1
|
Zhou T, Niu Y, Li Y. Advances in research on malignant tumors and targeted agents for TOP2A (Review). Mol Med Rep 2025; 31:50. [PMID: 39670307 DOI: 10.3892/mmr.2024.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
The DNA topoisomerase isoform topoisomerase IIα (TOP2A) is essential for the condensation and segregation of cellular mitotic chromosomes and the structural maintenance. It has been demonstrated that TOP2A is highly expressed in various malignancies, including lung adenocarcinoma (LUAD), hepatocellular carcinoma (HCC) and breast cancer (BC), associating with poor prognosis and aggressive tumor behavior. Additionally, TOP2A has emerged as a promising target for cancer therapy, with widespread clinical application of associated chemotherapeutic agents. The present study explored the impact of TOP2A on malignant tumor growth and the advancements in research on its targeted drugs. The fundamental mechanisms of TOP2A have been detailed, its specific roles in tumor cells are analyzed, and its potential as a biomarker for tumor prognosis and therapeutic targeting is highlighted. Additionally, the present review compiles findings from the latest clinical trials of relevant targeted agents, information on newly developed inhibitors, and discusses future research directions and clinical application strategies in cancer therapy, aiming to propose novel ideas and methods.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yiting Niu
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yanjun Li
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
2
|
Teo JMN, Chen Z, Chen W, Tan RJY, Cao Q, Chu Y, Ma D, Chen L, Yu H, Lam KH, Lee TKW, Chakarov S, Becher B, Zhang N, Li Z, Ma S, Xue R, Ling GS. Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma. J Exp Med 2025; 222:e20241442. [PMID: 39636298 PMCID: PMC11619716 DOI: 10.1084/jem.20241442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tumor-associated neutrophils (TANs) are heterogeneous; thus, their roles in tumor development could vary depending on the cancer type. Here, we showed that TANs affect metabolic dysfunction-associated steatohepatitis hepatocellular carcinoma (MASH-related HCC) more than viral-associated HCC. We attributed this difference to the predominance of SiglecFhi TANs in MASH-related HCC tumors. Linoleic acid and GM-CSF, which are commonly elevated in the MASH-related HCC microenvironment, fostered the development of this c-Myc-driven TAN subset. Through TGFβ secretion, SiglecFhi TANs promoted HCC stemness, proliferation, and migration. Importantly, SiglecFhi TANs supported immune evasion by directly suppressing the antigen presentation machinery of tumor cells. SiglecFhi TAN removal increased the immunogenicity of a MASH-related HCC model and sensitized it to immunotherapy. Likewise, a high SiglecFhi TAN signature was associated with poor prognosis and immunotherapy resistance in HCC patients. Overall, our study highlights the importance of understanding TAN heterogeneity in cancer to improve therapeutic development.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhulin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Cao
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Yingming Chu
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Liting Chen
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Burkhard Becher
- Institue of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ning Zhang
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ruidong Xue
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- International Cancer Institute and State Key Laboratory of Molecular Oncology, Peking University, Beijing, China
- MOE Frontiers Science Center for Cancer Integrative Omics, Peking University, Beijing, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Wang C, Lu M, Chen C, Chen J, Cai Y, Wang H, Tao L, Yin W, Chen J. Integrating scRNA-seq and Visium HD for the analysis of the tumor microenvironment in the progression of colorectal cancer. Int Immunopharmacol 2025; 145:113752. [PMID: 39642568 DOI: 10.1016/j.intimp.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) development is a complex, multi-stage process, transitioning from normal to adenomatous tissue, and then to invasive carcinoma. Despite research, there's a knowledge gap on using high-resolution spatial omics to understand CRC's tumor microenvironment dynamics. METHODS We used single-cell transcriptomics to study major biological changes and cell interactions in CRC progression. Additionally, high-resolution spatial transcriptomics helped us examine the spatial distribution of cells with significant pathway changes, offering insights into the tumor microenvironment's development throughout CRC stages. RESULTS In the progression of CRC, plasma cells, neutrophils, and fibroblasts exhibit the most significant changes in hallmark pathways, while epithelial cells show the most pronounced alterations in metabolic pathways. We also identified a population of NOTUM + epithelial cells and IGHG1/3 + plasma cells that are concentrated at the boundary between normal tissue and adenomas. Pathway analysis further suggests that these NOTUM + cells activate numerous cancer-related pathways, despite the absence of significant pathological morphological changes. Additionally, we conducted a targeted drug prediction analysis to identify potential therapeutic agents for NOTUM-expressing epithelial cells. CONCLUSIONS Analyzing scRNA-seq and Visium HD data, we found that IGHG1/3 + plasma cells and tumor-associated neutrophil (TANs) may significantly affect colorectal tissue transformation from normal to adenoma and carcinoma. These cells are concentrated at the transition between normal and adenomatous tissue. We also found NOTUM-expressing cells at the edge of normal and adenomatous areas, possibly indicating a morphological transition as normal cells evolve into adenoma cells.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mengying Lu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Cuimin Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiajun Chen
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yusi Cai
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lili Tao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiakang Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Dong M, Li C, Zhang L, Zhou J, Xiao Y, Zhang T, Jin X, Fang Z, Zhang L, Han Y, Guan J, Weng Z, Cheng N, Wang J. Intertumoral Heterogeneity Based on MRI Radiomic Features Estimates Recurrence in Hepatocellular Carcinoma. J Magn Reson Imaging 2025; 61:168-181. [PMID: 38712652 DOI: 10.1002/jmri.29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) heterogeneity impacts prognosis, and imaging is a potential indicator. PURPOSE To characterize HCC image subtypes in MRI and correlate subtypes with recurrence. STUDY TYPE Retrospective. POPULATION A total of 440 patients (training cohort = 213, internal test cohort = 140, external test cohort = 87) from three centers. FIELD STRENGTH/SEQUENCE 1.5-T/3.0-T, fast/turbo spin-echo T2-weighted, spin-echo echo-planar diffusion-weighted, contrast-enhanced three-dimensional gradient-recalled-echo T1-weighted with extracellular agents (Gd-DTPA, Gd-DTPA-BMA, and Gd-BOPTA). ASSESSMENT Three-dimensional volume-of-interest of HCC was contoured on portal venous phase, then coregistered with precontrast and late arterial phases. Subtypes were identified using non-negative matrix factorization by analyzing radiomics features from volume-of-interests, and correlated with recurrence. Clinical (demographic and laboratory data), pathological, and radiologic features were compared across subtypes. Among clinical, radiologic features and subtypes, variables with variance inflation factor above 10 were excluded. Variables (P < 0.10) in univariate Cox regression were included in stepwise multivariate analysis. Three recurrence estimation models were built: clinical-radiologic model, subtype model, hybrid model integrating clinical-radiologic characteristics, and subtypes. STATISTICAL TESTS Mann-Whitney U test, Kruskal-Wallis H test, chi-square test, Fisher's exact test, Kaplan-Meier curves, log-rank test, concordance index (C-index). Significance level: P < 0.05. RESULTS Two subtypes were identified across three cohorts (subtype 1:subtype 2 of 86:127, 60:80, and 36:51, respectively). Subtype 1 showed higher microvascular invasion (MVI)-positive rates (53%-57% vs. 26%-31%), and worse recurrence-free survival. Hazard ratio (HR) for the subtype is 6.10 in subtype model. Clinical-radiologic model included alpha-fetoprotein (HR: 3.01), macrovascular invasion (HR: 2.32), nonsmooth tumor margin (HR: 1.81), rim enhancement (HR: 3.13), and intratumoral artery (HR: 2.21). Hybrid model included alpha-fetoprotein (HR: 2.70), nonsmooth tumor margin (HR: 1.51), rim enhancement (HR: 3.25), and subtypes (HR: 5.34). Subtype model was comparable to clinical-radiologic model (C-index: 0.71-0.73 vs. 0.71-0.73), but hybrid model outperformed both (C-index: 0.77-0.79). CONCLUSION MRI radiomics-based clustering identified two HCC subtypes with distinct MVI status and recurrence-free survival. Hybrid model showed superior capability to estimate recurrence. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Mengshi Dong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lina Zhang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinhui Zhou
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuanqiang Xiao
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tianhui Zhang
- Department of Radiology, Meizhou People's Hospital, Meizhou, China
| | - Xin Jin
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zebin Fang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linqi Zhang
- Department of Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yu Han
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiexia Guan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijin Weng
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Na Cheng
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Ferkel SAM, Holman EA, Sojwal RS, Rubin SJS, Rogalla S. Tumor-Infiltrating Immune Cells in Colorectal Cancer. Neoplasia 2025; 59:101091. [PMID: 39642846 DOI: 10.1016/j.neo.2024.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer encompasses a heterogeneous group of malignancies that differ in pathophysiological mechanisms, immune response and infiltration, therapeutic response, and clinical prognosis. Numerous studies have highlighted the clinical relevance of tumor-infiltrating immune cells among different types of colorectal tumors yet vary in cell type definitions and cell identification strategies. The distinction of immune signatures is particularly challenging when several immune subtypes are involved but crucial to identify novel intercellular mechanisms within the tumor microenvironment. In this review, we compile human and non-human studies on tumor-infiltrating immune cells and provide an overview of immune subtypes, their pathophysiological functions, and their prognostic role in colorectal cancer. We discuss how differentiating immune signatures can guide the development of immunotherapeutic targets and personalized treatment regimens. We analyzed comprehensive human protein biomarker profiles across the entire immune spectrum to improve interpretability and application of tumor studies and to ultimately enhance immunotherapy and advance precision medicine for colorectal cancer patients.
Collapse
Affiliation(s)
- Sonia A M Ferkel
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Elizabeth A Holman
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Raoul S Sojwal
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Samuel J S Rubin
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Stephan Rogalla
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA.
| |
Collapse
|
6
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Du Y, Zhang H, Liu J, Duan X, Chen S, Jiang W. HK3: A potential prognostic biomarker with metastasis inhibition capabilities in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 741:151057. [PMID: 39615209 DOI: 10.1016/j.bbrc.2024.151057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as one of the prevalent malignant tumors worldwide. The effectiveness of immunotherapy frequently depends on the intricate dynamics of immunomodulation within the tumor microenvironment (TME). The current study aims to identify prognostically relevant genes and their functional roles in HCC. This is achieved by utilizing immune scores and mutations as the basis, through the application of bioinformatics and molecular biological analysis. METHODS Differentially expressed genes (DEGs) analysis was conducted using the "clusterProfiler" package for functional enrichment. Cox regression analysis and LASSO regression analysis were performed for prognostic gene screening. Kaplan-Meier curve were further utilized to verify the prognostic value of these genes. The relationship between selected genes and immune cells was analyzed using ssGSEA algorithm and TIMER. The HK3 expression in HCC cells was tested by Western blot. Additionally, wound healing and transwell assays were utilized to detect the impact of HK3 on HCC metastasis. RESULTS Patients who had higher ESTIMATE, stromal, and immune scores exhibited more favorable overall survival rates. There are 17 genes that overlap among the DEGs related to the immune-stromal-ESTIMATE scores, mutated genes, and DEGs in HCC tissues compared to normal tissues. Among the DEGs, three genes (STAB1, COL15A1 and HK3) emerged with the most profound association concerning survival outcomes. Notably, the HK3 genes displayed a pronounced correlation with immune infiltration. Concurrently, diminished expression levels of HK3 were observed in HCC tissues and upregulation of HK3 resulted in a significant reduction in HCC cell metastasis in vitro and in vivo. CONCLUSIONS HK3 emerges as a novel prognostic biomarker for HCC, exerting regulatory influence over cellular proliferation, metastasis, and invasiveness. These findings indicate that HK3 holds promise as a potential candidate for treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Yexiang Du
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Jialong Liu
- 65136, Troops Hospital of PLA, Dalian, Liaoning, 116300, China
| | - Xiaodong Duan
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Suhua Chen
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Wenbin Jiang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guizhou, 550002, China.
| |
Collapse
|
8
|
Wei YC, Yun L, Liang YL, Grimm R, Yang C, Tao YF, Jiang SC, Liao JY. Nomogram based on the neutrophil-to-lymphocyte ratio and MR diffusion quantitative parameters for predicting Ki67 expression in hepatocellular carcinoma from a prospective study. Sci Rep 2024; 14:31738. [PMID: 39738357 DOI: 10.1038/s41598-024-82333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models. Univariate and multivariate logistic regression analyses were conducted using the training set data to construct a model, which was internally validated. The area under the curve (AUC) of the receiver operating characteristics (ROC), a decision curve analysis (DCA), and a calibration analysis were used to evaluate the model's performance. Additionally, for patients with available follow-up data, the combined model was evaluated for its potential utility in predicting the one-year recurrence risk by analyzing the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.The combined model outperformed the clinicaland parametric models in predicting high Ki67 expression. The nomograms based on the combined model included the neutrophil-to-lymphocyte ratio (NLR), ADCslow_Aver. The model showed strong discrimination in the training set, with an AUC of 0.836 (95% CI: 0.729-0.942) and acceptable calibration (Hosmer-Lemeshow p = 0.109). In the validation set, the model maintained moderate discrimination (AUC 0.806, 95% CI: 0.621-0.990) with good calibration (p = 0.663). DCA revealed that the combined model provided good clinical value and correction effects. Additionally, when used to predict the one-year recurrence risk, the combined model achieved moderate accuracy (AUC = 0.747), highlighting its potential utility in identifying patients at a higher risk of recurrence. A nomogram incorporating the NLR and quantitative MR diffusion parameters effectively predicts Ki67 expression in HCC patients before surgery. The model also shows promise in predicting recurrence risk, which may aid in postoperative risk stratification and patient management. Clinical Relevance Statement We established a model that incorporated the NLR and quantitative magnetic resonance diffusion parameters, which demonstrated robust performance in predicting both high Ki67 expression and the one-year recurrence risk in HCC patients. This model shows potential clinical value in guiding postoperative risk stratification and personalized treatment planning.
Collapse
Affiliation(s)
- Yu-Chen Wei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liang Yun
- Department of Radiology, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, China
| | - Yan-Ling Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | - Chongze Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan-Fang Tao
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sheng-Chen Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin-Yuan Liao
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
9
|
Duan R, Jiang L, Wang T, Li Z, Yu X, Gao Y, Jia R, Fan X, Su W. Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis. Nat Commun 2024; 15:10860. [PMID: 39738047 DOI: 10.1038/s41467-024-55164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils. Mechanistically, age-dependent downregulation of the immune trafficking receptor S1pr1 drives the expansion of γδ17. Compared to young mice, expanded γδ17 recruit tumor-promoting neutrophils with lower expression levels of CD62L and higher levels of C-kit and CXCR4. These neutrophils suppress the stemness and tumor-killing functions of CD8+ T cells in aged male mice. Accordingly, antibody-mediated depletion of γδT or neutrophils reduces tumor metastatic foci in aged animals, and the administration of the senolytic agent procyanidin C1 reverses the observed immune-mediated, tumor-promoting effects of aging. Thus, we uncover a γδ17-Neutrophil-CD8 axis that promotes aging-driven tumor metastasis in male mice and provides potential insights for managing metastatic tumors.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Tumor Microenvironment/immunology
- Aging/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/genetics
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Gu Y, Fang Y, Guo Y, Yang R, Ma J, Zhang C, Deng M, Wen Q, Gao N, Qiao H. Cytochrome P450 2E1 inhibitor Q11 is effective on hepatocellular carcinoma by promoting peritumor neutrophil chemotaxis. Int J Biol Macromol 2024:139189. [PMID: 39732257 DOI: 10.1016/j.ijbiomac.2024.139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Current studies found that the peritumoral tissue of hepatocellular carcinoma (HCC) may be different from normal liver tissue based on proteomics, and related to progression, recurrence and metastasis of HCC. Our previous study proposed "peritumor microenvironment (PME)" to summarize the influence of peritumor tissue on occurrence and progression of HCC. Peritumor CYP2E1 activity was significantly elevated in HCC, and related to occurrence and progression of HCC. However, the effectiveness and mechanism of inhibiting CYP2E1 against HCC remain unclear. In this study, by integrating the advantages of proteomics and transcriptomics, we reanalyzed the various influencing factors in PME. Although there were large differences in the occurrence and progression, the immunity and inflammation still played crucial roles. Peritumor neutrophil were "pro-tumor" phenotype in the stage of progression, while it showed cytotoxicity for tumor cell in the occurrence stage. CYP2E1 activity is associated with peritumor neutrophil infiltration and occurrence of HCC. CYP2E1 inhibitor Q11 showed anti-tumor effects in an orthotopic HCC mouse model by promoting secretion of chemokines and infiltration of neutrophils in peritumor tissue. Overall, these findings provided a reasonable mechanism of anti-tumor effects of CYP2E1 inhibitors, which may be a new strategy for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Yuhan Gu
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Clinical Pharmacy, Nanyang Central Hospital, Nanyang, China
| | - Yan Fang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Guo
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui Yang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun Ma
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cunzhen Zhang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
12
|
Long X, Kwong TT, Sze-Lok Cheng A, Chan SL. Targeting Tumour Endothelial Cells in Liver Cancer: The end of beginning. J Hepatol 2024:S0168-8278(24)02819-8. [PMID: 39725355 DOI: 10.1016/j.jhep.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Xiaohang Long
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Tung Kwong
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Yang S, Chen J, Xie K, Liu F. NPC1 promotes the progression of hepatocellular carcinoma by mediating the accumulation of neutrophils into the tumor microenvironment. FEBS Open Bio 2024. [PMID: 39707615 DOI: 10.1002/2211-5463.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Hepatocellular carcinoma remains a significant threat to human health. Recent studies have found that the intake of cellular cholesterol contributes to the development and progression of hepatocellular carcinoma, although the exact mechanisms remain unclear. Our analysis of transcriptomic and proteomic databases has identified increased mRNA and protein expression levels of NPC1, a cholesterol intracellular transporter protein, in hepatocellular carcinoma tissues. This increase is significantly associated with a worse prognosis for patients. To corroborate these findings, we performed immunohistochemical staining of NPC1 on liver tissue samples from patients, revealing significantly higher expression levels of NPC1 in hepatocellular carcinoma tissues compared to normal tissues. Subsequent investigations have revealed that NPC1 expression does not significantly influence the proliferation of hepatocellular carcinoma cells in vitro. However, it has a substantial inhibitory effect on the progression of hepatocellular carcinoma tumors when observed in vivo. Utilizing flow cytometry to monitor cellular changes within the tumor microenvironment has led us to discover that NPC1 plays a crucial role in the regulation of neutrophil recruitment within the tumor. Using further neutrophil depletion experiments, we determined that the role of NPC1 in advancing hepatocellular carcinoma progression truly relies on neutrophils. These observations are further reinforced by a comprehensive analysis of clinical databases alongside immunohistochemistry findings. In conclusion, our research suggests that NPC1's overexpression could contribute to hepatocellular carcinoma progression by promoting neutrophil recruitment, positioning NPC1 as a promising new biomarker and therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Songhai Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First People's Hospital of Hefei, China
| | - Jiangming Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fubao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Wang J, Li X, Liu P, Dai Y, Zhu H, Zhang Y, Wu M, Yao Y, Liu M, Yu S, Jiang F, Wang S, Mu H, Jiao B, Yan H, Wu W, Shen Y, Li J, Wang S, Ren R. A phase 2 pilot study of umbilical cord blood infusion as an adjuvant consolidation therapy in elderly patients with acute myeloid leukemia. Signal Transduct Target Ther 2024; 9:358. [PMID: 39702351 DOI: 10.1038/s41392-024-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aging-related malignancy, with patients aged ≥60 years old facing significantly poorer prognosis. Umbilical cord blood (UCB) has emerged as a promising source with effective anti-aging roles. Here, we conducted a prospective, phase 2, single-arm trial of UCB infusion as an adjuvant consolidation therapy in elderly AML patients (ChiCTR-OPC-15006492). A total of 51 patients were enrolled (median age 66 years; range, 60-75) and received two cycles of consolidation chemotherapy combined with UCB infusion. At a median follow-up of 27.3 months (range, 9.3-100), the median overall survival (OS) was not yet reached and the median event-free survival (EFS) was 72.2 months (range, 5.4-100). The 2-year OS and EFS rates were 76.9% and 62.8%, respectively. No acute graft-versus-host disease (aGVHD) or toxicity-related death occurred in any patient. The median times to platelet and neutrophil recovery were 11.5 days (range, 6-17) and 12.2 days (range, 0-21), respectively. Single-cell RNA sequencing (scRNA-seq) identified enhanced anti-tumor and anti-aging properties of UCB, manifested through activation of immune responses and telomere synthesis/maintenance. These findings suggest that UCB infusion is an effective and safe post-remission adjuvant therapy for elderly AML patients. This study provides evidence that anti-aging therapy may serve as a new and promising dimension in combined cancer treatment.
Collapse
Affiliation(s)
- Jinzeng Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao Dai
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunying Yao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Yu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangying Jiang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoran Mu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan Province, 571199, China.
| |
Collapse
|
15
|
Zhao J, Zhang Q, Zhu C, Yuqi W, Zhang G, Wang Q, Dong X, Li B, Wang X. Prognostic feature based on androgen-responsive genes in bladder cancer and screening for potential targeted drugs. BioData Min 2024; 17:59. [PMID: 39695796 DOI: 10.1186/s13040-024-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/19/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES Bladder cancer (BLCA) is a tumor that affects men more than women. The biological function and prognostic value of androgen-responsive genes (ARGs) in BLCA are currently unknown. To address this, we established an androgen signature to determine the prognosis of BLCA. METHODS Sequencing data for BLCA from the TCGA and GEO datasets were used for research. The tumor microenvironment (TME) was measured using Cibersort and ssGSEA. Prognosis-related genes were identified and a risk score model was constructed using univariate Cox regression, LASSO regression, and multivariate Cox regression. Drug sensitivity analysis was performed using Genomics of drug sensitivity in cancer (GDSC). Real-time quantitative PCR was performed to assess the expression of representative genes in clinical samples. RESULTS ARGs (especially the CDK6, FADS1, PGM3, SCD, PTK2B, and TPD52) might regulate the progression of BLCA. The different expression patterns of ARGs may lead to different immune cell infiltration. The risk model indicates that patients with higher risk scores have a poorer prognosis, more stromal infiltration, and an enrichment of biological functions. Single-cell RNA analysis, bulk RNA data, and PCR analysis support the reliability of this risk model, and a nomogram was also established for clinical use. Drug prediction analysis showed that high-risk patients had a better response to fludarabine, AZD8186, and carmustine. CONCLUSION ARGs played an important role in the progression, immune infiltration, and prognosis of BLCA. The ARGs model has high accuracy in predicting the prognosis of BLCA patients and provides more effective medication guidelines.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Department of Urology, People ' s Hospital of Shapingba District, Chongqing, 400030, China
| | - Qian Zhang
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Cunle Zhu
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wu Yuqi
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Urology, South China Hospital Affiliated to Shenzhen University, Shenzhen, 518000, China
| | - Guohui Zhang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qianliang Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xingyou Dong
- Department of Urology, South China Hospital Affiliated to Shenzhen University, Shenzhen, 518000, China.
- Department of Urology, People ' s Hospital of Shapingba District, Chongqing, 400030, China.
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xiangwei Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
16
|
Li DH, Wen QE, Feng RQ, Qiao C, Tian XT. Use of traditional Chinese medicine bezoars and bezoar-containing preparations in hepatocarcinoma. World J Gastrointest Oncol 2024; 16:4770-4777. [PMID: 39678798 PMCID: PMC11577376 DOI: 10.4251/wjgo.v16.i12.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
This manuscript used network pharmacology and experimental verification to analyze the anti-hepatocarcinoma mechanism of action of bezoars in traditional Chinese medicine (TCM), discovering that it can affect the immune cells within the tumor microenvironment and related pathways to produce inhibitory effects in liver cancer. In TCM, bezoars have a unique therapeutic advantage in the prevention and treatment of tumors. They play an anti-tumorigenic role by regulating the immune microenvironment through multi-component, multi-target and multi-pathway mechanisms. With the application of nanotechnology, bezoars and their compound preparations have been developed into anti-cancer drugs with unique therapeutic advantages, providing novel treatment options for tumor patients.
Collapse
Affiliation(s)
- De-Hui Li
- Department of Oncology II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang 050000, Hebei Province, China
| | - Qian-Er Wen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Rui-Qi Feng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Tong Tian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
17
|
Zhu XY, Liu WT, Hou XJ, Zong C, Yu W, Shen ZM, Qu SP, Tao M, Xue MM, Zhou DY, Bai HR, Gao L, Jiang JH, Zhao QD, Wei LX, Yang X, Han ZP, Zhang L. CD34 +CLDN5 + tumor associated senescent endothelial cells through IGF2-IGF2R signaling increased cholangiocellular phenotype in hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00564-2. [PMID: 39674501 DOI: 10.1016/j.jare.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION The heterogeneity of hepatocellular carcinoma (HCC) is linked to tumor malignancy and poor prognosis. Nevertheless, the precise mechanisms underlying the development of the cholangiocellular phenotype (CCA) within HCC remain unclear. Emerging studies support that the cross-talk among the host cells within tumor microenvironment (TME) sustains the cancer cell plasticity. OBJECTIVES This study sought to identify the specific cell types involved in the formation of CCA and to elucidate their functional roles in the progression of HCC. METHODS Single-cell RNA sequencing was employed to identify the specific cell types involved in the formation of CCA. Both in vitro and vivo analyses were used to identify the tumor-associated senescent ECs and investigate the function in TME. The diethylnitrosamine-induced model was utilized to investigate the interaction between senescent ECs and MSCs, aiming to elucidate their synergistic contributions to the progression of CCA. RESULTS Using single-cell RNA sequencing, we identified a distinct senescent-associated subset of endothelial cells (ECs), namely CD34+CLDN5+ ECs, which mainly enriched in tumor tissue. Further, the senescent ECs were observed to secrete IGF2, which recruited mesenchymal stem cells (MSCs) into the TME through IGF2R/MAPK signaling. In primary liver cancer model, MSCs exhibited a strong tumor-promoting effect, increasing the CCA and tumor malignancy after HCC formation. Interestingly, knockdown of IGF2R expression in MSCs inhibited the increase of CCA caused by MSCs in HCC. Meanwhile, it was revealed that MSCs released multiple inflammatory and trophic-related cytokines to enhance the cancer stem cell-like characteristics in HCC cells. Finally, we demonstrated that CEBPβ up-regulated IGF2 expression in tumor senescent ECs by combining with Igf2-promtor-sequence. CONCLUSIONS Together, our findings illustrated that tumor associated senescent ECs in HCC recruited the MSCs into TME, enhancing cancer stem cell (CSC)-like features of HCC cells and contributing to the CCA formation.
Collapse
Affiliation(s)
- Xin-Yu Zhu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wen-Ting Liu
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Juan Hou
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Chen Zong
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wei Yu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Zhe-Min Shen
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Shu-Ping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Min Tao
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng-Meng Xue
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dao-Yu Zhou
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Hao-Ran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Jing-Hua Jiang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Qiu-Dong Zhao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Zhi-Peng Han
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Zhang
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
18
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, Liu Y, Xie W, Deng W, Fan W. Cryoablation-induced neutrophil Ca 2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res 2024; 43:319. [PMID: 39648199 PMCID: PMC11626751 DOI: 10.1186/s13046-024-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Liver metastasis poses a significant barrier to effective immunotherapy in patients with colorectal cancer. Cryoablation has emerged as a vital supplementary therapeutic approach for these patients. However, its impact on the tumor microenvironment following the ablation of liver metastases remains unclear. METHODS We acquired multi-omics time-series data at 1 day, 5 days, and 14 days post-cryoablation, based on tumor and peripheral blood samples from clinical patients, cell co-culture models, and a liver metastases mouse model built on the MC38 cell line in C57BL/6 J mice. This dataset included single-cell transcriptomic sequencing, bulk tissue transcriptomic sequencing, 4D-Label-Free proteomics, flow cytometry data, western blot data, and histological immunofluorescence staining of pathological specimens. RESULTS We found that a neutrophil-related inflammatory state persisted for at least 14 days post-cryoablation. During this period, neutrophils underwent phenotypic changes, shifting from the N1 to the N2 type. Cryoablation also caused a significant increase in intracellular Ca2+ concentration in neutrophils, which triggered the formation of PAD4-dependent neutrophil extracellular traps (NETs), further promoting immune evasion. Moreover, animal studies demonstrated that depleting or inhibiting the CXCL2-CXCR2 signaling axis within neutrophils, or degrading NETs, could effectively restore the host's anti-tumor immune response. CONCLUSIONS These findings underscore the critical role of neutrophils and their NETs in immune escape following cryoablation. Targeting the CXCL2-CXCR2-Ca2+-PAD4 axis could enhance the therapeutic response to PD-1 antibodies, providing a potential strategy to improve treatment outcomes for colorectal cancer with liver metastases.
Collapse
Affiliation(s)
- Hongtong Tan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiquan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gulijiayina Nuerhashi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyong Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Gu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujia Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han Qi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weining Xie
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weijun Fan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Tsui YM, Ho DWH, Ng IOL. Unraveling the tumor-initiating cells in hepatocellular carcinoma. Cancer Cell 2024; 42:1990-1993. [PMID: 39577423 DOI: 10.1016/j.ccell.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
Aggressive features of hepatocellular carcinoma (HCC) are highly related to liver tumor-initiating cells (TICs), which are heterogeneous and plastic. In this issue of Cancer Cell, Yang et al. reveal the ability of CD49f-high TICs in shaping the tumor immunosuppressive microenvironment in HCC.
Collapse
Affiliation(s)
- Yu Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Yang C, Geng H, Yang X, Ji S, Liu Z, Feng H, Li Q, Zhang T, Zhang S, Ma X, Zhu C, Xu N, Xia Y, Li Y, Wang H, Yu C, Du S, Miao B, Xu L, Wang H, Cao Y, Li B, Zhu L, Tang X, Zhang H, Zhu C, Huang Z, Leng C, Hu H, Chen X, Yuan S, Jin G, Bernards R, Sun C, Zheng Q, Qin W, Gao Q, Wang C. Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy. Cancer Cell 2024; 42:2064-2081.e19. [PMID: 39515328 DOI: 10.1016/j.ccell.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME). Reciprocally, the neutrophils reprogram nearby tumor cells toward a TIC phenotype via secreting CCL4. These cells can evade CD8+ T cell-mediated killing through CCL4/STAT3-induced and CD49f-stabilized CD155 expression. Notably, while aberrant CD155 expression contributes to immune suppression, it also represents a TIC-specific vulnerability. We demonstrate that either CD155 deletion or antibody blockade significantly enhances sensitivity to anti-PD-1 therapy in preclinical HCC models. Our findings reveal a new mechanism of tumor immune evasion and provide a rationale for combining CD155 blockade with anti-PD-1/PD-L1 therapy in HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China; Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchen Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongye Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chune Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
22
|
Lu Y, Liu Z, Zheng Y, Liu X, Liu X, Chen N, Mao K, Lin W. Analysis of the implication of steroid 5 alpha-reductase 3 on prognosis and immune microenvironment in Liver Hepatocellular Carcinoma. Ann Med 2024; 56:2408463. [PMID: 39340288 PMCID: PMC11441025 DOI: 10.1080/07853890.2024.2408463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION This study combined the bioinformatics and in vitro experiment-related technologies to analyze the impact of steroid 5 alpha-reductase 3 (SRD5A3) on the prognosis and immune microenvironment of Liver Hepatocellular Carcinoma (LIHC). METHOD Gene expression and clinical data were obtained from public databases. The prognosis was evaluated using survival, multifactor Cox, enrichment, and mutation analyses. This was then verified through in vitro experiments. RESULTS The expression level of SRD5A3 in LIHC tissues was significantly higher than that in the adjacent tissues. Kaplan-Meier survival analysis showed that high SRD5A3 expression was associated with poor overall survival (OS) and short progression-free survival in patients with LIHC. Multivariate Cox regression analysis revealed that positive SRD5A3 expression was an independent risk factor for OS in patients with LIHC. Expression of SRD5A3 was negatively correlated with immune cell infiltration of CD4+ T, CD8+ T, and B cells. GO and KEGG enrichment analyses showed that SRD5A3 was significantly enriched in signaling- and tumor metastasis-related pathways. Nomogram and calibration curve showed that the predicted performance of the model was consistent with the actual results. In vitro results confirmed that SRD5A3 knockdown inhibited the migration, invasion, and proliferation of LIHC cells. CONCLUSIONS SRD5A3 is actively expressed in LIHC, and positive expression of SRD5A3 is an independent risk factor for different prognoses in patients with LIHC. SRD5A3 can promote the proliferation, migration, and invasion of liver cancer cells and is related to short immune infiltration in patients with LIHC.
Collapse
Affiliation(s)
- Yuming Lu
- Department of Biostatistics, College of Science, City University of Hong Kong, Hong Kong, China
| | - Ziwei Liu
- School of Nursing, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zheng
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Xuesong Liu
- Department of Immunology, BinZhou Medical University, Binzhou, Shandong, China
| | - XiaoQin Liu
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Nanguan Chen
- Luoding Hospital of Traditional Chinese Medicine, Luoding, Guangdong, China
| | - Kai Mao
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Weida Lin
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| |
Collapse
|
23
|
Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80:1462-1479. [PMID: 38607725 DOI: 10.1097/hep.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Xin H, Lai Q, Liu Y, Liao N, Wang Y, Liao B, Zhou K, Zhou Y, Bai Y, Chen Z, Zhou Y. Integrative radiomics analyses identify universal signature for predicting prognosis and therapeutic vulnerabilities across primary and secondary liver cancers: A multi-cohort study. Pharmacol Res 2024; 210:107535. [PMID: 39626849 DOI: 10.1016/j.phrs.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
As the hallmark of cancer, genetic and phenotypic heterogeneity leads to biomarkers that are typically tailored to specific cancer type or subtype. This specificity introduces complexities in facilitating streamlined evaluations across diverse cancer types and optimizing therapeutic outcomes. In this study, we comprehensively characterized the radiological patterns underlying liver cancer (LC) by integrating radiomics profiles from computed tomography (CT) images of hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and colorectal cancer liver metastases (CRLM) through unsupervised clustering analysis. We identified three distinct radiomics clusters, displaying heterogeneity in prognosis. Subsequently, we formulated a shared prognosticator, the liver cancer radiomics signature (LCRS), by discovering and manifesting connectivity among radiomics phenotypes using GGI strategy. We validated that the LCRS is independent prognostic factor after adjusting for clinic-pathologic variables (all P < 0.05), with the LCRS-High group consistently associated with worse survival outcomes across HCC, ICC, and CRLM. However, the LCRS-High group showed clinical benefit from adjuvant chemotherapy, leading to reduced disease recurrence risk and improved survival. By contrast, the LCRS-Low group, including a subset of gastric cancer liver metastases (GCLM), exhibited more favorable response to immune checkpoint inhibitors (ICIs)-based combinational therapy (P = 0.02, hazard ratio (HR): 0.34 [95 % confidence interval (CI): 0.13-0.88]). Further analysis revealed that Notch signaling pathway was enriched in LCRS-High tumors, while LCRS-Low tumors exhibited higher infiltration of natural killer cell. These findings highlight the promise of this universal scoring model to personalize management strategies for patients with LC.
Collapse
Affiliation(s)
- Hongjie Xin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianwei Lai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanping Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Naying Liao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Gastroenterology, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Bihong Liao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Keyang Zhou
- Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchen Zhou
- Department of General Surgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhihua Chen
- Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yuanping Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Ren L, Chen DB, Yan X, She S, Yang Y, Zhang X, Liao W, Chen H. Bridging the Gap Between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2359-2372. [PMID: 39619602 PMCID: PMC11608547 DOI: 10.2147/jhc.s423549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related deaths. Imaging plays a crucial role in the screening, diagnosis, and monitoring of HCC; however, the potential mechanism regarding phenotypes or molecular subtyping remains underexplored. Radiomics significantly expands the selection of features available by extracting quantitative features from imaging data. Radiogenomics bridges the gap between imaging and genetic/transcriptomic information by associating imaging features with critical genes and pathways, thereby providing biological annotations to these features. Despite challenges in interpreting these connections, assessing their universality, and considering the diversity in HCC etiology and genetic information across different populations, radiomics and radiogenomics offer new perspectives for precision treatment in HCC. This article provides an up-to-date summary of the advancements in radiomics and radiogenomics throughout the HCC care continuum, focusing on the clinical applications, advantages, and limitations of current techniques and offering prospects. Future research should aim to overcome these challenges to improve the prognosis of HCC patients and leverage imaging information for patient benefit.
Collapse
Affiliation(s)
- Liying Ren
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Dong Bo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xuanzhi Yan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Shaoping She
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Yao Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xue Zhang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| |
Collapse
|
26
|
Zhang J, Zhang M, Lou J, Wu L, Zhang S, Liu X, Ke Y, Zhao S, Song Z, Bai X, Cai Y, Jiang T, Zhang G. Machine Learning Integration with Single-Cell Transcriptome Sequencing Datasets Reveals the Impact of Tumor-Associated Neutrophils on the Immune Microenvironment and Immunotherapy Outcomes in Gastric Cancer. Int J Mol Sci 2024; 25:12715. [PMID: 39684426 DOI: 10.3390/ijms252312715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The characteristics of neutrophils play a crucial role in defining the tumor inflammatory environment. However, the function of tumor-associated neutrophils (TANs) in tumor immunity and their response to immune checkpoint inhibitors (ICIs) remains incompletely understood. By analyzing single-cell RNA sequencing data from over 600,000 cells in gastric cancer (GSE163558 and GSE183904), colorectal cancer (GSE205506), and lung cancer (GSE207422), we identified neutrophil subsets in primary gastric cancer that are associated with the treatment response to ICIs. Specifically, we focused on neutrophils with high expression of CD44 (CD44_NEU), which are abundant during tumor progression and exert significant influence on the gastric cancer immune microenvironment. Machine learning analysis revealed 22 core genes associated with CD44_NEU, impacting inflammation, proliferation, migration, and oxidative stress. In addition, multiple immunofluorescence staining and gastric cancer spatial transcriptome data (GSE203612) showed a correlation between CD44_NEU and T-cell infiltration in gastric cancer tissues. A risk score model derived from seven essential genes (AQP9, BASP1, BCL2A1, PLEK, PDE4B, PROK2, and ACSL1) showed better predictive capability for patient survival compared to clinical features alone, and integrating these scores with clinical variables resulted in a prognostic nomogram. Overall, this study highlights the heterogeneity of TANs, particularly the CD44_NEU critical influence on immunotherapy outcomes, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Jingcheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingsi Zhang
- Musculoskeletal Sport Science and Health, Loughborough University, Loughborough LE11 3TU, UK
| | - Jiaheng Lou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linyue Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuo Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojuan Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yani Ke
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sicheng Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiyuan Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing Bai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Cai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
27
|
Zhang C, Zhang Q, Chen J, Li H, Cheng F, Wang Y, Gao Y, Zhou Y, Shi L, Yang Y, Liu J, Xue K, Zhang Y, Yu H, Wang D, Hu L, Wang H, Sun X. Neutrophils in nasal polyps exhibit transcriptional adaptation and proinflammatory roles that depend on local polyp milieu. JCI Insight 2024; 9:e184739. [PMID: 39361432 PMCID: PMC11601912 DOI: 10.1172/jci.insight.184739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory upper airway disease, divided into eosinophilic CRSwNP (eCRSwNP) and noneosinophilic CRSwNP (neCRSwNP) according to eosinophilic levels. Neutrophils are major effector cells in CRSwNP, but their roles in different inflammatory environments remain largely unclear. We performed an integrated transcriptome analysis of polyp-infiltrating neutrophils from patients with CRSwNP, using healthy donor blood as a control. Additional experiments, including flow cytometry and in vitro epithelial cell and fibroblast culture, were performed to evaluate the phenotypic feature and functional role of neutrophils in CRSwNP. Single-cell RNA-sequencing analysis demonstrated that neutrophils could be classified into 5 functional subsets, with GBP5+ neutrophils occurring mainly in neCRSwNP and a high proportion of CXCL8+ neutrophils in both subendotypes. GBP5+ neutrophils exhibited significant IFN-I pathway activity in neCRSwNP. CXCL8+ neutrophils displayed increased neutrophil activation scores and mainly secreted oncostatin M (OSM), which facilitates communication with other cells. In vitro experiments showed that OSM enhanced IL-13- or IL-17-mediated immune responses in nasal epithelial cells and fibroblasts. Our findings indicate that neutrophils display transcriptional plasticity and activation when exposed to polyp tissue, contributing to CRSwNP pathogenesis by releasing OSM, which interacts with epithelial cells and fibroblasts depending on the inflammatory environment.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
- Department of Otolaryngology, Shigatse People’s Hospital, Shigatse City, China
| | - Qianqian Zhang
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiani Chen
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Han Li
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Fuying Cheng
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yizhang Wang
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yingqi Gao
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yumin Zhou
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Le Shi
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yufei Yang
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Juan Liu
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Kai Xue
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yaguang Zhang
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Li Hu
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology and
- High Altitude Rhinology Research Center, Eye and ENT Hospital, Fudan University, Shanghai, China
- Department of Otolaryngology, Shigatse People’s Hospital, Shigatse City, China
| |
Collapse
|
28
|
Ercan C, Renne SL, Di Tommaso L, Ng CKY, Piscuoglio S, Terracciano LM. Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology. Clin Cancer Res 2024; 30:5105-5115. [PMID: 39264292 DOI: 10.1158/1078-0432.ccr-24-0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE The spatial variability and clinical relevance of the tumor immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). In this study, we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers and microscopically evaluate the distribution of immune infiltration. EXPERIMENTAL DESIGN Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterize the TIME on immunohistochemistry (IHC)-stained slides, we designed a multistage DL algorithm, IHC-TIME, to automatically detect immune cells and their localization in the TIME in tumor-stroma and center-border segments. RESULTS Two models were trained to detect and localize the immune cells on IHC-stained slides. The framework models (i.e., immune cell detection models and tumor-stroma segmentation) reached 98% and 91% accuracy, respectively. Patients with inflamed tumors showed better recurrence-free survival than those with immune-excluded or immune-desert tumors. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumor. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. CONCLUSIONS Our DL-based tool can accurately analyze and quantify immune cells on IHC-stained slides of HCC. Microscopic classification of the TIME can stratify HCC according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
Collapse
Affiliation(s)
- Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Salvatore Lorenzo Renne
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Charlotte K Y Ng
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi M Terracciano
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
29
|
Ma D, Wei P, Liu H, Hao J, Chen Z, Chu Y, Li Z, Shi W, Yuan Z, Cheng Q, Gao J, Zhu J, Li Z. Multi-omics-driven discovery of invasive patterns and treatment strategies in CA19-9 positive intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:1031. [PMID: 39548460 PMCID: PMC11568536 DOI: 10.1186/s12967-024-05854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with a poor prognosis, predominantly CA19-9 positive. High CA19-9 levels correlate with increased aggressiveness and worse outcomes. This study employs multi-omics analysis to reveal molecular features and identify therapeutic targets of CA19-9 positive ICC, aiming to support individualized treatment. METHODS Data from seven clinical cohorts, two whole-exome sequencing cohorts, six RNA sequencing/microarray cohorts, one proteomic cohort, 20 single-cell RNA sequencing samples, and one spatial transcriptome sample were analyzed. Key findings were validated on tissue microarrays from 52 ICC samples. RESULTS CA19-9 positive ICC exhibited poorer OS (median 24.1 v.s. 51.5 months) and RFS (median 11.7 v.s. 28.2 months) compared to negative group (all P < 0.05). Genomic analysis revealed a higher KRAS mutation frequency in the positive group and a greater prevalence of IDH1/2 mutations in the negative group (all P < 0.05). Transcriptomic analysis indicated upregulated glycolysis pathways in CA19-9 positive ICC. Single-cell analysis identified specific glycolysis-related cell subclusters associated with poor prognosis, including Epi_SLC2A1, CAF_VEGFA, and Mph_SPP1. Higher hypoxia in the CA19-9 positive group led to metabolic reprogramming and promoted these cells' formation. These cells formed interactive communities promoting epithelial-mesenchymal transition (EMT) and angiogenesis. Drug sensitivity analysis identified six potential therapeutic drugs. CONCLUSIONS This study systematically elucidated the clinical, genomic, transcriptomic, and immune features of CA19-9 positive ICC. It reveals glycolysis-associated cellular communities and their cancer-promoting mechanisms, enhancing our understanding of ICC and laying the groundwork for individualized therapeutic strategies.
Collapse
Affiliation(s)
- Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Hengkang Liu
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jialing Hao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Yingming Chu
- Peking University First Hospital, Beijing, 100191, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Wenzai Shi
- Department of Hepatobiliary Surgery, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, 102206, China
| | - Zhigao Yuan
- Department of General Surgery, Civil Aviation General Hospital, Beijing, 100123, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
30
|
Xie SZ, Yang LY, Wei R, Shen XT, Pan JJ, Yu SZ, Zhang C, Xu H, Xu JF, Zheng X, Wang H, Su YH, Sun HT, Lu L, Lu M, Zhu WW, Qin LX. Targeting SPP1-orchestrated neutrophil extracellular traps-dominant pre-metastatic niche reduced HCC lung metastasis. Exp Hematol Oncol 2024; 13:111. [PMID: 39529085 PMCID: PMC11556024 DOI: 10.1186/s40164-024-00571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The mechanisms by which tumor-derived factors remodel the microenvironment of target organs to facilitate cancer metastasis, especially organ-specific metastasis, remains obscure. Our previous studies have demonstrated that SPP1 plays a key role in promoting metastasis of hepatocellular carcinoma (HCC). However, the functional roles and mechanisms of tumor-derived SPP1 in shaping the pre-metastatic niche (PMN) and promoting lung-specific metastasis are unclear. METHODS Orthotopic metastasis models, experimental metastasis models, CyTOF and flow cytometry were conducted to explore the function of SPP1 in shaping neutrophil-dominant PMN and promoting HCC lung metastasis. The main source of CXCL1 in lung tissues was investigated via fluorescence activated cell sorting and immunofluorescence staining. The expression of neutrophils and neutrophil extracellular traps (NETs) markers was detected in the lung metastatic lesions of HCC patients and mouse lung specimens. The therapeutic significance was explored via in vivo DNase I and CXCR2 inhibitor assays. RESULTS SPP1 promoted HCC lung colonization and metastasis by modifying pulmonary PMN in various murine models, and plasma SPP1 levels were closely associated with lung metastasis in HCC patients. Mechanistically, SPP1 binded to CD44 on lung alveolar epithelial cells to produce CXCL1, thereby attracting and forming neutrophil-abundant PMN in the lung. The recruited neutrophils were activated by SPP1 and then formed NETs-dominant PMN to trap the disseminated tumor cells and promote metastatic colonization. Moreover, early intervention of SPP1-orchestrated PMN by co-targeting the CXCL1-CXCR2 axis and NETs formation could efficiently inhibit the lung metastasis of HCC. CONCLUSIONS Our study illustrates that HCC-lung host cell-neutrophil interactions play important roles in PMN formation and SPP1-induced HCC lung metastasis. Early intervention in SPP1-orchestrated PMN via CXCR2 inhibitor and DNase I is a potential therapeutic strategy to combat HCC lung metastasis.
Collapse
Affiliation(s)
- Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Lu-Yu Yang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Ran Wei
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xiao-Tian Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Jun-Jie Pan
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Shi-Zhe Yu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Chen Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Hao Xu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Jian-Feng Xu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xin Zheng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Hao Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ying-Han Su
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Hao-Ting Sun
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Lu Lu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wen-Wei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
31
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2024:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
32
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
33
|
Lu Y, Qin M, He Q, Hua L, Qi X, Yang M, Guo Q, Liu X, Zhang Z, Xu F, Ding L, Wu Y, Zhang C, Zhai F, Liu Q, Li J, Yuan P, Shi X, Wang X, Zhao C, Lian Y, Li R, Wei Y, Yan L, Yuan P, Qiao J. How the extra X chromosome impairs the development of male fetal germ cells. Nature 2024; 635:960-968. [PMID: 39478217 DOI: 10.1038/s41586-024-08104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/24/2024] [Indexed: 11/29/2024]
Abstract
The dosage of X-linked genes is accurately regulated with the development of fetal germ cells (FGCs)1,2. How aberrant dosage of X-linked genes impairs FGC development in humans remains poorly understood. FGCs of patients with Klinefelter syndrome (KS), who have an extra X chromosome, provide natural models for addressing this issue3. Here we demonstrate that most human FGCs in KS are arrested at an early stage, characterized by the upregulation of genes related to pluripotency, the WNT pathway and the TGF-β pathway, along with the downregulation of genes involved in FGC differentiation. The limited KS FGCs that are capable of reaching the late stage remain relatively naive. X chromosomes are not inactivated and the dosage of X-linked genes is excessive in KS FGCs. X-linked genes dominate the differentially expressed genes and are enriched in critical biological processes associated with the developmental delay of KS FGCs. Moreover, aberrant interactions between Sertoli cells and FGCs disrupt the migration of late FGCs to the basement membrane in KS. Notably, inhibition of the TGF-β pathway improves the differentiation of KS FGCs. Our findings elucidate how the extra X chromosome impairs the development of male FGCs and reveal the initial molecular events preceding germ cell loss in KS.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qilong He
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lingyue Hua
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qianying Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xixi Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Fanqing Xu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ling Ding
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yixuan Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Cong Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Pengbo Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaoming Shi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xueju Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Cheng Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ying Lian
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
34
|
Khaliq AM, Rajamohan M, Saeed O, Mansouri K, Adil A, Zhang C, Turk A, Carstens JL, House M, Hayat S, Nagaraju GP, Pappas SG, Wang YA, Zyromski NJ, Opyrchal M, Lee KP, O'Hagan H, El Rayes B, Masood A. Spatial transcriptomic analysis of primary and metastatic pancreatic cancers highlights tumor microenvironmental heterogeneity. Nat Genet 2024; 56:2455-2465. [PMID: 39294496 DOI: 10.1038/s41588-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Although the spatial, cellular and molecular landscapes of resected pancreatic ductal adenocarcinoma (PDAC) are well documented, the characteristics of its metastatic ecology remain elusive. By applying spatially resolved transcriptomics to matched primary and metastatic PDAC samples, we discovered a conserved continuum of fibrotic, metabolic and immunosuppressive spatial ecotypes across anatomical regions. We observed spatial tumor microenvironment heterogeneity spanning beyond that previously appreciated in PDAC. Through comparative analysis, we show that the spatial ecotypes exhibit distinct enrichment between primary and metastatic sites, implying adaptability to the local environment for survival and progression. The invasive border ecotype exhibits both pro-tumorigenic and anti-tumorigenic cell-type enrichment, suggesting a potential immunotherapy target. The ecotype heterogeneity across patients emphasizes the need to map individual patient landscapes to develop personalized treatment strategies. Collectively, our findings provide critical insights into metastatic PDAC biology and serve as a valuable resource for future therapeutic exploration and molecular investigations.
Collapse
Affiliation(s)
- Ateeq M Khaliq
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meenakshi Rajamohan
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Omer Saeed
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimia Mansouri
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Asif Adil
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Turk
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julienne L Carstens
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael House
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ganji P Nagaraju
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sam G Pappas
- Division of Surgical Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Y Alan Wang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas J Zyromski
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelvin P Lee
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather O'Hagan
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bassel El Rayes
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashiq Masood
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
36
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2024. [PMID: 39485719 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Linlin Ji
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
37
|
Lu K, Xia Y, Cheng P, Li Y, He L, Tao L, Wei Z, Lu Y. Synergistic potentiation of the anti-metastatic effect of a Ginseng-Salvia miltiorrhiza herbal pair and its biological ingredients via the suppression of CD62E-dependent neutrophil infiltration and NETformation. J Adv Res 2024:S2090-1232(24)00490-9. [PMID: 39481643 DOI: 10.1016/j.jare.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION The combination of the roots of ginseng and Salvia miltiorrhiza is an effective approach for treating metastatic cancer in patients with Qi stagnation and blood stasis patterns. However, the molecular mechanism underlying the combined use of ginseng and Salvia miltiorrhiza is unknown. OBJECTIVES This study unveils the pharmacological foundation of ginseng and Salvia miltiorrhiza by examining the involvement of neutrophils in the critical process of tumor hematogenous metastasis. Additionally, by employing a reverse pharmacology research model (effect-target-constituent), potential potent components were screened, and the dominant component formulations were determined. METHODS An experimental lung metastatic model was constructed to compare the antitumor effects of ginseng and Salvia miltiorrhiza. RNA sequencing was employed to identify pivotal biological events and key targets, while the detection of CD62E expression and neutrophil extracellular traps (NETs) release was used to screen for effective substances in ginseng and Salvia miltiorrhiza. In addition, a comprehensive array of in vitro and in vivo experiments was conducted to explore the underlying mechanisms and therapeutic significance. RESULTS Compared with single-herb use, the use of ginseng or Salvia miltiorrhiza significantly reduced tumor metastasis, which was accompanied by reduced neutrophil infiltration into the lungs. Cryptotanshinone (CPT), an active constituent of Salvia miltiorrhiza, can inhibit neutrophil adhesion and recruitment to lung tissue by downregulating the expression of E-selectin (CD62E) in endothelial cells. Moreover, the ginseng-derived ginsenoside Rg1 mitigated the formation of NETs in lung tissues and reversed the protumor effects of NETs. We further explored the efficacy of combination therapy with Rg1 and CPT, which also reduced tumor metastasis in vivo. CONCLUSION Ginseng and Salvia miltiorrhiza exhibited a mutual potentiation of the anti-metastatic effect by suppressing both early and late stages of neutrophil-initiated metastasis cascade. Rg1 and CPT represent the synergistic ingredients from ginseng and Salvia miltiorrhiza, respectively.
Collapse
Affiliation(s)
- Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanan Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
38
|
Qi Q, Pang J, Chen Y, Tang Y, Wang H, Gul S, Sun Y, Tang W, Sheng M. Targeted Drug Screening Leveraging Senescence-Induced T-Cell Exhaustion Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:11232. [PMID: 39457014 PMCID: PMC11508728 DOI: 10.3390/ijms252011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a leading cause of cancer-related mortality globally, with most patients diagnosed at advanced stages and facing limited early treatment options. This study aimed to identify characteristic genes associated with T-cell exhaustion due to senescence in hepatocellular carcinoma patients, elucidating the interplay between senescence and T-cell exhaustion. We constructed prognostic models based on five signature genes (ENO1, STMN1, PRDX1, RAN, and RANBP1) linked to T-cell exhaustion, utilizing elastic net regression. The findings indicate that increased expression of ENO1 in T cells may contribute to T-cell exhaustion and Treg infiltration in hepatocellular carcinoma. Furthermore, molecular docking was employed to screen small molecule compounds that target the anti-tumor effects of these exhaustion-related genes. This study provides crucial insights into the diagnosis and treatment of hepatocellular carcinoma, establishing a strong foundation for the development of predictive biomarkers and therapeutic targets for affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| |
Collapse
|
39
|
Wang Y, Thistlethwaite W, Tadych A, Ruf-Zamojski F, Bernard DJ, Cappuccio A, Zaslavsky E, Chen X, Sealfon SC, Troyanskaya OG. Automated single-cell omics end-to-end framework with data-driven batch inference. Cell Syst 2024; 15:982-990.e5. [PMID: 39366377 PMCID: PMC11491117 DOI: 10.1016/j.cels.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
To facilitate single-cell multi-omics analysis and improve reproducibility, we present single-cell pipeline for end-to-end data integration (SPEEDI), a fully automated end-to-end framework for batch inference, data integration, and cell-type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell-type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI's data-driven batch-inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - William Thistlethwaite
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Alicja Tadych
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xi Chen
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA.
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Olga G Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
40
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
41
|
Lu Y, Liu Y, Zuo X, Li G, Wang J, Liu J, Wang X, Wang S, Zhang W, Zhang K, Lei X, Hao Q, Li W, Liu L, Li M, Zhang C, Zhang H, Zhang Y, Gao Y. CXCL12 + Tumor-associated Endothelial Cells Promote Immune Resistance in Hepatocellular Carcinoma. J Hepatol 2024:S0168-8278(24)02618-7. [PMID: 39393439 DOI: 10.1016/j.jhep.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in the limited efficacy of existing treatments for hepatocellular carcinoma (HCC), with tumor-associated endothelial cells (TECs) serving as fundamental TME components that substantially influence tumor progression and treatment efficacy. However, the precise roles and mechanisms of TECs in HCC remain inadequately understood. METHODS We employed a multi-omics profiling strategy to investigate the single-cell and spatiotemporal evolution of TECs within the microenvironment of HCC tumors showcasing varied responses to immunotherapy. Through an analysis of a clinical cohort of HCC patients, we explored the correlation between TEC subpopulations and immunotherapy outcomes. The influence of TEC subsets on the immune microenvironment was confirmed through comprehensive in vitro and in vivo studies. To further explore the mechanisms of distinct TEC subpopulations in microenvironmental modulation and their impact on immunotherapy, we utilized TEC subset-specific knockout mouse models as well as humanized mouse models. RESULTS In this research, we identified a new subset of CXCL12+ TECs that exert a crucial role in immune suppression within the HCC TME. Functionally, CXCL12+ TECs impede the differentiation of CD8+ naïve T cells into CD8+ cytotoxic T cells by secreting CXCL12. Furthermore, they attract myeloid-derived suppressor cells (MDSCs). A bispecific antibody was developed to target both CXCL12 and PD1 specifically, showing significant promise in bolstering anti-tumor immune responses and advancing HCC therapy. CONCLUSIONS CXCL12+ TECs are pivotal in mediating immunosuppression within HCC microenvironment and targeting CXCL12+ TECs presents a promising approach to augment the efficacy of immunotherapies in HCC patients. IMPACT AND IMPLICATION This investigation reveals a pivotal mechanism in the HCC TME, where CXCL12+ TECs emerge as crucial modulators of immune suppression. The discovery of CXCL12+ TECs as inhibitors of CD8+ naïve T cell activation and recruiters of MDSCs significantly advances our grasp of the dynamic between HCC and immune regulation. Moreover, the development and application of a bispecific antibody precisely targeting CXCL12 and PD1 has proven to enhance immune responses in a humanized mouse HCC model. This finding underscores a promising therapeutic direction for HCC, offering the potential to amplify the impact of current immunotherapies.
Collapse
Affiliation(s)
- Yajie Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China; The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China
| | - Yunpeng Liu
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Xiaoshuang Zuo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Guodong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Jianlin Wang
- The Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Jianshan Liu
- The Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Xiangxu Wang
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China
| | - Shuning Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Wangqian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Kuo Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Xiaoying Lei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Qiang Hao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Weina Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Lei Liu
- Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China
| | - Meng Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Cun Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China.
| | - Hongmei Zhang
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China.
| | - Yingqi Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China.
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China.
| |
Collapse
|
42
|
Zhang Y, Gong S, Liu X. Spatial transcriptomics: a new frontier in accurate localization of breast cancer diagnosis and treatment. Front Immunol 2024; 15:1483595. [PMID: 39439806 PMCID: PMC11493667 DOI: 10.3389/fimmu.2024.1483595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Breast cancer is one of the most prevalent cancers in women globally. Its treatment and prognosis are significantly influenced by the tumor microenvironment and tumor heterogeneity. Precision therapy enhances treatment efficacy, reduces unwanted side effects, and maximizes patients' survival duration while improving their quality of life. Spatial transcriptomics is of significant importance for the precise treatment of breast cancer, playing a critical role in revealing the internal structural differences of tumors and the composition of the tumor microenvironment. It offers a novel perspective in studying the spatial structure and cell interactions within tumors, facilitating more effective personalized treatments for breast cancer. This article will summarize the latest findings in the diagnosis and treatment of breast cancer from the perspective of spatial transcriptomics, focusing on the revelation of the tumor microenvironment, identification of new therapeutic targets, enhancement of disease diagnostic accuracy, comprehension of tumor progression and metastasis, assessment of drug responses, creation of high-resolution maps of tumor cells, representation of tumor heterogeneity, and support for clinical decision-making, particularly in elucidating the tumor microenvironment, tumor heterogeneity, immunotherapy and their correlation with clinical outcomes.
Collapse
Affiliation(s)
- Yang Zhang
- Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shuhua Gong
- Department of Student Affair, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
43
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity 2024; 57:2344-2361.e7. [PMID: 39321806 DOI: 10.1016/j.immuni.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Collapse
Affiliation(s)
- Zhigang Nian
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiqing Shen
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jintang Liu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianghui Du
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Jiang
- Department of Anesthesiology, The first affiliated hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
44
|
Yang Y, Yang J, Li L, Shao Y, Liu L, Sun B. Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours. BMC Cancer 2024; 24:1244. [PMID: 39379856 PMCID: PMC11463147 DOI: 10.1186/s12885-024-12993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
As frontline cells, the precise recruitment of neutrophils is crucial for resolving inflammation and maintaining the homeostasis of the organism. Increasing evidence suggests the pivotal role of neutrophil chemotaxis in cancer progression and metastasis. Here, we collected clinical data and peripheral blood samples from patients with tumours to examine the alterations in the neutrophil quantity and chemotactic function using the Cell Chemotaxis Analysis Platform (CCAP). Transcriptome sequencing data of pan-cancer were obtained from The Cancer Genome Atlas (TCGA). Using the least absolute shrinkage and selection operator (LASSO) Cox regression model, we selected a total of 29 genes from 155 neutrophil- and chemotaxis-related genes to construct the ChemoScore model. Meanwhile, nomogram-based comprehensive model was established for clinical application. Furthermore, immunofluorescence (IF) staining was employed to assess the relationship between the neutrophils infiltrating and the survival outcomes of tumours. In this observational study, the chemotactic function of neutrophils was notably diminished in patients. The establishment and validation of ChemoScore suggested neutrophil chemotaxis to be a risk factor in most tumours, whereby higher scores were associated with poorer survival outcomes and were correlated with various immune cells and malignant biological processes. Moreover, IF staining of tumour tissue substantiated the adverse correlation between neutrophil infiltration and the survival of patients with lung adenocarcinoma (P = 0.0002) and colon adenocarcinoma (P = 0.0472). Taken together, patients with tumours demonstrated a decrease in chemotactic function. ChemoScore potentially prognosticates the survival of patients with tumours. Neutrophil chemotaxis provides novel directions and theoretical foundations for anti-tumour treatment.
Collapse
Affiliation(s)
- Yunxi Yang
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Jun Yang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Yiming Shao
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272000, China
| | - Lu Liu
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China.
| |
Collapse
|
45
|
Xiao C, Feng X, Aini W, Zhao Z, Ding G, Gao Y. Knowledge landscape of tumor-associated neutrophil: a bibliometric and visual analysis from 2000-2024. Front Immunol 2024; 15:1448818. [PMID: 39430756 PMCID: PMC11486681 DOI: 10.3389/fimmu.2024.1448818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Background Neutrophils have long been consistently adjudged to hold a dominant position in acute inflammation, which once led people to undervalue their role in chronic malignancy. It is now acknowledged that neutrophils also infiltrate into the tumor microenvironment in substantial quantities and form a highly abundant immune population within the tumor, known as tumor-associated neutrophils (TANs). There has been a surge of interest in researching the eminent heterogeneity and plasticity of TANs in recent years, and scholars increasingly cotton on to the multifaceted functions of TANs so that strenuous endeavors have been devoted to enunciating their potential as therapeutic targets. Yet it remains much left to translate TAN-targeted immunotherapies into clinical practice. Therefore, there is great significance to comprehensively appraise the research status, focal point, and evolution trend of TAN by using bibliometric analysis. Methods Publications related to TAN research from 2000 to 2024 are extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were performed by tools encompassing Microsoft Excel, VOSviewer, CiteSpace, R-bibliometrix, and so on. Results The bibliometric analysis included a total of 788 publications authored by 5291 scholars affiliated with 1000 institutions across 58 countries/regions, with relevant articles published in 324 journals. Despite China's maximum quantity of publications and top 10 institutions, the United States is the leading country with the most high-quality publications and is also the global cooperation center. FRONTIERS IN IMMUNOLOGY published the most papers, whereas CANCER RESEARCH is the highest co-cited journal. Israeli professor Fridlender, Zvi G. is the founder, pioneer, and cultivator with the highest citation counts and H-index in the TAN area. Our analysis prefigures the future trajectories: TAN heterogeneity, neutrophil extracellular trap, the crosstalk between TANs and immunocytes, and immunotherapy will likely be the focus of future research. Conclusion A comprehensive bibliometric and visual analysis is first performed to map the current landscape and intellectual structure of TAN, which proffers fresh perspectives for further research. The accurate identification of distinct TAN subpopulations and the precise targeting of key pro-tumor/anti-tumor subpopulations hold immense potential to develop into a TAN-targeted immunotherapy.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wufuer Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gouping Ding
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2024:S0962-8924(24)00187-9. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
47
|
Guan Y, Feng D, Maccioni L, Wang Y, Gao B. New therapeutic target for alcohol-associated hepatitis (AH): AH-associated IL-8 + neutrophils. EGASTROENTEROLOGY 2024; 2:e100166. [PMID: 39742140 PMCID: PMC11687388 DOI: 10.1136/egastro-2024-100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
49
|
Qiu X, Zhou T, Li S, Wu J, Tang J, Ma G, Yang S, Hu J, Wang K, Shen S, Wang H, Chen L. Spatial single-cell protein landscape reveals vimentin high macrophages as immune-suppressive in the microenvironment of hepatocellular carcinoma. NATURE CANCER 2024; 5:1557-1578. [PMID: 39327501 DOI: 10.1038/s43018-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Tumor microenvironment heterogeneity in hepatocellular carcinoma (HCC) on a spatial single-cell resolution is unclear. Here, we conducted co-detection by indexing to profile the spatial heterogeneity of 401 HCC samples with 36 biomarkers. By parsing the spatial tumor ecosystem of liver cancer, we identified spatial patterns with distinct prognosis and genomic and molecular features, and unveiled the progressive role of vimentin (VIM)high macrophages. Integration analysis with eight independent cohorts demonstrated that the spatial co-occurrence of VIMhigh macrophages and regulatory T cells promotes tumor progression and favors immunotherapy. Functional studies further demonstrated that VIMhigh macrophages enhance the immune-suppressive activity of regulatory T cells by mechanistically increasing the secretion of interleukin-1β. Our data provide deep insights into the heterogeneity of tumor microenvironment architecture and unveil the critical role of VIMhigh macrophages during HCC progression, which holds potential for personalized cancer prevention and drug discovery and reinforces the need to resolve spatial-informed features for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Tao Zhou
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shuai Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guosheng Ma
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji Hu
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyun Shen
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| | - Lei Chen
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Liver Cancer, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| |
Collapse
|
50
|
Wang L, Cao J, Liu Z, Wu S, Liu Y, Liang R, Zhu R, Wang W, Li J, Sun Y. Enhanced interactions within microenvironment accelerates dismal prognosis in HBV-related HCC after TACE. Hepatol Commun 2024; 8:e0548. [PMID: 39365124 PMCID: PMC11458170 DOI: 10.1097/hc9.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is the first-line treatment for patients with advanced HCC, but there are limited studies on the microenvironment alterations caused by TACE. METHODS Six fresh HBV-related HCC specimens with or without TACE intervention were used to perform single-cell RNA sequencing. The 757 bulk samples from 3 large-scale multicenter cohorts were applied for comprehensive analysis. The biological functions of the biomarkers were further validated by phenotypic experiments. RESULTS Using single-cell RNA sequencing analysis, we delineated the global cell atlas of post-TACE and demonstrated elevated tumor heterogeneity and an enhanced proinflammatory microenvironment induced by TACE. Cell-cell communication analysis revealed that markedly elevated interactions between NABP1+ malignant hepatocytes, neutrophils, and CD8+ T cells after TACE might accelerate the shift from CD8+ effector memory T cells to CD8+ effector T cells. This result was substantiated by the developmental trajectory between the 2 and dramatically decreased resident scores along the pseudotemporal trajectory. Integrating bulk data, we further found that the increased estimated proportion of NABP1+ malignant hepatocytes was related to poor TACE response and dismal prognosis, and its biomarker role could be replaced by NABP1. In vitro, multiple biological experiments consistently verified that NABP1 knockdown significantly inhibited the proliferation and migration of HCC cells. CONCLUSIONS Based on our depicted global map of post-TACE, we confirmed that the enhanced interactions within the microenvironment after TACE may be the culprits for postoperative progression. NABP1 may become an attractive tool for the early identification of patients sensitive to first-line TACE in clinical practice.
Collapse
Affiliation(s)
- Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|