1
|
Ishibashi K, Yorozu S, Arima T, Kawamura M, Tokura Y, Karube K, Yu X, Taguchi Y, Hanaguri T, Machida T, Itahashi YM, Iwasa Y, Nishikawa H, Araoka F, Hioki T, Saitoh E, Deacon RS, Yamamoto M, Fang N, Kato YK, Hida A, Takamoto M, Katori H, de Léséleuc S, Aoki T, Yonezawa H, Furusawa A, Tabuchi Y, Tamate S, Abe E, Nakamura Y, Nakajima T, Tarucha S, Seki K, Shirakawa T, Yunoki S, Nagaosa N. Research on Quantum Materials and Quantum Technology at RIKEN. ACS NANO 2025. [PMID: 40135626 DOI: 10.1021/acsnano.4c15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
RIKEN covers fundamental research on physics, chemistry, biology, life and medical science, information and mathematical science, and engineering. Here, we outline research activities on quantum materials and quantum technology that include topological and correlated materials, spintronics, nanoscale materials and structures, atomic and quantum optics, and quantum computing.
Collapse
Affiliation(s)
- Koji Ishibashi
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinichi Yorozu
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takahisa Arima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan
| | - Minoru Kawamura
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasujiro Taguchi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuo Hanaguri
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tadashi Machida
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki M Itahashi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroya Nishikawa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomosato Hioki
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Eiji Saitoh
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Russell S Deacon
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Michihisa Yamamoto
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nan Fang
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuichiro K Kato
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Hida
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masao Takamoto
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hidetoshi Katori
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sylvain de Léséleuc
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Aoki
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hidehiro Yonezawa
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Furusawa
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaka Tabuchi
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuhei Tamate
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eisuke Abe
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasunobu Nakamura
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Nakajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Seigo Tarucha
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuhiro Seki
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomonori Shirakawa
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Computational Science (R-CCS), 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Seiji Yunoki
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Computational Science (R-CCS), 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
2
|
Debnath D, Dutta P. Field-free Josephson diode effect in interacting chiral quantum dot junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:175301. [PMID: 40064113 DOI: 10.1088/1361-648x/adbeaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
We investigate chiral quantum dot (QD)-based Josephson junction and show the correlation-induced Josephson diode effect (JDE) in it. The presence of electron-electron interaction spontaneously creates an imbalance between up- and down-spin electrons during the non-equilibrium transport making the QD effectively magnetic. The simultaneous presence of the chirality and the interaction eventually results in the field-free JDE in our chiral QD junction. We employ the Keldysh non-equilibrium Green's function technique to study the behavior of the Josephson current and the rectification coefficient (RC) of our Josephson diode (JD). We show a sign-changing behavior of the RC with the Coulomb correlation and the lead-to-dot coupling strength and find the maximum magnitude of the RC∼72%for moderate interaction strength. Our proposed field-free JD based on interacting chiral QD may be a potential switching component in superconductor based devices.
Collapse
Affiliation(s)
- Debika Debnath
- Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
| | - Paramita Dutta
- Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
| |
Collapse
|
3
|
Zhou T, Du WS, Wang WH, Yang Q, Miao HD, Zhou Y, Zhang Z, Zhao Y, Jia H, Liu S, Zhang Z, Chen T, Huang W, Chen JJ, Tan ZB, Yu DP. Superconducting diode effect in the Weyl semimetal Td-MoTe 2 that has a surface modulated by Al nanoparticles. NANOSCALE 2025; 17:5888-5894. [PMID: 39902752 DOI: 10.1039/d4nr04220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Breaking both inversion and time reversal symmetry could lead to nonreciprocal current transport in a superconductor, where current is dissipationless in one direction and dissipative in the opposite direction, which is called the superconducting diode effect (SDE). We studied SDE in the type-II Weyl semimetal Td-MoTe2 that is covered with Al nanoparticles. Asymmetric V-I characteristics have been measured under a magnetic field. The superconducting diode efficiency reaches as high as 30%. Besides SDE under the out-of-plane field, nonreciprocal supercurrent transport under the in-plane field has been observed. Intriguingly, the maximum SDE occurs in the in-plane field parallel to the current direction, which contradicts present theories. Our work provides further understanding of the origins of the SDE.
Collapse
Affiliation(s)
- Tengfei Zhou
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wan-Shun Du
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Hao Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Yang
- International Quantum Academy, Shenzhen 518048, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hai-Dong Miao
- International Quantum Academy, Shenzhen 518048, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yangbo Zhou
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zongteng Zhang
- Department of Physics, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Zhao
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Physics, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Jia
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhensheng Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingyong Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Huang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Jing Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen-Bing Tan
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Da-Peng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Cheng Y, Shu Q, He H, Dai B, Wang KL. Current-Driven Magnetization Switching for Superconducting Diode Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415480. [PMID: 39930747 DOI: 10.1002/adma.202415480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 03/21/2025]
Abstract
Stacking superconductors (SC) with ferromagnetic materials (FM) significantly impact superconductivity, enabling the emergence of spin-triplet states and topological superconductivity. The tuning of superconductivity in SC-FM heterostructure is also reflected in the recently discovered superconducting diode effect, characterized by nonreciprocal electric transport when time and inversion symmetries are broken. Notably, in SC-FM systems, a time reversal operation reverses both current and magnetization, leading to the conceptualization of superconducting magnetization diode effect (SMDE). In this variant, while the current direction remains fixed, the critical currents shall be different when reversing the magnetization. Here, the existence of SMDE in SC-FM heterostructures is demonstrated. SMDE uniquely maps magnetization states onto superconductivity by setting the read current between two critical currents for the positive and negative magnetization directions, respectively. Thus, the magnetization states can be read by measuring the superconductivity, while the writing process is accomplished by manipulating magnetization states through current-driven spin-orbit torque to switch the superconductivity. The proposed superconducting diode magnetoresistance in SC-FM heterostructures with an ideally infinite on/off ratio resolves the limitations of tunneling magnetoresistance in the magnetic tunneling junctions, thereby contributing to the advancement of superconducting spintronics.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Qingyuan Shu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Haoran He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Mayo AH, Deaconu DA, Masuda H, Nii Y, Takahashi H, Belosludov RV, Ishiwata S, Bahramy MS, Onose Y. Band asymmetry-driven nonreciprocal electronic transport in a helimagnetic semimetal α-EuP 3. Proc Natl Acad Sci U S A 2025; 122:e2405839122. [PMID: 39847331 PMCID: PMC11789083 DOI: 10.1073/pnas.2405839122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025] Open
Abstract
Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP3. The magnetic structure of α-EuP3 is highly tunable by a magnetic field and closely coupled to its semimetallic electronic band structure, enabling a systematic study across chiral and achiral magnetic phases on the correspondence between nonreciprocal transport and electronic band asymmetry. Our findings reveal how a microscopic change in the magnetic configuration of charge carriers can lead to nonreciprocal electronic transport, paving the way for designing chiral magnets with desirable properties.
Collapse
Affiliation(s)
- Alex Hiro Mayo
- Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| | - Darius-Alexandru Deaconu
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Hidetoshi Masuda
- Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| | - Yoichi Nii
- Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| | - Hidefumi Takahashi
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka560-8531, Osaka, Japan
| | | | - Shintaro Ishiwata
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka560-8531, Osaka, Japan
| | - Mohammad Saeed Bahramy
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Yoshinori Onose
- Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
6
|
Qi S, Ge J, Ji C, Ai Y, Ma G, Wang Z, Cui Z, Liu Y, Wang Z, Wang J. High-temperature field-free superconducting diode effect in high-T c cuprates. Nat Commun 2025; 16:531. [PMID: 39788968 PMCID: PMC11718281 DOI: 10.1038/s41467-025-55880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex. For the potential applications in non-dissipative electronics, efficient superconducting diodes working in zero magnetic field with high operating temperatures and a simple configuration are highly desired. Here, we report the observation of a SDE under zero magnetic field with operating temperatures up to 72 K and efficiency as high as 22% at 53 K in high-transition-temperature (high-Tc) cuprate superconductor Bi2Sr2CaCu2O8+δ (BSCCO) flake devices. The rectification effect persists beyond two hundred sweeping cycles, confirming the stability of the superconducting diode. Our results offer promising developments for potential applications in non-dissipative electronics, and provide insights into the mechanism of field-free SDE and symmetry breakings in high-Tc superconductors.
Collapse
Affiliation(s)
- Shichao Qi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Jun Ge
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Chengcheng Ji
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- Hefei National Laboratory, Hefei, China
| | - Yiwen Ai
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Gaoxing Ma
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Ziqiao Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Zihan Cui
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
| | - Yi Liu
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, China
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Hefei National Laboratory, Hefei, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
7
|
Davydova M, Geier M, Fu L. Nonreciprocal superconductivity. SCIENCE ADVANCES 2024; 10:eadr4817. [PMID: 39612323 PMCID: PMC11639219 DOI: 10.1126/sciadv.adr4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
We introduce the notion of nonreciprocal superconductors where inversion and time-reversal symmetries are broken, giving rise to an asymmetric energy dispersion. We demonstrate that nonreciprocal superconductivity can be detected by Andreev reflection. In particular, a transparent junction between a normal metal and a nonreciprocal superconductor generally exhibits an asymmetric current-voltage characteristic, which serves as a defining feature of nonreciprocal superconductivity. Unlike the superconducting diode effects, our detection scheme has the advantage of avoiding large critical currents that turn the superconducting state to normal. Last, we discuss candidates for nonreciprocal superconductivity, including graphene, UTe2, as well as engineered platforms.
Collapse
Affiliation(s)
| | - Max Geier
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Li S, Deng Y, Hu D, Zhu C, Yang Z, Tian W, Wang X, Yue M, Wu Q, Liu Z, Renshaw Wang X. Field-Free Superconducting Diode Effect and Magnetochiral Anisotropy in FeTe 0.7Se 0.3 Junctions with the Inherent Asymmetric Barrier. ACS NANO 2024; 18:31076-31084. [PMID: 39432376 DOI: 10.1021/acsnano.4c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nonreciprocal electrical transport, characterized by an asymmetric relationship between the current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirement on broken inversion symmetry, the SDE is commonly accompanied by electrical magnetochiral anisotropy (eMCA) in the resistive state. Achieving a magnetic-field-free SDE with field tunability is pivotal for advancements in superconductor devices. Conventionally, field-free SDE has been achieved in Josephson junctions by intentionally intercalating an asymmetric barrier layer. Alternatively, internal magnetism was employed. Both approaches pose challenges in the selection of superconductors and fabrication processes, thereby impeding the development of SDE. Here, we present a field-free SDE in FeTe0.7Se0.3 (FTS) junction with eMCA, a phenomenon absent in FTS single nanosheets. The field-free property is associated with the presence of a gradient oxide layer on the upper surface of each FTS nanosheet, while eMCA is linked to spin splitting arising from the absence of inversion symmetry. Both SDE and eMCA respond to magnetic fields with distinct temperature dependencies. This work presents a versatile and straightforward strategy for advancing superconducting electronics.
Collapse
Affiliation(s)
- Shengyao Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ya Deng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dianyi Hu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, China
| | - Zherui Yang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wanghao Tian
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xueyan Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ming Yue
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
| | - Qiong Wu
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Cintra CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Xiao Renshaw Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
9
|
Rütten LM, Schmid H, Liebhaber E, Franceschi G, Yazdani A, Reecht G, Rossnagel K, von Oppen F, Franke KJ. Wave Function Engineering on Superconducting Substrates: Chiral Yu-Shiba-Rusinov Molecules. ACS NANO 2024; 18:30798-30804. [PMID: 39453726 PMCID: PMC11544926 DOI: 10.1021/acsnano.4c10998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2H-NbSe2. The Yu-Shiba-Rusinov wave functions of individual atoms extend over several nanometers enabling hybridization even at large adatom spacing. We show that the substrate can be exploited to deliberately break symmetries of the adatom structure leading to hybridized YSR states exhibiting symmetries that cannot be found in orbitals of iso-structural planar molecules in the gas phase. We exploit this potential by designing chiral YSR wave functions of triangular adatom structures. Our results significantly expand the range of interesting quantum states that can be engineered using arrays of magnetic adatoms on superconductors.
Collapse
Affiliation(s)
- Lisa M. Rütten
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Harald Schmid
- Dahlem
Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Eva Liebhaber
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Giada Franceschi
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ali Yazdani
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gaël Reecht
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kai Rossnagel
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Ruprecht
Haensel Laboratory, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - Felix von Oppen
- Dahlem
Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | | |
Collapse
|
10
|
Wan Z, Qian Q, Huang Y, Duan X. Layered hybrid superlattices as designable quantum solids. Nature 2024; 635:49-60. [PMID: 39506149 DOI: 10.1038/s41586-024-07858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
Crystalline solids typically show robust long-range structural ordering, vital for their remarkable electronic properties and use in functional electronics, albeit with limited customization space. By contrast, synthetic molecular systems provide highly tunable structural topologies and versatile functionalities but are often too delicate for scalable electronic integration. Combining these two systems could harness the strengths of both, yet realizing this integration is challenging owing to distinct chemical bonding structures and processing conditions. Two-dimensional atomic crystals comprise crystalline atomic layers separated by non-bonding van der Waals gaps, allowing diverse atomic or molecular intercalants to be inserted without disrupting existing covalent bonds. This enables the creation of a diverse set of layered hybrid superlattices (LHSLs) composed of alternating crystalline atomic layers of variable electronic properties and self-assembled atomic or molecular interlayers featuring customizable chemical compositions and structural motifs. Here we outline strategies to prepare LHSLs and discuss emergent properties. With the versatile molecular design strategies and modular assembly processes, LHSLs offer vast flexibility for weaving distinct chemical constituents and quantum properties into monolithic artificial solids with a designable three-dimensional potential landscape. This opens unprecedented opportunities to tailor charge correlations, quantum properties and topological phases, thereby defining a rich material platform for advancing quantum information science.
Collapse
Affiliation(s)
- Zhong Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qi Qian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Sivakumar PK, Ahari MT, Kim JK, Wu Y, Dixit A, de Coster GJ, Pandeya AK, Gilbert MJ, Parkin SSP. Long-range phase coherence and tunable second order φ 0-Josephson effect in a Dirac semimetal 1T-PtTe 2. COMMUNICATIONS PHYSICS 2024; 7:354. [PMID: 39478871 PMCID: PMC11519005 DOI: 10.1038/s42005-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024]
Abstract
Superconducting diode effects have recently attracted much attention for their potential applications in superconducting logic circuits. Several pathways have been proposed to give rise to non-reciprocal critical currents in various superconductors and Josephson junctions. In this work, we establish the presence of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe2 facilitated by its helical spin-momentum locking and distinguish it from extrinsic geometric effects. The magnitude of the Josephson diode effect is shown to be directly correlated to the large second-harmonic component of the supercurrent. We denote such junctions, where the relative phase between the two harmonics can be tuned by a magnetic field, as 'tunable second order φ 0-junctions'. The direct correspondence between the second harmonic supercurrents and the diode effect in 1T-PtTe2 junctions at relatively low magnetic fields makes it an ideal platform to study the Josephson diode effect and Cooper quartet transport in Josephson junctions.
Collapse
Affiliation(s)
| | - Mostafa T. Ahari
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois, Urbana-Champaign, Illinois 61801 USA
| | - Jae-Keun Kim
- Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Yufeng Wu
- Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Anvesh Dixit
- Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | | | | | - Matthew J. Gilbert
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois, Urbana-Champaign, Illinois 61801 USA
- Department of Electrical Engineering, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Stuart S. P. Parkin
- Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Isobe H, Nagaosa N. Nonlinear edge transport in a quantum Hall system. SCIENCE ADVANCES 2024; 10:eado2704. [PMID: 39453998 PMCID: PMC11639171 DOI: 10.1126/sciadv.ado2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 10/27/2024]
Abstract
Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (I-V) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored. Among them, the quantum Hall current is a representative example. Realized in two-dimensional electronic systems under a strong magnetic field, the topological protection quantizes the Hall conductance in the unit of e2/h (e, elementary charge; and h, Planck constant), of which the edge transport picture gives a good account. Here, we theoretically study the nonlinear I-VH characteristic of the edge transport up to third order in VH. We find that nonlinearity arises in the Hall response from electron-electron interaction between the counterpropagating edge channels with the nonlinear energy dispersions. We also discuss possible experimental observations.
Collapse
Affiliation(s)
- Hiroki Isobe
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Li Y, Yan D, Hong Y, Sheng H, Wang A, Dou Z, Guo X, Shi X, Su Z, Lyu Z, Qian T, Liu G, Qu F, Jiang K, Wang Z, Shi Y, Xu ZA, Hu J, Lu L, Shen J. Interfering Josephson diode effect in Ta 2Pd 3Te 5 asymmetric edge interferometer. Nat Commun 2024; 15:9031. [PMID: 39424819 PMCID: PMC11489759 DOI: 10.1038/s41467-024-53383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Edge states in topological systems have attracted great interest due to their robustness and linear dispersions. Here a superconducting-proximitized edge interferometer is engineered on a topological insulator Ta2Pd3Te5 with asymmetric edges to realize the interfering Josephson diode effect (JDE), which hosts many advantages, such as the high efficiency as much as 73% at tiny applied magnetic fields with an ultra-low switching power around picowatt. As an important element to induce such JDE, the second-order harmonic in the current-phase relation is also experimentally confirmed by half-integer Shapiro steps. The interfering JDE is also accompanied by the antisymmetric second harmonic transport, which indicates the corresponding asymmetry in the interferometer, as well as the polarity of JDE. This edge interferometer offers an effective method to enhance the performance of JDE, and boosts great potential applications for future superconducting quantum devices.
Collapse
Affiliation(s)
- Yupeng Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Dayu Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yu Hong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haohao Sheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Anqi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Dou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xingchen Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zikang Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaozheng Lyu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Tian Qian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Guangtong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Fanming Qu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Kun Jiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Youguo Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Zhu-An Xu
- School of Physics, Zhejiang University, Hangzhou, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, China
- Hefei National Laboratory, Hefei, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Jie Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
| |
Collapse
|
14
|
Anh LD, Ishihara K, Hotta T, Inagaki K, Maki H, Saeki T, Kobayashi M, Tanaka M. Large superconducting diode effect in ion-beam patterned Sn-based superconductor nanowire/topological Dirac semimetal planar heterostructures. Nat Commun 2024; 15:8014. [PMID: 39349453 PMCID: PMC11442514 DOI: 10.1038/s41467-024-52080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
High-quality superconductor/topological material heterostructures are highly desired for realisation of topological superconductivity and Majorana physics. Here, we demonstrate a method to directly draw nanoscale superconducting β-Sn patterns in the plane of a topological Dirac semimetal (TDS) α-Sn thin film by irradiating a focused ion beam and taking advantage of the heat-driven phase transition of α-Sn into superconducting β-Sn. The β-Sn nanowires embedded in a TDS α-Sn thin film exhibit a large superconducting diode effect (SDE), whose rectification ratio η reaches a maximum of 35% when the magnetic field is applied parallel to the current. The results suggest that the SDE may occur at the α-Sn/β-Sn interfaces where the TDS α-Sn becomes superconducting by a proximity effect. Our work thus provides a universal platform for investigating quantum physics and devices based on topological superconducting circuits of any shape.
Collapse
Affiliation(s)
- Le Duc Anh
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
- Centre for Spintronics Research Network, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Keita Ishihara
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Hotta
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kohdai Inagaki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Maki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Saeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Kobayashi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Centre for Spintronics Research Network, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaaki Tanaka
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Centre for Spintronics Research Network, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Chi F, Shen Y, Gao Y, Liu J, Fu Z, Yi Z, Liu L. Supercurrent and Superconducting Diode Effect in Parallel Double Quantum Dots with Rashba Spin-Orbit Interaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4497. [PMID: 39336238 PMCID: PMC11433276 DOI: 10.3390/ma17184497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
We study theoretically the supercurrent and the superconducting diode effect (SDE) in a structure comprising parallel-coupled double quantum dots (DQDs) sandwiched between two superconductor leads in the presence of a magnetic flux. The influence of the Rashba spin-orbit interaction (RSOI), which induces a spin-dependent phase factor in the dot-superconductor coupling strength, is taken into account by adopting the nonequilibrium Green's function technique. This RSOI-induced phase factor serves as a driving force for the supercurrent in addition to the usual superconducting phase difference, and it leads to the system's left/right asymmetry. Correspondingly, the magnitude of the positive and negative critical currents become different from each other: the so-called SDE. Our results show that the period, magnitude, and direction of the supercurrents depend strongly on the RSOI-induced phase factor, dots' energy levels, interdot coupling strengths, and the magnetic flux. In the absence of magnetic flux, the diode efficiency is negative and may approach -2, which indicates the perfect diode effect with only negative flowing supercurrent in the absence of a positive one. Interestingly enough, both the sign and magnitude of the diode efficiency can be efficiently adjusted with the help of magnetic flux, the dots' energy levels and the interdot coupling strength and thus provide a controllable SDE by rich means, such as gate voltage or host materials of the system.
Collapse
Affiliation(s)
- Feng Chi
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China
| | - Yaohong Shen
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yumei Gao
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China
| | - Jia Liu
- School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Zhenguo Fu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Zichuan Yi
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China
| | - Liming Liu
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China
| |
Collapse
|
16
|
Li C, Wang R, Zhang S, Qin Y, Ying Z, Wei B, Dai Z, Guo F, Chen W, Zhang R, Wang B, Wang X, Song F. Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator. NATURE MATERIALS 2024; 23:1208-1213. [PMID: 38641696 DOI: 10.1038/s41563-024-01874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.
Collapse
Affiliation(s)
- Chunfeng Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China.
| | - Yuyuan Qin
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Zhe Ying
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Boyuan Wei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Zheng Dai
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Fengyi Guo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Wei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Rong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, Xiamen University, Xiamen, China
| | - Baigeng Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China.
- Institute of Atom Manufacturing, Nanjing University, Suzhou, China.
| |
Collapse
|
17
|
Su H, Wang JY, Gao H, Luo Y, Yan S, Wu X, Li G, Shen J, Lu L, Pan D, Zhao J, Zhang P, Xu HQ. Microwave-Assisted Unidirectional Superconductivity in Al-InAs Nanowire-Al Junctions under Magnetic Fields. PHYSICAL REVIEW LETTERS 2024; 133:087001. [PMID: 39241722 DOI: 10.1103/physrevlett.133.087001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 09/09/2024]
Abstract
Under certain symmetry-breaking conditions, a superconducting system exhibits asymmetric critical currents, dubbed the "superconducting diode effect." Recently, systems with the ideal superconducting diode efficiency or unidirectional superconductivity have received considerable interest. In this work, we report the study of Al-InAs nanowire-Al Josephson junctions under microwave irradiation and magnetic fields. We observe an enhancement of superconducting diode effect under microwave driving, featured by a horizontal offset of the zero-voltage step in the voltage-current characteristic that increases with microwave power. Devices reach the unidirectional superconductivity regime at sufficiently high driving amplitudes. The offset changes sign with the reversal of the magnetic field direction. Meanwhile, the offset magnitude exhibits a roughly linear response to the microwave power in dBm when both the power and the magnetic field are large. The signatures observed are reminiscent of a recent theoretical proposal using the resistively shunted junction (RSJ) model. However, the experimental results are not fully explained by the RSJ model, indicating a new mechanism for unidirectional superconductivity that is possibly related to nonequilibrium dynamics or dissipation in periodically driven superconducting systems.
Collapse
Affiliation(s)
- Haitian Su
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | | | - Han Gao
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
| | - Yi Luo
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu F, Itahashi YM, Aoki S, Dong Y, Wang Z, Ogawa N, Ideue T, Iwasa Y. Superconducting diode effect under time-reversal symmetry. SCIENCE ADVANCES 2024; 10:eado1502. [PMID: 39083606 PMCID: PMC11290479 DOI: 10.1126/sciadv.ado1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
In noncentrosymmetric superconductors, superconducting and normal conductions can interchange on the basis of the current flow direction. This effect is termed a superconducting diode effect (SDE), which is a focal point of recent research. The broken inversion and time-reversal symmetry is believed to be the requirements of SDE, but their intrinsic role has remained elusive. Here, we report strain-controlled SDEs in a layered trigonal superconductor, PbTaSe2. The SDE was found exclusively in a strained device with its absence in an unstrained device despite that it is allowed in unstrained trigonal structure. Moreover, the zero-field or magnetic field-even (magnetic field-odd) SDE is observed when the strain and current are along armchair (zigzag) direction The results unambiguously demonstrate the intrinsic SDE under time-reversal symmetry and the critical role of strain-induced electric polarization.
Collapse
Affiliation(s)
- Fengshuo Liu
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Yuki M. Itahashi
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shunta Aoki
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yu Dong
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ziqian Wang
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Naoki Ogawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Toshiya Ideue
- Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
| | - Yoshihiro Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| |
Collapse
|
19
|
Gao YM, Xiao H, Jiang MH, Chi F, Yi ZC, Liu LM. Josephson Diode Effect in Parallel-Coupled Double-Quantum Dots Connected to Unalike Majorana Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1251. [PMID: 39120356 PMCID: PMC11314297 DOI: 10.3390/nano14151251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin-orbit interaction, and the Zeeman splitting inside the nanowires, a pair of Majorana bound states (MBSs) may possibly emerge at opposite ends of each nanowire. Different phase factors arising from the superconductor substrate can be generated in the coupling amplitudes between the DQDs and MBSs prepared at the left and right nanowires, and this will result in the Josephson current. We find that the critical Josephson currents in positive and negative directions are different from each other in amplitude within an oscillation period with respect to the magnetic flux penetrating through the system, a phenomenon known as the JDE. It arises from the quantum interference effect in this double-path device, and it can hardly occur in the system of one QD coupled to MBSs. Our results also show that the diode efficiency can reach up to 50%, but this depends on the overlap amplitude between the MBSs, as well as the energy levels of the DQDs adjustable by gate voltages. The present model is realizable within current nanofabrication technologies and may find practical use in the interdisciplinary field of Majorana and Josephson physics.
Collapse
Affiliation(s)
- Yu-Mei Gao
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.-M.G.); (Z.-C.Y.); (L.-M.L.)
| | - Hu Xiao
- Zhongshan Zhuoman Microelectronics Co., Ltd., Zhongshan 528400, China;
| | - Mou-Hua Jiang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China;
| | - Feng Chi
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.-M.G.); (Z.-C.Y.); (L.-M.L.)
| | - Zi-Chuan Yi
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.-M.G.); (Z.-C.Y.); (L.-M.L.)
| | - Li-Ming Liu
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.-M.G.); (Z.-C.Y.); (L.-M.L.)
| |
Collapse
|
20
|
Nakamura S, Matsumoto H, Ogawa H, Kobayashi T, Nabeshima F, Maeda A, Shimano R. Picosecond Trajectory of Two-Dimensional Vortex Motion in FeSe_{0.5}Te_{0.5} Visualized by Terahertz Second Harmonic Generation. PHYSICAL REVIEW LETTERS 2024; 133:036004. [PMID: 39094164 DOI: 10.1103/physrevlett.133.036004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 08/04/2024]
Abstract
We have investigated the vortex dynamics in a thin film of an iron-based superconductor FeSe_{0.5}Te_{0.5} by observing second-harmonic generation (SHG) in the terahertz frequency range. We visualized the picosecond trajectory of two-dimensional vortex motion in a pinning potential tilted by Meissner shielding current. The SHG perpendicular to the driving field is observed, corresponding to the nonreciprocal nonlinear Hall effect under the current-induced inversion symmetry breaking, whereas the linear Hall effect is negligible. The estimated vortex mass, as light as a bare electron, suggests that the vortex core moves independently from quasiparticles at such a high frequency and large velocity ≈300 km/s.
Collapse
|
21
|
Yang C, Li W, Zhao Y, Shang L. Flexible liquid-diode microtubes from multimodal microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2402331121. [PMID: 38959044 PMCID: PMC11252946 DOI: 10.1073/pnas.2402331121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Directional transport of liquids is of great importance in energy saving, chemical/biomedical engineering, and microfluidics applications. Despite considerable progress in engineering different open surfaces to achieve liquid manipulation, the realization of diode-like liquid transport in enclosed spaces is still challenging. Here, a flexible diode microtube is presented for directional liquid transport within confined spaces using pulsed microfluidics. The microtubes exhibit sophisticated microstructures on the inner wall, replicated from a precisely controlled flow configuration in the microfluidic channel. Under the effect of asymmetric pinning and unbalanced Laplace pressure, such microtubes enable directional liquid transport in closed channels. More importantly, by integrating in situ flow lithography with the microfluidic system, segmented liquid diodes are fabricated as assembly units for the construction of fluidic-electronic circuits that perform logic operations. These results demonstrate the capacity of the present liquid-diode microtubes for flexible, directional, and programmable liquid transport. We believe that it can open an avenue for designing advanced fluidic circuit-based devices toward versatile practical applications.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
22
|
Xiong J, Xie J, Cheng B, Dai Y, Cui X, Wang L, Liu Z, Zhou J, Wang N, Xu X, Chen X, Cheong SW, Liang SJ, Miao F. Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor. Nat Commun 2024; 15:4953. [PMID: 38858363 PMCID: PMC11164936 DOI: 10.1038/s41467-024-48882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Nonreciprocal quantum transport effect is mainly governed by the symmetry breaking of the material systems and is gaining extensive attention in condensed matter physics. Realizing electrical switching of the polarity of the nonreciprocal transport without external magnetic field is essential to the development of nonreciprocal quantum devices. However, electrical switching of superconducting nonreciprocity remains yet to be achieved. Here, we report the observation of field-free electrical switching of nonreciprocal Ising superconductivity in Fe3GeTe2/NbSe2 van der Waals (vdW) heterostructure. By taking advantage of this electrically switchable superconducting nonreciprocity, we demonstrate a proof-of-concept nonreciprocal quantum neuronal transistor, which allows for implementing the XOR logic gate and faithfully emulating biological functionality of a cortical neuron in the brain. Our work provides a promising pathway to realize field-free and electrically switchable nonreciprocity of quantum transport and demonstrate its potential in exploring neuromorphic quantum devices with both functionality and performance beyond the traditional devices.
Collapse
Affiliation(s)
- Junlin Xiong
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Jiao Xie
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Bin Cheng
- Institute of Interdisciplinary Physical Sciences, School of Science, Nanjing University of Science and Technology, 210094, Nanjing, China.
| | - Yudi Dai
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Xinyu Cui
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Lizheng Wang
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Zenglin Liu
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Ji Zhou
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Naizhou Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics and Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xianghan Xu
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xianhui Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics and Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Sang-Wook Cheong
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shi-Jun Liang
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Feng Miao
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
23
|
Le T, Pan Z, Xu Z, Liu J, Wang J, Lou Z, Yang X, Wang Z, Yao Y, Wu C, Lin X. Superconducting diode effect and interference patterns in kagome CsV 3Sb 5. Nature 2024; 630:64-69. [PMID: 38750364 DOI: 10.1038/s41586-024-07431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
The interplay among frustrated lattice geometry, non-trivial band topology and correlation yields rich quantum states of matter in kagome systems1,2. A series of recent members in this family, AV3Sb5 (A = K, Rb or Cs), exhibit a cascade of symmetry-breaking transitions3, involving the 3Q chiral charge ordering4-8, electronic nematicity9,10, roton pair density wave11 and superconductivity12. The nature of the superconducting order is yet to be resolved. Here we report an indication of dynamic superconducting domains with boundary supercurrents in intrinsic CsV3Sb5 flakes. The magnetic field-free superconducting diode effect is observed with polarity modulated by thermal histories, suggesting that there are dynamic superconducting order domains in a spontaneous time-reversal symmetry-breaking background. Strikingly, the critical current exhibits double-slit superconductivity interference patterns when subjected to an external magnetic field. The characteristics of the patterns are modulated by thermal cycling. These phenomena are proposed as a consequence of periodically modulated supercurrents flowing along certain domain boundaries constrained by fluxoid quantization. Our results imply a time-reversal symmetry-breaking superconducting order, opening a potential for exploring exotic physics, for example, Majorana zero modes, in this intriguing topological kagome system.
Collapse
Affiliation(s)
- Tian Le
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China
| | - Zhiming Pan
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China
- Institute for Theoretical Sciences, Westlake University, Hangzhou, China
| | - Zhuokai Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China
| | - Jinjin Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China
| | - Jialu Wang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China
| | - Zhefeng Lou
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China
| | - Xiaohui Yang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China
- Department of Physics, China Jiliang University, Hangzhou, People's Republic of China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China.
- Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China.
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China
- Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China
| | - Congjun Wu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China.
- Institute for Theoretical Sciences, Westlake University, Hangzhou, China.
- New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, Hangzhou, China.
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, People's Republic of China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China.
| |
Collapse
|
24
|
Sekiguchi F, Narita H, Hirori H, Ono T, Kanemitsu Y. Anomalous behavior of critical current in a superconducting film triggered by DC plus terahertz current. Nat Commun 2024; 15:4435. [PMID: 38789464 PMCID: PMC11126563 DOI: 10.1038/s41467-024-48738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The critical current in a superconductor (SC) determines the performance of many SC devices, including SC diodes which have attracted recent attention. Hitherto, studies of SC diodes are limited in the DC-field measurements, and their performance under a high-frequency current remains unexplored. Here, we conduct the first investigation on the interaction between the DC and terahertz (THz) current in a SC artificial superlattice. We found that the DC critical current is sensitively modified by THz pulse excitations in a nontrivial manner. In particular, at low-frequency THz excitations below the SC gap, the critical current becomes sensitive to the THz-field polarization direction. Furthermore, we observed anomalous behavior in which a supercurrent flows with an amplitude larger than the modified critical current. Assuming that vortex depinning determines the critical current, we show that the THz-current-driven vortex dynamics reproduce the observed behavior. While the delicate nonreciprocity in the critical current is obscured by the THz pulse excitations, the interplay between the DC and THz current causes a non-monotonic SC/normal-state switching with current amplitude, which can pave a pathway to developing SC devices with novel functionalities.
Collapse
Affiliation(s)
- Fumiya Sekiguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Hideki Narita
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
25
|
Mao Y, Yan Q, Zhuang YC, Sun QF. Universal Spin Superconducting Diode Effect from Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2024; 132:216001. [PMID: 38856265 DOI: 10.1103/physrevlett.132.216001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
We propose a universal spin superconducting diode effect (SDE) induced by spin-orbit coupling (SOC) in systems with spin-triplet correlations, where the critical spin supercurrents in opposite directions are unequal. By analysis from both the Ginzburg-Landau theory and energy band analysis, we show that the spin-↑↑ and spin-↓↓ Cooper pairs possess opposite phase gradients and opposite momenta from the SOC, which leads to the spin SDE. Two superconductors with SOC, a p-wave superconductor as a toy model and a practical superconducting nanowire, are numerically studied and they both exhibit spin SDE. In addition, our theory also provides a unified picture for both spin and charge SDEs.
Collapse
Affiliation(s)
- Yue Mao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qing Yan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yu-Chen Zhuang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
26
|
Soori A. Josephson diode effect in junctions of superconductors with band asymmetric metals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:335303. [PMID: 38740042 DOI: 10.1088/1361-648x/ad4aad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
At interfaces connecting two superconductors (SCs) separated by a metallic layer, an electric current is induced when there is a disparity in the phases of the two superconductors. We elucidate this phenomenon based on the weights of the Andreev bound states associated with the states carrying currents in forward and reverse directions. Typically, current phase relation (CPR) in Josephson junctions is an odd function. When time reversal and inversion symmetries are broken at the junction, CPR ceases to be an odd function and the system may exhibit Josephson diode effect. This phenomenon has been studied in spin orbit coupled systems under an external Zeeman field wherein the magnetochiral anisotropy is responsible for the Josephson diode effect. Recently introduced the band asymmetric metal (BAM) model presents a novel avenue, featuring an asymmetric band structure. We investigate DC Josephson effect in SC-BAM-SC junctions and find that band asymmetry can lead to Josephson diode effect and anomalous Josephson effect. We explain the mechanism behind these effects based on interference of plane wave modes within the Bogoliubov de-Genne formalism. We calculate diode effect coefficient for different values of the parameters.
Collapse
Affiliation(s)
- Abhiram Soori
- School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
27
|
Reinhardt S, Ascherl T, Costa A, Berger J, Gronin S, Gardner GC, Lindemann T, Manfra MJ, Fabian J, Kochan D, Strunk C, Paradiso N. Link between supercurrent diode and anomalous Josephson effect revealed by gate-controlled interferometry. Nat Commun 2024; 15:4413. [PMID: 38782910 PMCID: PMC11116472 DOI: 10.1038/s41467-024-48741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -a φ0-shift of the current-phase relation- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate φ0-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer. By electrostatic gating, we reveal a direct link between φ0-shift and diode effect. Our findings show that spin-orbit interaction in combination with a Zeeman field plays an important role in determining the magnetochiral anisotropy and the supercurrent diode effect.
Collapse
Affiliation(s)
- S Reinhardt
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - T Ascherl
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - A Costa
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - J Berger
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - S Gronin
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - G C Gardner
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - T Lindemann
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - M J Manfra
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - J Fabian
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - D Kochan
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan, Taiwan
| | - C Strunk
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - N Paradiso
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
28
|
Asaba T, Naritsuka M, Asaeda H, Kosuge Y, Ikemori S, Suetsugu S, Kasahara Y, Kohsaka Y, Terashima T, Daido A, Yanase Y, Matsuda Y. Evidence for a finite-momentum Cooper pair in tricolor d-wave superconducting superlattices. Nat Commun 2024; 15:3861. [PMID: 38719822 PMCID: PMC11078924 DOI: 10.1038/s41467-024-47875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Fermionic superfluidity with a nontrivial Cooper-pairing, beyond the conventional Bardeen-Cooper-Schrieffer state, is a captivating field of study in quantum many-body systems. In particular, the search for superconducting states with finite-momentum pairs has long been a challenge, but establishing its existence has long suffered from the lack of an appropriate probe to reveal its momentum. Recently, it has been proposed that the nonreciprocal electron transport is the most powerful probe for the finite-momentum pairs, because it directly couples to the supercurrents. Here we reveal such a pairing state by the non-reciprocal transport on tricolor superlattices with strong spin-orbit coupling combined with broken inversion-symmetry consisting of atomically thin d-wave superconductor CeCoIn5. We find that while the second-harmonic resistance exhibits a distinct dip anomaly at the low-temperature (T)/high-magnetic field (H) corner in the HT-plane for H applied to the antinodal direction of the d-wave gap, such an anomaly is absent for H along the nodal direction. By carefully isolating extrinsic effects due to vortex dynamics, we reveal the presence of a non-reciprocal response originating from intrinsic superconducting properties characterized by finite-momentum pairs. We attribute the high-field state to the helical superconducting state, wherein the phase of the order parameter is spontaneously spatially modulated.
Collapse
Affiliation(s)
- T Asaba
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan.
| | - M Naritsuka
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
| | - H Asaeda
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Kosuge
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - S Ikemori
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - S Suetsugu
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Kasahara
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Kohsaka
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - T Terashima
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - A Daido
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Yanase
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Matsuda
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
29
|
Ghosh S, Patil V, Basu A, Kuldeep, Dutta A, Jangade DA, Kulkarni R, Thamizhavel A, Steiner JF, von Oppen F, Deshmukh MM. High-temperature Josephson diode. NATURE MATERIALS 2024; 23:612-618. [PMID: 38321240 DOI: 10.1038/s41563-024-01804-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Many superconducting systems with broken time-reversal and inversion symmetry show a superconducting diode effect, a non-reciprocal phenomenon analogous to semiconducting p-n-junction diodes. While the superconducting diode effect lays the foundation for realizing ultralow dissipative circuits, Josephson-phenomena-based diode effect (JDE) can enable the realization of protected qubits. The superconducting diode effect and JDE reported thus far are at low temperatures (~4 K), limiting their applications. Here we demonstrate JDE persisting up to 77 K using an artificial Josephson junction of twisted layers of Bi2Sr2CaCu2O8+δ. JDE manifests as an asymmetry in the magnitude and distributions of switching currents, attaining the maximum at 45° twist. The asymmetry is induced by and tunable with a very small magnetic field applied perpendicular to the junction and arises due to interaction between Josephson and Abrikosov vortices. We report a large asymmetry of 60% at 20 K. Our results provide a path towards realizing superconducting Josephson circuits at liquid-nitrogen temperature.
Collapse
Affiliation(s)
- Sanat Ghosh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India.
| | - Vilas Patil
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Amit Basu
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Kuldeep
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Achintya Dutta
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Digambar A Jangade
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Ruta Kulkarni
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - A Thamizhavel
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Jacob F Steiner
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Mandar M Deshmukh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
30
|
Bahamon DA, Gómez-Santos G, Efetov DK, Stauber T. Chirality Probe of Twisted Bilayer Graphene in the Linear Transport Regime. NANO LETTERS 2024; 24:4478-4484. [PMID: 38584591 PMCID: PMC11036400 DOI: 10.1021/acs.nanolett.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)current in the absence of a source-drain voltage whose direction is determined by its chirality.
Collapse
Affiliation(s)
- Dario A. Bahamon
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- MackGraphe
Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- Departamento
de Teoría y Simulación de Materiales, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| | - Guillermo Gómez-Santos
- Departamento
de Física de la Materia Condensada, Instituto Nicolás
Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Dmitri K. Efetov
- Fakultät
für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, D-80799 München, Germany
- Munich Center
for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Tobias Stauber
- Departamento
de Teoría y Simulación de Materiales, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| |
Collapse
|
31
|
Li C, Lyu YY, Yue WC, Huang P, Li H, Li T, Wang CG, Yuan Z, Dong Y, Ma X, Tu X, Tao T, Dong S, He L, Jia X, Sun G, Kang L, Wang H, Peeters FM, Milošević MV, Wu P, Wang YL. Unconventional Superconducting Diode Effects via Antisymmetry and Antisymmetry Breaking. NANO LETTERS 2024; 24:4108-4116. [PMID: 38536003 DOI: 10.1021/acs.nanolett.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.
Collapse
Affiliation(s)
- Chong Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiyuan Huang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Haojie Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Tianyu Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Guang Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Zixiong Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Dong
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xiaoyu Ma
- Microsoft, One Microsoft Way, Redmond, Washington 98052, United States
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Tao Tao
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| | - Liang He
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Guozhu Sun
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Francois M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Departamento de Física, Universidade Federal do Ceará́, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| |
Collapse
|
32
|
Coraiola M, Svetogorov AE, Haxell DZ, Sabonis D, Hinderling M, Ten Kate SC, Cheah E, Krizek F, Schott R, Wegscheider W, Cuevas JC, Belzig W, Nichele F. Flux-Tunable Josephson Diode Effect in a Hybrid Four-Terminal Josephson Junction. ACS NANO 2024; 18:9221-9231. [PMID: 38488287 DOI: 10.1021/acsnano.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We investigate the direction-dependent switching current in a flux-tunable four-terminal Josephson junction defined in an InAs/Al two-dimensional heterostructure. The device exhibits the Josephson diode effect with switching currents that depend on the sign of the bias current. The superconducting diode efficiency, reaching a maximum of |η| ≈ 34%, is widely tunable─both in amplitude and sign─as a function of magnetic fluxes and gate voltages. Our observations are supported by a circuit model of three parallel Josephson junctions with nonsinusoidal current-phase relation. With respect to conventional Josephson interferometers, phase-tunable multiterminal Josephson junctions enable large diode efficiencies in structurally symmetric devices, where local magnetic fluxes generated on the chip break both time-reversal and spatial symmetries. Our work presents an approach for developing Josephson diodes with wide-range tunability that do not rely on exotic materials.
Collapse
Affiliation(s)
- Marco Coraiola
- IBM Research Europe─Zurich, 8803 Rüschlikon, Switzerland
| | | | | | | | | | | | - Erik Cheah
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Filip Krizek
- IBM Research Europe─Zurich, 8803 Rüschlikon, Switzerland
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Rüdiger Schott
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Werner Wegscheider
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Juan Carlos Cuevas
- Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Wolfgang Belzig
- Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
33
|
Shoriki K, Moriishi K, Okamura Y, Yokoi K, Usui H, Murakawa H, Sakai H, Hanasaki N, Tokura Y, Takahashi Y. Large nonlinear optical magnetoelectric response in a noncentrosymmetric magnetic Weyl semimetal. Proc Natl Acad Sci U S A 2024; 121:e2316910121. [PMID: 38483985 PMCID: PMC10962943 DOI: 10.1073/pnas.2316910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Weyl semimetals resulting from either inversion (P) or time-reversal (T) symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both P and T symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far. Here, we show the large nonlinear optical ME response in noncentrosymmetric magnetic Weyl semimetal PrAlGe, in which the polar structural asymmetry and ferromagnetic ordering break P and T symmetry. We observe the giant second harmonic generation (SHG) arising from the P symmetry breaking in the paramagnetic phase, being comparable to the largest SHG response reported in Weyl semimetal TaAs. In the ferromagnetically ordered phase, it is found that interference between this nonmagnetic SHG and the magnetically induced SHG emerging due to both P and T symmetry breaking results in the magnetic field switching of SHG intensity. Furthermore, such an interference effect critically depends on the light-propagating direction. The corresponding magnetically induced nonlinear susceptibility is significantly larger than the prototypical ME material, manifesting the existence of the strong nonlinear dynamical ME coupling. The present findings establish the unique optical functionality of P- and T-symmetry broken ME topological semimetals.
Collapse
Affiliation(s)
- Kentaro Shoriki
- Department of Applied Physics and Quantum Phase Electronic Center, University of Tokyo, Tokyo113-8656, Japan
| | - Keigo Moriishi
- Department of Applied Physics and Quantum Phase Electronic Center, University of Tokyo, Tokyo113-8656, Japan
| | - Yoshihiro Okamura
- Department of Applied Physics and Quantum Phase Electronic Center, University of Tokyo, Tokyo113-8656, Japan
| | - Kohei Yokoi
- Department of Physics, Gakushuin University, Tokyo171-8588, Japan
| | - Hidetomo Usui
- Department of Applied Physics Shimane University, Matsue, Shimane690-8504, Japan
| | - Hiroshi Murakawa
- Department of Physics, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Hideaki Sakai
- Department of Physics, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Noriaki Hanasaki
- Department of Physics, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Yoshinori Tokura
- Department of Applied Physics and Quantum Phase Electronic Center, University of Tokyo, Tokyo113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako351-0198, Japan
- Tokyo College, University of Tokyo, Tokyo113-8656, Japan
| | - Youtarou Takahashi
- Department of Applied Physics and Quantum Phase Electronic Center, University of Tokyo, Tokyo113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako351-0198, Japan
| |
Collapse
|
34
|
Kim JK, Jeon KR, Sivakumar PK, Jeon J, Koerner C, Woltersdorf G, Parkin SSP. Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier. Nat Commun 2024; 15:1120. [PMID: 38321041 PMCID: PMC10847146 DOI: 10.1038/s41467-024-45298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Non-reciprocal electronic transport in a spatially homogeneous system arises from the simultaneous breaking of inversion and time-reversal symmetries. Superconducting and Josephson diodes, a key ingredient for future non-dissipative quantum devices, have recently been realized. Only a few examples of a vertical superconducting diode effect have been reported and its mechanism, especially whether intrinsic or extrinsic, remains elusive. Here we demonstrate a substantial supercurrent non-reciprocity in a van der Waals vertical Josephson junction formed with a Td-WTe2 barrier and NbSe2 electrodes that clearly reflects the intrinsic crystal structure of Td-WTe2. The Josephson diode efficiency increases with the Td-WTe2 thickness up to critical thickness, and all junctions, irrespective of the barrier thickness, reveal magneto-chiral characteristics with respect to a mirror plane of Td-WTe2. Our results, together with the twist-angle-tuned magneto-chirality of a Td-WTe2 double-barrier junction, show that two-dimensional materials promise vertical Josephson diodes with high efficiency and tunability.
Collapse
Affiliation(s)
- Jae-Keun Kim
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
| | - Kun-Rok Jeon
- Department of Physics, Chung-Ang University (CAU), Seoul, 06974, Republic of Korea
| | - Pranava K Sivakumar
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Jaechun Jeon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Chris Koerner
- Department of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Georg Woltersdorf
- Department of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Stuart S P Parkin
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
| |
Collapse
|
35
|
Virtanen P, Heikkilä TT. Nonreciprocal Josephson Linear Response. PHYSICAL REVIEW LETTERS 2024; 132:046002. [PMID: 38335348 DOI: 10.1103/physrevlett.132.046002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/22/2023] [Indexed: 02/12/2024]
Abstract
We consider the finite-frequency response of multiterminal Josephson junctions and show how nonreciprocity in them can show up at linear response, in contrast to the static Josephson diodes featuring nonlinear nonreciprocity. At finite frequencies, the response contains dynamic contributions to the Josephson admittance, featuring the effects of Andreev bound state transitions along with Berry phase effects, and reflecting the breaking of the same symmetries as in Josephson diodes. We show that outside exact Andreev resonances, the junctions feature nonreciprocal reactive response. As a result, the microwave transmission through those systems is nondissipative, and the electromagnetic scattering can approach complete nonreciprocity. Besides providing information about the nature of the weak link energy levels, the nonreciprocity can be utilized to create nondissipative and small-scale on-chip circulators whose operation requires only rather small magnetic fields.
Collapse
Affiliation(s)
- Pauli Virtanen
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
| | - Tero T Heikkilä
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
36
|
Banerjee S, Scheurer MS. Enhanced Superconducting Diode Effect due to Coexisting Phases. PHYSICAL REVIEW LETTERS 2024; 132:046003. [PMID: 38335356 DOI: 10.1103/physrevlett.132.046003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/14/2023] [Indexed: 02/12/2024]
Abstract
The superconducting diode effect refers to an asymmetry in the critical supercurrent J_{c}(n[over ^]) along opposite directions, J_{c}(n[over ^])≠J_{c}(-n[over ^]). While the basic symmetry requirements for this effect are known, it is, for junction-free systems, difficult to capture within current theoretical models the large current asymmetries J_{c}(n[over ^])/J_{c}(-n[over ^]) recently observed in experiment. We here propose and develop a theory for an enhancement mechanism of the diode effect arising from spontaneous symmetry breaking. We show-both within a phenomenological and a microscopic theory-that there is a coupling of the supercurrent and the underlying symmetry-breaking order parameter. This coupling can enhance the current asymmetry significantly. Our work might not only provide a possible explanation for recent experiments on trilayer graphene but also pave the way for future realizations of the superconducting diode effect with large current asymmetries.
Collapse
Affiliation(s)
- Sayan Banerjee
- Institute for Theoretical Physics III, University of Stuttgart, 70550 Stuttgart, Germany and Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mathias S Scheurer
- Institute for Theoretical Physics III, University of Stuttgart, 70550 Stuttgart, Germany and Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
37
|
Karmakar M. Magnetotransport and Fermi surface segmentation in Pauli limited superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165601. [PMID: 38190740 DOI: 10.1088/1361-648x/ad1bf6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
We report the first theoretical investigation of the spectroscopic, electrical and optical transport signatures ofd-wave Pauli limited superconductors, based on a non perturbative numerical approach. We demonstrate that the high magnetic field low temperature regime of these materials host a finite momentum paired superconducting phase. Multi-branched dispersion spectra with finite energy superconducting gaps, anisotropic segmentation of the Fermi surface and spatial modulations of the superconducting order characterizes this finite momentum paired phase and should be readily accessible through angle resolved photo emission spectroscopy, quasiparticle interference and differential conductance measurements. Based on the electrical and optical transport properties we capture the non Fermi liquid behavior of these systems at high temperatures, dominated by local superconducting correlations and characterized by resilient quasiparticles which survive the breakdown of the Fermi liquid description. We map out the generic thermal phase diagram of thed-wave Pauli limited superconductors and provide for the first time the accurate estimates of the thermal scales corresponding to the: (a) loss of (quasi) long range superconducting phase coherence (Tc), (b) loss of local pair correlations (Tpg), (c) breakdown of the Fermi liquid theory (Tmax) and cross-over from the non Fermi liquid to the bad metallic phase (TBR). Our thermal phase diagram mapped out on the basis of the spectroscopic and transport properties are found to be in qualitative agreement with the experimental observations on CeCoIn5andκ-BEDT, in terms of the thermodynamic phases and the phase transitions. The results presented in this paper are expected to initiate important transport and spectroscopic experiments on the Pauli limitedd-wave superconductors, providing sharp signatures of the finite momentum Cooper paired state in these materials.
Collapse
Affiliation(s)
- Madhuparna Karmakar
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
38
|
Chen P, Wang J, Wang G, Ye B, Zhou L, Wang L, Wang J, Zhang W, Chen W, Mei J, He H. Asymmetric edge supercurrents in MoTe 2 Josephson junctions. NANOSCALE ADVANCES 2024; 6:690-696. [PMID: 38235086 PMCID: PMC10791112 DOI: 10.1039/d3na00884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
To investigate the higher order topology in MoTe2, the supercurrent interference phenomena in Nb/MoTe2/Nb planar Josephson junctions have been systematically studied. By analyzing the obtained interference pattern of the critical supercurrents and performing a comparative study of the edge-touched and untouched junctions, it's found that the supercurrent is dominated by the edges, rather than the bulk or surfaces of MoTe2. An asymmetric Josephson effect with a field-tunable sign is also observed, indicating the nontrivial origin of the edge states. These results not only provide initial evidence for the hinge states in the higher order topological insulator MoTe2, but also demonstrate the potential applications of MoTe2-based Josephson junctions in rectifying the supercurrent.
Collapse
Affiliation(s)
- Pingbo Chen
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Jinhua Wang
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Gongqi Wang
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Bicong Ye
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Department of Physics, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 China
| | - Liang Zhou
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiannong Wang
- Department of Physics, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 China
| | - Wenqing Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Weiqiang Chen
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiawei Mei
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Hongtao He
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
39
|
Valentini M, Sagi O, Baghumyan L, de Gijsel T, Jung J, Calcaterra S, Ballabio A, Aguilera Servin J, Aggarwal K, Janik M, Adletzberger T, Seoane Souto R, Leijnse M, Danon J, Schrade C, Bakkers E, Chrastina D, Isella G, Katsaros G. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat Commun 2024; 15:169. [PMID: 38167818 PMCID: PMC10762135 DOI: 10.1038/s41467-023-44114-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a [Formula: see text] CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.
Collapse
Affiliation(s)
- Marco Valentini
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Oliver Sagi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Levon Baghumyan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Thijs de Gijsel
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jason Jung
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Andrea Ballabio
- L-NESS, Physics Department, Politecnico di Milano, Como, Italy
| | | | - Kushagra Aggarwal
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Materials, University of Oxford, Oxford, UK
| | - Marian Janik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Rubén Seoane Souto
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Madrid, Spain
| | - Martin Leijnse
- NanoLund and Solid State Physics, Lund University, Lund, Sweden
| | - Jeroen Danon
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Constantin Schrade
- Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
| | - Erik Bakkers
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Giovanni Isella
- L-NESS, Physics Department, Politecnico di Milano, Como, Italy
| | - Georgios Katsaros
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
40
|
Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner GC, Manfra MJ, Tarucha S. Phase engineering of anomalous Josephson effect derived from Andreev molecules. SCIENCE ADVANCES 2023; 9:eadj3698. [PMID: 38091387 PMCID: PMC10848717 DOI: 10.1126/sciadv.adj3698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024]
Abstract
A Josephson junction (JJ) is a key device for developing superconducting circuits, wherein a supercurrent in the JJ is controlled by the phase difference between the two superconducting electrodes. When two JJs sharing one superconducting electrode are coherently coupled and form the Andreev molecules, a supercurrent of one JJ is expected to be nonlocally controlled by the phase difference of another JJ. Here, we evaluate the supercurrent in one of the coupled two JJs as a function of local and nonlocal phase differences. Consequently, the results exhibit that the nonlocal phase control generates a finite supercurrent even when the local phase difference is zero. In addition, an offset of the local phase difference giving the JJ ground state depends on the nonlocal phase difference. These features demonstrate the anomalous Josephson effect realized by the nonlocal phase control. Our results provide a useful concept for engineering superconducting devices such as phase batteries and dissipationless rectifiers.
Collapse
Affiliation(s)
- Sadashige Matsuo
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takaya Imoto
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomohiro Yokoyama
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yosuke Sato
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tyler Lindemann
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Sergei Gronin
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
| | - Geoffrey C. Gardner
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
| | - Michael J. Manfra
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Seigo Tarucha
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Banerjee A, Geier M, Rahman MA, Thomas C, Wang T, Manfra MJ, Flensberg K, Marcus CM. Phase Asymmetry of Andreev Spectra from Cooper-Pair Momentum. PHYSICAL REVIEW LETTERS 2023; 131:196301. [PMID: 38000437 DOI: 10.1103/physrevlett.131.196301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
In analogy to conventional semiconductor diodes, the Josephson diode exhibits superconducting properties that are asymmetric in applied bias. The effect has been investigated in a number of systems recently, and requires a combination of broken time-reversal and inversion symmetries. We demonstrate a dual of the usual Josephson diode effect, a nonreciprocal response of Andreev bound states to a superconducting phase difference across the normal region of a superconductor-normal-superconductor Josephson junction, fabricated using an epitaxial InAs/Al heterostructure. Phase asymmetry of the subgap Andreev spectrum is absent in the absence of in-plane magnetic field and reaches a maximum at 0.15 T applied in the plane of the junction transverse to the current direction. We interpret the phase diode effect in this system as resulting from finite-momentum Cooper pairing due to orbital coupling to the in-plane magnetic field. At higher magnetic fields, we observe a sign reversal of the diode effect that appears together with a reopening of the spectral gap. Within our model, the sign reversal of the diode effect at higher fields is correlated with a topological phase transition that requires Zeeman and spin-orbit interactions in addition to orbital coupling.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Max Geier
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Md Ahnaf Rahman
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Candice Thomas
- Department of Physics and Astronomy, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Tian Wang
- Department of Physics and Astronomy, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael J Manfra
- Department of Physics and Astronomy, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Materials Engineering, and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Karsten Flensberg
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Charles M Marcus
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Costa A, Baumgartner C, Reinhardt S, Berger J, Gronin S, Gardner GC, Lindemann T, Manfra MJ, Fabian J, Kochan D, Paradiso N, Strunk C. Sign reversal of the Josephson inductance magnetochiral anisotropy and 0-π-like transitions in supercurrent diodes. NATURE NANOTECHNOLOGY 2023; 18:1266-1272. [PMID: 37430040 DOI: 10.1038/s41565-023-01451-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
The recent discovery of the intrinsic supercurrent diode effect, and its prompt observation in a rich variety of systems, has shown that non-reciprocal supercurrents naturally emerge when both space-inversion and time-inversion symmetries are broken. In Josephson junctions, non-reciprocal supercurrent can be conveniently described in terms of spin-split Andreev states. Here we demonstrate a sign reversal of the Josephson inductance magnetochiral anisotropy, a manifestation of the supercurrent diode effect. The asymmetry of the Josephson inductance as a function of the supercurrent allows us to probe the current-phase relation near equilibrium, and to probe jumps in the junction ground state. Using a minimal theoretical model, we can then link the sign reversal of the inductance magnetochiral anisotropy to the so-called 0-π-like transition, a predicted but still elusive feature of multichannel junctions. Our results demonstrate the potential of inductance measurements as sensitive probes of the fundamental properties of unconventional Josephson junctions.
Collapse
Affiliation(s)
- A Costa
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - C Baumgartner
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - S Reinhardt
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - J Berger
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - S Gronin
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - G C Gardner
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - T Lindemann
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - M J Manfra
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - J Fabian
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - D Kochan
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - N Paradiso
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany.
| | - C Strunk
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Qiu G, Yang HY, Hu L, Zhang H, Chen CY, Lyu Y, Eckberg C, Deng P, Krylyuk S, Davydov AV, Zhang R, Wang KL. Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions. Nat Commun 2023; 14:6691. [PMID: 37872165 PMCID: PMC10593760 DOI: 10.1038/s41467-023-42447-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Hung-Yu Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Lunhui Hu
- Department of Physics & Astronomy, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Huairuo Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- Theiss Research, Inc, La Jolla, CA, 92037, USA
| | - Chih-Yen Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| | - Yanfeng Lyu
- School of Science, Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Christopher Eckberg
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Fibertek Inc, Herndon, VA, 20171, USA
- DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA
- DEVCOM Army Research Laboratory, Playa Vista, Los Angeles, CA, 90094, USA
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Sergiy Krylyuk
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Albert V Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Ruixing Zhang
- Department of Physics & Astronomy, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
44
|
Narita H, Ishizuka J, Kan D, Shimakawa Y, Yanase Y, Ono T. Magnetization Control of Zero-Field Intrinsic Superconducting Diode Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304083. [PMID: 37410358 DOI: 10.1002/adma.202304083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
The superconducting diode effect (SDE), which causes a superconducting state in one direction and a normal-conducting state in another, has significant potential for developing ultralow power consumption circuits and non-volatile memory. However, the practical control of the SDE necessities the precise tuning of current, temperature, magnetic field, or magnetism. Therefore, the mechanisms of the SDE must be understood to develop novel materials and devices capable of realizing the SDE under more controlled and robust conditions. This study demonstrates an intrinsic zero-field SDE with an efficiency of up to 40% in Fe/Pt-inserted non-centrosymmetric Nb/V/Ta superconducting artificial superlattices. The polarity and magnitude of the zero-field SDE are controllable by the direction of magnetization, indicating that the effective exchange field acts on Cooper pairs. Furthermore, the first-principles calculation indicates that the SDE can be enhanced by an asymmetric configuration of proximity induced magnetic moments in superconducting layers, which induces a magnetic toroidal moment. This study has important implications regarding the development of novel materials and devices that can effectively control the SDE. Moreover, the magnetization control of the SDE is expected to aid in the designing of superconducting quantum devices and establishing a material platform for topological superconductors.
Collapse
Affiliation(s)
- Hideki Narita
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Jun Ishizuka
- Faculty of Engineering, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Daisuke Kan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Center for Spintronics Research Network, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuichi Shimakawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Center for Spintronics Research Network, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Youichi Yanase
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
- Institute for Molecular Science, Okazaki, 444-0867, Japan
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Center for Spintronics Research Network, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-0043, Japan
| |
Collapse
|
45
|
Gao Y, Zhang X, Yi Z, Liu L, Chi F. Thermophase Seebeck Coefficient in Hybridized Superconductor-Quantum-Dot-Superconductor Josephson Junction Side-Coupled to Majorana Nanowire. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2489. [PMID: 37686996 PMCID: PMC10490436 DOI: 10.3390/nano13172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The dc Josephson current is generated from phase difference between two superconductors separated by a mesoscopic thin film (Josephson junction) without external bias voltage. In the presence of a temperature gradient across the superconductors, a thermal phase is induced under the condition of open circuit. This is very similar to the Seebeck effect in the usual thermoelectric effect, and the thermal phase is thus named as thermophase Seebeck coefficient (TPSC). Here we find obvious enhancement and sign change of the TPSC unique to the Josephson junction composing of two superconductors connected to a semiconductor quantum dot (QD), which is additionally side-coupled to a nanowire hosting Majorana bound states (MBSs), the system denoted by S-MQD-S. These result arise from the newly developed states near the Fermi level of the superconductors due to the QD-MBS hybridization when the dot level is within the superconducting gap. The sign change of the TPSC provides a strong evidence of the existence of MBSs, and is absent if the QD is coupled to regular fermion, such as another QD (system denoted by S-DQD-S). We show that the magnitude and sign of the TPSC are sensitive to the physical quantities including interaction strength between the QD and MBSs, direct overlap between the MBSs, system equilibrium temperature, as well as hopping amplitude between the QD and the superconductors. The obtained results are explained with the help of the current-carrying density of the states (CCDOS), and may be useful in interdisciplinary research areas of Josephson and Majorana physics.
Collapse
Affiliation(s)
- Yumei Gao
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.G.); (Z.Y.); (L.L.)
| | - Xiaoyan Zhang
- College of Science, North China Institute of Science and Technology, Beijing 101601, China
| | - Zichuan Yi
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.G.); (Z.Y.); (L.L.)
| | - Liming Liu
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.G.); (Z.Y.); (L.L.)
| | - Feng Chi
- School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China; (Y.G.); (Z.Y.); (L.L.)
| |
Collapse
|
46
|
Lu B, Ikegaya S, Burset P, Tanaka Y, Nagaosa N. Tunable Josephson Diode Effect on the Surface of Topological Insulators. PHYSICAL REVIEW LETTERS 2023; 131:096001. [PMID: 37721825 DOI: 10.1103/physrevlett.131.096001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
The Josephson rectification effect, where the resistance is finite in one direction while zero in the other, has been recently realized experimentally. The resulting Josephson diode has many potential applications on superconducting devices, including quantum computers. Here, we theoretically show that a superconductor-normal metal-superconductor Josephson junction diode on the two-dimensional surface of a topological insulator has large tunability. The magnitude and sign of the diode quality factor strongly depend on the external magnetic field, gate voltage, and the length of the junction. Such rich properties stem from the interplay between different current-phase relations for the multiple transverse transport channels, and can be used for designing realistic superconducting diode devices.
Collapse
Affiliation(s)
- Bo Lu
- Center for Joint Quantum Studies, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300354, China
| | - Satoshi Ikegaya
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
- Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Pablo Burset
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yukio Tanaka
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
- Research Center for Crystalline Materials Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Naoto Nagaosa
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter MF, Haxell DZ, Davydova M, Ilić S, Glezakou-Elbert O, Varambally A, Bergeret FS, Kamra A, Fu L, Lee PA, Moodera JS. Ubiquitous Superconducting Diode Effect in Superconductor Thin Films. PHYSICAL REVIEW LETTERS 2023; 131:027001. [PMID: 37505965 DOI: 10.1103/physrevlett.131.027001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/09/2023] [Indexed: 07/30/2023]
Abstract
The macroscopic coherence in superconductors supports dissipationless supercurrents that could play a central role in emerging quantum technologies. Accomplishing unequal supercurrents in the forward and backward directions would enable unprecedented functionalities. This nonreciprocity of critical supercurrents is called the superconducting (SC) diode effect. We demonstrate the strong SC diode effect in conventional SC thin films, such as niobium and vanadium, employing external magnetic fields as small as 1 Oe. Interfacing the SC layer with a ferromagnetic semiconductor EuS, we further accomplish the nonvolatile SC diode effect reaching a giant efficiency of 65%. By careful control experiments and theoretical modeling, we demonstrate that the critical supercurrent nonreciprocity in SC thin films could be easily accomplished with asymmetrical vortex edge and surface barriers and the universal Meissner screening current governing the critical currents. Our engineering of the SC diode effect in simple systems opens the door for novel technologies while revealing the ubiquity of the Meissner screening effect induced SC diode effect in superconducting films, and it should be eliminated with great care in the search for exotic superconducting states harboring finite-momentum Cooper pairing.
Collapse
Affiliation(s)
- Yasen Hou
- Francis Bitter Magnet Laboratory and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Fabrizio Nichele
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Hang Chi
- Francis Bitter Magnet Laboratory and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- U.S. Army DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA
| | - Alessandro Lodesani
- Francis Bitter Magnet Laboratory and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yingying Wu
- Francis Bitter Magnet Laboratory and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Markus F Ritter
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Daniel Z Haxell
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Margarita Davydova
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Stefan Ilić
- Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Pº Manuel de Lardizabal 5, Donostia-San Sebastián 20018, Spain
| | | | | | - F Sebastian Bergeret
- Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Pº Manuel de Lardizabal 5, Donostia-San Sebastián 20018, Spain
- Donostia International Physics Center (DIPC), Donostia-San Sebastián 20018, Spain
| | - Akashdeep Kamra
- Condensed Matter Physics Center (IFIMAC) and Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Patrick A Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jagadeesh S Moodera
- Francis Bitter Magnet Laboratory and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
48
|
Xie YM, Law KT. Orbital Fulde-Ferrell Pairing State in Moiré Ising Superconductors. PHYSICAL REVIEW LETTERS 2023; 131:016001. [PMID: 37478419 DOI: 10.1103/physrevlett.131.016001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
In this Letter, we study superconducting moiré homobilayer transition metal dichalcogenides where the Ising spin-orbit coupling (SOC) is much larger than the moiré bandwidth. We call such noncentrosymmetric superconductors, moiré Ising superconductors. Because of the large Ising SOC, the depairing effect caused by the Zeeman field is negligible and the in-plane upper critical field (B_{c2}) is determined by the orbital effects. This allows us to study the effect of large orbital fields. Interestingly, when the applied in-plane field is larger than the conventional orbital B_{c2}, a finite-momentum pairing phase would appear which we call the orbital Fulde-Ferrell (FF) state. In this state, the Cooper pairs acquire a net momentum of 2q_{B}, where 2q_{B}=eBd is the momentum shift caused by the magnetic field B and d denotes the layer separation. This orbital field-driven FF state is different from the conventional FF state driven by Zeeman effects in Rashba superconductors. Remarkably, we predict that the FF pairing would result in a giant superconducting diode effect under electric gating when layer asymmetry is induced. An upturn of the B_{c2} as the temperature is lowered, coupled with the giant superconducting diode effect, would allow the detection of the orbital FF state.
Collapse
Affiliation(s)
- Ying-Ming Xie
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - K T Law
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
49
|
Hu JX, Sun ZT, Xie YM, Law KT. Josephson Diode Effect Induced by Valley Polarization in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 130:266003. [PMID: 37450809 DOI: 10.1103/physrevlett.130.266003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Recently, the Josephson diode effect (JDE), in which the superconducting critical current magnitudes differ when the currents flow in opposite directions, has attracted great interest. In particular, it was demonstrated that gate-defined Josephson junctions based on magic-angle twisted bilayer graphene showed a strong nonreciprocal effect when the weak-link region is gated to a correlated insulating state at half filling (two holes per moiré cell). However, the mechanism behind such a phenomenon is not yet understood. In this Letter, we show that the interaction-driven valley polarization, together with the trigonal warping of the Fermi surface, induce the JDE. The valley polarization, which lifts the degeneracy of the states in the two valleys, induces a relative phase difference between the first and the second harmonics of the supercurrent and results in the JDE. We further show that the nontrivial current phase relation, which is responsible for the JDE, also generates the asymmetric Shapiro steps.
Collapse
Affiliation(s)
- Jin-Xin Hu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi-Ting Sun
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying-Ming Xie
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - K T Law
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
50
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|