1
|
Alaçamlı E, Naidoo T, Güler MN, Sağlıcan E, Aktürk Ş, Mapelli I, Vural KB, Somel M, Malmström H, Günther T. READv2: advanced and user-friendly detection of biological relatedness in archaeogenomics. Genome Biol 2024; 25:216. [PMID: 39135108 PMCID: PMC11318251 DOI: 10.1186/s13059-024-03350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
The advent of genome-wide ancient DNA analysis has revolutionized our understanding of prehistoric societies. However, studying biological relatedness in these groups requires tailored approaches due to the challenges of analyzing ancient DNA. READv2, an optimized Python3 implementation of the most widely used tool for this purpose, addresses these challenges while surpassing its predecessor in speed and accuracy. For sufficient amounts of data, it can classify up to third-degree relatedness and differentiate between the two types of first-degree relatedness, full siblings and parent-offspring. READv2 enables user-friendly, efficient, and nuanced analysis of biological relatedness, facilitating a deeper understanding of past social structures.
Collapse
Affiliation(s)
- Erkin Alaçamlı
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Present Address: Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thijessen Naidoo
- Ancient DNA Unit, Science for Life Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Merve N Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Ekin Sağlıcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Şevval Aktürk
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Igor Mapelli
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
- Ancient DNA Unit, Science for Life Laboratory, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Gretzinger J, Schmitt F, Mötsch A, Carlhoff S, Lamnidis TC, Huang Y, Ringbauer H, Knipper C, Francken M, Mandt F, Hansen L, Freund C, Posth C, Rathmann H, Harvati K, Wieland G, Granehäll L, Maixner F, Zink A, Schier W, Krausse D, Krause J, Schiffels S. Evidence for dynastic succession among early Celtic elites in Central Europe. Nat Hum Behav 2024; 8:1467-1480. [PMID: 38831077 PMCID: PMC11343710 DOI: 10.1038/s41562-024-01888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
The early Iron Age (800 to 450 BCE) in France, Germany and Switzerland, known as the 'West-Hallstattkreis', stands out as featuring the earliest evidence for supra-regional organization north of the Alps. Often referred to as 'early Celtic', suggesting tentative connections to later cultural phenomena, its societal and population structure remain enigmatic. Here we present genomic and isotope data from 31 individuals from this context in southern Germany, dating between 616 and 200 BCE. We identify multiple biologically related groups spanning three elite burials as far as 100 km apart, supported by trans-regional individual mobility inferred from isotope data. These include a close biological relationship between two of the richest burial mounds of the Hallstatt culture. Bayesian modelling points to an avuncular relationship between the two individuals, which may suggest a practice of matrilineal dynastic succession in early Celtic elites. We show that their ancestry is shared on a broad geographic scale from Iberia throughout Central-Eastern Europe, undergoing a decline after the late Iron Age (450 BCE to ~50 CE).
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felicitas Schmitt
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Angela Mötsch
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Selina Carlhoff
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Yilei Huang
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Corina Knipper
- Curt Engelhorn Zentrum Archäometrie gGmbH, Mannheim, Germany
| | - Michael Francken
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Franziska Mandt
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Leif Hansen
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Cäcilia Freund
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hannes Rathmann
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katerina Harvati
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
- DFG Center for Advanced Studies in the Humanities 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Günther Wieland
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Lena Granehäll
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Wolfram Schier
- Institut für Prähistorische Archäologie, Freie Universität Berlin, Berlin, Germany
| | - Dirk Krausse
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany.
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
3
|
Arzelier A, De Belvalet H, Pemonge MH, Garberi P, Binder D, Duday H, Deguilloux MF, Pruvost M. Ancient DNA sheds light on the funerary practices of late Neolithic collective burial in southern France. Proc Biol Sci 2024; 291:rspb20241215. [PMID: 39191285 PMCID: PMC11349438 DOI: 10.1098/rspb.2024.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The Aven de la Boucle (Corconne, Gard, southern France) is a karst shaft used as a collective burial between 3600 and 2800 cal BCE. The site encompasses the skeletal remains of approximately 75 individuals comprising a large majority of adult individuals, represented by scattered and commingled remains. To date, few studies have explored the potential of ancient DNA to tackle the documentation of Neolithic collective burials, and the funerary selection rules within such structures remain largely debated. In this study, we combine genomic analysis of 37 individuals with archaeo-anthropological data and Bayesian modelling of radiocarbon dates. Through this multidisciplinary approach, we aim to characterize the identity of the deceased and their relationships, as well as untangle the genetic diversity and funerary dynamics of this community. Genomic results identify 76% of male Neolithic individuals, suggesting a marked sex-biased selection. Available data emphasize the importance of biological relatedness and a male-mediated transmission of social status, as the affiliation to a specific male-lineage appears as a preponderant selection factor. The genomic results argue in favour of 'continuous' deposits between 3600 and 2800 BCE, carried out by the same community, despite cultural changes reflected by the ceramic material.
Collapse
Affiliation(s)
- Ana Arzelier
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Harmony De Belvalet
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-Hélène Pemonge
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Pauline Garberi
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Didier Binder
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Henri Duday
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-France Deguilloux
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Mélanie Pruvost
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| |
Collapse
|
4
|
Seersholm FV, Sjögren KG, Koelman J, Blank M, Svensson EM, Staring J, Fraser M, Pinotti T, McColl H, Gaunitz C, Ruiz-Bedoya T, Granehäll L, Villegas-Ramirez B, Fischer A, Price TD, Allentoft ME, Iversen AKN, Axelsson T, Ahlström T, Götherström A, Storå J, Kristiansen K, Willerslev E, Jakobsson M, Malmström H, Sikora M. Repeated plague infections across six generations of Neolithic Farmers. Nature 2024; 632:114-121. [PMID: 38987589 PMCID: PMC11291285 DOI: 10.1038/s41586-024-07651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.
Collapse
Affiliation(s)
- Frederik Valeur Seersholm
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Julia Koelman
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Malou Blank
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Emma M Svensson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Magdalena Fraser
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thomaz Pinotti
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Charleen Gaunitz
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tatiana Ruiz-Bedoya
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Granehäll
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Institute for Mummy Studies Eurac Research, Bolzano, Italy
| | | | | | - T Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tony Axelsson
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Torbjörn Ahlström
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University and the Swedish Museum of Natural History, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
6
|
Wang M, Chen H, Luo L, Huang Y, Duan S, Yuan H, Tang R, Liu C, He G. Forensic investigative genetic genealogy: expanding pedigree tracing and genetic inquiry in the genomic era. J Genet Genomics 2024:S1673-8527(24)00158-9. [PMID: 38969261 DOI: 10.1016/j.jgg.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Genetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening new investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics. FIGG has been pivotal in revitalizing dormant inquiries and offering new genetic leads in numerous cold cases. Its effectiveness relies on the extensive single-nucleotide polymorphism profiles contributed by individuals from diverse populations to specialized genomic databases. Advances in computational genomics and the growth of human genomic databases have spurred a profound shift in the application of genetic genealogy across forensics, anthropology, and ancient DNA studies. As the field progresses, FIGG is evolving from a nascent practice into a more sophisticated and specialized discipline, shaping the future of forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Hongyu Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
7
|
Psonis N, Vassou D, Nafplioti A, Tabakaki E, Pavlidis P, Stamatakis A, Poulakakis N. Identification of the 18 World War II executed citizens of Adele, Rethymnon, Crete using an ancient DNA approach and low coverage genomes. Forensic Sci Int Genet 2024; 71:103060. [PMID: 38796876 DOI: 10.1016/j.fsigen.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
In the Battle of Crete during the World War II occupation of Greece, the German forces faced substantial civilian resistance. To retribute the numerous German losses, a series of mass executions took place in numerous places in Crete; a common practice reported from Greece and elsewhere. In Adele, a village in the regional unit of Rethymnon, 18 male civilians were executed and buried in a burial pit at the Sarakina site. In this study, the first one conducted for a conflict that occurred in Greece, we identified for humanitarian purposes the 18 skulls of the Sarakina victims, following a request from the local community of Adele. The molecular identification of historical human remains via ancient DNA approaches and low coverage whole genome sequencing has only recently been introduced. Here, we performed genome skimming on the living relatives of the victims, as well as high throughput historical DNA analysis on the skulls to infer the kinship degrees among the victims via genetic relatedness analyses. We also conducted targeted anthropological analysis to successfully complete the identification of all Sarakina victims. We demonstrate that our methodological approach constitutes a potentially highly informative forensic tool to identify war victims. It can hence be applied to analogous studies on degraded DNA, thus, paving the path for systematic war victim identification in Greece and beyond.
Collapse
Affiliation(s)
- Nikolaos Psonis
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece.
| | - Despoina Vassou
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece
| | - Argyro Nafplioti
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece
| | - Eugenia Tabakaki
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Irakleio 70013, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio 70013, Greece
| | - Alexandros Stamatakis
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Irakleio 70013, Greece; Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany; Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Nikos Poulakakis
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece; Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio 70013, Greece
| |
Collapse
|
8
|
Aktürk Ş, Mapelli I, Güler MN, Gürün K, Katırcıoğlu B, Vural KB, Sağlıcan E, Çetin M, Yaka R, Sürer E, Atağ G, Çokoğlu SS, Sevkar A, Altınışık NE, Koptekin D, Somel M. Benchmarking kinship estimation tools for ancient genomes using pedigree simulations. Mol Ecol Resour 2024; 24:e13960. [PMID: 38676702 DOI: 10.1111/1755-0998.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
There is growing interest in uncovering genetic kinship patterns in past societies using low-coverage palaeogenomes. Here, we benchmark four tools for kinship estimation with such data: lcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD estimation methods, and statistical approaches. We used pedigree and ancient genome sequence simulations to evaluate these tools when only a limited number (1 to 50 K, with minor allele frequency ≥0.01) of shared SNPs are available. The performance of all four tools was comparable using ≥20 K SNPs. We found that first-degree related pairs can be accurately classified even with 1 K SNPs, with 85% F1 scores using READ and 96% using NgsRelate or lcMLkin. Distinguishing third-degree relatives from unrelated pairs or second-degree relatives was also possible with high accuracy (F1 > 90%) with 5 K SNPs using NgsRelate and lcMLkin, while READ and KIN showed lower success (69 and 79% respectively). Meanwhile, noise in population allele frequencies and inbreeding (first-cousin mating) led to deviations in kinship coefficients, with different sensitivities across tools. We conclude that using multiple tools in parallel might be an effective approach to achieve robust estimates on ultra-low-coverage genomes.
Collapse
Affiliation(s)
- Şevval Aktürk
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Igor Mapelli
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Merve N Güler
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Büşra Katırcıoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ekin Sağlıcan
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Çetin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Reyhan Yaka
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Elif Sürer
- Department of Modeling and Simulation, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sevim Seda Çokoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Arda Sevkar
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - N Ezgi Altınışık
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
9
|
Parasayan O, Laurelut C, Bôle C, Bonnabel L, Corona A, Domenech-Jaulneau C, Paresys C, Richard I, Grange T, Geigl EM. Late Neolithic collective burial reveals admixture dynamics during the third millennium BCE and the shaping of the European genome. SCIENCE ADVANCES 2024; 10:eadl2468. [PMID: 38896620 PMCID: PMC11186501 DOI: 10.1126/sciadv.adl2468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The third millennium BCE was a pivotal period of profound cultural and genomic transformations in Europe associated with migrations from the Pontic-Caspian steppe, which shaped the ancestry patterns in the present-day European genome. We performed a high-resolution whole-genome analysis including haplotype phasing of seven individuals of a collective burial from ~2500 cal BCE and of a Bell Beaker individual from ~2300 cal BCE in the Paris Basin in France. The collective burial revealed the arrival in real time of steppe ancestry in France. We reconstructed the genome of an unsampled individual through its relatives' genomes, enabling us to shed light on the early-stage admixture patterns, dynamics, and propagation of steppe ancestry in Late Neolithic Europe. We identified two major Neolithic/steppe-related ancestry admixture pulses around 3000/2900 BCE and 2600 BCE. These pulses suggest different population expansion dynamics with striking links to the Corded Ware and Bell Beaker cultural complexes.
Collapse
Affiliation(s)
- Oğuzhan Parasayan
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Christophe Laurelut
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Christine Bôle
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Université Paris Cité, Paris, France
| | | | - Alois Corona
- Service archéologique interdépartemental, 78180 Montigny-le-Bretonneux, France
| | - Cynthia Domenech-Jaulneau
- Service Régional, Direction Régionale des Affaires culturelles d’Île-de-France, UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Cécile Paresys
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Isabelle Richard
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Thierry Grange
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eva-Maria Geigl
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
10
|
Martin-Roy R, Thyrring J, Mata X, Bangsgaard P, Bennike O, Christiansen G, Funder S, Gotfredsen AB, Gregersen KM, Hansen CH, Ilsøe PC, Klassen L, Kristensen IK, Ravnholt GB, Marin F, Der Sarkissian C. Advancing responsible genomic analyses of ancient mollusc shells. PLoS One 2024; 19:e0302646. [PMID: 38709766 PMCID: PMC11073703 DOI: 10.1371/journal.pone.0302646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The analysis of the DNA entrapped in ancient shells of molluscs has the potential to shed light on the evolution and ecology of this very diverse phylum. Ancient genomics could help reconstruct the responses of molluscs to past climate change, pollution, and human subsistence practices at unprecedented temporal resolutions. Applications are however still in their infancy, partly due to our limited knowledge of DNA preservation in calcium carbonate shells and the need for optimized methods for responsible genomic data generation. To improve ancient shell genomic analyses, we applied high-throughput DNA sequencing to 27 Mytilus mussel shells dated to ~111-6500 years Before Present, and investigated the impact, on DNA recovery, of shell imaging, DNA extraction protocols and shell sub-sampling strategies. First, we detected no quantitative or qualitative deleterious effect of micro-computed tomography for recording shell 3D morphological information prior to sub-sampling. Then, we showed that double-digestion and bleach treatment of shell powder prior to silica-based DNA extraction improves shell DNA recovery, also suggesting that DNA is protected in preservation niches within ancient shells. Finally, all layers that compose Mytilus shells, i.e., the nacreous (aragonite) and prismatic (calcite) carbonate layers, with or without the outer organic layer (periostracum) proved to be valuable DNA reservoirs, with aragonite appearing as the best substrate for genomic analyses. Our work contributes to the understanding of long-term molecular preservation in biominerals and we anticipate that resulting recommendations will be helpful for future efficient and responsible genomic analyses of ancient mollusc shells.
Collapse
Affiliation(s)
- Raphaël Martin-Roy
- Centre for Anthropobiology and Genomics of Toulouse, UMR5288, CNRS, University Paul Sabatier, Toulouse, France
| | - Jakob Thyrring
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Xavier Mata
- Centre for Anthropobiology and Genomics of Toulouse, UMR5288, CNRS, University Paul Sabatier, Toulouse, France
| | - Pernille Bangsgaard
- Globe Institute, Section for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Ole Bennike
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | | | - Svend Funder
- Globe Institute, Section for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Peter Carsten Ilsøe
- Globe Institute, Section for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Frédéric Marin
- Biogéosciences, UMR6282, CNRS-EPHE-uB, University of Burgundy, EPHE, Dijon, France
| | - Clio Der Sarkissian
- Centre for Anthropobiology and Genomics of Toulouse, UMR5288, CNRS, University Paul Sabatier, Toulouse, France
| |
Collapse
|
11
|
Cassidy LM. Ancient DNA traces family lines and political shifts in the Avar empire. Nature 2024; 629:287-288. [PMID: 38658715 DOI: 10.1038/d41586-024-01020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
|
12
|
Gnecchi-Ruscone GA, Rácz Z, Samu L, Szeniczey T, Faragó N, Knipper C, Friedrich R, Zlámalová D, Traverso L, Liccardo S, Wabnitz S, Popli D, Wang K, Radzeviciute R, Gulyás B, Koncz I, Balogh C, Lezsák GM, Mácsai V, Bunbury MME, Spekker O, le Roux P, Szécsényi-Nagy A, Mende BG, Colleran H, Hajdu T, Geary P, Pohl W, Vida T, Krause J, Hofmanová Z. Network of large pedigrees reveals social practices of Avar communities. Nature 2024; 629:376-383. [PMID: 38658749 PMCID: PMC11078744 DOI: 10.1038/s41586-024-07312-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.
Collapse
Affiliation(s)
| | - Zsófia Rácz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Levente Samu
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Norbert Faragó
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Corina Knipper
- Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
| | - Ronny Friedrich
- Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
| | - Denisa Zlámalová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czechia
| | - Luca Traverso
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Salvatore Liccardo
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Sandra Wabnitz
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Divyaratan Popli
- Department of Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ke Wang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Csilla Balogh
- Department of Art History, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gabriella M Lezsák
- Institute of History, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Viktor Mácsai
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Magdalena M E Bunbury
- ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, Queensland, Australia
| | - Olga Spekker
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Petrus le Roux
- Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Heidi Colleran
- BirthRites Lise Meitner Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Budapest, Hungary
| | | | - Walter Pohl
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary.
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czechia.
| |
Collapse
|
13
|
Guyon L, Guez J, Toupance B, Heyer E, Chaix R. Patrilineal segmentary systems provide a peaceful explanation for the post-Neolithic Y-chromosome bottleneck. Nat Commun 2024; 15:3243. [PMID: 38658560 PMCID: PMC11043392 DOI: 10.1038/s41467-024-47618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Studies have found a pronounced decline in male effective population sizes worldwide around 3000-5000 years ago. This bottleneck was not observed for female effective population sizes, which continued to increase over time. Until now, this remarkable genetic pattern was interpreted as the result of an ancient structuring of human populations into patrilineal groups (gathering closely related males) violently competing with each other. In this scenario, violence is responsible for the repeated extinctions of patrilineal groups, leading to a significant reduction in male effective population size. Here, we propose an alternative hypothesis by modelling a segmentary patrilineal system based on anthropological literature. We show that variance in reproductive success between patrilineal groups, combined with lineal fission (i.e., the splitting of a group into two new groups of patrilineally related individuals), can lead to a substantial reduction in the male effective population size without resorting to the violence hypothesis. Thus, a peaceful explanation involving ancient changes in social structures, linked to global changes in subsistence systems, may be sufficient to explain the reported decline in Y-chromosome diversity.
Collapse
Affiliation(s)
- Léa Guyon
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France.
| | - Jérémy Guez
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
- Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, 91400, France
| | - Bruno Toupance
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
- Université Paris Cité, Eco-anthropologie, Paris, F-75006, France
| | - Evelyne Heyer
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
| | - Raphaëlle Chaix
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France.
| |
Collapse
|
14
|
Penske S, Küßner M, Rohrlach AB, Knipper C, Nováček J, Childebayeva A, Krause J, Haak W. Kinship practices at the early bronze age site of Leubingen in Central Germany. Sci Rep 2024; 14:3871. [PMID: 38365887 PMCID: PMC10873355 DOI: 10.1038/s41598-024-54462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
With the beginning of the Early Bronze Age in Central Europe ~ 2200 BC, a regional and supra-regional hierarchical social organization emerged with few individuals in positions of power (chiefs), set apart by rich graves with extensive burial constructions. However, the social organization and stratification within the majority of people, who represent the non-elite, remain unclear. Here, we present genome-wide data of 46 individuals from the Early Bronze Age burial ground of Leubingen in today's Germany, integrating archaeological, genetic and strontium isotope data to gain new insights into Early Bronze Age societies. We were able to reconstruct five pedigrees which constitute the members of close biological kinship groups (parents and their offspring), and also identify individuals who are not related to individuals buried at the site. Based on combined lines of evidence, we observe that the kinship structure of the burial community was predominantly patrilineal/virilocal involving female exogamy. Further, we detect a difference in the amount of grave goods among the individuals buried at Leubingen based on genetic sex, age at death and locality but see no difference in the types of grave goods.
Collapse
Affiliation(s)
- Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, 99423, Weimar, Germany.
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Corina Knipper
- Curt-Engelhorn-Zentrum Archäometrie gGmbH, 68159, Mannheim, Germany
| | - Jan Nováček
- Thuringian State Office for Heritage Management and Archaeology, 99423, Weimar, Germany
- Institute of Anatomy and Cell Biology, University Medical Centre, Georg-August University, 37075, Göttingen, Germany
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Department of Anthropology, University of Kansas, Lawrence, KS, 66045, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
15
|
Piffer D, Kirkegaard EOW. Evolutionary Trends of Polygenic Scores in European Populations From the Paleolithic to Modern Times. Twin Res Hum Genet 2024; 27:30-49. [PMID: 38444325 DOI: 10.1017/thg.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This study examines the temporal and geographical evolution of polygenic scores (PGSs) across cognitive measures (Educational Attainment [EA], Intelligence Quotient [IQ]), Socioeconomic Status (SES), and psychiatric conditions (Autism Spectrum Disorder [ASD], schizophrenia [SCZ]) in various populations. Our findings indicate positive directional selection for EA, IQ, and SES traits over the past 12,000 years. Schizophrenia and autism, while similar, showed different temporal patterns, aligning with theories suggesting they are psychological opposites. We observed a decline in PGS for neuroticism and depression, likely due to their genetic correlations and pleiotropic effects on intelligence. Significant PGS shifts from the Upper Paleolithic to the Neolithic periods suggest lifestyle and cognitive demand changes, particularly during the Neolithic Revolution. The study supports a mild hypothesis of Gregory Clark's model, showing a noticeable rise in genetic propensities for intelligence, academic achievement and professional status across Europe from the Middle Ages to the present. While latitude strongly influenced height, its impact on schizophrenia and autism was smaller and varied. Contrary to the cold winters theory, the study found no significant correlation between latitude and intelligence.
Collapse
|
16
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Taking identity-by-descent analysis into the wild: Estimating realized relatedness in free-ranging macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574911. [PMID: 38260273 PMCID: PMC10802400 DOI: 10.1101/2024.01.09.574911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vladimir M Jovanovic
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Noah Snyder-Mackler
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hendrikje Westphal
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Stefanie Bley
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina, Durham, USA
- Research and Collections Section, North Carolina Museum of Natural Sciences, North Carolina, Raleigh, USA
- Department of Biological Sciences, North Carolina State University, North Carolina, Raleigh, USA
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, the Wharton School of Business, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke University Population Research Institute, Durham, North Carolina, USA
| | - Katja Nowick
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Widdig
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
17
|
Bergström A. Shared chromosomal segments connect ancient human societies. Nat Genet 2024; 56:10-11. [PMID: 38123641 DOI: 10.1038/s41588-023-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
18
|
Neolithic Community Revealed Using Ancient DNA Data. Am J Med Genet A 2023; 191:2797-2798. [PMID: 37955259 DOI: 10.1002/ajmg.a.62840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
|
19
|
Orlando L. A genetic window into the human social past. Proc Natl Acad Sci U S A 2023; 120:e2312672120. [PMID: 37647367 PMCID: PMC10500179 DOI: 10.1073/pnas.2312672120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Affiliation(s)
- Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), Université Paul Sabatier, Toulouse31000, France
| |
Collapse
|
20
|
Sirak K. DNA insights into Neolithic society. Nat Hum Behav 2023; 7:1245-1246. [PMID: 37495679 DOI: 10.1038/s41562-023-01668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Affiliation(s)
- Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Callaway E. Seven generations of a prehistoric family mapped with ancient DNA. Nature 2023:10.1038/d41586-023-02402-1. [PMID: 37495791 DOI: 10.1038/d41586-023-02402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|