1
|
Bisht VS, Kumar D, Najar MA, Giri K, Kaur J, Prasad TSK, Ambatipudi K. Drug response-based precision therapeutic selection for tamoxifen-resistant triple-positive breast cancer. J Proteomics 2024; 310:105319. [PMID: 39299547 DOI: 10.1016/j.jprot.2024.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Breast cancer adaptability to the drug environment reduces the chemotherapeutic response and facilitates acquired drug resistance. Cancer-specific therapeutics can be more effective against advanced-stage cancer than standard chemotherapeutics. To extend the paradigm of cancer-specific therapeutics, clinically relevant acquired tamoxifen-resistant MCF-7 proteome was deconstructed to identify possible druggable targets (N = 150). Twenty-eight drug inhibitors were used against identified druggable targets to suppress non-resistant (NC) and resistant cells (RC). First, selected drugs were screened using growth-inhibitory response against NC and RC. Seven drugs were shortlisted for their time-dependent (10-12 days) cytotoxic effect and further narrowed to three effective drugs (e.g., cisplatin, doxorubicin, and hydroxychloroquine). The growth-suppressive effectiveness of selected drugs was validated in the complex spheroid model (progressive and regressive). In the progressive model, doxorubicin (RC: 83.64 %, NC: 54.81 %), followed by cisplatin (RC: 76.66 %, NC: 68.94 %) and hydroxychloroquine (RC: 68.70 %, NC: 61.78 %) showed a significant growth-suppressive effect. However, in fully grown regressive spheroid, after 4th drug treatment, cisplatin significantly suppressed RC (84.79 %) and NC (40.21 %), while doxorubicin and hydroxychloroquine significantly suppressed only RC (76.09 and 76.34 %). Our in-depth investigation effectively integrated the expression data with the cancer-specific therapeutic investigation. Furthermore, our three-step sequential drug-screening approach unbiasedly identified cisplatin, doxorubicin, and hydroxychloroquine as an efficacious drug to target heterogeneous cancer cell populations. SIGNIFICANCE STATEMENT: Hormonal-positive BC grows slowly, and hormonal-inhibitors effectively suppress the oncogenesis. However, development of drug-resistance not only reduces the drug-response but also increases the chance of BC aggressiveness. Further, alternative chemotherapeutics are widely used to control advanced-stage BC. In contrast, we hypothesized that, compared to standard chemotherapeutics, cancer-specific drugs can be more effective against resistant-cancer. Although cancer-specific treatment identification is an uphill battle, our work shows proteome data can be used for drug selection. We identified multiple druggable targets and, using ex-vivo methods narrowed multiple drugs to disease-condition-specific therapeutics. We consider that our investigation successfully interconnected the expression data with the functional disease-specific therapeutic investigation and selected drugs can be used for effective resistant treatment with higher therapeutic response.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Deepak Kumar
- Department of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jaismeen Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | | | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
2
|
Egloff C, Fovet CM, Denis J, Pascal Q, Bossevot L, Luccantoni S, Leonec M, Dereuddre-Bosquet N, Leparc-Goffart I, Le Grand R, Durand GA, Badaut C, Picone O, Roques P. Fetal Zika virus inoculation in macaques revealed control of the fetal viral load during pregnancy. Virol J 2024; 21:209. [PMID: 39227837 PMCID: PMC11373269 DOI: 10.1186/s12985-024-02468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.
Collapse
Affiliation(s)
- Charles Egloff
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Claire-Maëlle Fovet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Jessica Denis
- Unité interactions hôtes-pathogènes, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Laetitia Bossevot
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Marco Leonec
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Cyril Badaut
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Olivier Picone
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Pierre Roques
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France.
- Virology Unit, Institut Pasteur de Guinée (IPGui), BP4416, Conakry, Guinea.
| |
Collapse
|
3
|
Li X, Liu T, Mo X, Wang R, Kong X, Shao R, McIntyre RS, So KF, Lin K. Effects of Lycium barbarum polysaccharide on cytokines in adolescents with subthreshold depression: a randomized controlled study. Neural Regen Res 2024; 19:2036-2040. [PMID: 38227533 DOI: 10.4103/1673-5374.389360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00036/figure1/v/2024-01-16T170235Z/r/image-tiff Strong evidence has accumulated to show a correlation between depression symptoms and inflammatory responses. Moreover, anti-inflammatory treatment has shown partial effectiveness in alleviating depression symptoms. Lycium barbarum polysaccharide (LBP), derived from Goji berries, exhibits notable antioxidative and anti-inflammatory properties. In our recent double-blinded randomized placebo-controlled trial, we found that LBP significantly reduced depressive symptoms in adolescents with subthreshold depression. It is presumed that the antidepressant effect of LBP may be associated with its influence on inflammatory cytokines. In the double-blinded randomized controlled trial, we enrolled 29 adolescents with subthreshold depression and randomly divided them into an LBP group and a placebo group. In the LBP group, adolescents were given 300 mg/d LBP. A 6-week follow up was completed by 24 adolescents, comprising 14 adolescents from the LBP group (15.36 ± 2.06 years, 3 men and 11 women) and 10 adolescents from the placebo group (14.9 ± 1.6 years, 2 men and 8 women). Our results showed that after 6 weeks of treatment, the interleukin-17A level in the LBP group was lower than that in the placebo group. Network analysis showed that LBP reduced the correlations and connectivity between inflammatory factors, which were associated with the improvement in depressive symptoms. These findings suggest that 6-week administration of LBP suppresses the immune response by reducing interleukin-17A level, thereby exerting an antidepressant effect.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Liu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xuan Mo
- Department of Psychiatry, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Runhua Wang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueyan Kong
- Department of Psychiatry, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Robin Shao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
4
|
Teboul A, Arnaud L, Chasset F. Recent findings about antimalarials in cutaneous lupus erythematosus: What dermatologists should know. J Dermatol 2024; 51:895-903. [PMID: 38482997 DOI: 10.1111/1346-8138.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 07/04/2024]
Abstract
Antimalarials (AMs), particularly hydroxychloroquine (HCQ) and chloroquine (CQ), are the cornerstone of the treatment for both systemic lupus erythematosus (SLE) and cutaneous lupus erythematosus (CLE). HCQ and CQ are recommended as first-line oral agents in all CLE guidelines. Initially thought to have potential therapeutic effects against COVID-19, HCQ has drawn significant attention in recent years, highlighting concerns over its potential toxicity among patients and physicians. This review aims to consolidate current evidence on the efficacy of AMs in CLE. Our focus will be on optimizing therapeutic strategies, such as switching from HCQ to CQ, adding quinacrine to either HCQ or CQ, or adjusting HCQ dose based on blood concentration. Additionally, we will explore the potential for HCQ dose reduction or discontinuation in cases of CLE or SLE remission. Our review will focus on the existing evidence regarding adverse events linked to AM usage, with a specific emphasis on severe events and those of particular interest to dermatologists. Last, we will discuss the optimal HCQ dose and the balance between preventing CLE or SLE flares and minimizing toxicity.
Collapse
Affiliation(s)
- Alexandre Teboul
- Dermatology and Allergology Department, Faculty of Medicine, Tenon Hospital, Sorbonne University, Paris, France
| | - Laurent Arnaud
- Department of Rheumatology, National Reference Center for Autoimmune diseases (RESO), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM UMR-S 1109, Strasbourg, France
| | - François Chasset
- Dermatology and Allergology Department, Faculty of Medicine, Tenon Hospital, Sorbonne University, Paris, France
- INSERM U1135, CIMI, Paris, France
| |
Collapse
|
5
|
Nian Z, Mao Y, Xu Z, Deng M, Xu Y, Xu H, Chen R, Xu Y, Huang N, Mao F, Xu C, Wang Y, Niu M, Chen A, Xue X, Zhang H, Guo G. Multi-omics analysis uncovered systemic lupus erythematosus and COVID-19 crosstalk. Mol Med 2024; 30:81. [PMID: 38862942 PMCID: PMC11167821 DOI: 10.1186/s10020-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Zexia Xu
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of Public Administration, Hangzhou Normal University, Hangzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
| | - Nan Huang
- Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Mengyuan Niu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aqiong Chen
- Department of Rheumatology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Huidi Zhang
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Petit PR, Touret F, Driouich JS, Cochin M, Luciani L, Bernadin O, Laprie C, Piorkowski G, Fraisse L, Sjö P, Mowbray CE, Escudié F, Scandale I, Chatelain E, de Lamballerie X, Solas C, Nougairède A. Further preclinical characterization of molnupiravir against SARS-CoV-2: Antiviral activity determinants and viral genome alteration patterns. Heliyon 2024; 10:e30862. [PMID: 38803975 PMCID: PMC11128822 DOI: 10.1016/j.heliyon.2024.e30862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the need for broad-spectrum antiviral drugs to respond promptly to viral emergence. We conducted a preclinical study of molnupiravir (MOV) against SARS-CoV-2 to fully characterise its antiviral properties and mode of action. The antiviral activity of different concentrations of MOV was evaluated ex vivo on human airway epithelium (HAE) and in vivo in a hamster model at three escalating doses (150, 300 and 400 mg/kg/day) according to three different regimens (preventive, pre-emptive and curative). We assessed viral loads and infectious titres at the apical pole of HAE and in hamster lungs, and MOV trough concentration in plasma and lungs. To explore the mode of action of the MOV, the entire genomes of the collected viruses were deep-sequenced. MOV effectively reduced viral titres in HAE and in the lungs of treated animals. Early treatment after infection was a key factor in efficacy, probably associated with high lung concentrations of MOV, suggesting good accumulation in the lung. MOV induced genomic alteration in viral genomes with an increase in the number of minority variants, and predominant G to A transitions. The observed reduction in viral replication and its mechanism of action leading to lethal mutagenesis, supported by clinical trials showing antiviral action in humans, provide a convincing basis for further research as an additional means in the fight against COVID-19 and other RNA viruses.
Collapse
Affiliation(s)
- Paul-Rémi Petit
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Maxime Cochin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Léa Luciani
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Ornéllie Bernadin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | | | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | - Fanny Escudié
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Caroline Solas
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
- Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, APHM, Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| |
Collapse
|
7
|
Warner BM, Chan M, Tailor N, Vendramelli R, Audet J, Meilleur C, Truong T, Garnett L, Willman M, Soule G, Tierney K, Albietz A, Moffat E, Higgins R, Santry LA, Leacy A, Pham PH, Yates JGE, Pei Y, Safronetz D, Strong JE, Susta L, Embury-Hyatt C, Wootton SK, Kobasa D. Mucosal Vaccination with a Newcastle Disease Virus-Vectored Vaccine Reduces Viral Loads in SARS-CoV-2-Infected Cynomolgus Macaques. Vaccines (Basel) 2024; 12:404. [PMID: 38675786 PMCID: PMC11054841 DOI: 10.3390/vaccines12040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged following an outbreak of unexplained viral illness in China in late 2019. Since then, it has spread globally causing a pandemic that has resulted in millions of deaths and has had enormous economic and social consequences. The emergence of SARS-CoV-2 saw the rapid and widespread development of a number of vaccine candidates worldwide, and this never-before-seen pace of vaccine development led to several candidates progressing immediately through clinical trials. Many countries have now approved vaccines for emergency use, with large-scale vaccination programs ongoing. Despite these successes, there remains a need for ongoing pre-clinical and clinical development of vaccine candidates against SARS-CoV-2, as well as vaccines that can elicit strong mucosal immune responses. Here, we report on the efficacy of a Newcastle disease virus-vectored vaccine candidate expressing SARS-CoV-2 spike protein (NDV-FLS) administered to cynomolgus macaques. Macaques given two doses of the vaccine via respiratory immunization developed robust immune responses and had reduced viral RNA levels in nasal swabs and in the lower airway. Our data indicate that NDV-FLS administered mucosally provides significant protection against SARS-CoV-2 infection, resulting in reduced viral burden and disease manifestation, and should be considered as a viable candidate for clinical development.
Collapse
Affiliation(s)
- Bryce M. Warner
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Mable Chan
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Nikesh Tailor
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Robert Vendramelli
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Jonathan Audet
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Courtney Meilleur
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Thang Truong
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Lauren Garnett
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marnie Willman
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Geoff Soule
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Kevin Tierney
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Alixandra Albietz
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (E.M.); (C.E.-H.)
| | - Rick Higgins
- Department of Radiology, Health Sciences Center, Winnipeg, MB R3A 1S1, Canada;
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - David Safronetz
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James E. Strong
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (E.M.); (C.E.-H.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Darwyn Kobasa
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
8
|
Galhaut M, Lundberg U, Marlin R, Schlegl R, Seidel S, Bartuschka U, Heindl-Wruss J, Relouzat F, Langlois S, Dereuddre-Bosquet N, Morin J, Galpin-Lebreau M, Gallouët AS, Gros W, Naninck T, Pascal Q, Chapon C, Mouchain K, Fichet G, Lemaitre J, Cavarelli M, Contreras V, Legrand N, Meinke A, Le Grand R. Immunogenicity and efficacy of VLA2001 vaccine against SARS-CoV-2 infection in male cynomolgus macaques. COMMUNICATIONS MEDICINE 2024; 4:62. [PMID: 38570605 PMCID: PMC10991505 DOI: 10.1038/s43856-024-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The fight against COVID-19 requires mass vaccination strategies, and vaccines inducing durable cross-protective responses are still needed. Inactivated vaccines have proven lasting efficacy against many pathogens and good safety records. They contain multiple protein antigens that may improve response breadth and can be easily adapted every year to maintain preparedness for future seasonally emerging variants. METHODS The vaccine dose was determined using ELISA and pseudoviral particle-based neutralization assay in the mice. The immunogenicity was assessed in the non-human primates with multiplex ELISA, neutralization assays, ELISpot and intracellular staining. The efficacy was demonstrated by viral quantification in fluids using RT-qPCR and respiratory tissue lesions evaluation. RESULTS Here we report the immunogenicity and efficacy of VLA2001 in animal models. VLA2001 formulated with alum and the TLR9 agonist CpG 1018™ adjuvant generate a Th1-biased immune response and serum neutralizing antibodies in female BALB/c mice. In male cynomolgus macaques, two injections of VLA2001 are sufficient to induce specific and polyfunctional CD4+ T cell responses, predominantly Th1-biased, and high levels of antibodies neutralizing SARS-CoV-2 infection in cell culture. These antibodies also inhibit the binding of the Spike protein to human ACE2 receptor of several variants of concern most resistant to neutralization. After exposure to a high dose of homologous SARS-CoV-2, vaccinated groups exhibit significant levels of protection from viral replication in the upper and lower respiratory tracts and from lung tissue inflammation. CONCLUSIONS We demonstrate that the VLA2001 adjuvanted vaccine is immunogenic both in mouse and NHP models and prevent cynomolgus macaques from the viruses responsible of COVID-19.
Collapse
Affiliation(s)
- Mathilde Galhaut
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | | | | | | | - Francis Relouzat
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sébastien Langlois
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Julie Morin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Maxence Galpin-Lebreau
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Wesley Gros
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Catherine Chapon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Karine Mouchain
- ONCODESIGN SERVICES, François Hyafil Research Center, Villebon-sur-Yvette, France
| | - Guillaume Fichet
- ONCODESIGN SERVICES, François Hyafil Research Center, Villebon-sur-Yvette, France
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Vanessa Contreras
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nicolas Legrand
- ONCODESIGN SERVICES, François Hyafil Research Center, Villebon-sur-Yvette, France
| | | | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|
9
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
10
|
Hua S, Latha K, Marlin R, Benmeziane K, Bossevot L, Langlois S, Relouzat F, Dereuddre-Bosquet N, Le Grand R, Cavarelli M. Intestinal immunological events of acute and resolved SARS-CoV-2 infection in non-human primates. Mucosal Immunol 2024; 17:25-40. [PMID: 37827377 DOI: 10.1016/j.mucimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Collapse
Affiliation(s)
- Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Krishna Latha
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Keltouma Benmeziane
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
11
|
Ramdani I, Bouazza B. Hydroxychloroquine and COVID-19 story: is the low-dose treatment the missing link? A comprehensive review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1181-1188. [PMID: 37639021 DOI: 10.1007/s00210-023-02688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Hydroxychloroquine (HCQ) has been repurposed and used for the treatment of COVID-19 patients; however, its efficacy remains controversial, maybe partly due to the dosage, ranging from 200 to 800 mg/day, reported in different studies. Indeed, HCQ low dose (≤ 2.4 g/5 days) showed a lower risk of side effects compared to high doses. In this study, we performed a systematic review and meta-analysis to investigate the effect of low-dose HCQ used alone on three outcomes including in-hospital mortality, the need for mechanical ventilation, and ICU admission in COVID-19 patients. A systematic review of English literature was conducted from January 2020 to April 2022, in PubMed, Cochrane Library, and Google Scholar. Studies reporting a dosage of 400 mg twice the first day, followed by 200 mg twice for four days were included. Pooled odds ratios and 95% confidence intervals were calculated using random-effects models. Eleven studies (12,503 patients) were retained in the quantitative analysis, four observational cohort studies, and seven RCTs. When pooling both observational and RCTs, low-dose HCQ was associated with decreased mortality (OR = 0.73, 95% CI: [0.55-0.97], I2 = 58%), but not with mechanical ventilation need (OR = 1.03, 95% CI: [0.56-1.89], I2 = 67%) and ICU admission rate (OR = 0.70, 95% CI: [0.42-1.17], I2 = 47%). However, no effect was observed when pooling only RCTs. Despite RCTs limitations, treatment with low-dose HCQ was not associated with improvement in mortality, mechanical ventilation need and ICU admission rate in COVID-19 patients.
Collapse
Affiliation(s)
- Idir Ramdani
- Ecology, Biotechnology and Health Lab. Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University of Tizi-Ouzou, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria
| | - Belaid Bouazza
- Ecology, Biotechnology and Health Lab. Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University of Tizi-Ouzou, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria.
- National Center for Biotechnology Research, Constantine, Algeria.
| |
Collapse
|
12
|
Baker J, Ombredane H, Daly L, Knowles I, Rapeport G, Ito K. Pan-antiviral effects of a PIKfyve inhibitor on respiratory virus infection in human nasal epithelium and mice. Antimicrob Agents Chemother 2024; 68:e0105023. [PMID: 38063402 PMCID: PMC10777833 DOI: 10.1128/aac.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
Endocytosis, or internalization through endosomes, is a major cell entry mechanism used by respiratory viruses. Phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of phosphatidylinositol (3, 5)biphosphate (PtdIns (3, 5)P2) and has been implicated in virus trafficking via the endocytic pathway. In fact, antiviral effects of PIKfyve inhibitors against SARS-CoV-2 and Ebola have been reported, but there is little evidence regarding other respiratory viruses. In this study, we demonstrated the antiviral effects of PIKfyve inhibitors on influenza virus and respiratory syncytial virus in vitro and in vivo. PIKfyve inhibitors Apilimod mesylate (AM) and YM201636 concentration-dependently inhibited several influenza strains in an MDCK cell-cytopathic assay. AM also reduced the viral load and cytokine release, while improving the cell integrity of human nasal air-liquid interface cultured epithelium infected with influenza PR8. In PR8-infected mice, AM (2 mg/mL), when intranasally treated, exhibited a significant reduction of viral load and inflammation and inhibited weight loss caused by influenza infection, with effects being similar to oral oseltamivir (10 mg/kg). In addition, AM demonstrated antiviral effects in RSV A2-infected human nasal epithelium in vitro and mouse in vivo, with an equivalent effect to that of ribavirin. AM also showed antiviral effects against human rhinovirus and seasonal coronavirus in vitro. Thus, PIKfyve is found to be involved in influenza and RSV infection, and PIKfyve inhibitor is a promising molecule for a pan-viral approach against respiratory viruses.
Collapse
Affiliation(s)
- Jonathan Baker
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Hugo Ombredane
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Leah Daly
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Garth Rapeport
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
13
|
Fenwick C, Turelli P, Duhoo Y, Lau K, Herate C, Marlin R, Lamrayah M, Campos J, Esteves-Leuenberger L, Farina A, Raclot C, Genet V, Fiscalini F, Cesborn J, Perez L, Dereuddre-Bosquet N, Contreras V, Lheureux K, Relouzat F, Abdelnabi R, Leyssen P, Lévy Y, Pojer F, Le Grand R, Trono D, Pantaleo G. Broadly potent anti-SARS-CoV-2 antibody shares 93% of epitope with ACE2 and provides full protection in monkeys. J Infect 2023; 87:524-537. [PMID: 37852477 DOI: 10.1016/j.jinf.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yoan Duhoo
- School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne and Faculty of Biology and Medicine, UNIL, Lausanne, Switzerland
| | - Kelvin Lau
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cécile Herate
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Romain Marlin
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Myriam Lamrayah
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérémy Campos
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Line Esteves-Leuenberger
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alex Farina
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlène Raclot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vanessa Genet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Flurin Fiscalini
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Cesborn
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurent Perez
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Vanessa Contreras
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Kyllian Lheureux
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Francis Relouzat
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Yves Lévy
- VRI, Université Paris-Est Créteil, Faculté de Médicine, INSERM U955, 94010 Créteil, France; Inserm U955, Equipe 16, Créteil, France; AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Florence Pojer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roger Le Grand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
14
|
Huot N, Planchais C, Rosenbaum P, Contreras V, Jacquelin B, Petitdemange C, Lazzerini M, Beaumont E, Orta-Resendiz A, Rey FA, Reeves RK, Le Grand R, Mouquet H, Müller-Trutwin M. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol 2023; 24:2068-2079. [PMID: 37919524 PMCID: PMC10681903 DOI: 10.1038/s41590-023-01661-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France.
| | - Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Beatrice Jacquelin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Caroline Petitdemange
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Emma Beaumont
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Félix A Rey
- Institut Pasteur, Université Paris-Cité, Structural Virology Unit, CNRS UMR3569, Paris, France
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Ragon Institute of Massachusetts General Hospital, MIT, Cambridge, MA, USA
- Duke Research and Discovery at RTP, Duke University Health System, Durham, NC, USA
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| |
Collapse
|
15
|
Vieux N, Perrier Q, Bedouch P, Epaulard O. Much ado about nothing? Discrepancy between the available data on the antiviral effect of hydroxychloroquine in March 2020 and its inclusion in COVID-19 clinical trials and outpatient prescriptions. Public Health 2023; 225:35-44. [PMID: 37918175 DOI: 10.1016/j.puhe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Many of the 2020 COVID-19 clinical trials included an (hydroxy)chloroquine ((H)CQ) arm. We aimed to juxtapose the state of science before April 2020 regarding the benefits of (H)CQ for viral infections with the number and size of the clinical trials studying (H)CQ and the volume of (H)CQ dispensed in France. STUDY DESIGN We identified and analysed published scientific material regarding the antiviral activity of (H)CQ and publicly available data regarding clinical trials and drug dispensation in France. METHODS We conducted a review of scientific publications available before April 2020 and a systematic analysis of COVID-19 clinical trials featuring (H)CQ registered on clinicaltrials.gov. RESULTS Before April 2020, 894 scientific publications mentioning (H)CQ for viruses other than coronaviruses were available, including 35 in vitro studies (reporting an inconstant inhibition of viral replication), 11 preclinical studies (reporting no or disputable positive effects), and 32 clinical trials (reporting no or disputable positive effects). Moreover, 67 publications on (H)CQ and coronavirus infections were available, including 12 in vitro studies (reporting an inconstant inhibition of viral replication), two preclinical studies (reporting contradictory results), and no clinical trials. Meanwhile, 253 therapeutic clinical trials featuring an HCQ arm were registered in 2020, intending to enrol 246,623 patients. CONCLUSIONS The number and size of (H)CQ clinical trials for COVID-19 launched in 2020 were not supported by the literature published before April 2020.
Collapse
Affiliation(s)
- N Vieux
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Q Perrier
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetic (LBFA), INSERM U1055, Grenoble, France
| | - P Bedouch
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - O Epaulard
- Infectious Disease Department, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Groupe de Recherche en Infectiologie Clinique, CIC-1406, INSERM-UGA-CHUGA, France.
| |
Collapse
|
16
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
18
|
Chaudhary S, Joshi A, Sesham K, Rai P, Kumar S, Mridha AR, Baitha U, Nag TC, Yadav SC. Impact of prophylactic hydroxychloroquine on ultrastructural impairment and cellular SARS-CoV-2 infection in different cells of bronchoalveolar lavage fluids of COVID-19 patients. Sci Rep 2023; 13:12733. [PMID: 37543667 PMCID: PMC10404249 DOI: 10.1038/s41598-023-39941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
Many drugs were recommended as antiviral agents for infection control and effective therapy to reduce the mortality rate for COVID-19 patients. Hydroxychloroquine (HCQ), an antimalarial drug, has been controversially recommended for prophylactic use in many countries, including India, to control SARS-CoV-2 infections. We have explored the effect of prophylactic HCQ from the cells of bronchoalveolar lavage fluids from COVID-19-induced acute respiratory distress syndrome patients to determine the level of infection and ultrastructural alterations in the ciliated epithelium, type II pneumocytes, alveolar macrophages, neutrophils, and enucleated granulocytes. Ultrastructural investigation of ciliated epithelium and type II pneumocytes showed lesser infections and cellular impairment in the prophylactic HCQ+ group than HCQ- group. However, macrophages and neutrophils displayed similar infection and ultrastructural alterations in both patient groups. The enucleated fragments of granulocytes showed phagocytosis of the matured virus in HCQ+ groups. The present report unveils the ultrastructural proof to complement the paradox regarding the role of prophylactic HCQ in COVID-19 patients.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Arti Joshi
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Kishore Sesham
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Preeti Rai
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Shailendra Kumar
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Asit Ranjan Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Upendra Baitha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Tapas Chandra Nag
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhash Chandra Yadav
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
19
|
Hermet P, Delache B, Herate C, Wolf E, Kivi G, Juronen E, Mumm K, Žusinaite E, Kainov D, Sankovski E, Virumäe K, Planken A, Merits A, Besaw JE, Yee AW, Morizumi T, Kim K, Kuo A, Berriche A, Dereuddre-Bosquet N, Sconosciuti Q, Naninck T, Relouzat F, Cavarelli M, Ustav M, Wilson D, Ernst OP, Männik A, LeGrand R, Ustav M. Broadly neutralizing humanized SARS-CoV-2 antibody binds to a conserved epitope on Spike and provides antiviral protection through inhalation-based delivery in non-human primates. PLoS Pathog 2023; 19:e1011532. [PMID: 37531329 PMCID: PMC10395824 DOI: 10.1371/journal.ppat.1011532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.
Collapse
Affiliation(s)
| | - Benoît Delache
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Cecile Herate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | | | - Gaily Kivi
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | - Karl Mumm
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | | | | | | | | | | | - Jessica E Besaw
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Ai Woon Yee
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | | | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Anling Kuo
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Asma Berriche
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Quentin Sconosciuti
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mart Ustav
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | - Oliver P Ernst
- Department of Biochemistry, University of Toronto; Toronto, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, Canada
| | | | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mart Ustav
- Icosagen Cell Factory OÜ; Tartu, Estonia
| |
Collapse
|
20
|
Hérate C, Marlin R, Touret F, Dereuddre-Bosquet N, Donati F, Relouzat F, Junges L, Galhaut M, Dehan O, Sconosciuti Q, Nougairède A, de Lamballerie X, van der Werf S, Le Grand R. Sotrovimab retains activity against SARS-CoV-2 omicron variant BQ.1.1 in a non-human primate model. Heliyon 2023; 9:e16664. [PMID: 37287613 PMCID: PMC10228175 DOI: 10.1016/j.heliyon.2023.e16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
The SARS-CoV2 Omicron variants have acquired new Spike mutations leading to escape from the most of the currently available monoclonal antibody treatments reducing the options for patients suffering from severe Covid-19. Recently, both in vitro and in vivo data have suggested that Sotrovimab could retain partial activity against recent omicron sub-lineage such as BA.5 variants, including BQ.1.1. Here we report full efficacy of Sotrovimab against BQ.1.1 viral replication as measure by RT-qPCR in a non-human primate challengemodel.
Collapse
Affiliation(s)
- Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Franck Touret
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, 27 Bd Jean Moulin, 13005, Marseille, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory Viruses, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Mathilde Galhaut
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Océane Dehan
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory Viruses, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Quentin Sconosciuti
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, 27 Bd Jean Moulin, 13005, Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, 27 Bd Jean Moulin, 13005, Marseille, France
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory Viruses, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
21
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Temmam S, Montagutelli X, Herate C, Donati F, Regnault B, Attia M, Baquero Salazar E, Chretien D, Conquet L, Jouvion G, Pipoli Da Fonseca J, Cokelaer T, Amara F, Relouzat F, Naninck T, Lemaitre J, Derreudre‐Bosquet N, Pascal Q, Bonomi M, Bigot T, Munier S, Rey FA, Le Grand R, van der Werf S, Eloit M. SARS-CoV-2-related bat virus behavior in human-relevant models sheds light on the origin of COVID-19. EMBO Rep 2023; 24:e56055. [PMID: 36876574 PMCID: PMC10074129 DOI: 10.15252/embr.202256055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics LaboratoryParisFrance
| | - Cécile Herate
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory VirusesParisFrance
| | - Béatrice Regnault
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
| | - Mikael Attia
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
| | - Eduard Baquero Salazar
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology UnitParisFrance
| | - Delphine Chretien
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
| | - Laurine Conquet
- Institut Pasteur, Université Paris Cité, Mouse Genetics LaboratoryParisFrance
| | - Grégory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie PathologiqueMaisons‐AlfortFrance
- Université Paris Est Créteil, EnvA, ANSES, Unité DYNAMYCCréteilFrance
| | | | - Thomas Cokelaer
- Biomics Platform, C2RTInstitut Pasteur, Université Paris CitéParisFrance
| | - Faustine Amara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
| | - Francis Relouzat
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Nathalie Derreudre‐Bosquet
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Quentin Pascal
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics UnitParisFrance
| | - Thomas Bigot
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Bioinformatic and Biostatistic Hub – Computational Biology DepartmentInstitut Pasteur, Université Paris CitéParisFrance
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology UnitParisFrance
| | - Roger Le Grand
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory VirusesParisFrance
| | - Marc Eloit
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
- Ecole Nationale Vétérinaire d'AlfortUniversity of Paris‐EstMaisons‐AlfortFrance
| |
Collapse
|
23
|
Ouyang Y, Chen Y, Shang J, Sun S, Wang X, Huan S, Xiong B, Zhang XB. Virus-like Plasmonic Nanoprobes for Quick Analysis of Antiviral Efficacy and Mutation-Induced Drug Resistance. Anal Chem 2023; 95:5009-5017. [PMID: 36893130 DOI: 10.1021/acs.analchem.2c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
As the pathogenic viruses and the variants of concern greatly threaten human health and global public safety, the development of convenient and robust strategies enabling rapid analysis of antiviral drug efficacy and mutation-induced resistance is quite important to prevent the spread of human epidemics. Herein, we introduce a simple single-particle detection strategy for quick analysis of anti-infective drugs against SARS-CoV-2 and mutation-induced drug resistance, by using the wild-type and mutant spike protein-functionalized AuNPs as virus-like plasmonic nanoprobes. Both the wild-type and mutant virus-like plasmonic nanoprobes can form core-satellite nanoassemblies with the ACE2@AuNPs, providing the opportunity to detect the drug efficacy and mutation-induced resistance by detecting the changes of nanoassemblies upon drug treatment with dark-field microscopy. As a demonstration, we applied the single-particle detection strategy for quantitative determination of antiviral efficacy and mutation-induced resistance of ceftazidime and rhein. The mutations in the receptor-binding domain of Omicron variant could lead to an increase of EC50 values of ceftazidime and rhein, formerly from 49 and 57 μM against wild-type SARS-CoV-2, to 121 and 340 μM, respectively. The mutation-induced remarkable decline in the inhibitory efficacy of drugs was validated with molecule docking analysis and virus-like plasmonic nanoprobe-based cell-incubation assay. Due to the generality and feasibility of the strategy for the preparation of virus-like plasmonic nanoprobes and single-particle detection, we anticipated that this simple and robust method is promising for the discovery and efficacy evaluation of anti-infective drugs against different pathogenic viruses.
Collapse
Affiliation(s)
- Yuzhi Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yancao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhui Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shijie Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangbin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Ito K, Daly L, Coates M. An impact of age on respiratory syncytial virus infection in air-liquid-interface culture bronchial epithelium. Front Med (Lausanne) 2023; 10:1144050. [PMID: 36999069 PMCID: PMC10043235 DOI: 10.3389/fmed.2023.1144050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundElderly people are known to be vulnerable to virus infection. However, this has not been appropriately tested in in vitro studies due to a lack of appropriate virus infection models. In this report, we investigated the impact of age on respiratory syncytial virus (RSV) in pseudostratified air-liquid-interface (ALI) culture bronchial epithelium, which more closely mimic human airway epithelium morphologically and physiologically, than submerged cancer cell line cultures.MethodsRSV A2 was inoculated apically to the bronchial epithelium obtained from 8 donors with different ages (28–72 years old), and time-profiles of viral load and inflammatory cytokines were analyzed.ResultsRSV A2 replicated well in ALI-culture bronchial epithelium. The viral peak day and peak viral load were similar between donors at ≤60 years old (n = 4) and > 65 years old (n = 4; elderly group), but virus clearance was impaired in the elderly group. Furthermore, area under the curve (AUC) analysis, calculated from viral load peak to the end of sample collection (from Day 3 to 10 post inoculation), revealed statistically higher live viral load (PFU assay) and viral genome copies (PCR assay) in the elderly group, and a positive correlation between viral load and age was observed. In addition, the AUCs of RANTES, LDH, and dsDNA (cell damage marker) were statistically higher in the elderly group, and the elderly group showed a trend of higher AUC of CXCL8, CXCL10 and mucin production. The gene expression of p21CDKN1A (cellular senescence marker) at baseline was also higher in the elderly group, and there was a good positive correlation between basal p21 expression and viral load or RANTES (AUC).ConclusionAge was found to be a key factor affecting viral kinetics and biomarkers post virus infection in an ALI-culture model. Currently, novel or innovative in vitro cell models are introduced for virus research, but when virus studies are conducted, similarly to working with other clinical samples, the age balance is important to obtain more accurate results.
Collapse
|
25
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
Delfraissy JF. [French research organization on emerging infectious diseases: From REACTing to ANRS emerging infectious diseases]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2023; 207:287-294. [PMID: 36691475 PMCID: PMC9847693 DOI: 10.1016/j.banm.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2023]
Abstract
Emerging infectious diseases (EIDs) can be responsible for epidemics or even pandemics that disrupt societies and cause national and international crises. In our globalized world, anarchic urbanization, ecosystem disruptions (deforestation, creation of dams…), changes in crop and livestock farming conditions, the increasing availability of air transport, population displacement and climate change are all factors that favor the occurrence and spread of emerging or re-emerging pathogens such as SARS-Cov, MERS-CoV, Ebola, Zika, influenza, or more recently SARS-CoV-2 and Monkeypox. States, regional and international organizations, health and research agencies, non-governmental organizations and the pharmaceutical industry are today challenged by the repetition of these crises and their consequences on health, social, economic and political balances. For the past fifteen years, we have clearly been in a new regime of infectious emergence and re-emergence. This new regime calls for new responses, to meet in the urgency the challenges of emergency epidemic crises and to better respond to the issues of crisis management in a context of "One Health". Research is an essential pillar in the response to these epidemics with a double challenge: (i) to improve knowledge on the disease, its prevention, treatment, diagnosis, impact on society. and (ii) to prepare for and understand future emergencies, "anticipate". As epidemics have occurred over the last fifteen years, French research has been organized and has evolved to respond to these crises, from the genesis of REACTing in 2011, to the creation of the ANRS Emerging Infectious Diseases in 2021.
Collapse
|
27
|
Standing JF, Agyeman AA. Learning and confirming in publicly funded antiviral trials. THE LANCET. INFECTIOUS DISEASES 2023; 23:132-133. [PMID: 36272434 PMCID: PMC9581520 DOI: 10.1016/s1473-3099(22)00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Joseph F Standing
- Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Pharmacy, Great Ormond Street Hospital for Children, London, UK.
| | - Akosua Adom Agyeman
- Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
28
|
Hickerson BT, Sheikh F, Donnelly RP, Ilyushina NA. Comparison of the Antiviral Activity of Remdesivir, Chloroquine, and Interferon-β as Single or Dual Agents Against the Human Beta-Coronavirus OC43. J Interferon Cytokine Res 2023; 43:35-42. [PMID: 36651846 PMCID: PMC9885548 DOI: 10.1089/jir.2022.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human beta-coronavirus strain, OC43, provides a useful model for testing the antiviral activity of various agents. We compared the activity of several antiviral drugs against OC43, including remdesivir, chloroquine, interferon (IFN)-β, IFN-λ1, and IFN-λ4, in two distinct cell types: human colorectal carcinoma cell line (HCT-8 cells) and normal human bronchial epithelial (NHBE) cells. We also tested whether these agents mediate additive, synergistic, or antagonistic activity against OC43 infection when used in combination. When used as single agents, remdesivir exhibited stronger antiviral activity than chloroquine, and IFN-β exhibited stronger activity than IFN-λ1 or IFN-λ4 against OC43 in both HCT-8 and NHBE cells. Anakinra (IL-1 inhibitor) and tocilizumab (IL-6 inhibitor) did not mediate any antiviral activity. The combination of IFN-β plus chloroquine or remdesivir resulted in higher synergy scores and higher expression of IFN-stimulated genes than did IFN-β alone. In contrast, the combination of remdesivir plus chloroquine resulted in an antagonistic interaction in NHBE cells. Our findings indicate that the combined use of IFN-β plus remdesivir or chloroquine induces maximal antiviral activity against human coronavirus strain OC43 in primary human respiratory epithelial cells. Furthermore, our experimental OC43 virus infection model provides an excellent method for evaluating the biological activity of antiviral drugs.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Faruk Sheikh
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raymond P. Donnelly
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.,Address correspondence to: Dr. Natalia A. Ilyushina, Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
29
|
Zhang J, He M, Xie Q, Su A, Yang K, Liu L, Liang J, Li Z, Huang X, Hu J, Liu Q, Song B, Hu C, Chen L, Wang Y. Predicting In Vitro and In Vivo Anti-SARS-CoV-2 Activities of Antivirals by Intracellular Bioavailability and Biochemical Activity. ACS OMEGA 2022; 7:45023-45035. [PMID: 36530252 PMCID: PMC9753181 DOI: 10.1021/acsomega.2c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Cellular drug response (concentration required for obtaining 50% of a maximum cellular effect, EC50) can be predicted by the intracellular bioavailability (F ic) and biochemical activity (half-maximal inhibitory concentration, IC50) of drugs. In an ideal model, the cellular negative log of EC50 (pEC50) equals the sum of log F ic and the negative log of IC50 (pIC50). Here, we measured F ic's of remdesivir, favipiravir, and hydroxychloroquine in various cells and calculated their anti-SARS-CoV-2 EC50's. The predicted EC50's are close to the observed EC50's in vitro. When the lung concentrations of antiviral drugs are higher than the predicted EC50's in alveolar type 2 cells, the antiviral drugs inhibit virus replication in vivo, and vice versa. Overall, our results indicate that both in vitro and in vivo antiviral activities of drugs can be predicted by their intracellular bioavailability and biochemical activity without using virus. This virus-free strategy can help medicinal chemists and pharmacologists to screen antivirals during early drug discovery, especially for researchers who are not able to work in the high-level biosafety lab.
Collapse
Affiliation(s)
- Jinwen Zhang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Mingfeng He
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Qian Xie
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Ailing Su
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Kuangyang Yang
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Lichu Liu
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Jianhui Liang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Ziqi Li
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xiuxin Huang
- The
First Clinical College of Changsha Medical College, Changsha410219, China
| | - Jianshu Hu
- Department
of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| | - Qian Liu
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Bing Song
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Chun Hu
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lei Chen
- School of
Life Science and Technology, Key Laboratory of Developmental Genes
and Human Disease, Southeast University, Nanjing210096, China
| | - Yan Wang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
30
|
Ni K, Che B, Yang C, Qin Y, Gu R, Wang C, Luo M, Deng L. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Front Pharmacol 2022; 13:1033043. [PMID: 36578545 PMCID: PMC9790924 DOI: 10.3389/fphar.2022.1033043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
31
|
Zhao H, Meng X, Peng Z, Lam H, Zhang C, Zhou X, Chan JFW, Kao RYT, To KKW, Yuen KY. Fusion-inhibition peptide broadly inhibits influenza virus and SARS-CoV-2, including Delta and Omicron variants. Emerg Microbes Infect 2022; 11:926-937. [PMID: 35259078 PMCID: PMC8973381 DOI: 10.1080/22221751.2022.2051753] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pandemic influenza virus and SARS-CoV-2 vaiants have posed major global threats to public health. Broad-spectrum antivirals blocking viral entry can be an effective strategy for combating these viruses. Here, we demonstrate a frog-defensin-derived basic peptide (FBP), which broadly inhibits the influenza virus by binding to haemagglutinin so as to block low pH-induced HA-mediated fusion and antagonizes endosomal acidification to inhibit the influenza virus. Moreover, FBP can bind to the SARS-CoV-2 spike to block spike-mediated cell–cell fusion in 293T/ACE2 cells endocytosis. Omicron spike shows a weak cell–cell fusion mediated by TMPRSS2 in Calu3 cells, making the Omicron variant sensitive to endosomal inhibitors. In vivo studies show that FBP broadly inhibits the A(H1N1)pdm09 virus in mice and SARS-CoV-2 (HKU001a and Delta)in hamsters. Notably, FBP shows significant inhibition of Omicron variant replication even though it has a high number of mutations in spike. In conclusion, these results suggest that virus-targeting FBP with a high barrier to drug resistance can be an effective entry-fusion inhibitor against influenza virus and SARS-CoV-2 in vivo.
Collapse
Affiliation(s)
- Hanjun Zhao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Peng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hoiyan Lam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinxin Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| | - Richard Yi Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| |
Collapse
|
32
|
Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. PRECISION CLINICAL MEDICINE 2022; 5:pbac024. [PMID: 36268466 PMCID: PMC9579963 DOI: 10.1093/pcmedi/pbac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic poses a fundamental challenge to global health. Since the outbreak of SARS-CoV-2, great efforts have been made to identify antiviral strategies and develop therapeutic drugs to combat the disease. There are different strategies for developing small molecular anti-SARS-CoV-2 drugs, including targeting coronavirus structural proteins (e.g. spike protein), non-structural proteins (nsp) (e.g. RdRp, Mpro, PLpro, helicase, nsp14, and nsp16), host proteases (e.g. TMPRSS2, cathepsin, and furin) and the pivotal proteins mediating endocytosis (e.g. PIKfyve), as well as developing endosome acidification agents and immune response modulators. Favipiravir and chloroquine are the anti-SARS-CoV-2 agents that were identified earlier in this epidemic and repurposed for COVID-19 clinical therapy based on these strategies. However, their efficacies are controversial. Currently, three small molecular anti-SARS-CoV-2 agents, remdesivir, molnupiravir, and Paxlovid (PF-07321332 plus ritonavir), have been granted emergency use authorization or approved for COVID-19 therapy in many countries due to their significant curative effects in phase III trials. Meanwhile, a large number of promising anti-SARS-CoV-2 drug candidates have entered clinical evaluation. The development of these drugs brings hope for us to finally conquer COVID-19. In this account, we conducted a comprehensive review of the recent advances in small molecule anti-SARS-CoV-2 agents according to the target classification. Here we present all the approved drugs and most of the important drug candidates for each target, and discuss the challenges and perspectives for the future research and development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
| | | | - Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture. Commun Biol 2022; 5:958. [PMID: 36104427 PMCID: PMC9472185 DOI: 10.1038/s42003-022-03841-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hydroxychloroquine (HCQ), a drug used to treat lupus and malaria, was proposed as a treatment for SARS-coronavirus-2 (SARS-CoV-2) infection, albeit with controversy. In vitro, HCQ effectively inhibits viral entry, but its use in the clinic has been hampered by conflicting results. A better understanding of HCQ’s mechanism of actions in vitro is needed. Recently, anesthetics were shown to disrupt ordered clusters of monosialotetrahexosylganglioside1 (GM1) lipid. These same lipid clusters recruit the SARS-CoV-2 surface receptor angiotensin converting enzyme 2 (ACE2) to endocytic lipids, away from phosphatidylinositol 4,5 bisphosphate (PIP2) clusters. Here we employed super-resolution imaging of cultured mammalian cells (VeroE6, A549, H1793, and HEK293T) to show HCQ directly perturbs clustering of ACE2 receptor with both endocytic lipids and PIP2 clusters. In elevated (high) cholesterol, HCQ moves ACE2 nanoscopic distances away from endocytic lipids. In cells with resting (low) cholesterol, ACE2 primarily associates with PIP2 clusters, and HCQ moves ACE2 away from PIP2 clusters—erythromycin has a similar effect. We conclude HCQ inhibits viral entry through two distinct mechanisms in high and low tissue cholesterol and does so prior to inhibiting cathepsin-L. HCQ clinical trials and animal studies will need to account for tissue cholesterol levels when evaluating dosing and efficacy. Super-resolution microscopy in cultured cells is employed to dissect the effect of hydroxychloroquine (HCQ) at the plasma membrane and HCQ directly perturbs clustering of the SARS-CoV-2 receptor ACE2 with endocytic lipids and PIP2 clusters.
Collapse
|
35
|
Zabaleta N, Bhatt U, Hérate C, Maisonnasse P, Sanmiguel J, Diop C, Castore S, Estelien R, Li D, Dereuddre-Bosquet N, Cavarelli M, Gallouët AS, Pascal Q, Naninck T, Kahlaoui N, Lemaitre J, Relouzat F, Ronzitti G, Thibaut HJ, Montomoli E, Wilson JM, Le Grand R, Vandenberghe LH. Durable immunogenicity, adaptation to emerging variants, and low-dose efficacy of an AAV-based COVID-19 vaccine platform in macaques. Mol Ther 2022; 30:2952-2967. [PMID: 35546782 PMCID: PMC9088091 DOI: 10.1016/j.ymthe.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Urja Bhatt
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Cécile Hérate
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Cheikh Diop
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sofia Castore
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Reynette Estelien
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Dan Li
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Nidhal Kahlaoui
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Francis Relouzat
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Giuseppe Ronzitti
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris-Saclay), 91000 Evry, France
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Emanuele Montomoli
- VisMederi Srl, 53100 Siena, Italy; University of Siena, Department of Molecular Medicine, 53100 Siena, Italy
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
37
|
Plebani R, Bai H, Si L, Li J, Zhang C, Romano M. 3D Lung Tissue Models for Studies on SARS-CoV-2 Pathophysiology and Therapeutics. Int J Mol Sci 2022; 23:ijms231710071. [PMID: 36077471 PMCID: PMC9456220 DOI: 10.3390/ijms231710071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to pose a major threat to global health. Enormous efforts have been made by researchers around the world to elucidate COVID-19 pathophysiology, design efficacious therapy and develop new vaccines to control the pandemic. To this end, experimental models are essential. While animal models and conventional cell cultures have been widely utilized during these research endeavors, they often do not adequately reflect the human responses to SARS-CoV-2 infection. Therefore, models that emulate with high fidelity the SARS-CoV-2 infection in human organs are needed for discovering new antiviral drugs and vaccines against COVID-19. Three-dimensional (3D) cell cultures, such as lung organoids and bioengineered organs-on-chips, are emerging as crucial tools for research on respiratory diseases. The lung airway, small airway and alveolus organ chips have been successfully used for studies on lung response to infection by various pathogens, including corona and influenza A viruses. In this review, we provide an overview of these new tools and their use in studies on COVID-19 pathogenesis and drug testing. We also discuss the limitations of the existing models and indicate some improvements for their use in research against COVID-19 as well as future emerging epidemics.
Collapse
Affiliation(s)
- Roberto Plebani
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Haiqing Bai
- Xellar Biosystems Inc., Cambridge, MA 02138, USA
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunhe Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
38
|
Procyk E, Meunier M. BioSimia, France CNRS network for nonhuman primate biomedical research in infectiology, immunology, and neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100051. [PMID: 36685763 PMCID: PMC9846450 DOI: 10.1016/j.crneur.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023] Open
Abstract
Research and developments based on nonhuman primate models have a specific place in biomedical sciences, and nonhuman primate species also have a specific place in the public opinion on the use of animal in research. While nonhuman primates are used in very limited number compared to other animal models, they are rightly the focus of deep ethical concerns. The importance of nonhuman primates in neuroscientific fundamental and preclinical discoveries together with the targeting of such research by activist groups well illustrate this fact. Nonhuman primates also highly contribute to other biomedical fields including immunology, virology, or metabolic and respiratory physiology. In all these fields, researchers, engineers and technicians face similar matters and share the same needs for optimal animal welfare, handling, and veterinary care, the same quest for first-rate research infrastructure and funding, and the same yearning for more public understanding and support. In this article, we give an overview of the evolution of human-animal relationships and public attitudes to animal research in France, and we recount the creation of BioSimia, France network for nonhuman primate biomedical research which now links all academic laboratories nationwide in all the domains for which nonhuman primates remain essential. We explain the principles as well as the outcomes of networking across disciplines. As a perspective, we outline the potential benefits of extending such network to a European scale.
Collapse
Affiliation(s)
- Emmanuel Procyk
- University of Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France,Corresponding author.
| | - Martine Meunier
- University of Lyon 1, Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France
| |
Collapse
|
39
|
Wang H, Ke L, Zhou J, Li G, Xu T, Rao P. Multi-spectroscopic, molecular docking and molecular dynamic simulation evaluation of hydroxychloroquine sulfate interaction with caseins and whey proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Marlin R, Desjardins D, Contreras V, Lingas G, Solas C, Roques P, Naninck T, Pascal Q, Behillil S, Maisonnasse P, Lemaitre J, Kahlaoui N, Delache B, Pizzorno A, Nougairede A, Ludot C, Terrier O, Dereuddre-Bosquet N, Relouzat F, Chapon C, Ho Tsong Fang R, van der Werf S, Rosa Calatrava M, Malvy D, de Lamballerie X, Guedj J, Le Grand R. Antiviral efficacy of favipiravir against Zika and SARS-CoV-2 viruses in non-human primates. Nat Commun 2022; 13:5108. [PMID: 36042198 PMCID: PMC9427089 DOI: 10.1038/s41467-022-32565-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection. Repurposed antiviral drugs present as a valuable resource in the defence during outbreaks, with rigorous evaluation in large animal models keys for translation to clinical implementation. Here, the authors explore the antiviral activity of favipiravir against Zika virus and SARS-CoV-2 in cynomolgus macaques, in order to support future clinical investigations into this RNA polymerase inhibitor.
Collapse
Affiliation(s)
- Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | | | - Caroline Solas
- Aix-Marseille Univ, APHM, Unité des Virus Emergents (UVE) IRD 190, INSERM 1207, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, 13005, Marseille, France
| | - Pierre Roques
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.,Virology Unit, Institut Pasteur de Guinée, Conakry, Guinée
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Quentin Pascal
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sylvie Behillil
- Unité de Génétique Moléculaire des Virus à ARN, GMVR, Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France.,Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Julien Lemaitre
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Benoit Delache
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Antoine Nougairede
- Unité des Virus Emergents, UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, 13005, Marseille, France
| | - Camille Ludot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Catherine Chapon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Raphael Ho Tsong Fang
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, GMVR, Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France.,Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Manuel Rosa Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.,VirNext, Université Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Denis Malvy
- Department of infectious ad tropical diseases, University hopsital, Bordeaux & Inserm 1219/IRD, Bordeaux University, Bordeaux, France
| | - Xavier de Lamballerie
- Unité des Virus Emergents, UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, 13005, Marseille, France
| | - Jeremie Guedj
- Université de Paris, INSERM, IAME, F-75018, Paris, France.
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
41
|
Brosseau LM, Escandón K, Ulrich AK, Rasmussen AL, Roy CJ, Bix GJ, Popescu SV, Moore KA, Osterholm MT. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Dose, Infection, and Disease Outcomes for Coronavirus Disease 2019 (COVID-19): A Review. Clin Infect Dis 2022; 75:e1195-e1201. [PMID: 34651164 PMCID: PMC8524637 DOI: 10.1093/cid/ciab903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 01/19/2023] Open
Abstract
The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dose, infection, and coronavirus disease 2019 (COVID-19) outcomes remains poorly understood. This review summarizes the existing literature regarding this issue, identifies gaps in current knowledge, and suggests opportunities for future research. In humans, host characteristics, including age, sex, comorbidities, smoking, and pregnancy, are associated with severe COVID-19. Similarly, in animals, host factors are strong determinants of disease severity, although most animal infection models manifest clinically with mild to moderate respiratory disease. The influence of variants of concern as it relates to infectious dose, consequence of overall pathogenicity, and disease outcome in dose-response remains unknown. Epidemiologic data suggest a dose-response relationship for infection contrasting with limited and inconsistent surrogate-based evidence between dose and disease severity. Recommendations include the design of future infection studies in animal models to investigate inoculating dose on outcomes and the use of better proxies for dose in human epidemiology studies.
Collapse
Affiliation(s)
- Lisa M Brosseau
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin Escandón
- School of Medicine, Universidad del Valle, Cali, Colombia
- Grupo de Investigación en Virus Emergentes y Enfermedad (VIREM), Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Georgetown Center for Global Health Science and Security, Washington, D.C., USA
| | - Chad J Roy
- Tulane National Primate Research Center, Division of Microbiology, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USAand
| | - Saskia V Popescu
- Georgetown Center for Global Health Science and Security, Washington, D.C., USA
- Biodefense Program, Schar School of Policy and Government, George Mason University, Arlington, Virginia, USA
| | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Zarkoob H, Allué-Guardia A, Chen YC, Garcia-Vilanova A, Jung O, Coon S, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Iben J, Li T, Fu J, Porter FD, Yewdell J, Martinez-Sobrido L, Cherry S, Torrelles JB, Ferrer M, Lee EM. Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents. Commun Biol 2022; 5:810. [PMID: 35962146 PMCID: PMC9373898 DOI: 10.1038/s42003-022-03753-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.
Collapse
Affiliation(s)
- Hoda Zarkoob
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anna Allué-Guardia
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andreu Garcia-Vilanova
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olive Jung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.,Biomedical Ultrasonics & Biotherapy Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | - Steven Coon
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jun-Gyu Park
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Fatai Oladunni
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jesse Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ivan Kosik
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,High Throughput Screening Core, University of Pennsylvania, Philadelphia, PA, USA
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Tianwei Li
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Jiaqi Fu
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Jonathan Yewdell
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis Martinez-Sobrido
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordi B Torrelles
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Emily M Lee
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
43
|
Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics (Basel) 2022; 11:antibiotics11081063. [PMID: 36009932 PMCID: PMC9404997 DOI: 10.3390/antibiotics11081063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Azithromycin has become famous in the last two years, not for its main antimicrobial effect, but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some promising results that supported its use, but it has become clear that scientific results are insufficient to support such a positive assessment. In this review we will present all the literature data concerning the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective therapeutic agent.
Collapse
|
44
|
Mathur P, Kottilil S. Immunomodulatory therapies for COVID-19. Front Med (Lausanne) 2022; 9:921452. [PMID: 35991665 PMCID: PMC9381694 DOI: 10.3389/fmed.2022.921452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose As COVID-19 disease progresses, the host inflammatory response contributes to hypoxemia and severe and critical illness. In these latter stages of disease, patients may benefit from immunomodulatory therapies to control the aberrant host inflammatory response. In this review, we provide an overview of these therapies and provide summaries of the studies that led to issuance of FDA Emergency Use Authorization or recommendation by the Infectious Diseases Society of America (IDSA). Materials and methods We reviewed English-language studies, Emergency Use Authorizations (EUAs), and guidelines from March 2020 to present. Conclusion and relevance There are several therapies with proposed benefit in severe and critical COVID-19 disease. Few have been issued FDA EUA or recommendation by the Infectious Diseases Society of America (IDSA). Physicians should be familiar with the evidence supporting use of these therapies and the patient populations most likely to benefit from each.
Collapse
Affiliation(s)
- Poonam Mathur
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
45
|
Wang F, Wang B, You W, Chen G, You YZ. Integrating Au and ZnO nanoparticles onto graphene nanosheet for enhanced sonodynamic therapy. NANO RESEARCH 2022; 15:9223-9233. [PMID: 35845146 PMCID: PMC9274620 DOI: 10.1007/s12274-022-4599-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Sonodynamic therapy has attracted widespread attention for cancer treatment because of its noninvasiveness and high tissue-penetration ability. Generally, ultrasound irradiation of sonosensitizers produces separated electrons (e-) and holes (h+), which inhibits cancer by producing reactive oxygen species (ROS). However, the separated electrons (e-) and holes (h+) could easily recombine, lowering the yield of ROS and hindering the application of sonodynamic therapy (SDT). Herein, we present a highly efficient sonosensitizer system for enhanced sonodynamic therapy built on reduced graphene oxide (rGO) nanosheets, bridged ZnO and Au nanoparticles, coated with polyvinyl pyrrolidone (PVP). The ultrasound irradiation activates ZnO nanoparticles to generate separated electron-hole (e--h+) pairs, and the rGO nanosheets facilitate electron transfer from ZnO to Au nanoparticles because of the narrow band gap of rGO, which could efficiently restrain the recombination of the e--h+ pairs, thereby significantly augmenting the production of ROS to kill cancer cells, such as U373MG, HeLa, and CT26 cells. Moreover, rGO nanosheets integrated with Au nanoparticles could catalyze the endogenous decomposition of H2O2 into O2, which can alleviate hypoxic tumor microenvironment (TME). Therefore, the rational design of Au-rGO-ZnO@PVP nanomaterials can not only improve the efficiency of sonodynamic therapy, but also mitigate the hypoxic tumor microenvironment, which would provide a new perspective in the development of efficient sonosensitizers. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (the UV-vis-NIR absorption spectra of the DPBF and the RhB, biological effect assessment of the Au-rGO-ZnO@PVP, and the inhibition rate of tumor under different treatments during the animal study) is available in the online version of this article at 10.1007/s12274-022-4599-5.
Collapse
Affiliation(s)
- Fei Wang
- Neurosurgical Department, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Boyu Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Wei You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
46
|
Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022; 14:1507. [PMID: 35891487 PMCID: PMC9319816 DOI: 10.3390/v14071507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.
Collapse
Affiliation(s)
- Eloïne Bestion
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Philippe Halfon
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Soraya Mezouar
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Jean-Louis Mège
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
| |
Collapse
|
47
|
Additively manufactured electrodes for the electrochemical detection of hydroxychloroquine. Talanta 2022; 250:123727. [PMID: 35850056 PMCID: PMC9262657 DOI: 10.1016/j.talanta.2022.123727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Although studies have demonstrated the inactivity of hydroxychloroquine (HCQ) towards SARS-CoV-2, this compound was one of the most prescribed by medical organizations for the treatment of hospitalized patients during the coronavirus pandemic. As a result of it, HCQ has been considered as a potential emerging contaminant in aquatic environments. In this context, we propose a complete electrochemical device comprising cell and working electrode fabricated by the additive manufacture (3D-printing) technology for HCQ monitoring. For this, a 3D-printed working electrode made of a conductive PLA containing carbon black assembled in a 3D-printed cell was associated with square wave voltammetry (SWV) for the fast and sensitive determination of HCQ. After a simple surface activation procedure, the proposed 3D-printed sensor showed a linear response towards HCQ detection (0.4-7.5 μmol L-1) with a limit of detection of 0.04 μmol L-1 and precision of 2.4% (n = 10). The applicability of this device was shown to the analysis of pharmaceutical and water samples. Recovery values between 99 and 112% were achieved for tap water samples and, in addition, the obtained concentration values for pharmaceutical tablets agreed with the values obtained by spectrophotometry (UV region) at a 95% confidence level. The proposed device combined with portable instrumentation is promising for on-site HCQ detection.
Collapse
|
48
|
Fan H, He S, Han P, Hong B, Liu K, Li M, Wang S, Tong Y. Cepharanthine: A Promising Old Drug against SARS-CoV-2. Adv Biol (Weinh) 2022; 6:e2200148. [PMID: 35775953 PMCID: PMC9350037 DOI: 10.1002/adbi.202200148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Indexed: 01/28/2023]
Abstract
Recently, the inhibiting effects of a clinically approved drug Cepharanthine on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted widespread attention and discussion. However, the public does not understand the relevant research progress very well. This paper aims to introduce a brief history of studies on the effects of cepharanthine against SARS-CoV-2, including "discovery of anti-SARS-CoV-2 activity of cepharanthine in vitro", "potential mechanisms of cepharanthine against SARS-CoV-2", "confirmation of cepharanthine's anti-SARS-CoV-2 activity in vivo", "potential approaches for improving the druggability of cepharanthine" and "clinical trials of cepharanthine treating SARS-CoV-2 infection". Taken together, cepharanthine is believed to be a promising old drug for coronavirus disease-19 (COVID-19) therapy.
Collapse
Affiliation(s)
- Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Shi‐ting He
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Pengjun Han
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Bixia Hong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Ke Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Maochen Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Shuqi Wang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yigang Tong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China,Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
49
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
50
|
Pang Z, Hu R, Tian L, Lou F, Chen Y, Wang S, He S, Zhu S, An X, Song L, Liu F, Tong Y, Fan H. Overview of Breastfeeding Under COVID-19 Pandemic. Front Immunol 2022; 13:896068. [PMID: 35711421 PMCID: PMC9192965 DOI: 10.3389/fimmu.2022.896068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
During the global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pregnant and lactating women are at higher risk of infection. The potential of viral intrauterine transmission and vertical transmission by breastfeeding has raised wide concerns. Breastmilk is rich in nutrients that contribute to infant growth and development, and reduce the incidence rate of infant illness and death, as well as inhibit pathogens significantly, and protect infants from infection. Although it is controversial whether mothers infected with COVID-19 should continue to breastfeed, many countries and international organizations have provided recommendations and guidance for breastfeeding. This review presents the risks and benefits of breastfeeding for mothers infected with COVID-19, and the reasons for the absence of SARS-CoV-2 active virus in human milk. In addition, the antiviral mechanisms of nutrients in breastmilk, the levels of SARS-CoV-2 specific antibodies in breastmilk from COVID-19 infected mothers and vaccinated mothers are also summarized and discussed, aiming to provide some support and recommendations for both lactating mothers and infants to better deal with the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yangzhen Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shiting He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feitong Liu
- Health & Happiness Group, Health & Happiness Research, China Aesearch and Innovation, Guangzhou, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|