1
|
Choi CH'W, Shin J, Eddy L, Granja V, Wyss KM, Damasceno B, Guo H, Gao G, Zhao Y, Higgs CF, Han Y, Tour JM. Flash-within-flash synthesis of gram-scale solid-state materials. Nat Chem 2024; 16:1831-1837. [PMID: 39117740 DOI: 10.1038/s41557-024-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Sustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique-a non-equilibrium, ultrafast heat conduction method-to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions. FWF achieves enormous advantages in facile gram scalability and in sustainable manufacturing criteria when compared with other synthesis methods. Also, FWF allows the production of phase-selective and single-crystalline bulk powders, a phenomenon rarely observed by any other synthesis method. Furthermore, FWF MoSe2 outperformed commercially available MoSe2 in tribology, showcasing the quality of FWF materials. The capability for atom substitution and doping further highlights the versatility of FWF as a general bulk inorganic materials synthesis protocol.
Collapse
Affiliation(s)
| | - Jaeho Shin
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, Houston, TX, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX, USA
| | - Victoria Granja
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | - Hua Guo
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Guanhui Gao
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | | | - C Fred Higgs
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Yimo Han
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX, USA.
| | - James M Tour
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Smalley-Curl Institute, the NanoCarbon Center and Rice Applied Materials Institute, Rice University, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Li J, Yang X, Zhang Z, Yang W, Duan X, Duan X. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. NATURE MATERIALS 2024; 23:1326-1338. [PMID: 39227467 DOI: 10.1038/s41563-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Two-dimensional transition metal dichalcogenides, which feature atomically thin geometry and dangling-bond-free surfaces, have attracted intense interest for diverse technology applications, including ultra-miniaturized transistors towards the subnanometre scale. A straightforward exfoliation-and-restacking approach has been widely used for nearly arbitrary assembly of diverse two-dimensional (2D) heterostructures, superlattices and moiré superlattices, providing a versatile materials platform for fundamental investigations of exotic physical phenomena and proof-of-concept device demonstrations. While this approach has contributed importantly to the recent flourishing of 2D materials research, it is clearly unsuitable for practical technologies. Capturing the full potential of 2D transition metal dichalcogenides requires robust and scalable synthesis of these atomically thin materials and their heterostructures with designable spatial modulation of chemical compositions and electronic structures. The extreme aspect ratio, lack of intrinsic substrate and highly delicate nature of the atomically thin crystals present fundamental difficulties in material synthesis. Here we summarize the key challenges, highlight current advances and outline opportunities in the scalable synthesis of transition metal dichalcogenide-based heterostructures, superlattices and moiré superlattices.
Collapse
Affiliation(s)
- Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Zhengwei Zhang
- School of Physics and Electronics, Central South University, Changsha, China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Li W, Qin Q, Li X, Huangfu Y, Shen D, Liu J, Li J, Li B, Wu R, Duan X. Robust Growth of 2D Transition Metal Dichalcogenide Vertical Heterostructures via Ammonium-Assisted CVD Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408367. [PMID: 39300853 DOI: 10.1002/adma.202408367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Two dimension (2D) transition metal dichalcogenides (TMD) heterostructures have opened unparalleled prospects for next-generation electronic and optoelectronic applications due to their atomic-scale thickness and distinct physical properties. The chemical vapor deposition (CVD) method is the most feasible approach to prepare 2D TMD heterostructures. However, the synthesis of 2D vertical heterostructures faces competition between in-plane and out-of-plane growth, which makes it difficult to precisely control the growth of vertical heterostructures. Here, a universal and controllable strategy is reported to grow various 2D TMD vertical heterostructures through an ammonium-assisted CVD process. The ammonium-assisted strategy shows excellent controllability and operational simplicity to prevent interlayer diffusion/alloying and thermal decomposition of the existed TMD templates. Ab initio simulations demonstrate that the reaction between NH4Cl and MoS2 leads to the formation of MoS3 clusters, promoting the nucleation and growth of 2D MoS2 on existed 2D WS2 layer, thereby leading to the growth of vertical heterostructure. The resulting 2D WSe2/WS2 vertical heterostructure photodetectors demonstrate an outstanding optoelectronic performance, which are comparable to the performances of photodetectors fabricated from mechanically exfoliated and stacked vertical heterostructures. The ammonium-assisted strategy for robust growth of high-quality vertical van der Waals heterostructures will facilitate fundamental physics investigations and device applications in electronics and optoelectronics.
Collapse
Affiliation(s)
- Wei Li
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qiuyin Qin
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ying Huangfu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dingyi Shen
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Jialing Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
5
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Liang M, Yan H, Wazir N, Zhou C, Ma Z. Two-Dimensional Semiconductors for State-of-the-Art Complementary Field-Effect Transistors and Integrated Circuits. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1408. [PMID: 39269071 PMCID: PMC11397490 DOI: 10.3390/nano14171408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.
Collapse
Affiliation(s)
- Meng Liang
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Han Yan
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Nasrullah Wazir
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Changjian Zhou
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Zichao Ma
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
7
|
Zeng J, Liang T, Yang B, Rao T, Han M, Yao Y, Xu JB, Li L, Sun R. Poly(ionic liquid)s: A Promising Matrix for Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45563-45576. [PMID: 39162026 DOI: 10.1021/acsami.4c09914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The swift progression of high-density chiplet packaging, propelled by the artificial intelligence revolution, has precipitated a critical need for high-performance chip-scale thermal interface materials (TIMs). The elevated thermal resistance, limited interfacial adhesion, and mechanical flexibility intrinsic to silicone systems present a substantial challenge in meeting reliability standards amidst chip warpage. This particular matter underscores a significant performance bottleneck within existing high-end TIMs. In this study, we present poly(ionic liquid)s (PILs) as an innovative matrix for TIMs. Our findings highlight the unique properties of PILs, showcasing a low elastic modulus (60 kPa), exceptional flexibility and stretchability (>3800%), high adhesion to diverse substrates (up to 4.10 MPa), favorable filler compatibility, remarkable thermal stability, and prompt self-healing capabilities coupled with recyclability. The collective findings suggest that the PIL serves as an ideal matrix for heat transfer. As a proof of concept, PIL blended with liquid metal was straightforwardly combined to produce a TIM, exhibiting exceptional performance within practical encapsulated structures. The PIL-based TIM demonstrates substantial elongation at break (>350%), coupled with sustained high adhesion strength (up to 1.70 MPa), and exhibits favorable thermal conductivity in package testing. This study presents an innovative TIM matrix with the potential to enhance existing TIM systems, delivering significant performance benefits compared to silicones. Besides elucidating their multifaceted characteristics, this study forecasts an expanded range of applications for PILs, along with laying the groundwork for advancing next-generation TIMs.
Collapse
Affiliation(s)
- Jianhui Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Key Laboratory for Processing and Forming of Advanced Metallic Materials, School of Mechanical & Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640, China
| | - Ting Liang
- Department of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Baohao Yang
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taoying Rao
- Guangdong Key Laboratory for Processing and Forming of Advanced Metallic Materials, School of Mechanical & Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640, China
| | - Meng Han
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yimin Yao
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian-Bin Xu
- Department of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Liejun Li
- Guangdong Key Laboratory for Processing and Forming of Advanced Metallic Materials, School of Mechanical & Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640, China
| | - Rong Sun
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Yoo J, Nam CY, Bussmann E. Atomic Precision Processing of Two-Dimensional Materials for Next-Generation Microelectronics. ACS NANO 2024; 18:21614-21622. [PMID: 39105703 DOI: 10.1021/acsnano.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The growth of the information era economy is driving the pursuit of advanced materials for microelectronics, spurred by exploration into "Beyond CMOS" and "More than Moore" paradigms. Atomically thin 2D materials, such as transition metal dichalcogenides (TMDCs), show great potential for next-generation microelectronics due to their properties and defect engineering capabilities. This perspective delves into atomic precision processing (APP) techniques like atomic layer deposition (ALD), epitaxy, atomic layer etching (ALE), and atomic precision advanced manufacturing (APAM) for the fabrication and modification of 2D materials, essential for future semiconductor devices. Additive APP methods like ALD and epitaxy provide precise control over composition, crystallinity, and thickness at the atomic scale, facilitating high-performance device integration. Subtractive APP techniques, such as ALE, focus on atomic-scale etching control for 2D material functionality and manufacturing. In APAM, modification techniques aim at atomic-scale defect control, offering tailored device functions and improved performance. Achieving optimal performance and energy efficiency in 2D material-based microelectronics requires a comprehensive approach encompassing fundamental understanding, process modeling, and high-throughput metrology. The outlook for APP in 2D materials is promising, with ongoing developments poised to impact manufacturing and fundamental materials science. Integration with advanced metrology and codesign frameworks will accelerate the realization of next-generation microelectronics enabled by 2D materials.
Collapse
Affiliation(s)
- Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chang-Yong Nam
- Center for Functional Materials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ezra Bussmann
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
9
|
Li C, Zheng F, Min J, Yang N, Chang YM, Liu H, Zhang Y, Yang P, Yu Q, Li Y, Luo Z, Aljarb A, Shih K, Huang JK, Li LJ, Wan Y. Revisiting the Epitaxial Growth Mechanism of 2D TMDC Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404923. [PMID: 39149776 DOI: 10.1002/adma.202404923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Epitaxial growth of 2D transition metal dichalcogenides (TMDCs) on sapphire substrates has been recognized as a pivotal method for producing wafer-scale single-crystal films. Both step-edges and symmetry of substrate surfaces have been proposed as controlling factors. However, the underlying fundamental still remains elusive. In this work, through the molybdenum disulfide (MoS2) growth on C/M sapphire, it is demonstrated that controlling the sulfur evaporation rate is crucial for dictating the switch between atomic-edge guided epitaxy and van der Waals epitaxy. Low-concentration sulfur condition preserves O/Al-terminated step edges, fostering atomic-edge epitaxy, while high-concentration sulfur leads to S-terminated edges, preferring van der Waals epitaxy. These experiments reveal that on a 2 in. wafer, the van der Waals epitaxy mechanism achieves better control in MoS2 alignment (≈99%) compared to the step edge mechanism (<85%). These findings shed light on the nuanced role of atomic-level thermodynamics in controlling nucleation modes of TMDCs, thereby providing a pathway for the precise fabrication of single-crystal 2D materials on a wafer scale.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Fangyuan Zheng
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Jiacheng Min
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Ni Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yu-Ming Chang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Haomin Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yuxiang Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Pengfei Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Qinze Yu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- The CUHK Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Areej Aljarb
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Physics, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Jing-Kai Huang
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yi Wan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
10
|
Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C, Liu K. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 2024; 385:99-104. [PMID: 38963849 DOI: 10.1126/science.ado6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Rhombohedral-stacked transition-metal dichalcogenides (3R-TMDs), which are distinct from their hexagonal counterparts, exhibit higher carrier mobility, sliding ferroelectricity, and coherently enhanced nonlinear optical responses. However, surface epitaxial growth of large multilayer 3R-TMD single crystals is difficult. We report an interfacial epitaxy methodology for their growth of several compositions, including molybdenum disulfide (MoS2), molybdenum diselenide, tungsten disulfide, tungsten diselenide, niobium disulfide, niobium diselenide, and molybdenum sulfoselenide. Feeding of metals and chalcogens continuously to the interface between a single-crystal Ni substrate and grown layers ensured consistent 3R stacking sequence and controlled thickness from a few to 15,000 layers. Comprehensive characterizations confirmed the large-scale uniformity, high crystallinity, and phase purity of these films. The as-grown 3R-MoS2 exhibited room-temperature mobilities up to 155 and 190 square centimeters per volt second for bi- and trilayers, respectively. Optical difference frequency generation with thick 3R-MoS2 showed markedly enhanced nonlinear response under a quasi-phase matching condition (five orders of magnitude greater than monolayers).
Collapse
Affiliation(s)
- Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Quanlin Guo
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiuzhen Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Wenya Wei
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, China
| | - Chenjun Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Qinghe Wang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Fang Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Mengze Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Jiajie Qi
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Muhong Wu
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Enge Wang
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| |
Collapse
|
11
|
Kim YH, Jiang W, Lee D, Moon D, Choi HY, Shin JC, Jeong Y, Kim JC, Lee J, Huh W, Han CY, So JP, Kim TS, Kim SB, Koo HC, Wang G, Kang K, Park HG, Jeong HY, Im S, Lee GH, Low T, Lee CH. Boltzmann Switching MoS 2 Metal-Semiconductor Field-Effect Transistors Enabled by Monolithic-Oxide-Gapped Metal Gates at the Schottky-Mott Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314274. [PMID: 38647521 DOI: 10.1002/adma.202314274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.
Collapse
Affiliation(s)
- Yeon Ho Kim
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Wei Jiang
- Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, 55455, USA
| | - Donghun Lee
- Department of Chemistry, Kookmin University, Seoul, 02707, Republic of Korea
| | - Donghoon Moon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Young Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - June-Chul Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonsu Jeong
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Chan Kim
- UNIST Central Research Facilities (UCRF) and Department of Materials Science and Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaeho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woong Huh
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chang Yong Han
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Pil So
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong Been Kim
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyun Cheol Koo
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF) and Department of Materials Science and Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Seongil Im
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, 55455, USA
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Kim KS, Kwon J, Ryu H, Kim C, Kim H, Lee EK, Lee D, Seo S, Han NM, Suh JM, Kim J, Song MK, Lee S, Seol M, Kim J. The future of two-dimensional semiconductors beyond Moore's law. NATURE NANOTECHNOLOGY 2024; 19:895-906. [PMID: 38951597 DOI: 10.1038/s41565-024-01695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
The primary challenge facing silicon-based electronics, crucial for modern technological progress, is difficulty in dimensional scaling. This stems from a severe deterioration of transistor performance due to carrier scattering when silicon thickness is reduced below a few nanometres. Atomically thin two-dimensional (2D) semiconductors still maintain their electrical characteristics even at sub-nanometre scales and offer the potential for monolithic three-dimensional (3D) integration. Here we explore a strategic shift aimed at addressing the scaling bottleneck of silicon by adopting 2D semiconductors as new channel materials. Examining both academic and industrial viewpoints, we delve into the latest trends in channel materials, the integration of metal contacts and gate dielectrics, and offer insights into the emerging landscape of industrializing 2D semiconductor-based transistors for monolithic 3D integration.
Collapse
Affiliation(s)
- Ki Seok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junyoung Kwon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Huije Ryu
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Changhyun Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Hyunseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eun-Kyu Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Doyoon Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seunghwan Seo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ne Myo Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jekyung Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min-Kyu Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minsu Seol
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea.
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Kim S, Lee W, Ko K, Cho H, Cho H, Jeon S, Jeong C, Kim S, Ding F, Suh J. Phase-Centric MOCVD Enabled Synthetic Approaches for Wafer-Scale 2D Tin Selenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400800. [PMID: 38593471 DOI: 10.1002/adma.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post-synthetic modifications are required, or even a combination of both, to ensure large-area, pure-phase, and low-temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer-scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D-SnSe2 films with tuneable thicknesses are directly grown via metal-organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal-organic precursors and decoupled dual-temperature regimes for high-temperature ligand cracking and low-temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as-grown 2D-SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n-type to p-type crossover at the wafer scale. These tailor-made synthetic routes will accelerate the low-thermal-budget production of multiphase 2D materials in a reliable and scalable fashion.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Wookhee Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Kyungmin Ko
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hanbin Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hoyeon Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seonhwa Jeon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Changwook Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Feng Ding
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
| | - Joonki Suh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| |
Collapse
|
14
|
Wu Y, Wang Y, Bao D, Deng X, Zhang S, Yu-Chun L, Ke S, Liu J, Liu Y, Wang Z, Ham P, Hanna A, Pan J, Hu X, Li Z, Zhou J, Wang C. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:146. [PMID: 38951490 PMCID: PMC11217405 DOI: 10.1038/s41377-024-01486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Di Bao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lin Yu-Chun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jianing Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yingjie Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zeli Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Pingren Ham
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Andrew Hanna
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiaming Pan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xinyue Hu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China.
| |
Collapse
|
15
|
Zhang B, Ao Z, Lan X, Zhong J, Zhang F, Zhang S, Yang R, Wang L, Chen P, Wang G, Yang X, Liu H, Cao J, Zhong M, Li H, Zhang Z. Self-Rolled-Up WSe 2 One-Dimensional/Two-Dimensional Homojunctions: Enabling High-Performance Self-Powered Polarization-Sensitive Photodetectors. NANO LETTERS 2024; 24:7716-7723. [PMID: 38848111 DOI: 10.1021/acs.nanolett.4c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Mixed-dimensional heterostructures integrate materials of diverse dimensions with unique electronic functionalities, providing a new platform for research in electron transport and optoelectronic detection. Here, we report a novel covalently bonded one-dimensional/two-dimensional (1D/2D) homojunction structure with robust junction contacts, which exhibits wide-spectrum (from the visible to near-infrared regions), self-driven photodetection, and polarization-sensitive photodetection capabilities. Benefiting from the ultralow dark current at zero bias voltage, the on/off ratio and detectivity of the device reach 1.5 × 103 and 3.24 × 109 Jones, respectively. Furthermore, the pronounced anisotropy of the WSe2 1D/2D homojunction is attributed to its low symmetry, enabling polarization-sensitive detection. In the absence of any external bias voltage, the device exhibits strong linear dichroism for wavelengths of 638 and 808 nm, with anisotropy ratios of 2.06 and 1.96, respectively. These results indicate that such mixed-dimensional structures can serve as attractive building blocks for novel optoelectronic detectors.
Collapse
Affiliation(s)
- Baihui Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Zhikang Ao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Xiang Lan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Jiang Zhong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Fen Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Shunhui Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Ruofan Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Luyao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Peng Chen
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guang Wang
- Department of Physics, College of Sciences, National University of Defense Technology, Changsha 410073, P. R. China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Hang Liu
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jinhui Cao
- College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Mianzeng Zhong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Hongjian Li
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| | - Zhengwei Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
16
|
Lv R, Luo C, Liu B, Hu K, Wang K, Zheng L, Guo Y, Du J, Li L, Wu F, Chen R. Unveiling Confinement Engineering for Achieving High-Performance Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400508. [PMID: 38452342 DOI: 10.1002/adma.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Indexed: 03/09/2024]
Abstract
The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.
Collapse
Affiliation(s)
- Ruixin Lv
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Luo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Bingran Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kaikai Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ke Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Longhong Zheng
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yafei Guo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiahao Du
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
17
|
Lee T, Jung KS, Seo S, Lee J, Park J, Kang S, Park J, Kang J, Ahn H, Kim S, Lee HW, Lee D, Kim KS, Kim H, Heo K, Kim S, Bae SH, Kang S, Kang K, Kim J, Park JH. Junctionless Negative-Differential-Resistance Device Using 2D Van-Der-Waals Layered Materials for Ternary Parallel Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310015. [PMID: 38450812 DOI: 10.1002/adma.202310015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Negative-differential-resistance (NDR) devices offer a promising pathway for developing future computing technologies characterized by exceptionally low energy consumption, especially multivalued logic computing. Nevertheless, conventional approaches aimed at attaining the NDR phenomenon involve intricate junction configurations and/or external doping processes in the channel region, impeding the progress of NDR devices to the circuit and system levels. Here, an NDR device is presented that incorporates a channel without junctions. The NDR phenomenon is achieved by introducing a metal-insulator-semiconductor capacitor to a portion of the channel area. This approach establishes partial potential barrier and well that effectively restrict the movement of hole and electron carriers within specific voltage ranges. Consequently, this facilitates the implementation of both a ternary inverter and a ternary static-random-access-memory, which are essential components in the development of multivalued logic computing technology.
Collapse
Affiliation(s)
- Taeran Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Kil-Su Jung
- Flash Memory Technology Design Team, Samsung Electronics Co. Ltd., Giheung, 17113, South Korea
- Department of Semiconductor and Display Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Seunghwan Seo
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
| | - Junseo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Jihye Park
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sumin Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jeongwon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Juncheol Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Hogeun Ahn
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Suhyun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Hae Won Lee
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
| | - Doyoon Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
| | - Ki Seok Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
| | - Hyunseok Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
| | - Keun Heo
- School of Semiconductor Science & Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Sunmean Kim
- School of Electronics Engineering College of IT Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Missouri, MO, 63130, USA
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Missouri, MO, 63130, USA
| | - Seokhyeong Kang
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jeehwan Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02138, USA
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| |
Collapse
|
18
|
Hur JS, Lee S, Moon J, Jung HG, Jeon J, Yoon SH, Park JH, Jeong JK. Oxide and 2D TMD semiconductors for 3D DRAM cell transistors. NANOSCALE HORIZONS 2024; 9:934-945. [PMID: 38563255 DOI: 10.1039/d4nh00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
As the downscaling of conventional dynamic random-access memory (DRAM) has reached its limits, 3D DRAM has been proposed as a next-generation DRAM cell architecture. However, incorporating silicon into 3D DRAM technology faces various challenges in securing cost-effective high cell transistor performance. Therefore, many researchers are exploring the application of next-generation semiconductor materials, such as transition oxide semiconductors (OSs) and metal dichalcogenides (TMDs), to address these challenges and to realize 3D DRAM. This study provides an overview of the proposed structures for 3D DRAM, compares the characteristics of OSs and TMDs, and discusses the feasibility of employing the OSs and TMDs as the channel material for 3D DRAM. Furthermore, we review recent progress in 3D DRAM using the OSs, discussing their potential to overcome challenges in silicon-based approaches.
Collapse
Affiliation(s)
- Jae Seok Hur
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sungsoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiwon Moon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hang-Gyo Jung
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongwook Jeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seong Hun Yoon
- Department of Display Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
- Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Kyeong Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
- Department of Display Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
19
|
Wan Y, Wang Y, Yuan S, Wan Z, Lu Y, Wang L, Wang Q. Dimension-Confined Growth of a Crack-Free PbS Microplate Array for Infrared Image Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26386-26394. [PMID: 38722643 DOI: 10.1021/acsami.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Epitaxy of semiconductors is a necessary step toward the development of electronic devices such as lasers, detectors, transistors, and solar cells. However, the lattice ordering of semiconductor functional films is inevitably disrupted by excessive concentrated stress due to the mismatch of the thermal expansion coefficient. Herein, combined with the first-principles calculation, we find that a rigid film/substrate bilayer heterostructure with a large thermal expansion mismatch upon cooling to room temperature from growth is free of surface cracks when the rigid film exhibits a dimension smaller than the critical condition for the breaking energy. The principle has been verified in a PbS/SrTiO3 bilayer system that is crack free on PbS single-crystalline microplate arrays through the designing of a dimension-confined growth (DCG) method. Interestingly, this crack-free, large-scale PbS microplate array exhibits exceptional uniformity in morphology, dimensions, thickness, and photodetection properties, enabling a broad-band infrared image sensing. This work provides a new perspective to design materials and arrays that demand smooth and continuous surfaces, which are not limited only to semiconductor electronics but also include mechanical structures, optical materials, biomedical materials, and others.
Collapse
Affiliation(s)
- Yu Wan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yan Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Shengpeng Yuan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Zhiyang Wan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yan Lu
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Li Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Qisheng Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
20
|
Chang C, Zhang X, Li W, Guo Q, Feng Z, Huang C, Ren Y, Cai Y, Zhou X, Wang J, Tang Z, Ding F, Wei W, Liu K, Xu X. Remote epitaxy of single-crystal rhombohedral WS 2 bilayers. Nat Commun 2024; 15:4130. [PMID: 38755189 PMCID: PMC11099013 DOI: 10.1038/s41467-024-48522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Compared to transition metal dichalcogenide (TMD) monolayers, rhombohedral-stacked (R-stacked) TMD bilayers exhibit remarkable electrical performance, enhanced nonlinear optical response, giant piezo-photovoltaic effect and intrinsic interfacial ferroelectricity. However, from a thermodynamics perspective, the formation energies of R-stacked and hexagonal-stacked (H-stacked) TMD bilayers are nearly identical, leading to mixed stacking of both H- and R-stacked bilayers in epitaxial films. Here, we report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates. The bilayer growth is realized by a high flux feeding of the tungsten source at high temperature on substrates. The R-stacked configuration is achieved by the symmetry breaking in a-plane sapphire, where the influence of atomic steps passes through the lower TMD layer and controls the R-stacking of the upper layer. The as-grown R-stacked bilayers show up-to-30-fold enhancements in carrier mobility (34 cm2V-1s-1), nearly doubled circular helicity (61%) and interfacial ferroelectricity, in contrast to monolayer films. Our work reveals a growth mechanism to obtain stacking-controlled bilayer TMD single crystals, and promotes large-scale applications of R-stacked TMD.
Collapse
Affiliation(s)
- Chao Chang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Xiaowen Zhang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Weixuan Li
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Quanlin Guo
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Zuo Feng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Chen Huang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Yunlong Ren
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Yingying Cai
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Xu Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jinhuan Wang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhilie Tang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Feng Ding
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenya Wei
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China.
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
| | - Xiaozhi Xu
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Song S, Rahaman M, Jariwala D. Can 2D Semiconductors Be Game-Changers for Nanoelectronics and Photonics? ACS NANO 2024; 18:10955-10978. [PMID: 38625032 DOI: 10.1021/acsnano.3c12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
2D semiconductors have interesting physical and chemical attributes that have led them to become one of the most intensely investigated semiconductor families in recent history. They may play a crucial role in the next technological revolution in electronics as well as optoelectronics or photonics. In this Perspective, we explore the fundamental principles and significant advancements in electronic and photonic devices comprising 2D semiconductors. We focus on strategies aimed at enhancing the performance of conventional devices and exploiting important properties of 2D semiconductors that allow fundamentally interesting device functionalities for future applications. Approaches for the realization of emerging logic transistors and memory devices as well as photovoltaics, photodetectors, electro-optical modulators, and nonlinear optics based on 2D semiconductors are discussed. We also provide a forward-looking perspective on critical remaining challenges and opportunities for basic science and technology level applications of 2D semiconductors.
Collapse
Affiliation(s)
- Seunguk Song
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mahfujur Rahaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Miao Y, Wang Z, Wei Z, Shen G. Patterned growth of AgBiS 2 nanostructures on arbitrary substrates for broadband and eco-friendly optoelectronic sensing. NANOSCALE 2024; 16:7409-7418. [PMID: 38511281 DOI: 10.1039/d4nr00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The patterning of functional nanomaterials shows a promising path in the advanced fabrication of electronic and optoelectronic devices. Current micropatterning strategies are indispensable for post-etching/liftoff processes that contaminate/damage functional materials. Herein, we developed an innovative, low-temperature, post-liftoff-free, seed-confined fabricating strategy that can tackle this issue, thus achieving designated patterns of flower-shaped AgBiS2 nanostructures at either micro- or macro-scale on arbitrary substrates that are either rigid or flexible. Made of patterned AgBiS2 nanostructures, the photoconductor shows broadband (320 nm-2200 nm), sensitive (Rpeak = 1.56 A W-1), and fast (less than 100 μs) photoresponses. Furthermore, single-pixel raster-scanning and 28 × 12 focal plane array imaging were performed to demonstrate reliable and resolved electrical responses to optical patterns, showcasing the potential of the photoconductor in practical imaging applications. Notably, the patterning process enables strain-releasing micro-structures, which lead to the fabrication of a flexible photodetector with high durability upon over 1000 bending/recovering testing cycles. This study provides a simple, low-temperature, and eco-friendly strategy to address the current challenges in non-aggressive micro-fabrication and arbitrary patterning of semiconductors, which are promising to meet the development of further emerging technologies in scalable and wearable optoelectronic sensors.
Collapse
Affiliation(s)
- Yu Miao
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
23
|
Fox C, Mao Y, Zhang X, Wang Y, Xiao J. Stacking Order Engineering of Two-Dimensional Materials and Device Applications. Chem Rev 2024; 124:1862-1898. [PMID: 38150266 DOI: 10.1021/acs.chemrev.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Stacking orders in 2D van der Waals (vdW) materials dictate the relative sliding (lateral displacement) and twisting (rotation) between atomically thin layers. By altering the stacking order, many new ferroic, strongly correlated and topological orderings emerge with exotic electrical, optical and magnetic properties. Thanks to the weak vdW interlayer bonding, such highly flexible and energy-efficient stacking order engineering has transformed the design of quantum properties in 2D vdW materials, unleashing the potential for miniaturized high-performance device applications in electronics, spintronics, photonics, and surface chemistry. This Review provides a comprehensive overview of stacking order engineering in 2D vdW materials and their device applications, ranging from the typical fabrication and characterization methods to the novel physical properties and the emergent slidetronics and twistronics device prototyping. The main emphasis is on the critical role of stacking orders affecting the interlayer charge transfer, orbital coupling and flat band formation for the design of innovative materials with on-demand quantum properties and surface potentials. By demonstrating a correlation between the stacking configurations and device functionality, we highlight their implications for next-generation electronic, photonic and chemical energy conversion devices. We conclude with our perspective of this exciting field including challenges and opportunities for future stacking order engineering research.
Collapse
Affiliation(s)
- Carter Fox
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Yulu Mao
- Department of Electrical and Computer Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Xiang Zhang
- Faculty of Science, University of Hong Kong, Hong Kong, China
- Faculty of Engineering, University of Hong Kong, Hong Kong, China
| | - Ying Wang
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Electrical and Computer Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jun Xiao
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
25
|
Kim KH, Song S, Kim B, Musavigharavi P, Trainor N, Katti K, Chen C, Kumari S, Zheng J, Redwing JM, Stach EA, Olsson Iii RH, Jariwala D. Tuning Polarity in WSe 2/AlScN FeFETs via Contact Engineering. ACS NANO 2024; 18:4180-4188. [PMID: 38271989 DOI: 10.1021/acsnano.3c09279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent advancements in ferroelectric field-effect transistors (FeFETs) using two-dimensional (2D) semiconductor channels and ferroelectric Al0.68Sc0.32N (AlScN) allow high-performance nonvolatile devices with exceptional ON-state currents, large ON/OFF current ratios, and large memory windows (MW). However, previous studies have solely focused on n-type FeFETs, leaving a crucial gap in the development of p-type and ambipolar FeFETs, which are essential for expanding their applicability to a wide range of circuit-level applications. Here, we present a comprehensive demonstration of n-type, p-type, and ambipolar FeFETs on an array scale using AlScN and multilayer/monolayer WSe2. The dominant injected carrier type is modulated through contact engineering at the metal-semiconductor junction, resulting in the realization of all three types of FeFETs. The effect of contact engineering on the carrier injection is further investigated through technology-computer-aided design simulations. Moreover, our 2D WSe2/AlScN FeFETs achieve high electron and hole current densities of ∼20 and ∼10 μA/μm, respectively, with a high ON/OFF ratio surpassing ∼107 and a large MW of >6 V (0.14 V/nm).
Collapse
Affiliation(s)
- Kwan-Ho Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Seunguk Song
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bumho Kim
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pariasadat Musavigharavi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Trainor
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Keshava Katti
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Shalini Kumari
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Jeffrey Zheng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joan M Redwing
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roy H Olsson Iii
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Zhu Y, Cao J, Liu S, Loh KP. Heteroepitaxial Growth of Black Phosphorus on Tin Monosulfide. NANO LETTERS 2024; 24:479-485. [PMID: 38147351 DOI: 10.1021/acs.nanolett.3c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Black phosphorus (Black P), a layered semiconductor with a layer-dependent bandgap and high carrier mobility, is a promising candidate for next-generation electronics and optoelectronics. However, the synthesis of large-area, layer-precise, single crystalline Black P films remains a challenge due to their high nucleation energy. Here, we report the molecular beam heteroepitaxy of single crystalline Black P films on a tin monosulfide (SnS) buffer layer grown on Au(100). The layer-by-layer growth mode enables the preparation of monolayer to trilayer films, with band gaps that reflect layer-dependent quantum confinement.
Collapse
Affiliation(s)
- Youhuan Zhu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Junjie Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shanshan Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
28
|
Jayachandran D, Pendurthi R, Sadaf MUK, Sakib NU, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight TV, Redwing JM, Yang Y, Das S. Three-dimensional integration of two-dimensional field-effect transistors. Nature 2024; 625:276-281. [PMID: 38200300 DOI: 10.1038/s41586-023-06860-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/10/2023] [Indexed: 01/12/2024]
Abstract
In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as 'More Moore'1 but also introduces multifunctionalities for 'More than Moore'2 technologies. Although silicon-based 3D integrated circuits are commercially available3-5, there is limited effort on 3D integration of emerging nanomaterials6,7 such as two-dimensional (2D) materials despite their unique functionalities7-10. Here we demonstrate (1) wafer-scale and monolithic two-tier 3D integration based on MoS2 with more than 10,000 field-effect transistors (FETs) in each tier; (2) three-tier 3D integration based on both MoS2 and WSe2 with about 500 FETs in each tier; and (3) two-tier 3D integration based on 200 scaled MoS2 FETs (channel length, LCH = 45 nm) in each tier. We also realize a 3D circuit and demonstrate multifunctional capabilities, including sensing and storage. We believe that our demonstrations will serve as the foundation for more sophisticated, highly dense and functionally divergent integrated circuits with a larger number of tiers integrated monolithically in the third dimension.
Collapse
Affiliation(s)
- Darsith Jayachandran
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
| | - Rahul Pendurthi
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
| | | | - Najam U Sakib
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
| | - Ying Han
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Nicholas Trainor
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Shalini Kumari
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Thomas V Mc Knight
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Joan M Redwing
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| | - Yang Yang
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
- Nuclear Engineering, Penn State University, University Park, PA, USA
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
- Materials Science and Engineering, Penn State University, University Park, PA, USA.
- Materials Research Institute, Penn State University, University Park, PA, USA.
- Electrical Engineering, Penn State University, University Park, PA, USA.
| |
Collapse
|
29
|
Xu C, Ding Y, Wang S, Cao S. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123182. [PMID: 37517268 DOI: 10.1016/j.saa.2023.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
van der Waals (vdW) heterojunctions based on two-dimensional (2D) materials, graphene and transition metal dichalcogenides (TMDs), are a research hotspot for future optoelectronic and exciton devices. Bond-free vdW interactions are key to 2D material heterojunction device reliability and stability. However, most of the current research on 2D stacked materials heterostructures mainly focuses on optical properties and electronic structure. Furthermore, vdW interaction in 2D heterostructures is studied and understood on the basis of qualitative description and energy ranges from the literature. There are few studies on the nature of vdW interaction based on practical calculations of the quantitative strength and microscopic mechanism of vdW interaction between 2D stacked materials. Therefore, this paper explores the vdW interaction between 2D material stacked bilayer structures, including bilayer graphene, graphene/MoS2 and graphene/WS2 heterostructures, focusing on quantitative analysis of the energy components of the vdW interaction. We first visually observed the weak interactions in the three stacked bilayer structures through noncovalent interaction (NCI) analysis, and found that the interactions are concentrated in the binding region between the two-layer structures. We mainly decomposed the weak interaction energy in the three 2D material bilayer heterostructures through energy decomposition analysis based on the force field (EDA-FF) method and obtained the energy values and proportions of the three components-electrostatic energy, exchange repulsion energy and dispersion energy of the total binding energy between the 2D stacked bilayer structures. The vdW interaction energy is the sum of the exchange repulsion energy and dispersion energy, and the dispersion energy of the vdW interaction accounts for more than 60% of the binding energy of the weak interaction between the 2D bilayer stacked structures. The vdW strengths in the bilayer structures are on the order of 177.07, 123.85, and 133.93 kJ/mol, approxmately 1-2 orders of magnitude larger than the classically defined vdW energies of 0.1-10 kJ/mol. Furthermore, we calculate the density of states of the three 2D stacked structures, and further obtained HOMO-LOMO information; to further understand the electronic structures of the graphene/MoS2 and graphene/WS2 heterostructures, we calculated their optical absorption spectra and electron circular dichroism (ECD) spectra. According to the calculation results, the two heterostructures have strong absorption peaks in the visible region, and the charge transfer forms at the strong absorption peak can be determined according to the charge transfer diagram. The ECD spectra indicate that the configurations of the graphene/MoS2 and graphene/WS2 heterostructures have large chirality. Our work contributes to a deeper understanding of the nature of the weak interactions and optical properties in 2D stacked materials, which plays a fundamental role in promoting the construction of stable 2D heterostructure configurations and the development of multifunctional 2D devices. The research is conducive to further promoting the basic research and practical development of strong optoelectronic and excitonic 2D heterojunctions devices.
Collapse
Affiliation(s)
- Changcheng Xu
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yong Ding
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Shaofeng Wang
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Shuo Cao
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
30
|
Kang JH, Shin H, Kim KS, Song MK, Lee D, Meng Y, Choi C, Suh JM, Kim BJ, Kim H, Hoang AT, Park BI, Zhou G, Sundaram S, Vuong P, Shin J, Choe J, Xu Z, Younas R, Kim JS, Han S, Lee S, Kim SO, Kang B, Seo S, Ahn H, Seo S, Reidy K, Park E, Mun S, Park MC, Lee S, Kim HJ, Kum HS, Lin P, Hinkle C, Ougazzaden A, Ahn JH, Kim J, Bae SH. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. NATURE MATERIALS 2023:10.1038/s41563-023-01704-z. [PMID: 38012388 DOI: 10.1038/s41563-023-01704-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
Three-dimensional (3D) hetero-integration technology is poised to revolutionize the field of electronics by stacking functional layers vertically, thereby creating novel 3D circuity architectures with high integration density and unparalleled multifunctionality. However, the conventional 3D integration technique involves complex wafer processing and intricate interlayer wiring. Here we demonstrate monolithic 3D integration of two-dimensional, material-based artificial intelligence (AI)-processing hardware with ultimate integrability and multifunctionality. A total of six layers of transistor and memristor arrays were vertically integrated into a 3D nanosystem to perform AI tasks, by peeling and stacking of AI processing layers made from bottom-up synthesized two-dimensional materials. This fully monolithic-3D-integrated AI system substantially reduces processing time, voltage drops, latency and footprint due to its densely packed AI processing layers with dense interlayer connectivity. The successful demonstration of this monolithic-3D-integrated AI system will not only provide a material-level solution for hetero-integration of electronics, but also pave the way for unprecedented multifunctional computing hardware with ultimate parallelism.
Collapse
Affiliation(s)
- Ji-Hoon Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electronic Engineering, Inha University, Incheon, Republic of Korea
| | - Heechang Shin
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ki Seok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min-Kyu Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doyoon Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Chanyeol Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hyunseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guanyu Zhou
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Suresh Sundaram
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- CNRS, Georgia Tech - CNRS IRL 2958, GT-Europe, Metz, France
| | - Phuong Vuong
- CNRS, Georgia Tech - CNRS IRL 2958, GT-Europe, Metz, France
| | - Jiho Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyeong Choe
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sun Ok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Beomseok Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seungju Seo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyojung Ahn
- Future Innovation Research Center, Korea Aerospace Research Institute, Daejeon, Republic of Korea
- Aerospace System Engineering, University of Science and Technology, Daejeon, Republic of Korea
| | - Seunghwan Seo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eugene Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sungchul Mun
- Department of Industrial Engineering, Jeonju University, Jeonju, Republic of Korea
- Convergence Institute of Human Data Technology, Jeonju University, Jeonju, Republic of Korea
| | - Min-Chul Park
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Suyoun Lee
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyung-Jun Kim
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyun S Kum
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Peng Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Christopher Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Abdallah Ougazzaden
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- CNRS, Georgia Tech - CNRS IRL 2958, GT-Europe, Metz, France
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
31
|
Chen J, Zhu YQ, Zhao XC, Wang ZH, Zhang K, Zhang Z, Sun MY, Wang S, Zhang Y, Han L, Wu X, Ren TL. PZT-Enabled MoS 2 Floating Gate Transistors: Overcoming Boltzmann Tyranny and Achieving Ultralow Energy Consumption for High-Accuracy Neuromorphic Computing. NANO LETTERS 2023; 23:10196-10204. [PMID: 37926956 DOI: 10.1021/acs.nanolett.3c02721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Low-power electronic devices play a pivotal role in the burgeoning artificial intelligence era. The study of such devices encompasses low-subthreshold swing (SS) transistors and neuromorphic devices. However, conventional field-effect transistors (FETs) face the inherent limitation of the "Boltzmann tyranny", which restricts SS to 60 mV decade-1 at room temperature. Additionally, FET-based neuromorphic devices lack sufficient conductance states for highly accurate neuromorphic computing due to a narrow memory window. In this study, we propose a pioneering PZT-enabled MoS2 floating gate transistor (PFGT) configuration, demonstrating a low SS of 46 mV decade-1 and a wide memory window of 7.2 V in the dual-sweeping gate voltage range from -7 to 7 V. The wide memory window provides 112 distinct conductance states for PFGT. Moreover, the PFGT-based artificial neural network achieves an outstanding facial-recognition accuracy of 97.3%. This study lays the groundwork for the development of low-SS transistors and highly energy efficient artificial synapses utilizing two-dimensional materials.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
- BNRist, Tsinghua University, Beijing 100084, China
| | - Ye-Qing Zhu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xue-Chun Zhao
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zheng-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Kai Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ming-Yuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250100, P. R. China
| | - Xiaoming Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Jeon MJ, Hyeong SK, Jang HY, Mun J, Kim TW, Bae S, Lee SK. Selective Laser-Assisted Direct Synthesis of MoS 2 for Graphene/MoS 2 Schottky Junction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2937. [PMID: 37999291 PMCID: PMC10674199 DOI: 10.3390/nano13222937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Implementing a heterostructure by vertically stacking two-dimensional semiconductors is necessary for responding to various requirements in the future of semiconductor technology. However, the chemical-vapor deposition method, which is an existing two-dimensional (2D) material-processing method, inevitably causes heat damage to surrounding materials essential for functionality because of its high synthesis temperature. Therefore, the heterojunction of a 2D material that directly synthesized MoS2 on graphene using a laser-based photothermal reaction at room temperature was studied. The key to the photothermal-reaction mechanism is the difference in the photothermal absorption coefficients of the materials. The device in which graphene and MoS2 were vertically stacked using a laser-based photothermal reaction demonstrated its potential application as a photodetector that responds to light and its stability against cycling. The laser-based photothermal-reaction method for 2D materials will be further applied to various fields, such as transparent display electrodes, photodetectors, and solar cells, in the future.
Collapse
Affiliation(s)
- Min Ji Jeon
- School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.J.J.)
| | - Seok-Ki Hyeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
| | - Hee Yoon Jang
- School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.J.J.)
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tae-Wook Kim
- Department of Flexible and Printable Electronics, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Sukang Bae
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Seoung-Ki Lee
- School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.J.J.)
| |
Collapse
|
33
|
Zhong H, He T, Meng Y, Xiao Q. Photonic Bound States in the Continuum in Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7112. [PMID: 38005042 PMCID: PMC10672634 DOI: 10.3390/ma16227112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Bound states in the continuum (BIC) have garnered considerable attention recently for their unique capacity to confine electromagnetic waves within an open or non-Hermitian system. Utilizing a variety of light confinement mechanisms, nanostructures can achieve ultra-high quality factors and intense field localization with BIC, offering advantages such as long-living resonance modes, adaptable light control, and enhanced light-matter interactions, paving the way for innovative developments in photonics. This review outlines novel functionality and performance enhancements by synergizing optical BIC with diverse nanostructures, delivering an in-depth analysis of BIC designs in gratings, photonic crystals, waveguides, and metasurfaces. Additionally, we showcase the latest advancements of BIC in 2D material platforms and suggest potential trajectories for future research.
Collapse
Affiliation(s)
| | | | | | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (T.H.); (Y.M.)
| |
Collapse
|
34
|
Park S, Lee D, Kang J, Choi H, Park JH. Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In 2Se 3 for stacked in-memory computing array. Nat Commun 2023; 14:6778. [PMID: 37880220 PMCID: PMC10600126 DOI: 10.1038/s41467-023-41991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
In-memory computing is an attractive alternative for handling data-intensive tasks as it employs parallel processing without the need for data transfer. Nevertheless, it necessitates a high-density memory array to effectively manage large data volumes. Here, we present a stacked ferroelectric memory array comprised of laterally gated ferroelectric field-effect transistors (LG-FeFETs). The interlocking effect of the α-In2Se3 is utilized to regulate the channel conductance. Our study examined the distinctive characteristics of the LG-FeFET, such as a notably wide memory window, effective ferroelectric switching, long retention time (over 3 × 104 seconds), and high endurance (over 105 cycles). This device is also well-suited for implementing vertically stacked structures because decreasing its height can help mitigate the challenges associated with the integration process. We devised a 3D stacked structure using the LG-FeFET and verified its feasibility by performing multiply-accumulate (MAC) operations in a two-tier stacked memory configuration.
Collapse
Affiliation(s)
- Sangyong Park
- Flash Technology Development Team, R&D Center, Device Solutions, Samsung Electronics Co. Ltd, Hwasung, 18448, Korea
- Department of Semiconductor and Display Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Dongyoung Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Juncheol Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Hojin Choi
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, Korea.
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon, Korea.
| |
Collapse
|
35
|
Bistervels MH, Antalicz B, Kamp M, Schoenmaker H, Noorduin WL. Light-driven nucleation, growth, and patterning of biorelevant crystals using resonant near-infrared laser heating. Nat Commun 2023; 14:6350. [PMID: 37816757 PMCID: PMC10564937 DOI: 10.1038/s41467-023-42126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
Spatiotemporal control over crystal nucleation and growth is of fundamental interest for understanding how organisms assemble high-performance biominerals, and holds relevance for manufacturing of functional materials. Many methods have been developed towards static or global control, however gaining simultaneously dynamic and local control over crystallization remains challenging. Here, we show spatiotemporal control over crystallization of retrograde (inverse) soluble compounds induced by locally heating water using near-infrared (NIR) laser light. We modulate the NIR light intensity to start, steer, and stop crystallization of calcium carbonate and laser-write with micrometer precision. Tailoring the crystallization conditions overcomes the inherently stochastic crystallization behavior and enables positioning single crystals of vaterite, calcite, and aragonite. We demonstrate straightforward extension of these principles toward other biorelevant compounds by patterning barium-, strontium-, and calcium carbonate, as well as strontium sulfate and calcium phosphate. Since many important compounds exhibit retrograde solubility behavior, NIR-induced heating may enable light-controlled crystallization with precise spatiotemporal control.
Collapse
Affiliation(s)
| | | | - Marko Kamp
- AMOLF, 1098 XG, Amsterdam, The Netherlands
| | | | - Willem L Noorduin
- AMOLF, 1098 XG, Amsterdam, The Netherlands.
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1090 GD, The Netherlands.
| |
Collapse
|
36
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
37
|
Marino E, Jiang Z, Kodger TE, Murray CB, Schall P. Controlled Assembly of CdSe Nanoplatelet Thin Films and Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12533-12540. [PMID: 37561597 PMCID: PMC10501200 DOI: 10.1021/acs.langmuir.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Indexed: 08/12/2023]
Abstract
We assemble semiconductor CdSe nanoplatelets (NPs) at the air/liquid interface into 2D monolayers several micrometers wide, distinctly displaying nematic order. We show that this configuration is the most favorable energetically and that the edge-to-edge distance between neighboring NPs can be tuned by ligand exchange without disrupting film topology and nanoparticle orientation. We explore the rich assembly phase space by using depletion interactions to direct the formation of 1D nanowires from stacks of NPs. The improved control and understanding of the assembly of semiconductor NPs offers opportunities for the development of cheaper optoelectronic devices that rely on 1D or 2D charge delocalization throughout the assembled monolayers and nanowires.
Collapse
Affiliation(s)
- Emanuele Marino
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Dipartimento
di Fisica e Chimica, Università degli
Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Zhiqiao Jiang
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, 19104 Philadelphia (Pennsylvania), United States
| | - Thomas E. Kodger
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Christopher B. Murray
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, 19104 Philadelphia (Pennsylvania), United States
| | - Peter Schall
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
38
|
Wang X, Choi J, Yoo J, Hong YJ. Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates. NANO CONVERGENCE 2023; 10:40. [PMID: 37648837 PMCID: PMC10468468 DOI: 10.1186/s40580-023-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Remote epitaxy has opened novel opportunities for advanced manufacturing and heterogeneous integration of two-dimensional (2D) materials and conventional (3D) materials. The lattice transparency as the fundamental principle of remote epitaxy has been studied and challenged by recent observations defying the concept. Understanding remote epitaxy requires an integrated approach of theoretical modeling and experimental validation at multi-scales because the phenomenon includes remote interactions of atoms across an atomically thin material and a few van der Waals gaps. The roles of atomically thin 2D material for the nucleation and growth of a 3D material have not been integrated into a framework of remote epitaxy research. Here, we summarize studies of remote epitaxy mechanisms with a comparison to other epitaxy techniques. In the end, we suggest the crucial topics of remote epitaxy research for basic science and applications.
Collapse
Affiliation(s)
- Xuejing Wang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Joonghoon Choi
- Department of Nanotechnology and Advanced Materials Engineering, GRI-TPC International Research Center, Sejong University, Seoul, 05006, South Korea
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
| | - Young Joon Hong
- Department of Nanotechnology and Advanced Materials Engineering, GRI-TPC International Research Center, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
39
|
Li X, Yang J, Sun H, Huang L, Li H, Shi J. Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305115. [PMID: 37406665 DOI: 10.1002/adma.202305115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
2D semiconducting transition metal dichalcogenide (TMDCs) possess atomically thin thickness, a dangling-bond-free surface, flexible band structure, and silicon-compatible feature, making them one of the most promising channels for constructing state-of-the-art field-effect transistors in the post-Moore's era. However, the existing 2D semiconducting TMDCs fall short of meeting the industry criteria for practical applications in electronics due to their small domain size and the lack of an effective approach to modulate intrinsic physical properties. Therefore, it is crucial to prepare and dope 2D semiconducting TMDCs single crystals with wafer size. In this review, the up-to-date progress regarding the wafer-scale growth of 2D semiconducting TMDC polycrystalline and single-crystal films is systematically summarized. The domain orientation control of 2D TMDCs and the seamless stitching of unidirectionally aligned 2D islands by means of substrate design are proposed. In addition, the accurate and uniform doping of 2D semiconducting TMDCs and the effect on electronic device performances are also discussed. Finally, the dominating challenges pertaining to the enhancement of the electronic device performances of TMDCs are emphasized, and further development directions are put forward. This review provides a systematic and in-depth summary of high-performance device applications of 2D semiconducting TMDCs.
Collapse
Affiliation(s)
- Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hang Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
40
|
Tang J, Wang Q, Tian J, Li X, Li N, Peng Y, Li X, Zhao Y, He C, Wu S, Li J, Guo Y, Huang B, Chu Y, Ji Y, Shang D, Du L, Yang R, Yang W, Bai X, Shi D, Zhang G. Low power flexible monolayer MoS 2 integrated circuits. Nat Commun 2023; 14:3633. [PMID: 37336907 DOI: 10.1038/s41467-023-39390-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
Monolayer molybdenum disulfide (ML-MoS2) is an emergent two-dimensional (2D) semiconductor holding potential for flexible integrated circuits (ICs). The most important demands for the application of such ML-MoS2 ICs are low power consumption and high performance. However, these are currently challenging to satisfy due to limitations in the material quality and device fabrication technology. In this work, we develop an ultra-thin high-κ dielectric/metal gate fabrication technique for the realization of thin film transistors based on high-quality wafer scale ML-MoS2 on both rigid and flexible substrates. The rigid devices can be operated in the deep-subthreshold regime with low power consumption and show negligible hysteresis, sharp subthreshold slope, high current density, and ultra-low leakage currents. Moreover, we realize fully functional large-scale flexible ICs operating at voltages below 1 V. Our process could represent a key step towards using energy-efficient flexible ML-MoS2 ICs in portable, wearable, and implantable electronics.
Collapse
Affiliation(s)
- Jian Tang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinpeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaomei Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| | - Na Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Yalin Peng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuzhen Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanchong Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Congli He
- Institute of Advanced Materials, Beijing Normal University, Beijing, 100875, China
| | - Shuyu Wu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiawei Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yutuo Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Biying Huang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanbang Chu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiru Ji
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Dashan Shang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.
| |
Collapse
|
41
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
42
|
Soliman M, Maity K, Gloppe A, Mahmoudi A, Ouerghi A, Doudin B, Kundys B, Dayen JF. Photoferroelectric All-van-der-Waals Heterostructure for Multimode Neuromorphic Ferroelectric Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15732-15744. [PMID: 36919904 PMCID: PMC10375436 DOI: 10.1021/acsami.3c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interface-driven effects in ferroelectric van der Waals (vdW) heterostructures provide fresh opportunities in the search for alternative device architectures toward overcoming the von Neumann bottleneck. However, their implementation is still in its infancy, mostly by electrical control. It is of utmost interest to develop strategies for additional optical and multistate control in the quest for novel neuromorphic architectures. Here, we demonstrate the electrical and optical control of the ferroelectric polarization states of ferroelectric field effect transistors (FeFET). The FeFETs, fully made of ReS2/hBN/CuInP2S6 vdW materials, achieve an on/off ratio exceeding 107, a hysteresis memory window up to 7 V wide, and multiple remanent states with a lifetime exceeding 103 s. Moreover, the ferroelectric polarization of the CuInP2S6 (CIPS) layer can be controlled by photoexciting the vdW heterostructure. We perform wavelength-dependent studies, which allow for identifying two mechanisms at play in the optical control of the polarization: band-to-band photocarrier generation into the 2D semiconductor ReS2 and photovoltaic voltage into the 2D ferroelectric CIPS. Finally, heterosynaptic plasticity is demonstrated by operating our FeFET in three different synaptic modes: electrically stimulated, optically stimulated, and optically assisted synapse. Key synaptic functionalities are emulated including electrical long-term plasticity, optoelectrical plasticity, optical potentiation, and spike rate-dependent plasticity. The simulated artificial neural networks demonstrate an excellent accuracy level of 91% close to ideal-model synapses. These results provide a fresh background for future research on photoferroelectric vdW systems and put ferroelectric vdW heterostructures on the roadmap for the next neuromorphic computing architectures.
Collapse
Affiliation(s)
- Mohamed Soliman
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Krishna Maity
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Arnaud Gloppe
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Aymen Mahmoudi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Abdelkarim Ouerghi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Bernard Doudin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 cedex 05 Paris, France
| | - Bohdan Kundys
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Jean-Francois Dayen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 cedex 05 Paris, France
| |
Collapse
|