1
|
Jiang Q, Dong J, Zhou X, Liao H, Zhou J, Xue D. Lewis-Acid-Catalyzed Dearomative [4π + 2σ] Cycloaddition of Bicyclobutanes with Isoquinolinium Methylides for the Synthesis of Ring-Fused Azabicyclo[3.1.1]heptanes. Org Lett 2024; 26:9311-9315. [PMID: 39419592 DOI: 10.1021/acs.orglett.4c03489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dearomative cycloadditions are valuable for efficiently generating three-dimensional molecular complexity. However, despite recent reports of cycloadditions of bicyclobutanes (BCBs) for the synthesis of aza-bicyclo[3.1.1]heptanes (aza-BCHeps), which are bioisosteres of meta-substituted aza-arenes, dearomative cycloaddition of BCBs with N-heteroarenes for the synthesis of ring-fused aza-BCHeps has yet to be achieved. Herein, we disclose a method for Lewis acid-catalyzed [4π + 2σ] cycloaddition of isoquinolinium methylides with BCBs, which furnished a diverse array of previously inaccessible ring-fused 3-aza-BCHeps. We demonstrated the synthetic utility of the method by carrying out scaled-up reactions and transforming the products.
Collapse
Affiliation(s)
- Qin Jiang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jianyang Dong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xuechen Zhou
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Huijuan Liao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Juan Zhou
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Dong Xue
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
2
|
Lorthioir O, Anderson N, Boyd S, Carlino L, Davey P, Hodds W, Howard M, Lindhagen M, Proctor K, Putra OD, Smith T, Turner O, Woodhouse A, Woodward M. Access to 2-Oxabicyclo[2.1.1]hexanes and their use in Scaffold Hopping. Org Lett 2024; 26:9179-9184. [PMID: 39432828 DOI: 10.1021/acs.orglett.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Saturated isosteres of the ortho-substituted benzene ring remain rare due to the paucity of methods to access complex bridged systems. Using blue-light-mediated [2 + 2] photocycloaddition chemistry, we have developed a quick and practical route to provide novel 2-oxabicyclo[2.1.1]hexanes from simple feedstock materials in only three steps. Matched pair analysis confirmed that this motif could prove useful in the future to the drug discovery community as a scaffold endowed with remarkable properties.
Collapse
Affiliation(s)
- Olivier Lorthioir
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Niall Anderson
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Scott Boyd
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Luca Carlino
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Paul Davey
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - William Hodds
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Megan Howard
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Marika Lindhagen
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Katie Proctor
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Theo Smith
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Oliver Turner
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Alfie Woodhouse
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Millie Woodward
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| |
Collapse
|
3
|
Krishnan C, Takano H, Katsuyama H, Kanna W, Hayashi H, Mita T. Strain-Releasing Ring-Opening Diphosphinations for the Synthesis of Diphosphine Ligands with Cyclic Backbones. JACS AU 2024; 4:3777-3787. [PMID: 39483215 PMCID: PMC11522911 DOI: 10.1021/jacsau.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 11/03/2024]
Abstract
Diphosphine ligands based on cyclobutane, bicyclo[3.1.1]heptane, and bicyclo[4.1.1]octane were synthesized from the corresponding highly strained, small, cyclic organic molecules, i.e., bicyclo[1.1.0]butane, [3.1.1]propellane, and [4.1.1]propellane, employing a ring-opening diphosphination. Under photocatalytic conditions, the three-component reaction of a diarylphosphine oxide, one of the aforementioned strained molecules, and a diarylchlorophosphine results in the smooth formation of the corresponding diphosphines in high yield. The obtained diphosphines can be expected to find applications in functional molecules due to their unique structural characteristics, which likely impart specific properties on their associated metal complexes and coordination polymers (e.g., a zigzag-type structure). The feasibility of the initial radical addition can be estimated using density-functional-theory calculations using the artificial force induced reaction (AFIR) method. This study focuses on the importance of integrating experimental and computational methods for the design and synthesis of new diphosphination reactions that involve strained, small, cyclic organic molecules.
Collapse
Affiliation(s)
- Chandu
G. Krishnan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hitomi Katsuyama
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Tsuyoshi Mita
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
4
|
Hu S, Gao Y, Pan Y, Ni D, Deng L. Modular Synthesis of Azidobicyclo[2.1.1]hexanes via (3 + 2) Annulation of α-Substituted Vinyl Azides and Bicyclo[1.1.0]butanes. J Org Chem 2024; 89:15151-15157. [PMID: 39331382 DOI: 10.1021/acs.joc.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here, we present a mild and rapid method to access azidobicyclo[2.1.1]hexanes via formal (3 + 2) cycloaddition of α-substituted vinyl azides and bicyclo[1.1.0]butanes under Lewis acid catalysis. A wide range of α-substituted vinyl azides were tolerated under mild conditions. Notably, the resulting cycloadducts could be transformed into structurally attractive 3-azabicyclo[3.1.1]heptenes through microwave-promoted rearrangement. The utilities were highlighted by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of tertiary alkyl azide and further transformation of the azide and ketone groups.
Collapse
Affiliation(s)
- Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yuhong Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yuming Pan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| |
Collapse
|
5
|
Zhang XG, Zhou ZY, Li JX, Chen JJ, Zhou QL. Copper-Catalyzed Enantioselective [4π + 2σ] Cycloaddition of Bicyclobutanes with Nitrones. J Am Chem Soc 2024; 146:27274-27281. [PMID: 39321390 DOI: 10.1021/jacs.4c10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The selective construction of bridged bicyclic scaffolds has garnered increasing attention because of their extensive use as saturated bioisosteres of arene in pharmaceutical industry. However, in sharp contrast to their racemic counterparts, assembling chiral bridged bicyclic structures in an enantioselective and regioselective manner remains challenging. Herein, we describe our protocol for constructing chiral 2-oxa-3-azabicyclo[3.1.1]heptanes (BCHeps) by enantioselective [4π + 2σ] cycloadditions of bicyclo[1.1.0]butanes (BCBs) and nitrones taking advantage of a chiral copper(II) complex as a Lewis acid catalyst. This method features mild conditions, good functional group tolerance, high yield (up to 99%), and excellent enantioselectivity (up to 99% ee). Density functional theory (DFT) calculation elucidates the origin of the reaction's enantioselectivity and the mechanism of BCB activation by Cu(II) complex.
Collapse
Affiliation(s)
- Xuan-Ge Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zi-Yang Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jia-Xin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jun-Jia Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Xiao Y, Wu F, Tang L, Zhang X, Wei M, Wang G, Feng JJ. Divergent Synthesis of Sulfur-Containing Bridged Cyclobutanes by Lewis Acid Catalyzed Formal Cycloadditions of Pyridinium 1,4-Zwitterionic Thiolates and Bicyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202408578. [PMID: 38818620 DOI: 10.1002/anie.202408578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4-zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur-containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher-order (5+3) cycloaddition of BCBs with quinolinium 1,4-zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid-catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4-zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4-zwitterionic thiolates undergo an Sc(OTf)3-catalyzed formal (3+3) reaction with BCBs to generate thia-norpinene products, which represent the initial instance of synthesizing 2-thiabicyclo[3.1.1]heptanes (thia-BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia-BCHeps-substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4-zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4-zwitterionic thiolates is under thermodynamic control.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Mengran Wei
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
7
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Wu WB, Xu B, Yang XC, Wu F, He HX, Zhang X, Feng JJ. Enantioselective formal (3 + 3) cycloaddition of bicyclobutanes with nitrones enabled by asymmetric Lewis acid catalysis. Nat Commun 2024; 15:8005. [PMID: 39266575 PMCID: PMC11393060 DOI: 10.1038/s41467-024-52419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The absence of catalytic asymmetric methods for synthesizing chiral (hetero)bicyclo[n.1.1]alkanes has hindered their application in new drug discovery. Here we demonstrate the achievability of an asymmetric polar cycloaddition of bicyclo[1.1.0]butane using a chiral Lewis acid catalyst and a bidentate chelating bicyclo[1.1.0]butane substrate, as exemplified by the current enantioselective formal (3 + 3) cycloaddition of bicyclo[1.1.0]butanes with nitrones. In addition to the diverse bicyclo[1.1.0]butanes incorporating an acyl imidazole group or an acyl pyrazole moiety, a wide array of nitrones are compatible with this Lewis acid catalysis, successfully assembling two congested quaternary carbon centers and a chiral aza-trisubstituted carbon center in the pharmaceutically important hetero-bicyclo[3.1.1]heptane product with up to 99% yield and >99% ee.
Collapse
Affiliation(s)
- Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University, Shanghai, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
9
|
Zhang M, Chapman M, Sarode BR, Xiong B, Liang H, Chen JK, Weerapana E, Morken JP. Catalytic asymmetric synthesis of meta benzene isosteres. Nature 2024; 633:90-95. [PMID: 39169193 DOI: 10.1038/s41586-024-07865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Matthew Chapman
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Bhagyesh R Sarode
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Bingcong Xiong
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hao Liang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | | | - James P Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
10
|
Wu F, Wu WB, Xiao Y, Li Z, Tang L, He HX, Yang XC, Wang JJ, Cai Y, Xu TT, Tao JH, Wang G, Feng JJ. Zinc-Catalyzed Enantioselective Formal (3+2) Cycloadditions of Bicyclobutanes with Imines: Catalytic Asymmetric Synthesis of Azabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2024:e202406548. [PMID: 39218783 DOI: 10.1002/anie.202406548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The cycloaddition reaction involving bicyclo[1.1.0]butanes (BCBs) offers a versatile and efficient synthetic platform for producing C(sp3)-rich rigid bridged ring scaffolds, which act as phenyl bioisosteres. However, there is a scarcity of catalytic asymmetric cycloadditions of BCBs to fulfill the need for enantioenriched saturated bicycles in drug design and development. In this study, an efficient synthesis of valuable azabicyclo[2.1.1]hexanes (aza-BCHs) by an enantioselective zinc-catalyzed (3+2) cycloadditions of BCBs with imines is reported. The reaction proceeds effectively with a novel type of BCB that incorporates a 2-acyl imidazole group and a diverse array of alkynyl- and aryl-substituted imines. The target aza-BCHs, which consist of α-chiral amine fragments and two quaternary carbon centers, are efficiently synthesized with up to 94 % and 96.5:3.5 er under mild conditions. Experimental and computational studies reveal that the reaction follows a concerted nucleophilic ring-opening mechanism of BCBs with imines. This mechanism is distinct from previous studies on Lewis acid-catalyzed cycloadditions of BCBs.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenxing Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ji-Jie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuanlin Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jia-Hao Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
11
|
Gao XY, Tang L, Zhang X, Feng JJ. Palladium-catalyzed decarboxylative (4 + 3) cycloadditions of bicyclobutanes with 2-alkylidenetrimethylene carbonates for the synthesis of 2-oxabicyclo[4.1.1]octanes. Chem Sci 2024:d4sc02998d. [PMID: 39139738 PMCID: PMC11317905 DOI: 10.1039/d4sc02998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
While cycloaddition reactions of bicyclobutanes (BCBs) have emerged as a potent method for synthesizing (hetero-)bicyclo[n.1.1]alkanes (usually n ≤ 3), their utilization in the synthesis of bicyclo[4.1.1]octane derivatives (BCOs) is still underdeveloped. Here, a palladium-catalyzed formal (4 + 3) reaction of BCBs with 1,4-O/C dipole precursors for the synthesis of oxa-BCOs is described. Unlike previous catalytic polar (3 + X) cycloadditions of BCBs, which are typically achieved through the activation of BCB substrates, the current reaction represents a novel strategy for realizing the cycloaddition of BCBs through the activation of the "X" cycloaddition partner. Moreover, the obtained functionalized oxa-BCOs products can be readily modified through various synthetic transformations.
Collapse
Affiliation(s)
- Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
12
|
Chernykh AV, Vashchenko BV, Shishkina SV, Volochnyuk DM, Grygorenko OO. 3-Substituted 6-Azabicyclo[3.1.1]heptanes: Nonclassical Piperidine Isosteres for Drug Discovery. J Org Chem 2024; 89:10440-10450. [PMID: 38989992 DOI: 10.1021/acs.joc.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Advanced analogs of piperidine and smaller homologues of tropane─3-substituted 6-azabicyclo[3.1.1]heptanes─were synthesized on a large scale using readily available bulk reagents. The key step of the approach involved the double alkylation reaction of malonate with cis-2,4-bis(mesyloxymethyl)azetidine-1-carboxylate, in turn easily prepared on up to 1 kg scale. After hydrolysis, N-Boc-6-azabicyclo[3.1.1]heptane-3,3-dicarboxylic acid was obtained (up to 400 g in a single run), which was used as a common intermediate for the preparation of all the title building blocks. In particular, Pb(OAc)4-mediated oxidative decarboxylation of this intermediate gave 2,6-methanopiperidone derivative (up to 400 g scale), while monodecarboxylation gave N-Boc-6-azabicyclo[3.1.1]heptane-3-carboxylic acids as an easily separatable mixture of cis and trans diastereomers (up to 100 g scale). Further functional group transformations gave diastereopure cis- and trans-N-Boc-monoprotected diamines and amino alcohols. Molecular structure analysis using exit vector parameters (EVP) revealed that cis isomers of 3-substituted 6-azabicyclo[3.1.1]heptanes are three-dimensional analogs of common 1,4-disubstituted piperidine chair conformer, whereas trans isomers can be considered as unusual "boat" piperidines.
Collapse
Affiliation(s)
- Anton V Chernykh
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| | - Svitlana V Shishkina
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- SSI "Institute for Single Crystals" of the NAS of Ukraine, Nauky Avenue 60, Kharkiv 61001, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| |
Collapse
|
13
|
Zhu S, Tian X, Li SW. Intermolecular Formal [2π + 2σ] Cycloaddition of Enol Silyl Ethers with Bicyclo[1.1.0]butanes Promoted by Lewis Acids. Org Lett 2024; 26:6309-6313. [PMID: 39041658 DOI: 10.1021/acs.orglett.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Silyl enol ethers react with bicyclo[1.1.0]butanes (BCBs) through Yb(OTf)3-promoted formal [2π + 2σ] cycloaddition reactions to furnish bicyclo[2.1.1]hexanes (BCHs). This new reaction tolerated a wide range of enol silyl ethers and BCBs. Furthermore, the amplification experiments and synthetic transformations of the cycloaddition compounds further highlighted their practicality.
Collapse
Affiliation(s)
- Shijie Zhu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Xue Tian
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| |
Collapse
|
14
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Zhou JL, Xiao Y, He L, Gao XY, Yang XC, Wu WB, Wang G, Zhang J, Feng JJ. Palladium-Catalyzed Ligand-Controlled Switchable Hetero-(5 + 3)/Enantioselective [2σ+2σ] Cycloadditions of Bicyclobutanes with Vinyl Oxiranes. J Am Chem Soc 2024; 146:19621-19628. [PMID: 38739092 DOI: 10.1021/jacs.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.
Collapse
Affiliation(s)
- Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
16
|
Sterling AJ, Smith RC, Anderson EA, Duarte F. Beyond Strain Release: Delocalization-Enabled Organic Reactivity. J Org Chem 2024; 89:9979-9989. [PMID: 38970491 PMCID: PMC11267611 DOI: 10.1021/acs.joc.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
The release of strain energy is a fundamental driving force for organic reactions. However, absolute strain energy alone is an insufficient predictor of reactivity, evidenced by the similar ring strain but disparate reactivity of cyclopropanes and cyclobutanes. In this work, we demonstrate that electronic delocalization is a key factor that operates alongside strain release to boost, or even dominate, reactivity. This delocalization principle extends across a wide range of molecules containing three-membered rings such as epoxides, aziridines, and propellanes and also applies to strain-driven cycloaddition reactions. Our findings lead to a "rule of thumb" for the accurate prediction of activation barriers in such systems, which can be easily applied to reactions involving many of the strained building blocks commonly encountered in organic synthesis, medicinal chemistry, polymer science, and bioconjugation. Given the significance of electronic delocalization in organic chemistry, for example in aromatic π-systems and hyperconjugation, we anticipate that this concept will serve as a versatile tool to understand and predict organic reactivity.
Collapse
Affiliation(s)
- Alistair J. Sterling
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, The University
of Texas at Dallas, 800
W. Campbell Rad, Richardson, Texas 75080, United States
| | - Russell C. Smith
- Abbvie
Drug Discovery Science & Technology (DDST), 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Edward A. Anderson
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
17
|
Nugent J, López-Francés A, Sterling AJ, Tay MY, Frank N, Mousseau JJ, Duarte F, Anderson EA. α-Amino bicycloalkylation through organophotoredox catalysis. Chem Sci 2024; 15:10918-10925. [PMID: 39027309 PMCID: PMC11253163 DOI: 10.1039/d4sc01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Bridged bicycloalkanes such as bicyclo[1.1.1]pentanes (BCPs) and bicyclo[3.1.1]heptanes (BCHeps) are important motifs in contemporary drug design due to their potential to act as bioisosteres of disubstituted benzene rings, often resulting in compounds with improved physicochemical and pharmacokinetic properties. Access to such motifs with proximal nitrogen atoms (i.e. α-amino/amido bicycloalkanes) is highly desirable for drug discovery applications, but their synthesis is challenging. Here we report an approach to α-amino BCPs and BCHeps through the visible-light enabled addition of α-amino radicals to the interbridgehead C-C bonds of [1.1.1] and [3.1.1]propellane respectively. The reaction proceeds under exceptionally mild conditions and displays broad substrate scope, providing access to an array of medicinally-relevant BCP and BCHep products. Experimental and computational mechanistic studies provide evidence for a radical chain pathway which depends critically on the stability of the α-amino radical, as well as effective catalyst turnover.
Collapse
Affiliation(s)
- Jeremy Nugent
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Adrián López-Francés
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Min Yi Tay
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Nils Frank
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - James J Mousseau
- Pfizer Worldwide Research and Development Eastern Point Road, Groton Connecticut 06340 USA
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Edward A Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
18
|
Nicolai S, Waser J. Lewis acid catalyzed [4+2] annulation of bicyclobutanes with dienol ethers for the synthesis of bicyclo[4.1.1]octanes. Chem Sci 2024; 15:10823-10829. [PMID: 39027289 PMCID: PMC11253158 DOI: 10.1039/d4sc02767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Bicyclic carbocycles containing a high fraction of Csp3 have become highly attractive synthetic targets because of the multiple applications they have found in medicinal chemistry. The formal cycloaddition of bicyclobutanes (BCBs) with two- or three-atom partners has recently been extensively explored for the construction of bicyclohexanes and bicycloheptanes, but applications to the synthesis of medium-sized bridged carbocycles remained more limited. We report herein the formal [4+2] cycloaddition of BCB ketones with silyl dienol ethers. The reaction occurred in the presence of 5 mol% aluminium triflate as a Lewis acid catalyst. Upon acidic hydrolysis of the enol ether intermediates, rigid bicyclo[4.1.1]octane (BCO) diketones could be accessed in up to quantitative yields. This procedure tolerated a range of both aromatic and aliphatic substituents on both the BCB substrates and the dienes. The obtained BCO products could be functionalized through reduction and cross-coupling reactions.
Collapse
Affiliation(s)
- Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
19
|
Wang X, Gao R, Li X. Catalytic Asymmetric Construction of Chiral Polysubstituted 3-Azabicyclo[3.1.1]heptanes by Copper-Catalyzed Stereoselective Formal [4π+2σ] Cycloaddition. J Am Chem Soc 2024. [PMID: 39011580 DOI: 10.1021/jacs.4c06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The direct construction of bioisosteric compounds enriched in Csp3 content represents an attractive and dependable approach to imbuing biologically active molecules with enhanced three-dimensional characteristics, finding wide utility across the synthetic and medicinal chemistry community. Despite recent advancements in the synthesis of (aza)-bicyclo[3.1.1]heptanes (BCHeps and aza-BCHeps), which serve as meta-substituted (aza)-arene bioisosteres, the enantioselective assembly of chiral 3-aza-BCHeps remains a coveted goal yet to be achieved. Here, we disclose an unprecedented copper-catalyzed asymmetric formal [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes (BCBs) and azomethine ylides, furnishing a diverse array of enantioenriched 3-aza-BCHeps with exceptional levels of diastereo- and enantioselectivites (51 examples, all >20:1 dr, mostly 97-99% ee). Both mono- and disubstituted BCBs are well compatible with this protocol, offering an enticing route for the efficient synthesis of challenging tetrasubstituted bicyclic products bearing two quaternary centers. The synthetic significance of this methodology is further demonstrated by the successful preparation of several piperidine drug analogues.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rongkai Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Wang JJ, Tang L, Xiao Y, Wu WB, Wang G, Feng JJ. Switching between the [2π+2σ] and Hetero-[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202405222. [PMID: 38729920 DOI: 10.1002/anie.202405222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.
Collapse
Affiliation(s)
- Ji-Jie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
21
|
Lin Z, Ren H, Lin X, Yu X, Zheng J. Synthesis of Azabicyclo[3.1.1]heptenes Enabled by Catalyst-Controlled Annulations of Bicyclo[1.1.0]butanes with Vinyl Azides. J Am Chem Soc 2024; 146:18565-18575. [PMID: 38935924 DOI: 10.1021/jacs.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bridged bicyclic scaffolds are emerging bioisosteres of planar aromatic rings under the concept of "escape from flatland". However, adopting this concept into the exploration of bioisosteres of pyridines remains elusive due to the challenge of incorporating a N atom into such bridged bicyclic structures. Herein, we report practical routes for the divergent synthesis of 2- and 3-azabicyclo[3.1.1]heptenes (aza-BCHepes) as potential bioisosteres of pyridines from the readily accessible vinyl azides and bicyclo[1.1.0]butanes (BCBs) via two distinct catalytic annulations. The reactivity of vinyl azides tailored with BCBs is the key to achieving divergent transformations. TiIII-catalyzed single-electron reductive generation of C-radicals from BCBs allows a concise (3 + 3) annulation with vinyl azides, affording novel 2-aza-BCHepe scaffolds. In contrast, scandium catalysis enables an efficient dipolar (3 + 2) annulation with vinyl azides to generate 2-azidobicyclo[2.1.1]hexanes, which subsequently undergo a chemoselective rearrangement to construct 3-aza-BCHepes. Both approaches efficiently deliver unique azabicyclo[3.1.1]heptene scaffolds with a high functional group tolerance. The synthetic utility has been further demonstrated by scale-up reactions and diverse postcatalytic transformations, providing valuable azabicyclics including 2- and 3-azabicyclo[3.1.1]heptanes and rigid bicyclic amino esters. In addition, the related sp2-hybridized nitrogen atom and the similar geometric property between pyridines and corresponding aza-BCHepes indicate that they are promising bioisosteres of pyridines.
Collapse
Affiliation(s)
- Zhongren Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinbo Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
22
|
Li Y, Shi H, Yin G. Synthetic techniques for thermodynamically disfavoured substituted six-membered rings. Nat Rev Chem 2024; 8:535-550. [PMID: 38822206 DOI: 10.1038/s41570-024-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Six-membered rings are ubiquitous structural motifs in bioactive compounds and multifunctional materials. Notably, their thermodynamically disfavoured isomers, like disubstituted cyclohexanes featuring one substituent in an equatorial position and the other in an axial position, often exhibit enhanced physical and biological activities in comparison with their opposite isomers. However, the synthesis of thermodynamically disfavoured isomers is, by its nature, challenging, with only a limited number of possible approaches. In this Review, we summarize and compare synthetic methodologies that produce substituted six-membered rings with thermodynamically disfavoured substitution patterns. We place particular emphasis on elucidating the crucial stereoinduction factors within each transformation. Our aim is to stimulate interest in the synthesis of these unique structures, while simultaneously providing synthetic chemists with a guide to approaching this synthetic challenge.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Hongjin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
23
|
Trauner F, Ghazali R, Rettig J, Thiele CM, Didier D. Stereoselective polar radical crossover for the functionalization of strained-ring systems. Commun Chem 2024; 7:139. [PMID: 38898159 PMCID: PMC11187220 DOI: 10.1038/s42004-024-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Radical-polar crossover of organoborates is a poweful tool that enables the creation of two C-C bonds simultaneously. Small ring systems have become essential motifs in drug discovery and medicinal chemistry. However, step-economic methods for their selective functionalization remains scarce. Here we present a one-pot strategy that merges a simple preparation of strained organoboron species with the recently popularized polar radical crossover of borate derivatives to stereoselectively access tri-substituted azetidines, cyclobutanes and five-membered carbo- and heterocycles.
Collapse
Affiliation(s)
- Florian Trauner
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Ludwig-Maximilians Universität, Department Chemie, Butenandtstr. 5, 81377, München, Germany
| | - Rahma Ghazali
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Jan Rettig
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Dorian Didier
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany.
- Ludwig-Maximilians Universität, Department Chemie, Butenandtstr. 5, 81377, München, Germany.
| |
Collapse
|
24
|
Liu Y, Wu Z, Shan JR, Yan H, Hao EJ, Shi L. Titanium catalyzed [2σ + 2π] cycloaddition of bicyclo[1.1.0]-butanes with 1,3-dienes for efficient synthesis of stilbene bioisosteres. Nat Commun 2024; 15:4374. [PMID: 38782978 PMCID: PMC11116475 DOI: 10.1038/s41467-024-48494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Natural stilbenes have shown significant potential in the prevention and treatment of diseases due to their diverse pharmacological activities. Here we present a mild and effective Ti-catalyzed intermolecular radical-relay [2σ + 2π] cycloaddition of bicyclo[1.1.0]-butanes and 1,3-dienes. This transformation enables the synthesis of bicyclo[2.1.1]hexane (BCH) scaffolds containing aryl vinyl groups with excellent regio- and trans-selectivity and broad functional group tolerance, thus offering rapid access to structurally diverse stilbene bioisosteres.
Collapse
Affiliation(s)
- Yonghong Liu
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Zhixian Wu
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Er-Jun Hao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Lei Shi
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China.
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
25
|
Liang Y, Nematswerani R, Daniliuc CG, Glorius F. Silver-Enabled Cycloaddition of Bicyclobutanes with Isocyanides for the Synthesis of Polysubstituted 3-Azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202402730. [PMID: 38441241 DOI: 10.1002/anie.202402730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 04/17/2024]
Abstract
Synthesis of bicyclic scaffolds has emerged as an important research topic in modern drug development because they can serve as saturated bioisosters to enhance the physicochemical properties and metabolic profiles of drug candidates. Here we report a remarkably simple silver-enabled strategy to access polysubstituted 3-azabicyclo[3.1.1]heptanes in a single operation from readily accessible bicyclobutanes (BCBs) and isocyanides. The process is proposed to involve a formal (3+3)/(3+2)/retro-(3+2) cycloaddition sequence. This novel protocol allows for rapid generation of molecular complexity from simple starting materials, and the products can be easily derivatized, further enriching the BCB cycloaddition chemistry and the growing set of valuable sp3-rich bicyclic building blocks.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Ronewa Nematswerani
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
26
|
Yang L, Wang H, Lang M, Wang J, Peng S. B(C 6F 5) 3-Catalyzed Formal ( n + 3) ( n = 5 and 6) Cycloaddition of Bicyclo[1.1.0]butanes to Medium Bicyclo[ n.1.1]alkanes. Org Lett 2024; 26:4104-4110. [PMID: 38700913 DOI: 10.1021/acs.orglett.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Herein, a B(C6F5)3-catalyzed formal (n + 3) (n = 5 and 6) cycloaddition of bicyclo[1.1.0]butanes (BCBs) with imidazolidines/hexahydropyrimidines is described. The reaction provides a modular, atom-economical, and efficient strategy to two libraries of synthetically challenging medium-bridged rings, 2,5-diazabicyclo[5.1.1]nonanes and 2,6-diazabicyclo[6.1.1]decanes, in moderate to excellent yields. This reaction also features simple operation, mild reaction conditions, and broad substrate scope. A scale-up experiment and various synthetic transformations of products further highlight the synthetic utility.
Collapse
Affiliation(s)
- Liangliang Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Haiyang Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jian Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyong Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
27
|
Levterov VV, Panasiuk Y, Shablykin O, Stashkevych O, Sahun K, Rassokhin A, Sadkova I, Lesyk D, Anisiforova A, Holota Y, Borysko P, Bodenchuk I, Voloshchuk NM, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes: Synthesis, Properties, and Validation as Bioisosteres of ortho- and meta-Benzenes. Angew Chem Int Ed Engl 2024; 63:e202319831. [PMID: 38465464 DOI: 10.1002/anie.202319831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
We have developed a general and practical approach towards 2-oxabicyclo[2.1.1]hexanes with two and three exit vectors via an iodocyclization reaction. The obtained compounds have been easily converted into the corresponding building blocks for use in medicinal chemistry. 2-Oxabicyclo[2.1.1]hexanes have been incorporated into the structure of five drugs and three agrochemicals, and validated biologically as bioisosteres of ortho- and meta-benzenes.
Collapse
Affiliation(s)
| | | | - Oleh Shablykin
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Oleksandr Stashkevych
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska Str. 64, 01601, Kyiv, Ukraine
| | - Kateryna Sahun
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Artur Rassokhin
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Iryna Sadkova
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Dmytro Lesyk
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Nataliya M Voloshchuk
- National University of Life and Environmental Sciences of Ukraine, V. F. Peresypkin Department of Phytopathology, Heroyiv Oborony Str. 15, 03041, Kyiv, Ukraine
| | | |
Collapse
|
28
|
Diepers HE, Walker JCL. (Bio)isosteres of ortho- and meta-substituted benzenes. Beilstein J Org Chem 2024; 20:859-890. [PMID: 38655554 PMCID: PMC11035989 DOI: 10.3762/bjoc.20.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Saturated bioisosteres of substituted benzenes offer opportunities to fine-tune the properties of drug candidates in development. Bioisosteres of para-benzenes, such as those based on bicyclo[1.1.1]pentane, are now very common and can be used to increase aqueous solubility and improve metabolic stability, among other benefits. Bioisosteres of ortho- and meta-benzenes were for a long time severely underdeveloped by comparison. This has begun to change in recent years, with a number of potential systems being reported that can act as bioisosteres for these important fragments. In this review, we will discuss these recent developments, summarizing the synthetic approaches to the different bioisosteres as well as the impact they have on the physiochemical and biological properties of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- H Erik Diepers
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Revie R, Whitaker BJ, Paul B, Smith RC, Anderson EA. Synthesis of Heterocycle-Substituted Bicyclo[3.1.1]heptanes and Aza-bicyclo[3.1.1]heptanes via Photocatalytic Minisci Reaction. Org Lett 2024; 26:2843-2846. [PMID: 38251922 PMCID: PMC11020156 DOI: 10.1021/acs.orglett.3c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
A route toward heterocycle-functionalized bicyclo[3.1.1]heptanes (BCHeps) and aza-bicyclo[3.1.1]heptanes (aza-BCHeps) has been developed, using mild, photocatalytic Minisci-like conditions to introduce various heterocycles at the bridgehead position from readily available N-hydroxyphthalimide esters of the corresponding carboxylic acids. This chemistry enables access to heterocycle-functionalized BCHep-containing structures that are highly relevant in medicinal chemistry research as potential bioisosteres of meta-substituted arenes and pyridines.
Collapse
Affiliation(s)
- Rebecca
I. Revie
- Department
of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin J. Whitaker
- Department
of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bhaskar Paul
- Department
of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Russell C. Smith
- Drug
Discovery Science and Technology (DDST), AbbVie, North Chicago, Illinois 60064, United States
| | - Edward A. Anderson
- Department
of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
30
|
Alcázar J, Anderson EA, Davies HML, Febrian R, Kelly CB, Noël T, Voight EA, Zarate C, Zysman-Colman E. Better Together: Catalyzing Innovation in Organic Synthesis via Academic-Industrial Consortia. Org Lett 2024; 26:2677-2681. [PMID: 38284620 DOI: 10.1021/acs.orglett.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Affiliation(s)
- Jesús Alcázar
- Global Discovery Chemistry, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rio Febrian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher B Kelly
- Discovery Process Research, Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric A Voight
- Discovery Research, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Cayetana Zarate
- Chemical Process R&D, Johnson & Johnson Innovative Medicine, Janssen-Cilag AG, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, North Haugh, KY16 9ST St Andrews, U.K
| |
Collapse
|
31
|
Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Light-Driven Synthesis and Functionalization of Bicycloalkanes, Cubanes and Related Bioisosteres. Angew Chem Int Ed Engl 2024; 63:e202317333. [PMID: 38179801 DOI: 10.1002/anie.202317333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.
Collapse
Affiliation(s)
- Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
32
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
33
|
Pattison G. Assessing the rigidity of cubanes and bicyclo(1.1.1)pentanes as benzene bioisosteres. Bioorg Med Chem 2024; 102:117652. [PMID: 38442523 DOI: 10.1016/j.bmc.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Aromatic rings are critical core substructures in the majority of pharmaceutical compounds. There is much recent interest in replacing aromatic structures with saturated bioisosteres of benzene, which are generally fused or bridged ring systems. These bioisosteres often show improved solubility properties compared to benzene, and may also undergo fewer unwanted metabolic processes. One key reason why aromatic rings have proven so successful in drug design is their rigidity. This paper uses molecular dynamics simulations supported by crystallographic data to assess the rigidity of bicyclopentane and cubane ring systems as two of the most common benzene bioisosteres and compares this to benzene. Whilst a benzene ring is shown to be more flexible than these two bioisosteres in terms of its dihedral ring flexibility, substituents around the ring tend to behave in a much more similar way in both benzene and the bioisosteric systems.
Collapse
Affiliation(s)
- Graham Pattison
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, UK LN6 7DL.
| |
Collapse
|
34
|
Dutta S, Lu YL, Erchinger JE, Shao H, Studer E, Schäfer F, Wang H, Rana D, Daniliuc CG, Houk KN, Glorius F. Double Strain-Release [2π+2σ]-Photocycloaddition. J Am Chem Soc 2024; 146:5232-5241. [PMID: 38350439 DOI: 10.1021/jacs.3c11563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
In pursuit of potent pharmaceutical candidates and to further improve their chemical traits, small ring systems can serve as a potential starting point. Small ring units have the additional merit of loaded strain at their core, making them suitable reactants as they can capitalize on this intrinsic driving force. With the introduction of cyclobutenone as a strained precursor to ketene, the photocycloaddition with another strained unit, bicyclo[1.1.0]butane (BCB), enables the reactivity of both π-units in the transient ketene. This double strain-release driven [2π+2σ]-photocycloaddition promotes the synthesis of diverse heterobicyclo[2.1.1]hexane units, a pharmaceutically relevant bioisostere. The effective reactivity under catalyst-free conditions with a high functional group tolerance defines its synthetic utility. Experimental mechanistic studies and density functional theory (DFT) calculations suggest that the [2π+2σ]-photocycloaddition takes place via a triplet mechanism.
Collapse
Affiliation(s)
- Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Yi-Lin Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Johannes E Erchinger
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Emanuel Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Huamin Wang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
35
|
Prysiazhniuk K, Datsenko OP, Polishchuk O, Shulha S, Shablykin O, Nikandrova Y, Horbatok K, Bodenchuk I, Borysko P, Shepilov D, Pishel I, Kubyshkin V, Mykhailiuk PK. Spiro[3.3]heptane as a Saturated Benzene Bioisostere. Angew Chem Int Ed Engl 2024; 63:e202316557. [PMID: 38251921 DOI: 10.1002/anie.202316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.
Collapse
Affiliation(s)
| | | | | | | | - Oleh Shablykin
- Enamine Ltd., Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Iryna Pishel
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | | |
Collapse
|
36
|
Semeno VV, Vasylchenko VO, Fesun IM, Ruzhylo LY, Kipriianov MO, Melnykov KP, Skreminskyi A, Iminov R, Mykhailiuk P, Vashchenko BV, Grygorenko OO. Bicyclo[m.n.k]alkane Building Blocks as Promising Benzene and Cycloalkane Isosteres: Multigram Synthesis, Physicochemical and Structural Characterization. Chemistry 2024; 30:e202303859. [PMID: 38149408 DOI: 10.1002/chem.202303859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Electrophilic double bond functionalization - intramolecular enolate alkylation sequence was used to obtain a series of bridged and fused bicyclo[m.n.k]alkane derivatives (i. e., bicyclo[4.1.1]octanes, bicyclo[2.2.1]heptanes, bicyclo[3.2.1]octanes, bicyclo[3.1.0]hexanes, and bicyclo[4.2.0]heptanes). The scope and limitations of the method were established, and applicability to the multigram synthesis of target bicyclic compounds was illustrated. Using the developed protocols, over 50 mono- and bifunctional building blocks relevant to medicinal chemistry were prepared. The synthesized compounds are promising isosteres of benzene and cycloalkane rings, which is confirmed by their physicochemical and structural characterization (pKa , LogP, and exit vector parameters (EVP)). "Rules of thumb" for the upcoming isosteric replacement studies were proposed.
Collapse
Affiliation(s)
- Volodymyr V Semeno
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Ihor M Fesun
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | - Liudmyla Yu Ruzhylo
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave. 37, Kyїv, 03056, Ukraine
| | - Mykhailo O Kipriianov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave. 37, Kyїv, 03056, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Rustam Iminov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | | | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
37
|
Fujiwara K, Nagasawa S, Maeyama R, Segawa R, Hirasawa N, Hirokawa T, Iwabuchi Y. Biological Evaluation of Isosteric Applicability of 1,3-Substituted Cuneanes as m-Substituted Benzenes Enabled by Selective Isomerization of 1,4-Substituted Cubanes. Chemistry 2024; 30:e202303548. [PMID: 38012076 DOI: 10.1002/chem.202303548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
We herein evaluate a biological applicability of 1,3-substituted cuneanes as an isostere of m-substituted benzenes based on its structural similarity. An investigation of a method to obtain 1,3-substituted cuneanes by selective isomerization of 1,4-substituted cubanes enables this attempt by giving a key synthetic step to obtain a cuneane analogs of pharmaceuticals having m-substituted benzene moiety. Biological evaluation of the synthesized analogs and in silico study of the obtained result revealed a potential usage of cuneane skeleton in medicinal chemistry.
Collapse
Affiliation(s)
- Kan Fujiwara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Ryusei Maeyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Ryosuke Segawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| |
Collapse
|
38
|
Bjørnstad F, Havik S, Aarhus TI, Mahdi I, Unger A, Habenberger P, Degenhart C, Eickhoff J, Klebl BM, Sundby E, Hoff BH. Pyrrolopyrimidine based CSF1R inhibitors: Attempted departure from Flatland. Eur J Med Chem 2024; 265:116053. [PMID: 38141285 DOI: 10.1016/j.ejmech.2023.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is an attractive target for inflammation disorders and cancers. Based on a series of pyrrolo[2,3-d]pyrimidine containing two carbo-aromatic rings, we have searched for new CSF1R inhibitors having a higher fraction of sp3-atoms. The phenyl unit in the 4-amino group could efficiently be replaced by tetrahydropyran (THP) retaining inhibitor potency. Exchanging the 6-aryl group with cyclohex-2-ene units also resulted in highly potent compounds, while fully saturated ring systems at C-6 led to a loss of activity. The structure-activity relationship study evaluating THP containing pyrrolo[2,3-d]pyrimidine derivates identified several highly active inhibitors by enzymatic studies. A comparison of 11 pairs of THP and aromatic compounds showed that inhibitors containing THP had clear benefits in terms of enzymatic potency, solubility, and cell toxicity. Guided by cellular experiments in Ba/F3 cells, five CSF1R inhibitors were further profiled in ADME assays, indicating the para-aniline derivative 16t as the most attractive compound for further development.
Collapse
Affiliation(s)
- Frithjof Bjørnstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Simen Havik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Iktedar Mahdi
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Carsten Degenhart
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert M Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
39
|
Chen M, Cui Y, Chen X, Shang R, Zhang X. C-F bond activation enables synthesis of aryl difluoromethyl bicyclopentanes as benzophenone-type bioisosteres. Nat Commun 2024; 15:419. [PMID: 38199996 PMCID: PMC10781780 DOI: 10.1038/s41467-023-44653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bioisosteric design has become an essential approach in the development of drug molecules. Recent advancements in synthetic methodologies have enabled the rapid adoption of this strategy into drug discovery programs. Consequently, conceptionally innovative practices would be appreciated by the medicinal chemistry community. Here we report an expeditous synthetic method for synthesizing aryl difluoromethyl bicyclopentane (ADB) as a bioisostere of the benzophenone core. This approach involves the merger of light-driven C-F bond activation and strain-release chemistry under the catalysis of a newly designed N-anionic-based organic photocatalyst. This defluorinative coupling methodology enables the direct conversion of a wide variety of commercially available trifluoromethylaromatic C-F bonds (more than 70 examples) into the corresponding difluoromethyl bicyclo[1.1.1]pentanes (BCP) arenes/difluoromethyl BCP boronates in a single step. The strategy can also be applied to [3.1.1]and [4.1.1]propellane systems, providing access to analogues with different geometries. Moreover, we have successfully used this protocol to rapidly prepare ADB-substituted analogues of the bioactive molecule Adiporon. Biological testing has shown that the ADB scaffold has the potential to enhance the pharmacological properties of benzophenone-type drug candidates.
Collapse
Affiliation(s)
- Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Yuang Cui
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China.
| |
Collapse
|
40
|
Matador E, Tilby MJ, Saridakis I, Pedrón M, Tomczak D, Llaveria J, Atodiresei I, Merino P, Ruffoni A, Leonori D. A Photochemical Strategy for the Conversion of Nitroarenes into Rigidified Pyrrolidine Analogues. J Am Chem Soc 2023; 145:27810-27820. [PMID: 38059920 DOI: 10.1021/jacs.3c10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Bicyclic amines are important motifs for the preparation of bioactive materials. These species have well-defined exit vectors that enable accurate disposition of substituents toward specific areas of chemical space. Of all possible skeletons, the 2-azabicyclo[3.2.0]heptane framework is virtually absent from MedChem libraries due to a paucity of synthetic methods for its preparation. Here, we report a modular synthetic strategy that utilizes nitroarenes as flat and easy-to-functionalize feedstocks for the assembly of these sp3-rich materials. Mechanistically, this approach exploits two concomitant photochemical processes that sequentially ring-expand the nitroarene into an azepine and then fold it into a rigid bicycle pyrroline by means of singlet nitrene-mediated nitrogen insertion and excited-state-4π electrocyclization. A following hydrogenolysis provides, with full diastereocontrol, the desired bicyclic amine derivatives whereby the aromatic substitution pattern has been translated into the one of the three-dimensional heterocycle. These molecules can be considered rigid pyrrolidine analogues with a well-defined orientation of their substituents. Furthermore, unsupervised clustering of an expansive virtual database of saturated N-heterocycles revealed these derivatives as effective isosteres of rigidified piperidines. Overall, this platform enables the conversion of nitroarene feedstocks into complex sp3-rich heterocycles of potential interest to drug development.
Collapse
Affiliation(s)
- Esteban Matador
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012 Sevilla, Spain
| | - Michael J Tilby
- Department of Chemistry, University of Manchester, M13 9PL Manchester, U.K
| | - Iakovos Saridakis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Manuel Pedrón
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009 Zaragoza, Spain
| | - Dawid Tomczak
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen Research & Development, Janssen-Cilag S.A., Jarama 75A, 45007 Toledo, Spain
| | - Iuliana Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009 Zaragoza, Spain
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
41
|
Denisenko A, Garbuz P, Makovetska Y, Shablykin O, Lesyk D, Al-Maali G, Korzh R, Sadkova IV, Mykhailiuk PK. 1,2-Disubstituted bicyclo[2.1.1]hexanes as saturated bioisosteres of ortho-substituted benzene. Chem Sci 2023; 14:14092-14099. [PMID: 38098705 PMCID: PMC10718076 DOI: 10.1039/d3sc05121h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Bicyclo[2.1.1]hexanes have been synthesized, characterized, and biologically validated as saturated bioisosteres of the ortho-substituted benzene ring. The incorporation of the 1,2-disubstituted bicyclo[2.1.1]hexane core into the structure of fungicides boscalid (BASF), bixafen (Bayer CS), and fluxapyroxad (BASF) gave saturated patent-free analogs with high antifungal activity.
Collapse
Affiliation(s)
- Aleksandr Denisenko
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Pavel Garbuz
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | | | - Oleh Shablykin
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine 02094 Kyiv Ukraine
| | - Dmytro Lesyk
- Bienta Winston Churchill st. 78 02094 Kyiv Ukraine
| | - Galeb Al-Maali
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
- Institute of Botany of the National Academy of Sciences of Ukraine 02094 Kyiv Ukraine
| | - Rodion Korzh
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Iryna V Sadkova
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Pavel K Mykhailiuk
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| |
Collapse
|
42
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
43
|
Tang L, Xiao Y, Wu F, Zhou JL, Xu TT, Feng JJ. Silver-Catalyzed Dearomative [2π+2σ] Cycloadditions of Indoles with Bicyclobutanes: Access to Indoline Fused Bicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202310066. [PMID: 37822277 DOI: 10.1002/anie.202310066] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Bicyclo[2.1.1]hexanes (BCHs) are becoming ever more important in drug design and development as bridged scaffolds that provide underexplored chemical space, but are difficult to access. Here a silver-catalyzed dearomative [2π+2σ] cycloaddition strategy for the synthesis of indoline fused BCHs from N-unprotected indoles and bicyclobutane precursors is described. The strain-release dearomative cycloaddition operates under mild conditions, tolerating a wide range of functional groups. It is capable of forming BCHs with up to four contiguous quaternary carbon centers, achieving yields of up to 99 %. In addition, a scale-up experiment and the synthetic transformations of the cycloadducts further highlighted the synthetic utility.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
44
|
Hill J, Jones RM, Crich D. Discovery of a Hydroxylamine-Based Brain-Penetrant EGFR Inhibitor for Metastatic Non-Small-Cell Lung Cancer. J Med Chem 2023; 66:15477-15492. [PMID: 37934858 PMCID: PMC10683025 DOI: 10.1021/acs.jmedchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
Metastases to the brain remain a significant problem in lung cancer, as treatment by most small-molecule targeted therapies is severely limited by efflux transporters at the blood-brain barrier (BBB). Here, we report the discovery of a selective, orally bioavailable, epidermal growth factor receptor (EGFR) inhibitor, 9, that exhibits high brain penetration and potent activity in osimertinib-resistant cell lines bearing L858R/C797S and exon19del/C797S EGFR resistance mutations. In vivo, 9 induced tumor regression in an intracranial patient-derived xenograft (PDX) murine model suggesting it as a potential lead for the treatment of localized and metastatic non-small-cell lung cancer (NSCLC) driven by activating mutant bearing EGFR. Overall, we demonstrate that an underrepresented functional group in medicinal chemistry, the trisubstituted hydroxylamine moiety, can be incorporated into a drug scaffold without the toxicity commonly surmised to accompany these units, all while maintaining potent biological activity and without the molecular weight creep common to drug optimization campaigns.
Collapse
Affiliation(s)
- Jarvis Hill
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | | | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
45
|
Nguyen TVT, Bossonnet A, Wodrich MD, Waser J. Photocatalyzed [2σ + 2σ] and [2σ + 2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5- or 6-Membered Carbocycles. J Am Chem Soc 2023; 145:25411-25421. [PMID: 37934629 DOI: 10.1021/jacs.3c09789] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + 2σ] and [2σ + 2π] annulation with either alkenes/alkynes or bicyclo[1.1.0]butanes, yielding cyclopent-anes/-enes and bicyclo[3.1.1]heptanes (BCHs), respectively. BCHs are promising bioisosteres for 1,2,4,5 tetra-substituted aromatic rings. Mechanistic studies, including density functional theory computation and a trapping experiment with DMPO, support a 1,3-biradical generated from cyclopropane as a key intermediate for these transformations.
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| |
Collapse
|
46
|
Kirichok AA, Tkachuk H, Kozyriev Y, Shablykin O, Datsenko O, Granat D, Yegorova T, Bas YP, Semirenko V, Pishel I, Kubyshkin V, Lesyk D, Klymenko-Ulianov O, Mykhailiuk PK. 1-Azaspiro[3.3]heptane as a Bioisostere of Piperidine. Angew Chem Int Ed Engl 2023:e202311583. [PMID: 37819253 DOI: 10.1002/anie.202311583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
1-Azaspiro[3.3]heptanes were synthesized, characterized, and validated biologically as bioisosteres of piperidine. The key synthesis step was thermal [2+2] cycloaddition between endocyclic alkenes and the Graf isocyanate, ClO2 S-NCO, to give spirocyclic β-lactams. Reduction of the β-lactam ring with alane produced 1-azaspiro[3.3]heptanes. Incorporation of this core into the anesthetic drug bupivacaine instead of the piperidine fragment resulted in a new patent-free analogue with high activity.
Collapse
Affiliation(s)
- Alexander A Kirichok
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | | | - Yevhenii Kozyriev
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Oles Honchar Dnipro National University, Faculty of Chemistry, 72 Gagarina Ave., 49010, Dnipro, Ukraine
| | - Oleh Shablykin
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Akademika Kukharya 1, 02094, Kyiv, Ukraine
| | | | - Dmitry Granat
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Tetyana Yegorova
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | - Yuliya P Bas
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | | | - Iryna Pishel
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Dmytro Lesyk
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| |
Collapse
|
47
|
Ramar T, Ilangovan A, A M Subbaiah M. Promoting Catalytic C-Selective Sulfonylation of Cyclopropanols against Conventional O-Sulfonylation Using Readily Available Sulfonyl Chlorides. J Org Chem 2023; 88:13553-13567. [PMID: 37708032 DOI: 10.1021/acs.joc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed β-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
| |
Collapse
|
48
|
Levterov VV, Panasiuk Y, Sahun K, Stashkevych O, Badlo V, Shablykin O, Sadkova I, Bortnichuk L, Klymenko-Ulianov O, Holota Y, Lachmann L, Borysko P, Horbatok K, Bodenchuk I, Bas Y, Dudenko D, Mykhailiuk PK. 2-Oxabicyclo[2.2.2]octane as a new bioisostere of the phenyl ring. Nat Commun 2023; 14:5608. [PMID: 37783681 PMCID: PMC10545790 DOI: 10.1038/s41467-023-41298-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
The phenyl ring is a basic structural element in chemistry. Here, we show the design, synthesis, and validation of its new saturated bioisostere with improved physicochemical properties - 2-oxabicyclo[2.2.2]octane. The design of the structure is based on the analysis of the advantages and disadvantages of the previously used bioisosteres: bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, and cubane. The key synthesis step is the iodocyclization of cyclohexane-containing alkenyl alcohols with molecular iodine in acetonitrile. 2-Oxabicyclo[2.2.2]octane core is incorporated into the structure of Imatinib and Vorinostat (SAHA) drugs instead of the phenyl ring. In Imatinib, such replacement leads to improvement of physicochemical properties: increased water solubility, enhanced metabolic stability, and reduced lipophilicity. In Vorinostat, such replacement results in a new bioactive analog of the drug. This study enhances the repertoire of available saturated bioisosteres of (hetero)aromatic rings for the use in drug discovery projects.
Collapse
Affiliation(s)
| | | | - Kateryna Sahun
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Valentyn Badlo
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Oleh Shablykin
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
- V. P. Kukhar IBOPC of the NASciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Iryna Sadkova
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Lina Bortnichuk
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Petro Borysko
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Iryna Bodenchuk
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Yuliia Bas
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | |
Collapse
|
49
|
Strassfeld DA, Chen CY, Park HS, Phan DQ, Yu JQ. Hydrogen-bond-acceptor ligands enable distal C(sp 3)-H arylation of free alcohols. Nature 2023; 622:80-86. [PMID: 37674074 PMCID: PMC11139439 DOI: 10.1038/s41586-023-06485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
The functionalization of C-H bonds in organic molecules is one of the most direct approaches for chemical synthesis. Recent advances in catalysis have allowed native chemical groups such as carboxylic acids, ketones and amines to control and direct C(sp3)-H activation1-4. However, alcohols, among the most common functionalities in organic chemistry5, have remained intractable because of their low affinity for late transition-metal catalysts6,7. Here we describe ligands that enable alcohol-directed arylation of δ-C(sp3)-H bonds. We use charge balance and a secondary-coordination-sphere hydrogen-bonding interaction-evidenced by structure-activity relationship studies, computational modelling and crystallographic data-to stabilize L-type hydroxyl coordination to palladium, thereby facilitating the assembly of the key C-H cleavage transition state. In contrast to previous studies in C-H activation, in which secondary interactions were used to control selectivity in the context of established reactivity8-13, this report demonstrates the feasibility of using secondary interactions to enable challenging, previously unknown reactivity by enhancing substrate-catalyst affinity.
Collapse
Affiliation(s)
| | - Chia-Yu Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - D Quang Phan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
50
|
Abstract
The concept of strain in organic compounds is as old as modern organic chemistry and was initially introduced to justify the synthetic setbacks along the synthesis of small ring systems (pars construens of strain). In the last decades, chemists have developed an arsenal of strain-release reactions (pars destruens of strain) which can generate─with significant driving force─rigid aliphatic systems that can act as three-dimensional alternatives to (hetero)arenes. Photocatalysis added an additional dimension to strain-release processes by leveraging the energy of photons to create chemical complexity under mild conditions. This perspective presents the latest advancements in strain-release photocatalysis─with emphases on mechanisms, catalytic cycles, and current limitations─the unique chemical architectures that can be produced, and possible future directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York 10021, New York United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|