies of both the transcription and replication activities of the hantavirus polymerase and for the development of therapeutic targets.
Collapse
Affiliation(s)
- Jeremy R Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin E Nilsson-Payant
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Sun J, Kuai L, Zhang L, Xie Y, Zhang Y, Li Y, Peng Q, Shao Y, Yang Q, Tian WX, Zhu J, Qi J, Shi Y, Deng T, Gao GF. NS2 induces an influenza A RNA polymerase hexamer and acts as a transcription to replication switch. EMBO Rep 2024; 25:4708-4727. [PMID: 39026012 PMCID: PMC11549089 DOI: 10.1038/s44319-024-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Genome transcription and replication of influenza A virus (FluA), catalyzed by viral RNA polymerase (FluAPol), are delicately controlled across the virus life cycle. A switch from transcription to replication occurring at later stage of an infection is critical for progeny virion production and viral non-structural protein NS2 has been implicated in regulating the switch. However, the underlying regulatory mechanisms and the structure of NS2 remained elusive for years. Here, we determine the cryo-EM structure of the FluAPol-NS2 complex at ~3.0 Å resolution. Surprisingly, three domain-swapped NS2 dimers arrange three symmetrical FluPol dimers into a highly ordered barrel-like hexamer. Further structural and functional analyses demonstrate that NS2 binding not only hampers the interaction between FluAPol and the Pol II CTD because of steric conflicts, but also impairs FluAPol transcriptase activity by stalling it in the replicase conformation. Moreover, this is the first visualization of the full-length NS2 structure. Our findings uncover key molecular mechanisms of the FluA transcription-replication switch and have implications for the development of antivirals.
Collapse
Affiliation(s)
- Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuekun Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiuxian Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Junhao Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Deng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - George F Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang S, Zhang H, Liu R, Han P, Yang Q, Cheng C, Chen Y, Rong Z, Su C, Li F, Wei G, Zhao M, Yang L. Influenza A Virus PB1-F2 Induces Affective Disorder by Interfering Synaptic Plasticity in Hippocampal Dentate Gyrus. Mol Neurobiol 2024; 61:8293-8306. [PMID: 38488981 DOI: 10.1007/s12035-024-04107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Influenza A virus (IAV) infection, which leads to millions of new cases annually, affects many tissues and organs of the human body, including the central nervous system (CNS). The incidence of affective disorders has increased after the flu pandemic; however, the potential mechanism has not been elucidated. PB1-F2, a key virulence molecule of various influenza virus strains, has been shown to inhibit cell proliferation and induce host inflammation; however, its role in the CNS has not been studied. In this study, we constructed and injected PB1-F2 into the hippocampal dentate gyrus (DG), a region closely associated with newborn neurons and neural development, to evaluate its influence on negative affective behaviors and learning performance in mice. We observed anxiety- and depression-like behaviors, but not learning impairment, in mice injected with PB1-F2. Furthermore, pull-down and mass spectrometry analyses identified several potential PB1-F2 binding proteins, and enrichment analysis suggested that the most affected function was neural development. Morphological and western blot studies revealed that PB1-F2 inhibited cell proliferation and oligodendrocyte development, impaired myelin formation, and interfered with synaptic plasticity in DG. Taken together, our results demonstrated that PB1-F2 induces affective disorders by inhibiting oligodendrocyte development and regulating synaptic plasticity in the DG after IAV infection, which lays the foundation for developing future cures of affective disorders after IAV infection.
Collapse
Affiliation(s)
- Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Haijun Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Caiyan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yue Chen
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zheng Rong
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chang Su
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Fei Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
7
|
Swaminath S, Mendes M, Zhang Y, Remick KA, Mejia I, Güereca M, te Velthuis AJ, Russell AB. Efficient genome replication in influenza A virus requires NS2 and sequence beyond the canonical promoter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612348. [PMID: 39314307 PMCID: PMC11419028 DOI: 10.1101/2024.09.10.612348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Influenza A virus encodes promoters in both the sense and antisense orientations. These support the generation of new genomes, antigenomes, and mRNA transcripts. Using minimal replication assays-transfections with viral polymerase, nucleoprotein, and a genomic template-the influenza promoter sequences were identified as 13nt at the 5' end of the viral genomic RNA (U13) and 12nt at the 3' end (U12). Other than the fourth 3' nucleotide, the U12 and U13 sequences are identical between all eight RNA molecules that comprise the segmented influenza genome. Despite possessing identical promoters, individual segments can exhibit different transcriptional dynamics during infection. However flu promoter sequences were defined in experiments without influenza NS2, a protein which modulates transcription and replication differentially between genomic segments. This suggests that the identity of the "complete" promoter may depend on NS2. Here we assess how internal sequences of two genomic segments, HA and PB1, may contribute to NS2-dependent replication as well as map such interactions down to individual nucleotides in PB1. We find that the expression of NS2 significantly alters sequence requirements for efficient replication beyond the identical U12 and U13 sequence, providing a mechanism for the divergent replication and transcription dynamics across the influenza A virus genome.
Collapse
Affiliation(s)
- Sharmada Swaminath
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marisa Mendes
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yipeng Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kaleigh A. Remick
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Isabel Mejia
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Melissa Güereca
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alistair B. Russell
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Cai Y, Yin G, Hu J, Liu Y, Huang X, Gao Z, Guo X, Jiang T, Sun H, Feng X. Preparation and Antigenic Site Identification of Monoclonal Antibodies against PB1 Protein of H9N2 Subtype AIV. Vet Sci 2024; 11:412. [PMID: 39330791 PMCID: PMC11435642 DOI: 10.3390/vetsci11090412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Recently, low pathogenic avian influenza virus (LPAIV), including H9N2 subtype, has been common clinical epidemic strains, and is widely distributed globally. The PB1 protein is a key component of the viral RNA polymerase complex (vRNP), and is vital to viral transcription and translation. In this study, to investigate the antigenic determinants in the PB1 protein, the truncated PB1 sequence (1bp-735bp) from H9N2 subtype AIV was amplified with PCR, and expressed in plasmid pET-28a (+). After purification, the recombinant PB1 protein was used to immunize BALB/c mice. Following immunization, hybridoma cells producing PB1-specific monoclonal antibodies were generated through the fusion of splenic lymphocytes with SP2/0 cells. Then, four stable hybridoma cell lines (5F12, 5B3, 2H9, and 3E6) were screened using indirect ELISA and Western blotting. Furthermore, two antigenic sites, 67NPIDGPLPED76 and 97ESHPGIFENS106, were identified through the construction of truncated overlapping fragments of the PB1 protein. These sites were conserved among 28 AIV strains, and were located on the PB1 protein surface. The findings offer a theoretical reference for the development and improvement of H9N2 vaccines and offer biological materials for virus detection during AIV infection mechanisms.
Collapse
Affiliation(s)
- Yiqin Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Guo
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Jiang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Arragain B, Krischuns T, Pelosse M, Drncova P, Blackledge M, Naffakh N, Cusack S. Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase. Nat Commun 2024; 15:6910. [PMID: 39160148 PMCID: PMC11333492 DOI: 10.1038/s41467-024-51007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Replication of influenza viral RNA depends on at least two viral polymerases, a parental replicase and an encapsidase, and cellular factor ANP32. ANP32 comprises an LRR domain and a long C-terminal low complexity acidic region (LCAR). Here we present evidence suggesting that ANP32 is recruited to the replication complex as an electrostatic chaperone that stabilises the encapsidase moiety within apo-polymerase symmetric dimers that are distinct for influenza A and B polymerases. The ANP32 bound encapsidase, then forms the asymmetric replication complex with the replicase, which is embedded in a parental ribonucleoprotein particle (RNP). Cryo-EM structures reveal the architecture of the influenza A and B replication complexes and the likely trajectory of the nascent RNA product into the encapsidase. The cryo-EM map of the FluB replication complex shows extra density attributable to the ANP32 LCAR wrapping around and stabilising the apo-encapsidase conformation. These structures give new insight into the various mutations that adapt avian strain polymerases to use the distinct ANP32 in mammalian cells.
Collapse
Affiliation(s)
- Benoît Arragain
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France
| | - Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology of Influenza Virus, Paris, France
- Heidelberg University, Department of Infectious Diseases, Virology, Schaller Research Group, Heidelberg, Germany
| | - Martin Pelosse
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France
| | - Petra Drncova
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble-Alpes-CEA-CNRS UMR5075, Grenoble, France
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology of Influenza Virus, Paris, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France.
| |
Collapse
|
10
|
Kamel M, Davidson JL, Verma MS. A Paper-based Loop-Mediated Isothermal Amplification (LAMP) Assay for Highly Pathogenic Avian Influenza. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607641. [PMID: 39211221 PMCID: PMC11361134 DOI: 10.1101/2024.08.12.607641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Avian influenza outbreaks have had significant economic and public health consequences worldwide. Therefore, prompt, reliable, and cost-effective diagnostic devices are crucial for scrutinizing and confining highly pathogenic avian influenza viruses (HPAIVs). Our study introduced and evaluated a novel paper-based loop-mediated isothermal amplification (LAMP) test for diagnosing the H5 subtype of the avian influenza virus (AIV). We meticulously designed and screened LAMP primers targeting the H5-haemagglutinin (H5-HA) gene of AIV and fine-tuned the paper-based detection assay for best performance. The paper-based LAMP assay demonstrated a detection limit of 500 copies per reaction (25 copies/µL). This inexpensive, user-friendly point-of-need diagnostic tool holds great promise, especially in resource-limited settings. It only requires a water bath for incubation and enables visual detection of results without special equipment. Overall, the paper-based LAMP assay provides a promising method for rapidly and reliably detecting the H5 subtype of AIV, contributing to improved surveillance and early intervention strategies.
Collapse
|
11
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Liu X, Chen W, Li K, Sheng J. RNA N6-methyladenosine methylation in influenza A virus infection. Front Microbiol 2024; 15:1401997. [PMID: 38957616 PMCID: PMC11217485 DOI: 10.3389/fmicb.2024.1401997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
13
|
Xue L, Chang T, Li Z, Wang C, Zhao H, Li M, Tang P, Wen X, Yu M, Wu J, Bao X, Wang X, Gong P, He J, Chen X, Xiong X. Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses. Nat Commun 2024; 15:4620. [PMID: 38816392 PMCID: PMC11139864 DOI: 10.1038/s41467-024-48848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5' end sequences derived from cap-snatching in influenza virus mRNA. Here, we report cryo-EM structures to characterize THOV polymerase RNA synthesis initiation and elongation. The structures demonstrate that THOV RNA transcription and replication are able to start with short dinucleotide primers and that the polymerase cap-snatching machinery is likely non-functional. Triggered by RNA synthesis, asymmetric THOV polymerase dimers can form without the involvement of host factors. We confirm that, distinctive from influenza viruses, THOV-polymerase RNA synthesis is weakly dependent of the host factors ANP32A/B/E in human cells. This study demonstrates varied mechanisms in RNA synthesis and host factor utilization among orthomyxoviruses, providing insights into the mechanisms behind thogotoviruses' broad-infectivity range.
Collapse
Affiliation(s)
- Lu Xue
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancai Chang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Chenchen Wang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heyu Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Li
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Peng Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Wen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xichen Bao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Staller E, Carrique L, Swann OC, Fan H, Keown JR, Sheppard CM, Barclay WS, Grimes JM, Fodor E. Structures of H5N1 influenza polymerase with ANP32B reveal mechanisms of genome replication and host adaptation. Nat Commun 2024; 15:4123. [PMID: 38750014 PMCID: PMC11096171 DOI: 10.1038/s41467-024-48470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Avian influenza A viruses (IAVs) pose a public health threat, as they are capable of triggering pandemics by crossing species barriers. Replication of avian IAVs in mammalian cells is hindered by species-specific variation in acidic nuclear phosphoprotein 32 (ANP32) proteins, which are essential for viral RNA genome replication. Adaptive mutations enable the IAV RNA polymerase (FluPolA) to surmount this barrier. Here, we present cryo-electron microscopy structures of monomeric and dimeric avian H5N1 FluPolA with human ANP32B. ANP32B interacts with the PA subunit of FluPolA in the monomeric form, at the site used for its docking onto the C-terminal domain of host RNA polymerase II during viral transcription. ANP32B acts as a chaperone, guiding FluPolA towards a ribonucleoprotein-associated FluPolA to form an asymmetric dimer-the replication platform for the viral genome. These findings offer insights into the molecular mechanisms governing IAV genome replication, while enhancing our understanding of the molecular processes underpinning mammalian adaptations in avian-origin FluPolA.
Collapse
Affiliation(s)
- Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Olivia C Swann
- Section of Molecular Virology, Imperial College London, London, UK
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- School of Basic Medical Sciences, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jeremy R Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Carol M Sheppard
- Section of Molecular Virology, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Molecular Virology, Imperial College London, London, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Keown J, Baazaoui A, Šebesta M, Štefl R, Carrique L, Fodor E, Grimes JM. Structural and functional characterization of the interaction between the influenza A virus RNA polymerase and the CTD of host RNA polymerase II. J Virol 2024; 98:e0013824. [PMID: 38563748 PMCID: PMC11092357 DOI: 10.1128/jvi.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Influenza A viruses, causing seasonal epidemics and occasional pandemics, rely on interactions with host proteins for their RNA genome transcription and replication. The viral RNA polymerase utilizes host RNA polymerase II (Pol II) and interacts with the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II to initiate transcription. Our study, using single-particle electron cryomicroscopy (cryo-EM), reveals the structure of the 1918 pandemic influenza A virus polymerase bound to a synthetic pS5 CTD peptide composed of four heptad repeats mimicking the 52 heptad repeat mammalian Pol II CTD. The structure shows that the CTD peptide binds at the C-terminal domain of the PA viral polymerase subunit (PA-C) and reveals a previously unobserved position of the 627 domain of the PB2 subunit near the CTD. We identify crucial residues of the CTD peptide that mediate interactions with positively charged cavities on PA-C, explaining the preference of the viral polymerase for pS5 CTD. Functional analysis of mutants targeting the CTD-binding site within PA-C reveals reduced transcriptional function or defects in replication, highlighting the multifunctional role of PA-C in viral RNA synthesis. Our study provides insights into the structural and functional aspects of the influenza virus polymerase-host Pol II interaction and identifies a target for antiviral development.IMPORTANCEUnderstanding the intricate interactions between influenza A viruses and host proteins is crucial for developing targeted antiviral strategies. This study employs advanced imaging techniques to uncover the structural nuances of the 1918 pandemic influenza A virus polymerase bound to a specific host protein, shedding light on the vital process of viral RNA synthesis. The study identifies key amino acid residues in the influenza polymerase involved in binding host polymerase II (Pol II) and highlights their role in both viral transcription and genome replication. These findings not only deepen our understanding of the influenza virus life cycle but also pinpoint a potential target for antiviral development. By elucidating the structural and functional aspects of the influenza virus polymerase-host Pol II interaction, this research provides a foundation for designing interventions to disrupt viral replication and transcription, offering promising avenues for future antiviral therapies.
Collapse
Affiliation(s)
- Jeremy Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alaa Baazaoui
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marek Šebesta
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Richard Štefl
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan M. Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Ulupinar P, Çağlayan E, Rayaman E, Nagata K, Turan K. The mitochondrial carrier homolog 2 is involved in down-regulation of influenza A virus replication. Mol Biol Rep 2024; 51:642. [PMID: 38727866 DOI: 10.1007/s11033-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.
Collapse
Affiliation(s)
- Pınar Ulupinar
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Elif Çağlayan
- University of Health Sciences, Kartal Koşuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
| | - Erkan Rayaman
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| |
Collapse
|
17
|
Huang X, Li W, Cao X, Zhang Q, Lin Y, Xu S, Dong X, Liu P, Liu Y, He G, Luo K, Feng S. Generation and characterization of a nanobody against the avian influenza virus H7 subtype. Int J Biol Macromol 2024; 267:131458. [PMID: 38593899 DOI: 10.1016/j.ijbiomac.2024.131458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Avian influenza virus (AIV) H7N9 diseases have been recently reported, raising concerns about a potential pandemic. Thus, there is an urgent need for effective therapeutics for AIV H7N9 infections. Herein, camelid immunization and yeast two-hybrid techniques were used to identify potent neutralizing nanobodies (Nbs) targeting the H7 subtype hemagglutinin. First, we evaluated the binding specificity and hemagglutination inhibition activity of the screened Nbs against the H7 subtype hemagglutinin. Nb-Z77, with high hemagglutination inhibition activity was selected from the screened Nbs to optimize the yeast expression conditions and construct oligomeric forms of Nb-Z77 using various ligation methods. The oligomers Nb-Z77-DiGS, Nb-Z77-TriGS, Nb-Z77-Fc and Nb-Z77-Foldon were successfully constructed and expressed. Nb-Z77-DiGS and Nb-Z77-Foldon exhibited considerably greater activity than did Nb-Z77 against H7 subtype hemagglutinin, with median effective concentrations of 384.7 and 27.33 pM and binding affinity values of 213 and 5.21 pM, respectively. Nb-Z77-DiGS and Nb-Z77-Foldon completely inhibited the hemagglutination activity of the inactivated virus H7-Re1 at the lowest concentration of 0.938 μg/mL. This study screened a strain of Nb with high hemagglutination inhibition activity and enhanced its antiviral activity through oligomerization, which may have great potential for developing effective agents for the prevention, diagnosis, and treatment of AIV H7 subtype infection.
Collapse
Affiliation(s)
- Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ge He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
18
|
Xie J, Ouizougun-Oubari M, Wang L, Zhai G, Wu D, Lin Z, Wang M, Ludeke B, Yan X, Nilsson T, Gao L, Huang X, Fearns R, Chen S. Structural basis for dimerization of a paramyxovirus polymerase complex. Nat Commun 2024; 15:3163. [PMID: 38605025 PMCID: PMC11009304 DOI: 10.1038/s41467-024-47470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The transcription and replication processes of non-segmented, negative-strand RNA viruses (nsNSVs) are catalyzed by a multi-functional polymerase complex composed of the large protein (L) and a cofactor protein, such as phosphoprotein (P). Previous studies have shown that the nsNSV polymerase can adopt a dimeric form, however, the structure of the dimer and its function are poorly understood. Here we determine a 2.7 Å cryo-EM structure of human parainfluenza virus type 3 (hPIV3) L-P complex with the connector domain (CD') of a second L built, while reconstruction of the rest of the second L-P obtains a low-resolution map of the ring-like L core region. This study reveals detailed atomic features of nsNSV polymerase active site and distinct conformation of hPIV3 L with a unique β-strand latch. Furthermore, we report the structural basis of L-L dimerization, with CD' located at the putative template entry of the adjoining L. Disruption of the L-L interface causes a defect in RNA replication that can be overcome by complementation, demonstrating that L dimerization is necessary for hPIV3 genome replication. These findings provide further insight into how nsNSV polymerases perform their functions, and suggest a new avenue for rational drug design.
Collapse
Affiliation(s)
- Jin Xie
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Mohamed Ouizougun-Oubari
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Li Wang
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Guanglei Zhai
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Daitze Wu
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Zhaohu Lin
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Manfu Wang
- Wuxi Biortus Biosciences Co. Ltd., 214437, Jiangyin, Jiangsu, China
| | - Barbara Ludeke
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Xiaodong Yan
- Wuxi Biortus Biosciences Co. Ltd., 214437, Jiangyin, Jiangsu, China
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Lu Gao
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| | - Xinyi Huang
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| | - Shuai Chen
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| |
Collapse
|
19
|
Xiao Y, Sheng ZM, Williams SL, Taubenberger JK. Two complete 1918 influenza A/H1N1 pandemic virus genomes characterized by next-generation sequencing using RNA isolated from formalin-fixed, paraffin-embedded autopsy lung tissue samples along with evidence of secondary bacterial co-infection. mBio 2024; 15:e0321823. [PMID: 38349163 PMCID: PMC10936189 DOI: 10.1128/mbio.03218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The 1918 influenza pandemic was the most devastating respiratory pandemic in modern human history, with 50-100 million deaths worldwide. Here, we characterized the complete genomes of influenza A virus (IAV) from two fatal cases during the fall wave of 1918 influenza A (H1N1) pandemic in the United States, one from Walter Reed Army Hospital in Washington, DC, and the other from Camp Jackson, SC. The two complete IAV genomes were obtained by combining Illumina deep sequencing data from both total RNA and influenza viral genome-enriched libraries along with Sanger sequencing data from PCR across the sequencing gaps. This study confirms the previously reported 1918 IAV genomes and increases the total number of available complete or near-complete influenza viral genomes of the 1918 pandemic from four to six. Sequence comparisons among them confirm that the genomes of the 1918 pandemic virus were highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases. Interestingly, in the Washington, DC, case, evidence is presented of the first reported Rhodococcus-influenza virus co-infection. IMPORTANCE This study applied modern molecular biotechnology and high-throughput sequencing to formalin-fixed, paraffin-embedded autopsy lung samples from two fatal cases during the fall wave of the 1918 influenza A (H1N1) pandemic in the United States. Complete influenza genomes were obtained from both cases, which increases the total number of available complete or near-complete influenza genomes of the 1918 pandemic virus from four to six. Sequence analysis confirms that the 1918 pandemic virus was highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases, including the first reported evidence of Rhodococcus-influenza co-infection. Overall, this study offers a detailed view at the molecular level of the very limited samples from the most devastating influenza pandemic in modern human history.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Fu Y, Wedde M, Smola S, Oh DY, Pfuhl T, Rissland J, Zemlin M, Flockerzi FA, Bohle RM, Thürmer A, Duwe S, Biere B, Reiche J, Schweiger B, Mache C, Wolff T, Herrler G, Dürrwald R. Different populations of A(H1N1)pdm09 viruses in a patient with hemolytic-uremic syndrome. Int J Med Microbiol 2024; 314:151598. [PMID: 38237287 DOI: 10.1016/j.ijmm.2024.151598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.
Collapse
Affiliation(s)
- Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Marianne Wedde
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Djin-Ye Oh
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Thorsten Pfuhl
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Jürgen Rissland
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Michael Zemlin
- Department for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Fidelis A Flockerzi
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Andrea Thürmer
- Department Methods Development and Research Infrastructure, Robert Koch Institute, Berlin 13353, Germany
| | - Susanne Duwe
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Barbara Biere
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Janine Reiche
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Christin Mache
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Thorsten Wolff
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Ralf Dürrwald
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany.
| |
Collapse
|
21
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
22
|
Krischuns T, Arragain B, Isel C, Paisant S, Budt M, Wolff T, Cusack S, Naffakh N. The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome. Nat Commun 2024; 15:1064. [PMID: 38316757 PMCID: PMC10844641 DOI: 10.1038/s41467-024-45205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.
Collapse
Affiliation(s)
- Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| | | | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Matthias Budt
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, France.
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| |
Collapse
|
23
|
Lieber CM, Kang HJ, Aggarwal M, Lieberman NA, Sobolik EB, Yoon JJ, Natchus MG, Cox RM, Greninger AL, Plemper RK. Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation in vitro and in vivo. PLoS Pathog 2024; 20:e1011993. [PMID: 38300953 PMCID: PMC10863857 DOI: 10.1371/journal.ppat.1011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/13/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.
Collapse
Affiliation(s)
- Carolin M. Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Nicole A. Lieberman
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Cao M, Jia Q, Li J, Zhao L, Zhu L, Zhang Y, Li S, Deng T. Naturally occurring PA E206K point mutation in 2009 H1N1 pandemic influenza viruses impairs viral replication at high temperatures. Virol Sin 2024; 39:71-80. [PMID: 37979619 PMCID: PMC10877435 DOI: 10.1016/j.virs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The emergence of influenza virus A pandemic H1N1 in April 2009 marked the first pandemic of the 21st century. In this study, we observed significant differences in the polymerase activities of two clinical 2009 H1N1 influenza A virus isolates from Chinese and Japanese patients. Sequence comparison of the three main protein subunits (PB2, PB1, and PA) of the viral RNA-dependent RNA polymerase complex and subsequent mutational analysis revealed that a single amino acid substitution (E206K) was responsible for the observed impaired replication phenotype. Further in vitro experiments showed that presence of PAE206K decreased the replication of influenza A/WSN/33 virus in mammalian cells and a reduction in the virus's pathogenicity in vivo. Mechanistic studies revealed that PAE206K is a temperature-sensitive mutant associated with the inability to transport PB1-PA complex to the nucleus at high temperature (39.5 °C). Hence, this naturally occurring variant in the PA protein represents an ideal candidate mutation for the development of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Mengmeng Cao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiannan Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinghua Li
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lili Zhao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Deng
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Zhang L, Shao Y, Wang Y, Yang Q, Guo J, Gao GF, Deng T. Twenty natural amino acid substitution screening at the last residue 121 of influenza A virus NS2 protein reveals the critical role of NS2 in promoting virus genome replication by coordinating with viral polymerase. J Virol 2024; 98:e0116623. [PMID: 38054704 PMCID: PMC10804943 DOI: 10.1128/jvi.01166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Both influenza A virus genome transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the influenza RNA polymerase (FluPol), are dynamically regulated across the virus life cycle. It has been reported that the last amino acid I121 of the viral NS2 protein plays a critical role in promoting viral genome replication in influenza mini-replicon systems. Here, we performed a 20 natural amino acid substitution screening at residue NS2-I121 in the context of virus infection. We found that the hydrophobicity of the residue 121 is essential for virus survival. Interestingly, through serial passage of the rescued mutant viruses, we further identified adaptive mutations PA-K19E and PB1-S713N on FluPol which could effectively compensate for the replication-promoting defect caused by NS2-I121 mutation in the both mini-replicon and virus infection systems. Structural analysis of different functional states of FluPol indicates that PA-K19E and PB1-S713N could stabilize the replicase conformation of FluPol. By using a cell-based NanoBiT complementary reporter assay, we further demonstrate that both wild-type NS2 and PA-K19E/PB1-S713N could enhance FluPol dimerization, which is necessary for genome replication. These results reveal the critical role NS2 plays in promoting viral genome replication by coordinating with FluPol.IMPORTANCEThe intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication are dynamically regulated remain elusive. We recently reported that the last amino acid of the viral NS2 protein plays a critical role in promoting viral genome replication in an influenza mini-replicon system. Here, we conducted a 20 amino acid substitution screening at the last residue 121 in virus rescue and serial passage. Our results demonstrate that the replication-promoting function of NS2 is important for virus survival and efficient multiplication. We further show evidence that NS2 and NS2-I121 adaptive mutations PA-K19E/PB1-S713N regulate virus genome replication by promoting FluPol dimerization. This work highlights the coordination between NS2 and FluPol in fulfilling efficient genome replication. It further advances our understanding of the regulation of viral RNA synthesis for influenza A virus.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- />Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuekun Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiuxian Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiamei Guo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Deng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Dey S, Mondal A. Unveiling the role of host kinases at different steps of influenza A virus life cycle. J Virol 2024; 98:e0119223. [PMID: 38174932 PMCID: PMC10805039 DOI: 10.1128/jvi.01192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.
Collapse
Affiliation(s)
- Soumik Dey
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
27
|
Arragain B, Pelosse M, Thompson A, Cusack S. Structural and functional analysis of the minimal orthomyxovirus-like polymerase of Tilapia Lake Virus from the highly diverged Amnoonviridae family. Nat Commun 2023; 14:8145. [PMID: 38066000 PMCID: PMC10709604 DOI: 10.1038/s41467-023-44044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Tilapia Lake Virus (TiLV), a recently discovered pathogen of tilapia fish, belongs to the Amnoonviridae family from the Articulavirales order. Its ten genome segments have characteristic conserved ends and encode proteins with no known homologues, apart from the segment 1, which encodes an orthomyxo-like RNA-dependent-RNA polymerase core subunit. Here we show that segments 1-3 encode respectively the PB1, PB2 and PA-like subunits of an active heterotrimeric polymerase that maintains all domains found in the distantly related influenza polymerase, despite an unprecedented overall size reduction of 40%. Multiple high-resolution cryo-EM structures of TiLV polymerase in pre-initiation, initiation and active elongation states, show how it binds the vRNA and cRNA promoters and performs RNA synthesis, with both transcriptase and replicase configurations being characterised. However, the highly truncated endonuclease-like domain appears inactive and the putative cap-binding domain is autoinhibited, emphasising that many functional aspects of TiLV polymerase remain to be elucidated.
Collapse
Affiliation(s)
- Benoit Arragain
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - Martin Pelosse
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - Albert Thompson
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
- The Francis Crick Institute, London, UK
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France.
| |
Collapse
|
28
|
Saka N, Ohta K, Kolakofsky D, Nishio M. The bipartite promoter of Orthonairovirus hazaraense large segment. J Virol 2023; 97:e0091823. [PMID: 37916836 PMCID: PMC10688357 DOI: 10.1128/jvi.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The realization that segmented negative-strand RNA virus genome ribonucleoproteins are never free as their RNA ends are always bound to the viral polymerase has highlighted the problem of how these genome segments are replicated and express their mRNAs while their RNA ends remain associated with the polymerase throughout the cycles of RNA synthesis. This study of the length and nucleotide composition of the Orthonairovirus hazaraense L segment-specific double-stranded RNA (dsRNA) promoter element (the promoter duplex) provides insight into how its mRNA might be initiated and suggests that this promoter element acts via its separated single strands as well as via dsRNA.
Collapse
Affiliation(s)
- Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, Geneva, Switzerland
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
29
|
Li Y, Arcos S, Sabsay KR, te Velthuis AJW, Lauring AS. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein. J Virol 2023; 97:e0132923. [PMID: 37882522 PMCID: PMC10688322 DOI: 10.1128/jvi.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The influenza virus polymerase is important for adaptation to new hosts and, as a determinant of mutation rate, for the process of adaptation itself. We performed a deep mutational scan of the polymerase basic 1 (PB1) protein to gain insights into the structural and functional constraints on the influenza RNA-dependent RNA polymerase. We find that PB1 is highly constrained at specific sites that are only moderately predicted by the global structure or larger domain. We identified a number of beneficial mutations, many of which have been shown to be functionally important or observed in influenza virus' natural evolution. Overall, our atlas of PB1 mutations and their fitness impacts serves as an important resource for future studies of influenza replication and evolution.
Collapse
Affiliation(s)
- Yuan Li
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Arcos
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly R. Sabsay
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, USA
| | | | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Petrone ME, Parry R, Mifsud JCO, Van Brussel K, Vorhees I, Richards ZT, Holmes EC. Evidence for an ancient aquatic origin of the RNA viral order Articulavirales. Proc Natl Acad Sci U S A 2023; 120:e2310529120. [PMID: 37906647 PMCID: PMC10636315 DOI: 10.1073/pnas.2310529120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
The emergence of previously unknown disease-causing viruses in mammals is in part the result of a long-term evolutionary process. Reconstructing the deep phylogenetic histories of viruses helps identify major evolutionary transitions and contextualizes the emergence of viruses in new hosts. We used a combination of total RNA sequencing and transcriptome data mining to extend the diversity and evolutionary history of the RNA virus order Articulavirales, which includes the influenza viruses. We identified instances of Articulavirales in the invertebrate phylum Cnidaria (including corals), constituting a novel and divergent family that we provisionally named the "Cnidenomoviridae." We further extended the evolutionary history of the influenza virus lineage by identifying four divergent, fish-associated influenza-like viruses, thereby supporting the hypothesis that fish were among the first hosts of influenza viruses. In addition, we substantially expanded the phylogenetic diversity of quaranjaviruses and proposed that this genus be reclassified as a family-the "Quaranjaviridae." Within this putative family, we identified a novel arachnid-infecting genus, provisionally named "Cheliceravirus." Notably, we observed a close phylogenetic relationship between the Crustacea- and Chelicerata-infecting "Quaranjaviridae" that is inconsistent with virus-host codivergence. Together, these data suggest that the Articulavirales has evolved over at least 600 million years, first emerging in aquatic animals. Importantly, the evolution of the Articulavirales was likely shaped by multiple aquatic-terrestrial transitions and substantial host jumps, some of which are still observable today.
Collapse
Affiliation(s)
- Mary E. Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong Special Administrative Region, China
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4067, Australia
| | - Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
| | - Kate Van Brussel
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
| | - Ian Vorhees
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14850
| | - Zoe T. Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA6102, Australia
- Collections and Research, Western Australian Museum, Welshpool, WA6106, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong Special Administrative Region, China
| |
Collapse
|
31
|
Liu X, Xu Z, Liang J, Xu T, Zou W, Zhu L, Wu Y, Dong C, Lan K, Wu S, Zhou HB. Rational design and optimization of acylthioureas as novel potent influenza virus non-nucleoside polymerase inhibitors. Eur J Med Chem 2023; 259:115678. [PMID: 37531746 DOI: 10.1016/j.ejmech.2023.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Evidence suggests that rapidly evolving virus subvariants risk rendering current vaccines and anti-influenza drugs ineffective. Hence, exploring novel scaffolds or new targets of anti-influenza drugs is of great urgency. Herein, we report the discovery of a series of acylthiourea derivatives produced via a scaffold-hopping strategy as potent antiviral agents against influenza A and B subtypes. The most effective compound 10m displayed subnanomolar activity against H1N1 proliferation (EC50 = 0.8 nM) and exhibited inhibitory activity toward other influenza strains, including influenza B virus and H1N1 variant (H1N1, H274Y). Additionally, druggability evaluation revealed that 10m exhibited favorable pharmacokinetic properties and was metabolically stable in liver microsome preparations from three different species as well as in human plasma. In vitro and in vivo toxicity studies confirmed that 10m demonstrated a high safety profile. Furthermore, 10m exhibited satisfactory antiviral activity in a lethal influenza virus mouse model. Moreover, mechanistic studies indicated that these acylthiourea derivatives inhibited influenza virus proliferation by targeting influenza virus RNA-dependent RNA polymerase. Thus, 10m is a potential lead compound for the further exploration of treatment options for influenza.
Collapse
Affiliation(s)
- Xinjin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhichao Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jinsen Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ting Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenting Zou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lijun Zhu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yihe Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
32
|
Zhu Z, Fan H, Fodor E. Defining the minimal components of the influenza A virus replication machinery via an in vitro reconstitution system. PLoS Biol 2023; 21:e3002370. [PMID: 37943954 PMCID: PMC10662765 DOI: 10.1371/journal.pbio.3002370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
During influenza A virus infection, the viral RNA polymerase transcribes the viral negative-sense segmented RNA genome and replicates it in a two-step process via complementary RNA within viral ribonucleoprotein (vRNP) complexes. While numerous viral and host factors involved in vRNP functions have been identified, dissecting the roles of individual factors remains challenging due to the complex cellular environment in which vRNP activity has been studied. To overcome this challenge, we reconstituted viral transcription and a full cycle of replication in a test tube using vRNPs isolated from virions and recombinant factors essential for these processes. This novel system uncovers the minimal components required for influenza virus replication and also reveals new roles of regulatory factors in viral replication. Moreover, it sheds light on the molecular interplay underlying the temporal regulation of viral transcription and replication. Our highly robust in vitro system enables systematic functional analysis of factors modulating influenza virus vRNP activity and paves the way for imaging key steps of viral transcription and replication.
Collapse
Affiliation(s)
- Zihan Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, Platt OK, Sukhova K, Baillon L, Frise R, Peacock TP, Fodor E, Barclay WS. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nat Commun 2023; 14:6135. [PMID: 37816726 PMCID: PMC10564888 DOI: 10.1038/s41467-023-41308-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth. We find two mutations in different subunits of the influenza polymerase that enable the mutant virus to use a novel host factor, ANP32E, an alternative family member, which is unable to support the wild type polymerase. Both mutations reside in the symmetric dimer interface between two polymerase complexes and reduce polymerase dimerization. These mutations have previously been identified as adapting influenza viruses to mice. Indeed, the evolved virus gains the ability to use suboptimal mouse ANP32 proteins and becomes more virulent in mice. We identify further mutations in the symmetric dimer interface which we predict allow influenza to adapt to use suboptimal ANP32 proteins through a similar mechanism. Overall, our results suggest a balance between asymmetric and symmetric dimers of influenza virus polymerase that is influenced by the interaction between polymerase and ANP32 host proteins.
Collapse
Affiliation(s)
- Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Penn
- Department of Infectious Disease, Imperial College London, London, UK
| | - Olivia K Platt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
34
|
Idoko-Akoh A, Goldhill DH, Sheppard CM, Bialy D, Quantrill JL, Sukhova K, Brown JC, Richardson S, Campbell C, Taylor L, Sherman A, Nazki S, Long JS, Skinner MA, Shelton H, Sang HM, Barclay WS, McGrew MJ. Creating resistance to avian influenza infection through genome editing of the ANP32 gene family. Nat Commun 2023; 14:6136. [PMID: 37816720 PMCID: PMC10564915 DOI: 10.1038/s41467-023-41476-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Chickens genetically resistant to avian influenza could prevent future outbreaks. In chickens, influenza A virus (IAV) relies on host protein ANP32A. Here we use CRISPR/Cas9 to generate homozygous gene edited (GE) chickens containing two ANP32A amino acid substitutions that prevent viral polymerase interaction. After IAV challenge, 9/10 edited chickens remain uninfected. Challenge with a higher dose, however, led to breakthrough infections. Breakthrough IAV virus contained IAV polymerase gene mutations that conferred adaptation to the edited chicken ANP32A. Unexpectedly, this virus also replicated in chicken embryos edited to remove the entire ANP32A gene and instead co-opted alternative ANP32 protein family members, chicken ANP32B and ANP32E. Additional genome editing for removal of ANP32B and ANP32E eliminated all viral growth in chicken cells. Our data illustrate a first proof of concept step to generate IAV-resistant chickens and show that multiple genetic modifications will be required to curtail viral escape.
Collapse
Affiliation(s)
- Alewo Idoko-Akoh
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Royal Veterinary College, London, UK
| | - Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Ciara Campbell
- Department of Infectious Disease, Imperial College London, London, UK
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | | | - Jason S Long
- Department of Infectious Disease, Imperial College London, London, UK
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Michael A Skinner
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Helen M Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Mike J McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
35
|
Gilbertson B, Duncan M, Subbarao K. Role of the viral polymerase during adaptation of influenza A viruses to new hosts. Curr Opin Virol 2023; 62:101363. [PMID: 37672875 DOI: 10.1016/j.coviro.2023.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melanie Duncan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Camacho-Zarco AR, Yu L, Krischuns T, Dedeoglu S, Maurin D, Bouvignies G, Crépin T, Ruigrok RWH, Cusack S, Naffakh N, Blackledge M. Multivalent Dynamic Colocalization of Avian Influenza Polymerase and Nucleoprotein by Intrinsically Disordered ANP32A Reveals the Molecular Basis of Human Adaptation. J Am Chem Soc 2023; 145:20985-21001. [PMID: 37707433 PMCID: PMC10540212 DOI: 10.1021/jacs.3c06965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 09/15/2023]
Abstract
Adaptation of avian influenza RNA polymerase (FluPol) to human cells requires mutations on the 627-NLS domains of the PB2 subunit. The E627K adaptive mutation compensates a 33-amino-acid deletion in the acidic intrinsically disordered domain of the host transcription regulator ANP32A, a deletion that restricts FluPol activity in mammalian cells. The function of ANP32A in the replication transcription complex and in particular its role in host restriction remains poorly understood. Here we characterize ternary complexes formed between ANP32A, FluPol, and the viral nucleoprotein, NP, supporting the putative role of ANP32A in shuttling NP to the replicase complex. We demonstrate that while FluPol and NP can simultaneously bind distinct linear motifs on avian ANP32A, the deletion in the shorter human ANP32A blocks this mode of colocalization. NMR reveals that NP and human-adapted FluPol, containing the E627 K mutation, simultaneously bind the identical extended linear motif on human ANP32A in an electrostatically driven, highly dynamic and multivalent ternary complex. This study reveals a probable molecular mechanism underlying host adaptation, whereby E627K, which enhances the basic surface of the 627 domain, is selected to confer the necessary multivalent properties to allow ANP32A to colocalize NP and FluPol in human cells.
Collapse
Affiliation(s)
- Aldo R. Camacho-Zarco
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Lefan Yu
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Tim Krischuns
- Institut
Pasteur, Université Paris Cité,
CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, 75015 Paris, France
| | - Selin Dedeoglu
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Damien Maurin
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Guillaume Bouvignies
- Laboratoire
des Biomolécules, Département de Chimie, École
Normale Supérieur, UPMC Université Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
| | - Thibaut Crépin
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Rob W. H. Ruigrok
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Stephan Cusack
- European
Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Nadia Naffakh
- Institut
Pasteur, Université Paris Cité,
CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, 75015 Paris, France
| | - Martin Blackledge
- Institut
de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS
UMR5075, 71 Avenue des
Martyrs, 38000 Grenoble, France
| |
Collapse
|
37
|
Çağlayan E, Turan K. An in silico prediction of interaction models of influenza A virus PA and human C14orf166 protein from yeast-two-hybrid screening data. Proteins 2023; 91:1235-1244. [PMID: 37265372 DOI: 10.1002/prot.26534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
The human C14orf166 protein, also known as RNA transcription, translation, and transport factor, shows positive modulatory activity on the cellular RNA polymerase II enzyme. This protein is a component of the tRNA-splicing ligase complex and is involved in RNA metabolism. It also functions in the nucleo-cytoplasmic transport of RNA molecules. The C14orf166 protein has been reported to be associated with some types of cancer. It has been shown that the C14orf166 protein binds to the influenza A virus RNA polymerase PA subunit and has a stimulating effect on viral replication. In this study, candidate interactor proteins for influenza A virus PA protein were screened with a Y2H assay using HEK293 Matchmaker cDNA. The C14orf166 protein fragments in different sizes were found to interact with the PA. The three-dimensional structures of the viral PA and C14orf166 proteins interacting with the PA were generated using the I-TASSER algorithm. The interaction models between these proteins were predicted with the ClusPro protein docking algorithm and analyzed with PyMol software. The results revealed that the carboxy-terminal end of the C14orf166 protein is involved in this interaction, and it is highly possible that it binds to the carboxy-terminal of the PA protein. Although amino acid residues in the interaction area of the PA protein with the C14orf166 showed distribution from 450th to 700th position, the intense interaction region was revealed to be at amino acid positions 610-630.
Collapse
Affiliation(s)
- Elif Çağlayan
- University of Health Sciences Kartal Koşuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
| | - Kadir Turan
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
38
|
Guan L, Ping J, Lopes TJS, Fan S, Presler R, Neumann G, Kawaoka Y. Development of an Enhanced High-Yield Influenza Vaccine Backbone in Embryonated Chicken Eggs. Vaccines (Basel) 2023; 11:1364. [PMID: 37631932 PMCID: PMC10459923 DOI: 10.3390/vaccines11081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Vaccination is an efficient approach to preventing influenza virus infections. Recently, we developed influenza A and B virus vaccine backbones that increased the yield of several vaccine viruses in Madin-Darby canine kidney (MDCK) and African green monkey kidney (Vero) cells. These vaccine backbones also increased viral replication in embryonated chicken eggs, which are the most frequently used platform for influenza vaccine manufacturing. In this study, to further increase the viral titers in embryonated chicken eggs, we introduced random mutations into the 'internal genes' (i.e., all influenza viral genes except those encoding the hemagglutinin and neuraminidase proteins) of the influenza A virus high-yield virus backbone we developed previously. The randomly mutated viruses were sequentially passaged in embryonated chicken eggs to select variants with increased replicative ability. We identified a candidate that conferred higher influenza virus growth than the high-yield parental virus backbone. Although the observed increases in virus growth may be considered small, they are highly relevant for vaccine manufacturers.
Collapse
Affiliation(s)
- Lizheng Guan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Jihui Ping
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Tiago J. S. Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Robert Presler
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| |
Collapse
|
39
|
Li H, Wu Y, Li M, Guo L, Gao Y, Wang Q, Zhang J, Lai Z, Zhang X, Zhu L, Lan P, Rao Z, Liu Y, Liang H. An intermediate state allows influenza polymerase to switch smoothly between transcription and replication cycles. Nat Struct Mol Biol 2023; 30:1183-1192. [PMID: 37488357 DOI: 10.1038/s41594-023-01043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Influenza polymerase (FluPol) transcribes viral mRNA at the beginning of the viral life cycle and initiates genome replication after viral protein synthesis. However, it remains poorly understood how FluPol switches between its transcription and replication states, especially given that the structural bases of these two functions are fundamentally different. Here we propose a mechanism by which FluPol achieves functional switching between these two states through a previously unstudied conformation, termed an 'intermediate state'. Using cryo-electron microscopy, we obtained a structure of the intermediate state of H5N1 FluPol at 3.7 Å, which is characterized by a blocked cap-binding domain and a contracted core region. Structural analysis results suggest that the intermediate state may allow FluPol to transition smoothly into either the transcription or replication state. Furthermore, we show that the formation of the intermediate state is required for both the transcription and replication activities of FluPol, leading us to conclude that the transcription and replication cycles of FluPol are regulated via this intermediate state.
Collapse
Affiliation(s)
- Huanhuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yixi Wu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Minke Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Lu Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Quan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zhaohua Lai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xing Zhang
- Departments of Biophysics and Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Lixin Zhu
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihe Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Yingfang Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Huanhuan Liang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
40
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
41
|
Arcos S, Han AX, te Velthuis AJW, Russell CA, Lauring AS. Mutual information networks reveal evolutionary relationships within the influenza A virus polymerase. Virus Evol 2023; 9:vead037. [PMID: 37325086 PMCID: PMC10263469 DOI: 10.1093/ve/vead037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
The influenza A virus (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (polymerase basic protein 2, polymerase basic protein 1, and polymerase acidic protein). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI (wMI) metric and demonstrate that wMI outperforms raw MI through simulations using a well-sampled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included hemagglutinin (HA) in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitch-hiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.
Collapse
|
42
|
Liu L, Madhugiri R, Saul VV, Bacher S, Kracht M, Pleschka S, Schmitz ML. Phosphorylation of the PA subunit of influenza polymerase at Y393 prevents binding of the 5'-termini of RNA and polymerase function. Sci Rep 2023; 13:7042. [PMID: 37120635 PMCID: PMC10148841 DOI: 10.1038/s41598-023-34285-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
The influenza A virus (IAV) polymerase is a multifunctional machine that can adopt alternative configurations to perform transcription and replication of the viral RNA genome in a temporally ordered manner. Although the structure of polymerase is well understood, our knowledge of its regulation by phosphorylation is still incomplete. The heterotrimeric polymerase can be regulated by posttranslational modifications, but the endogenously occurring phosphorylations at the PA and PB2 subunits of the IAV polymerase have not been studied. Mutation of phosphosites in PB2 and PA subunits revealed that PA mutants resembling constitutive phosphorylation have a partial (S395) or complete (Y393) defect in the ability to synthesize mRNA and cRNA. As PA phosphorylation at Y393 prevents binding of the 5' promoter of the genomic RNA, recombinant viruses harboring such a mutation could not be rescued. These data show the functional relevance of PA phosphorylations to control the activity of viral polymerase during the influenza infectious cycle.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Vivian Saul
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Bacher
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
43
|
Jiang L, Chen H, Li C. Advances in deciphering the interactions between viral proteins of influenza A virus and host cellular proteins. CELL INSIGHT 2023; 2:100079. [PMID: 37193064 PMCID: PMC10134199 DOI: 10.1016/j.cellin.2023.100079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Influenza A virus (IAV) poses a severe threat to the health of animals and humans. The genome of IAV consists of eight single-stranded negative-sense RNA segments, encoding ten essential proteins as well as certain accessory proteins. In the process of virus replication, amino acid substitutions continuously accumulate, and genetic reassortment between virus strains readily occurs. Due to this high genetic variability, new viruses that threaten animal and human health can emerge at any time. Therefore, the study on IAV has always been a focus of veterinary medicine and public health. The replication, pathogenesis, and transmission of IAV involve intricate interplay between the virus and host. On one hand, the entire replication cycle of IAV relies on numerous proviral host proteins that effectively allow the virus to adapt to its host and support its replication. On the other hand, some host proteins play restricting roles at different stages of the viral replication cycle. The mechanisms of interaction between viral proteins and host cellular proteins are currently receiving particular interest in IAV research. In this review, we briefly summarize the current advances in our understanding of the mechanisms by which host proteins affect virus replication, pathogenesis, or transmission by interacting with viral proteins. Such information about the interplay between IAV and host proteins could provide insights into how IAV causes disease and spreads, and might help support the development of antiviral drugs or therapeutic approaches.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
44
|
AbuBakar U, Amrani L, Kamarulzaman FA, Karsani SA, Hassandarvish P, Khairat JE. Avian Influenza Virus Tropism in Humans. Viruses 2023; 15:833. [PMID: 37112812 PMCID: PMC10142937 DOI: 10.3390/v15040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
An influenza pandemic happens when a novel influenza A virus is able to infect and transmit efficiently to a new, distinct host species. Although the exact timing of pandemics is uncertain, it is known that both viral and host factors play a role in their emergence. Species-specific interactions between the virus and the host cell determine the virus tropism, including binding and entering cells, replicating the viral RNA genome within the host cell nucleus, assembling, maturing and releasing the virus to neighboring cells, tissues or organs before transmitting it between individuals. The influenza A virus has a vast and antigenically varied reservoir. In wild aquatic birds, the infection is typically asymptomatic. Avian influenza virus (AIV) can cross into new species, and occasionally it can acquire the ability to transmit from human to human. A pandemic might occur if a new influenza virus acquires enough adaptive mutations to maintain transmission between people. This review highlights the key determinants AIV must achieve to initiate a human pandemic and describes how AIV mutates to establish tropism and stable human adaptation. Understanding the tropism of AIV may be crucial in preventing virus transmission in humans and may help the design of vaccines, antivirals and therapeutic agents against the virus.
Collapse
Affiliation(s)
- Umarqayum AbuBakar
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Farah Ayuni Kamarulzaman
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
45
|
Ishida H, Murakami S, Kamiki H, Matsugo H, Katayama M, Sekine W, Ohira K, Takenaka-Uema A, Horimoto T. Generation of a recombinant temperature-sensitive influenza D virus. Sci Rep 2023; 13:3806. [PMID: 36882459 PMCID: PMC9992382 DOI: 10.1038/s41598-023-30942-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Influenza D virus (IDV) is a causative agent of the bovine respiratory disease complex (BRDC), which is the most common and costly disease affecting the cattle industry. For developing a candidate vaccine virus against IDV, we sought to produce a temperature-sensitive strain, similar to the live attenuated, cold-adapted vaccine strain available against the influenza A virus (IAV). To this end, we produced a recombinant IDV (designated rD/OK-AL) strain by introducing mutations responsible for the adaptation of the IAV vaccine strain to cold conditions and conferring sensitivity to high temperatures into PB2 and PB1 proteins using reverse genetics. The rD/OK-AL strain grew efficiently at 33 °C but did not grow at 37 °C in the cell culture, indicating its high-temperature sensitivity. In mice, rD/OK-AL was attenuated following intranasal inoculation. It mediated the production of high levels of antibodies against IDV in the serum. When the rD/OK-AL-inoculated mice were challenged with the wild-type virus, the virus was not detected in respiratory organs after the challenge, indicating complete protection against IDV. These results imply that the rD/OK-AL might be a potential candidate for the development of live attenuated vaccines for IDV that can be used to control BRDC.
Collapse
Affiliation(s)
- Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Haruhiko Kamiki
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
46
|
A structural understanding of influenza virus genome replication. Trends Microbiol 2023; 31:308-319. [PMID: 36336541 DOI: 10.1016/j.tim.2022.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Influenza virus contains a single-stranded negative-sense RNA genome. Replication of the genome is carried out by the viral RNA-dependent RNA polymerase in the context of the viral ribonucleoprotein (RNP) complex, through a positive-sense complementary RNA intermediate. Genome replication is tightly controlled through interactions with accessory viral and host factors. Propelled by developments in recombinant protein expression, and technical improvements in X-ray crystallography and cryo-electron microscopy, snapshots of the replication process have been captured. Here, we review how recent structural data shed light on the molecular mechanisms of influenza virus genome replication, in particular, encapsidation of nascent RNA, de novo RNP assembly, and regulation of replication initiation through interactions with host and viral cues.
Collapse
|
47
|
Siegers JY, Ferreri L, Eggink D, Veldhuis Kroeze EJB, te Velthuis AJW, van de Bildt M, Leijten L, van Run P, de Meulder D, Bestebroer T, Richard M, Kuiken T, Lowen AC, Herfst S, van Riel D. Evolution of highly pathogenic H5N1 influenza A virus in the central nervous system of ferrets. PLoS Pathog 2023; 19:e1011214. [PMID: 36897923 PMCID: PMC10032531 DOI: 10.1371/journal.ppat.1011214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lucas Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Aartjan J. W. te Velthuis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Theo Bestebroer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Dutta AK, Gazi MS, Uddin SJ. A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis. Heliyon 2023; 9:e14386. [PMID: 36925514 PMCID: PMC10011005 DOI: 10.1016/j.heliyon.2023.e14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background Avian influenza or more commonly known as bird flu is a widespread infectious disease in poultry. This review aims to accumulate information of different natural plant sources that can aid in combating this disease. Influenza virus (IV) is known for its ability to mutate and infect different species (including humans) and cause fatal consequences. Methods Total 33 plants and 4 natural compounds were identified and documented. Molecular docking was performed against the target viral protein neuraminidase (NA), with some plant based natural compounds and compared their results with standard drugs Oseltamivir and Zanamivir to obtain novel drug targets for influenza in chickens. Results It was seen that most extracts exhibit their action by interacting with viral hemagglutinin or neuraminidase and inhibit viral entry or release from the host cell. Some plants also interacted with the viral RNA replication or by reducing proinflammatory cytokines. Ethanol was mostly used for extraction. Among all the plants Theobroma cacao, Capparis Sinaica Veil, Androgarphis paniculate, Thallasodendron cillatum, Sinularia candidula, Larcifomes officinalis, Lenzites betulina, Datronia molis, Trametes gibbose exhibited their activity with least concentration (below 10 μg/ml). The dockings results showed that some natural compounds (5,7- dimethoxyflavone, Aloe emodin, Anthocyanins, Quercetin, Hemanthamine, Lyocrine, Terpenoid EA showed satisfactory binding affinity and binding specificity with viral neuraminidase compared to the synthetic drugs. Conclusion This review clusters up to date information of effective herbal plants to bolster future influenza treatment research in chickens. The in-silico analysis also suggests some potential targets for future drug development but these require more clinical analysis.
Collapse
Affiliation(s)
- Ashit Kumar Dutta
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
49
|
Avian Influenza A Virus Polymerase Can Utilize Human ANP32 Proteins To Support cRNA but Not vRNA Synthesis. mBio 2023; 14:e0339922. [PMID: 36645303 PMCID: PMC9973007 DOI: 10.1128/mbio.03399-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Host restriction limits the emergence of novel pandemic strains from the influenza A virus avian reservoir. For efficient replication in mammalian cells, the avian influenza RNA-dependent RNA polymerase must adapt to use human orthologues of the host factor ANP32, which lack a 33-amino-acid insertion relative to avian ANP32A. Here, we find that influenza polymerase requires ANP32 proteins to support both steps of genome replication: cRNA and vRNA synthesis. However, avian strains are only restricted in vRNA synthesis in human cells. Therefore, avian influenza polymerase can use human ANP32 orthologues to support cRNA synthesis, without acquiring mammalian adaptations. This implies a fundamental difference in the mechanism by which ANP32 proteins support cRNA versus vRNA synthesis. IMPORTANCE To infect humans and cause a pandemic, avian influenza must first adapt to use human versions of the proteins the virus hijacks for replication, instead of the avian orthologues found in bird cells. One critical host protein is ANP32. Understanding the details of how host proteins such as ANP32 support viral activity may allow the design of new antiviral strategies that disrupt these interactions. Here, we use cells that lack ANP32 to unambiguously demonstrate ANP32 is needed for both steps of influenza genome replication. Unexpectedly, however, we found that avian influenza can use human ANP32 proteins for the first step of replication, to copy a complementary strand, without adaptation but can only utilize avian ANP32 for the second step of replication that generates new genomes. This suggests ANP32 may have a distinct role in supporting the second step of replication, and it is this activity that is specifically blocked when avian influenza infects human cells.
Collapse
|
50
|
Arcos S, Han AX, Te Velthuis AJW, Russell CA, Lauring AS. Mutual information networks reveal evolutionary relationships within the influenza A virus polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528850. [PMID: 36824962 PMCID: PMC9949103 DOI: 10.1101/2023.02.16.528850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The influenza A (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (PB2, PB1, and PA). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI metric (wMI) and demonstrate that wMI outperforms raw MI through simulations using a well-sampled SARS-CoV-2 dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included HA in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitchhiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.
Collapse
|