1
|
Anderson LS, Costabile JD, Schwinn S, Calderon D, Haesemeyer M. Sensorimotor integration enhances temperature stimulus processing. PLoS Comput Biol 2025; 21:e1013134. [PMID: 40493521 PMCID: PMC12151342 DOI: 10.1371/journal.pcbi.1013134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/13/2025] [Indexed: 06/18/2025] Open
Abstract
Animals optimize behavior by integrating sensory input with motor actions. We hypothesized that coupling thermosensory information with motor output enhances the brain's capacity to process temperature changes, leading to more precise and adaptive behaviors. To test this, we developed a virtual "thermal plaid" environment where zebrafish either actively controlled temperature changes (sensorimotor feedback) or passively experienced the same thermal fluctuations. Our findings demonstrate that sensorimotor feedback amplifies the influence of thermal stimuli on swim initiation, resulting in more structured and organized motor output. We show that previously identified mixed-selectivity neurons that simultaneously encode thermal cues and motor activity enable the integration of sensory and motor feedback to optimize behavior. These results highlight the role of sensorimotor integration in refining thermosensory processing, revealing critical neural mechanisms underlying flexible thermoregulatory behavior. Our study offers new insights into how animals adaptively process environmental stimuli and adjust their actions, contributing to a deeper understanding of the neural circuits driving goal-directed behavior in dynamic environments.
Collapse
Affiliation(s)
- Lindsay S. Anderson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Jamie D. Costabile
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Sina Schwinn
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Delia Calderon
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Zhu Z, Jiang T, Jia X, Wang X, Ren M. Whole-brain long-range connectivity of glutamatergic, GABAergic, parvalbumin-expressing and somatostatin-expressing neurons in mouse somatosensory cortex. Neurosci Res 2025; 217:104912. [PMID: 40436113 DOI: 10.1016/j.neures.2025.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/17/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025]
Abstract
Understanding the composition of cortical circuits at the whole-brain scale is crucial. However, the specific ways in which particular neuronal types in the primary somatosensory cortex (SSp) establish connections with upstream and downstream brain regions remain unclear. In this study, we used whole-brain imaging technology with submicron resolution to systematically reveal the long-range connectivity patterns of glutamatergic, GABAergic, parvalbumin-expressing (PV+), and somatostatin-expressing (SOM+) neurons in the SSp. Our results show that while glutamatergic, GABAergic, PV+ , and SOM+ neurons receive similar upstream afferent, specific thalamic subregions showed numerically stronger afferent to GABAergic, PV+ , and SOM+ neurons compared to glutamatergic neurons. Additionally, glutamatergic neurons exhibit a more complex collateral projection pattern in subcortical axonal pathways compared to PV+ neurons. These findings elucidate the long-range connectivity patterns of specific neuronal types in the SSp, offering new insights into the cell-type-specific mechanisms of sensory information processing.
Collapse
Affiliation(s)
- Zhaoxin Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Xiaojun Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Miao Ren
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| |
Collapse
|
3
|
Yarmolinsky DA, Zeng X, MacKinnon-Booth N, Greene CA, Kim C, Cheng YT, Lenfers Turnes B, Woolf CJ. Differential modification of ascending spinal outputs in acute and chronic pain states. Neuron 2025; 113:1223-1239.e5. [PMID: 40023166 PMCID: PMC12005971 DOI: 10.1016/j.neuron.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/08/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Pain hypersensitivity arises from the induction of plasticity in peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain, altering pain perception. We applied longitudinal calcium imaging of spinal dorsal projection neurons to determine whether and how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy mice, we identified stable outputs selective for cooling or warming and a neuronal ensemble activated by noxious thermal and mechanical stimuli. Induction of acute peripheral sensitization by topical capsaicin transiently re-tuned nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury resulted in a persistent suppression of innocuous spinal outputs coupled with persistent activation of a normally silent population of high-threshold neurons. These results demonstrate differential modulation of spinal outputs to the brain during nociceptive and neuropathic pain states.
Collapse
Affiliation(s)
- David A Yarmolinsky
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiangsunze Zeng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Caitlin A Greene
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chloe Kim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yu-Ting Cheng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bruna Lenfers Turnes
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Ding WQ, Song W, Shi X, Feng Z, Chen X, Xie T, Liu Y, Zhou J, Chen Y, Lin JK, Wang QM, Zhou H, Liang TY, Jiang T, Ren B, Yao H, Li YQ, Evrard HC, Poo MM, Li H, Li X, Gong H, Todd AJ, Li A, Wang X, Deng J, Sun YG. Single-neuron projectome reveals organization of somatosensory ascending pathways in the mouse brain. Neuron 2025:S0896-6273(25)00179-5. [PMID: 40209714 DOI: 10.1016/j.neuron.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025]
Abstract
Relay of multimodal somatosensory information from the spinal cord to the brain is critical for sensory perception, but the underlying circuit organization remains unclear. We have reconstructed mouse cervical spinal projection neurons at single-cell resolution and identified 19 projectome-defined subtypes exhibiting diverse projection patterns. We also reconstructed the brain-wide axonal projections of central relay neurons that receive direct spinal inputs at the single-cell resolution. We discovered parallel, divergent, and convergent projection patterns for spinal projection neurons and central relay neurons. Our results revealed the diverse pathways channeling spinal information to the cortex. Furthermore, we identified parallel lateral and medial spinal-superior colliculus-brainstem pathways, which could be involved in orienting and defensive behaviors, respectively. These data allowed us to construct a wiring diagram for ascending somatosensory pathways with projectome-defined subtype resolution. Our single-cell projectome analysis provided a new framework for understanding the complex neural circuitry underlying coordinated processing of diverse somatosensory modalities.
Collapse
Affiliation(s)
- Wen-Qun Ding
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xu Chen
- Lingang Laboratory, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandong Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-Miao Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhou
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong-Yu Liang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, China
| | - Henry C Evrard
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence, Institute of Neuroscience, Chinese Academy of Sciences, Songjiang, Shanghai, China; Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China.
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Palchaudhuri S, Lin BX, Osypenko D, Wu J, Kochubey O, Schneggenburger R. A posterior insula to lateral amygdala pathway transmits US-offset information with a limited role in fear learning. Cell Rep 2025; 44:115320. [PMID: 39954251 DOI: 10.1016/j.celrep.2025.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
During fear learning, associations between a sensory cue (conditioned stimulus, CS) and an aversive stimulus (unconditioned stimulus, US) are formed in specific brain circuits. The lateral amygdala (LA) is involved in CS-US integration; however, US pathways to the LA remain understudied. Here, we investigated whether the posterior insular cortex (pInsCx), a hub for aversive state signaling, transmits US information to the LA during fear learning. We find that the pInsCx makes a robust, glutamatergic projection specifically targeting the anterior LA. In vivo Ca2+ imaging reveals that neurons in the pInsCx and anterior LA display US-onset and US-offset responses; imaging combined with axon silencing shows that the pInsCx selectively transmits US-offset information to the anterior LA. Optogenetic silencing, however, does not show a role for US-driven activity in the anterior LA or its pInsCx afferents in fear memory formation. Thus, we describe a cortical projection that carries US-offset information to the amygdala with a limited role in fear learning.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Bei-Xuan Lin
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Jinyun Wu
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Ezquerra Romano I, Chowdhury M, Haggard P. Touch inhibits cold: non-contact cooling suggests a thermotactile gating mechanism. Proc Biol Sci 2025; 292:20243014. [PMID: 39933581 PMCID: PMC11813568 DOI: 10.1098/rspb.2024.3014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Skin stimuli reach the brain via multiple neural channels specific for different stimulus types. These channels interact in the spinal cord, typically through inhibition. Inter-channel interactions can be investigated by selectively stimulating one channel and comparing the sensations that result when another sensory channel is or is not concurrently stimulated. Applying this logic to thermal-mechanical interactions proves difficult, because most existing thermal stimulators involve skin contact. We used a novel non-tactile stimulator for focal cooling (9 mm2) by using thermal imaging of skin temperature as a feedback signal to regulate exposure to a dry-ice source. We could then investigate how touch modulates cold sensation by delivering cooling to the human hand dorsum in either the presence or absence of light touch. Across three signal detection experiments, we found that sensitivity to cooling was significantly reduced by touch. This reduction was specific to touch, as it did not occur when presenting auditory signals instead of the tactile input, making explanations based on distraction or attention unlikely. Our findings suggest that touch inhibits cold perception, recalling interactions of touch and pain previously described by Pain Gate Theory.
Collapse
Affiliation(s)
- Ivan Ezquerra Romano
- Institute of Cognitive Neuroscience, University College London, LondonWC1N 3AZ, UK
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, Berlin13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin10117, Germany
| | - Maansib Chowdhury
- Institute of Cognitive Neuroscience, University College London, LondonWC1N 3AZ, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, LondonWC1N 3AZ, UK
| |
Collapse
|
7
|
Nash AN, Shakeshaft M, Bouaichi CG, Odegaard KE, Needham T, Bauer M, Bertram R, Vincis R. Cortical coding of gustatory and thermal signals in active licking mice. J Physiol 2025; 603:909-928. [PMID: 39827405 DOI: 10.1113/jp287499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Eating behaviours are influenced by the integration of gustatory, olfactory and somatosensory signals, which all contribute to the perception of flavour. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14 vs. 36°C) and, although less effectively, more subtle temperature differences. Finally a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that whereas the somatosensory cortex exhibited higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing. KEY POINTS: Flavour perception relies on gustatory, olfactory and somatosensory integration, with the gustatory cortex (GC) central to taste processing. GC neurons also respond to temperature, but the specifics of how the GC processes taste and oral thermal stimuli remain unclear. The focus of this study is on the role of GC neurons in the encoding of oral thermal information, particularly compared to the coding functions of the oral somatosensory cortex. We found that whereas the somatosensory cortex shows a higher classification accuracy for distinguishing water temperature, the GC still encodes a substantial amount of thermosensory information. These results emphasize the importance of including temperature as a key factor in future studies of cortical taste coding.
Collapse
Affiliation(s)
- Audrey N Nash
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Morgan Shakeshaft
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Cecilia G Bouaichi
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Katherine E Odegaard
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tom Needham
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Martin Bauer
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Roberto Vincis
- Department of Biological Science, Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Watanabe H, Shibuya S, Masuda Y, Sugi T, Saito K, Nagashima K. Spatial and temporal patterns of brain neural activity mediating human thermal sensations. Neuroscience 2025; 564:260-270. [PMID: 39586420 DOI: 10.1016/j.neuroscience.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/14/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
This study aimed to elucidate the spatial and temporal patterns of brain neural activity that are associated with cold and hot sensations. Participants (n = 20) sat in a controlled room with their eyes closed and received local thermal stimuli to the right fingers using a Peltier apparatus. The thermal stimuli were repeated 40 times using a paired-thermal stimulus paradigm, comprising a 15 s-reference stimulus (32 °C), followed by 10 s-conditioned stimuli (24 °C and 40 °C, cold and hot conditions, respectively), for which 15-channel electroencephalography (EEG) signals were continuously monitored. To identify the patterns of brain neural activity, an independent component (IC) analysis was applied to the preprocessed EEG data. The equivalent current dipole locations were estimated, followed by clustering of the ICs with a dipole residual variance of <15 %. Subsequently, event-related spectral perturbations were analyzed in each identified cluster to calculate the power changes across specific frequency ranges. The right precentral gyrus, precuneus, medial frontal gyrus, middle frontal gyrus, superior frontal gyrus, cuneus, cingulate gyrus, left precentral gyrus, middle occipital gyrus, and cingulate gyrus were activated in both cold and hot conditions. In most activated regions, EEG power temporal changes were observed across the frequency ranges and were different between the two conditions. These results may suggest that cold and hot sensations are processed through different temporal brain neural activity patterns in overlapping brain regions.
Collapse
Affiliation(s)
- Hironori Watanabe
- Institute for Energy and Environmental System, Sustainable Energy and Environmental Society Open Innovation Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan; Advanced Research Center for Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan; Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan
| | - Satoshi Shibuya
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 1818611, Japan
| | - Yuta Masuda
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Shimogamohangi, Kyoto, Kyoto 6068522, Japan
| | - Taisuke Sugi
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan
| | - Kiyoshi Saito
- Institute for Energy and Environmental System, Sustainable Energy and Environmental Society Open Innovation Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan; Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan
| | - Kei Nagashima
- Institute for Energy and Environmental System, Sustainable Energy and Environmental Society Open Innovation Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan; Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan.
| |
Collapse
|
9
|
Bokiniec P, Whitmire CJ, Poulet JFA. Bidirectionally responsive thermoreceptors encode cool and warm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625856. [PMID: 39651223 PMCID: PMC11623674 DOI: 10.1101/2024.11.28.625856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Thermal sensation is a fundamental sense initiated by the activity of primary afferent thermoreceptors. While considerable attention has been paid to the encoding of noxious temperatures by thermoreceptors, it is far less clear how they encode innocuous cool and warm which are more commonly encountered in the environment. To address this, we sampled the entire thermoreceptor population using in vivo two-photon calcium imaging in the lumbar dorsal root ganglia of awake and anesthetized mice. We found that the vast majority of thermoreceptors respond bidirectionally, with an enhanced response to cool and a suppressed response to warm. Using in vivo pharmacology and computational modelling, we demonstrate that conductance changes in the cool-sensitive TRPM8 channel are sufficient to explain this bidirectional response type. Our comprehensive dataset reveals the fundamental principles of the peripheral encoding of innocuous temperatures and suggests that the same population of thermoreceptors underlie the distinct sensations of cool and warm.
Collapse
|
10
|
Nash AN, Shakeshaft M, Bouaichi CG, Odegaard KE, Needham T, Bauer M, Bertram R, Vincis R. Cortical Coding of Gustatory and Thermal Signals in Active Licking Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591293. [PMID: 39185224 PMCID: PMC11343142 DOI: 10.1101/2024.04.27.591293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Eating behaviors are influenced by the integration of gustatory, olfactory, and somatosensory signals, which all contribute to the perception of flavor. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study, we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14°C vs. 36°C) and, although less effectively, more subtle temperature differences. Finally, a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that while the somatosensory cortex showed higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing.
Collapse
Affiliation(s)
| | - Morgan Shakeshaft
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Cecilia G. Bouaichi
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Katherine E. Odegaard
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Tom Needham
- Florida State University, Department of Mathematics
| | - Martin Bauer
- Florida State University, Department of Mathematics
| | - Richard Bertram
- Florida State University, Department of Mathematics and Programs in Neuroscience and Molecular Biophysics
| | - Roberto Vincis
- Florida State University, Department of Biological Science, Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
11
|
Liu Y, Deng Y, Xu S, Yang Y, Zhang K, Liu J, Xu Z, Lv S, Wang Y, Sha L, Xu Q, Luo J, Cai X. Neuromodulatory Compensation of Cortical Neural Activity on Electrodeposited Pt/Ir Modified Microelectrode Arrays for Temperature Transients. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44538-44548. [PMID: 39072533 DOI: 10.1021/acsami.4c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Temperature has a profound influence on various neuromodulation processes and has emerged as a focal point. However, the effects of acute environmental temperature fluctuations on cultured cortical networks have been inadequately elucidated. To bridge this gap, we have developed a brain-on-a-chip platform integrating cortical networks and electrodeposited Pt/Ir modified microelectrode arrays (MEAs) with 3D-printed bear-shaped triple chambers, facilitating control of temperature transients. This innovative system administers thermal stimuli while concurrently monitoring neuronal activity, including spikes and local field potentials, from 60 microelectrodes (diameter: 30 μm; impedance: 9.34 ± 1.37 kΩ; and phase delay: -45.26 ± 2.85°). Temperature transitions of approximately ±10 °C/s were applied to cortical networks on MEAs via in situ perfusion within the triple chambers. Subsequently, we examined the spatiotemporal dynamics of the brain-on-a-chip under temperature regulation at both the group level (neuronal population) and their interactions (network dynamics) and the individual level (cellular activity). Specifically, we found that after the temperature reduction neurons enhanced the overall information transmission efficiency of the network through synchronous firing to compensate for the decreased efficiency of single-cell level information transmission, in contrast to temperature elevation. By leveraging the integration of high-performance MEAs with perfusion chambers, this investigation provides a comprehensive understanding of the impact of temperature on the spatiotemporal dynamics of neural networks, thereby facilitating future exploration of the intricate interplay between temperature and brain function.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longze Sha
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qi Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li CMF, Kim DD, Mirsattari SM. Cold-Induced Reflex Epilepsy. JAMA Neurol 2024; 81:882-883. [PMID: 38648046 DOI: 10.1001/jamaneurol.2024.0884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This case report describes a woman cold-induced reflex seizures.
Collapse
Affiliation(s)
- Cathy Meng Fei Li
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | | | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
- Diagnostic Imaging, Biomedical Imaging and Psychology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Suito T, Tominaga M. Functional relationship between peripheral thermosensation and behavioral thermoregulation. Front Neural Circuits 2024; 18:1435757. [PMID: 39045140 PMCID: PMC11263211 DOI: 10.3389/fncir.2024.1435757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Thermoregulation is a fundamental mechanism for maintaining homeostasis in living organisms because temperature affects essentially all biochemical and physiological processes. Effector responses to internal and external temperature cues are critical for achieving effective thermoregulation by controlling heat production and dissipation. Thermoregulation can be classified as physiological, which is observed primarily in higher organisms (homeotherms), and behavioral, which manifests as crucial physiological functions that are conserved across many species. Neuronal pathways for physiological thermoregulation are well-characterized, but those associated with behavioral regulation remain unclear. Thermoreceptors, including Transient Receptor Potential (TRP) channels, play pivotal roles in thermoregulation. Mammals have 11 thermosensitive TRP channels, the functions for which have been elucidated through behavioral studies using knockout mice. Behavioral thermoregulation is also observed in ectotherms such as the fruit fly, Drosophila melanogaster. Studies of Drosophila thermoregulation helped elucidate significant roles for thermoreceptors as well as regulatory actions of membrane lipids in modulating the activity of both thermosensitive TRP channels and thermoregulation. This review provides an overview of thermosensitive TRP channel functions in behavioral thermoregulation based on results of studies involving mice or Drosophila melanogaster.
Collapse
Affiliation(s)
- Takuto Suito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
Xue K, Huang S, Wu K, Sun Z, Fu H, Wang C, Wang C, Zhu C. Ultrasensitive Ratiometric Fluorescent Nanothermometer with Reverse Signal Changes for Intracellular Temperature Mapping. Anal Chem 2024; 96:11026-11035. [PMID: 38938163 DOI: 10.1021/acs.analchem.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sensing temperature at the subcellular level is pivotal for gaining essential thermal insights into diverse biological processes. However, achieving sensitive and accurate sensing of the intracellular temperature remains a challenge. Herein, we develop a ratiometric organic fluorescent nanothermometer with reverse signal changes for the ultrasensitive mapping of intracellular temperature. The nanothermometer is fabricated from a binary mixture of saturated fatty acids with a noneutectic composition, a red-emissive aggregation-caused quenching luminogen, and a green-emissive aggregation-induced emission luminogen using a modified nanoprecipitation method. Different from the eutectic mixture with a single phase-transition point, the noneutectic mixture possesses two solid-liquid phase transitions, which not only allows for reversible regulation of the aggregation states of the encapsulated luminogens but also effectively broadens the temperature sensing range (25-48 °C) across the physiological temperature range. Remarkably, the nanothermometer exhibits reverse and sensitive signal changes, demonstrating maximum relative thermal sensitivities of up to 63.66% °C-1 in aqueous systems and 44.01% °C-1 in the intracellular environment, respectively. Taking advantage of these outstanding thermometric performances, the nanothermometer is further employed to intracellularly monitor minute temperature variations upon chemical stimulation. This study provides a powerful tool for the exploration of dynamic cellular thermal activities, holding great promise in unveiling intricate physiological processes.
Collapse
Affiliation(s)
- Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siwei Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Cutler B, Haesemeyer M. Vertebrate behavioral thermoregulation: knowledge and future directions. NEUROPHOTONICS 2024; 11:033409. [PMID: 38769950 PMCID: PMC11105118 DOI: 10.1117/1.nph.11.3.033409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Thermoregulation is critical for survival across species. In animals, the nervous system detects external and internal temperatures, integrates this information with internal states, and ultimately forms a decision on appropriate thermoregulatory actions. Recent work has identified critical molecules and sensory and motor pathways controlling thermoregulation. However, especially with regard to behavioral thermoregulation, many open questions remain. Here, we aim to both summarize the current state of research, the "knowledge," as well as what in our mind is still largely missing, the "future directions." Given the host of circuit entry points that have been discovered, we specifically see that the time is ripe for a neuro-computational perspective on thermoregulation. Such a perspective is largely lacking but is increasingly fueled and made possible by the development of advanced tools and modeling strategies.
Collapse
Affiliation(s)
- Bradley Cutler
- Graduate program in Molecular, Cellular and Developmental Biology, Columbus, Ohio, United States
- The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
16
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
17
|
Ferland S, Wang F, De Koninck Y, Ferrini F. An improved conflict avoidance assay reveals modality-specific differences in pain hypersensitivity across sexes. Pain 2024; 165:1304-1316. [PMID: 38277178 PMCID: PMC11090034 DOI: 10.1097/j.pain.0000000000003132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
ABSTRACT Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.
Collapse
Affiliation(s)
| | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
- Faculty of Dentistry, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
18
|
Schnepel P, Paricio-Montesinos R, Ezquerra-Romano I, Haggard P, Poulet JFA. Cortical cellular encoding of thermotactile integration. Curr Biol 2024; 34:1718-1730.e3. [PMID: 38582078 DOI: 10.1016/j.cub.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/24/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.
Collapse
Affiliation(s)
- Philipp Schnepel
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ricardo Paricio-Montesinos
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivan Ezquerra-Romano
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
19
|
Yarmolinsky DA, Zeng X, MacKinnon-Booth N, Greene C, Kim C, Woolf CJ. Selective modification of ascending spinal outputs in acute and neuropathic pain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588581. [PMID: 38645252 PMCID: PMC11030409 DOI: 10.1101/2024.04.08.588581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pain hypersensitivity arises from the plasticity of peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain and alters pain perception. We utilized chronic calcium imaging of spinal dorsal horn neurons to determine how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy conditions, we identify stable, narrowly tuned outputs selective for cooling or warming, and a neuronal ensemble activated by intense/noxious thermal and mechanical stimuli. Induction of an acute peripheral sensitization with capsaicin selectively and transiently retunes nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury-induced neuropathic pain results in a persistent suppression of innocuous spinal outputs coupled with activation of a normally silent population of high-threshold neurons. These results demonstrate the differential modulation of specific spinal outputs to the brain during nociceptive and neuropathic pain states.
Collapse
|
20
|
Koorliyil H, Sitt J, Rivals I, Liu Y, Bertolo A, Cazzanelli S, Dizeux A, Deffieux T, Tanter M, Pezet S. Specific and Nonuniform Brain States during Cold Perception in Mice. J Neurosci 2024; 44:e0909232023. [PMID: 38182417 PMCID: PMC10957214 DOI: 10.1523/jneurosci.0909-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024] Open
Abstract
The quest to decode the complex supraspinal mechanisms that integrate cutaneous thermal information in the central system is still ongoing. The dorsal horn of the spinal cord is the first hub that encodes thermal input which is then transmitted to brain regions via the spinothalamic and thalamocortical pathways. So far, our knowledge about the strength of the interplay between the brain regions during thermal processing is limited. To address this question, we imaged the brains of adult awake male mice in resting state using functional ultrasound imaging during plantar exposure to constant and varying temperatures. Our study reveals for the first time the following: (1) a dichotomy in the response of the somatomotor-cingulate cortices and the hypothalamus, which was never described before, due to the lack of appropriate tools to study such regions with both good spatial and temporal resolutions. (2) We infer that cingulate areas may be involved in the affective responses to temperature changes. (3) Colder temperatures (ramped down) reinforce the disconnection between the somatomotor-cingulate and hypothalamus networks. (4) Finally, we also confirm the existence in the mouse brain of a brain mode characterized by low cognitive strength present more frequently at resting neutral temperature. The present study points toward the existence of a common hub between somatomotor and cingulate regions, whereas hypothalamus functions are related to a secondary network.
Collapse
Affiliation(s)
- Haritha Koorliyil
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Jacobo Sitt
- PICNIC Lab, Inserm U 1127, ICM, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, Paris 75005, France
| | - Yushan Liu
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, Paris 75005, France
| | - Adrien Bertolo
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
- Iconeus, Paris 75014, France
| | - Silvia Cazzanelli
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
- Iconeus, Paris 75014, France
| | - Alexandre Dizeux
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Thomas Deffieux
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Mickael Tanter
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Sophie Pezet
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| |
Collapse
|
21
|
Li J, Zumpano KT, Lemon CH. Separation of Oral Cooling and Warming Requires TRPM8. J Neurosci 2024; 44:e1383232024. [PMID: 38316563 PMCID: PMC10941239 DOI: 10.1523/jneurosci.1383-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cooling sensations arise inside the mouth during ingestive and homeostasis behaviors. Oral presence of cooling temperature engages the cold and menthol receptor TRPM8 (transient receptor potential melastatin 8) on trigeminal afferents. Yet, how TRPM8 influences brain and behavioral responses to oral temperature is undefined. Here we used in vivo neurophysiology to record action potentials stimulated by cooling and warming of oral tissues from trigeminal nucleus caudalis neurons in female and male wild-type and TRPM8 gene deficient mice. Using these lines, we also measured orobehavioral licking responses to cool and warm water in a novel, temperature-controlled fluid choice test. Capture of antidromic electrophysiological responses to thalamic stimulation identified that wild-type central trigeminal neurons showed diverse responses to oral cooling. Some neurons displayed relatively strong excitation to cold <10°C (COLD neurons) while others responded to only a segment of mild cool temperatures below 30°C (COOL neurons). Notably, TRPM8 deficient mice retained COLD-type but lacked COOL cells. This deficit impaired population responses to mild cooling temperatures below 30°C and allowed warmth-like (≥35°C) neural activity to pervade the normally innocuous cool temperature range, predicting TRPM8 deficient mice would show anomalously similar orobehavioral responses to warm and cool temperatures. Accordingly, TRPM8 deficient mice avoided both warm (35°C) and mild cool (≤30°C) water and sought colder temperatures in fluid licking tests, whereas control mice avoided warm but were indifferent to mild cool and colder water. Results imply TRPM8 input separates cool from warm temperature sensing and suggest other thermoreceptors also participate in oral cooling sensation.
Collapse
Affiliation(s)
- Jinrong Li
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| | - Kyle T Zumpano
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| | - Christian H Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
22
|
Kadakia F, Khadka A, Yazell J, Davidson S. Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation. THE JOURNAL OF PAIN 2024; 25:766-780. [PMID: 37832899 PMCID: PMC10922377 DOI: 10.1016/j.jpain.2023.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.
Collapse
Affiliation(s)
- Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Akansha Khadka
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jake Yazell
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
23
|
Leva T, Whitmire CJ, Sauve I, Bokiniec P, Memler C, Horn BM, Vestergaard M, Carta M, Poulet JFA. The spatial representation of temperature in the thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580167. [PMID: 38405930 PMCID: PMC10888919 DOI: 10.1101/2024.02.13.580167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Although distinct thalamic nuclei encode sensory information for almost all sensory modalities, the existence of a thalamic representation of temperature is debated and the role of the thalamus in thermal perception remains unclear. To address this, we used high-density electrophysiological recordings across mouse forepaw somatosensory thalamus, and identified an anterior and a posterior representation of temperature that spans three thalamic nuclei. These parallel representations show fundamental differences in the cellular encoding of temperature that reflect their cortical output targets, with the anterior representation encoding cool only and the posterior both cool and warm. Moreover, their inactivation profoundly altered thermal perception. Together our data identifies a novel posterior thalamic representation of temperature and a principal role of the thalamus in thermal perception.
Collapse
|
24
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Carroll A, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The secondary somatosensory cortex gates mechanical and heat sensitivity. Nat Commun 2024; 15:1289. [PMID: 38346995 PMCID: PMC10861531 DOI: 10.1038/s41467-024-45729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aloe Carroll
- College of Sciences, Northeastern University, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Badaut J, Hippauf L, Malinconi M, Noarbe BP, Obenaus A, Dubois CJ. Endocannabinoid-mediated rescue of somatosensory cortex activity, plasticity and related behaviors following an early in life concussion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577914. [PMID: 38352553 PMCID: PMC10862852 DOI: 10.1101/2024.01.30.577914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Due to the assumed plasticity of immature brain, early in life brain alterations are thought to lead to better recoveries in comparison to the mature brain. Despite clinical needs, how neuronal networks and associated behaviors are affected by early in life brain stresses, such as pediatric concussions, have been overlooked. Here we provide first evidence in mice that a single early in life concussion durably increases neuronal activity in the somatosensory cortex into adulthood, disrupting neuronal integration while the animal is performing sensory-related tasks. This represents a previously unappreciated clinically relevant mechanism for the impairment of sensory-related behavior performance. Furthermore, we demonstrate that pharmacological modulation of the endocannabinoid system a year post-concussion is well-suited to rescue neuronal activity and plasticity, and to normalize sensory-related behavioral performance, addressing the fundamental question of whether a treatment is still possible once post-concussive symptoms have developed, a time-window compatible with clinical treatment.
Collapse
Affiliation(s)
- J Badaut
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - L Hippauf
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - M Malinconi
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - B P Noarbe
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - A Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - C J Dubois
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| |
Collapse
|
26
|
Dayton JR, Marquez J, Romo AK, Chen YJ, Contreras JE, Griffith TN. Thermal escape box: A cost-benefit evaluation paradigm for investigating thermosensation and thermal pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100155. [PMID: 38617105 PMCID: PMC11015515 DOI: 10.1016/j.ynpai.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Thermosensation, the ability to detect and estimate temperature, is an evolutionarily conserved process that is essential for survival. Thermosensing is impaired in various pain syndromes, resulting in thermal allodynia, the perception of an innocuous temperature as painful, or thermal hyperalgesia, an exacerbated perception of a painful thermal stimulus. Several behavioral assays exist to study thermosensation and thermal pain in rodents, however, most rely on reflexive withdrawal responses or the subjective quantification of spontaneous nocifensive behaviors. Here, we created a new apparatus, the thermal escape box, which can be attached to temperature-controlled plates and used to assess temperature-dependent effort-based decision-making. The apparatus consists of a light chamber with an opening that fits around temperature-controlled plates, and a small entryway into a dark chamber. A mouse must choose to stay in a brightly lit aversive area or traverse the plates to escape to the enclosed dark chamber. We quantified escape latencies of adult C57Bl/6 mice at different plate temperatures from video recordings and found they were significantly longer at 5 °C, 18 °C, and 52 °C, compared to 30 °C, a mouse's preferred ambient temperature. Differences in escape latencies were abolished in male Trpm8-/- mice and in male Trpv1-/- animals. Finally, we show that chronic constriction injury procedures or oxaliplatin treatement significantly increased escape latencies at cold temperatures compared to controls, the later of which was prevented by the analgesic meloxicam. This demonstrates the utility of this assay in detecting cold pain. Collectively, our study has identified a new and effective tool that uses cost-benefit valuations to study thermosensation and thermal pain.
Collapse
Affiliation(s)
- Jacquelyn R. Dayton
- University of California, Davis. Department of Physiology & Membrane Biology, 1275 Med Science Drive, Davis, CA 95616, United States
| | - Jose Marquez
- University of California, Davis. Department of Physiology & Membrane Biology, 1275 Med Science Drive, Davis, CA 95616, United States
| | - Alejandra K. Romo
- University of California, Davis. Department of Physiology & Membrane Biology, 1275 Med Science Drive, Davis, CA 95616, United States
| | - Yi-Je Chen
- University of California, Davis. Department of Pharmacology, 1275 Med Science Drive, Davis, CA 95616, United States
| | - Jorge E. Contreras
- University of California, Davis. Department of Physiology & Membrane Biology, 1275 Med Science Drive, Davis, CA 95616, United States
| | - Theanne N. Griffith
- University of California, Davis. Department of Physiology & Membrane Biology, 1275 Med Science Drive, Davis, CA 95616, United States
| |
Collapse
|
27
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Harder P, İyisan N, Wang C, Kohler F, Neb I, Lahm H, Dreßen M, Krane M, Dietz H, Özkale B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv Healthc Mater 2023; 12:e2300904. [PMID: 37229536 PMCID: PMC11468149 DOI: 10.1002/adhm.202300904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.
Collapse
Affiliation(s)
- Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Fabian Kohler
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Irina Neb
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Markus Krane
- Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Hendrik Dietz
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
29
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
30
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Oral thermal processing in the gustatory cortex of awake mice. Chem Senses 2023; 48:bjad042. [PMID: 37850853 PMCID: PMC10630187 DOI: 10.1093/chemse/bjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/19/2023] Open
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally sourced thermal inputs are represented in the gustatory cortex (GC), we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, and 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of the GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective-only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian oral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Katherine E Odegaard
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Camden Neese
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Roberto Vincis
- Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|