1
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
2
|
Chen X, Feng Y, Zhang P, Ni Z, Xue Y, Liu J. Hydrogel Fibers-Based Biointerfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413476. [PMID: 39578344 DOI: 10.1002/adma.202413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The unique 1D structure of fibers offers intriguing attributes, including a high length-to-diameter ratio, miniatured size, light-weight, and flexibility, making them suitable for various biomedical applications, such as health monitoring, disease treatment, and minimally invasive surgeries. However, traditional fiber devices, typically composed of rigid, dry, and non-living materials, are intrinsically different from the soft, wet, and living essence of biological tissues, thereby posing grand challenges for long-term, reliable, and seamless interfacing with biological systems. Hydrogel fibers have recently emerged as a promising candidate, in light of their similarity to biological tissues in mechanical, chemical and biological aspects, as well as distinct fiber geometry. In this review, a comprehensive overview of recent progress in hydrogel fibers-based biointerfacing technology is provided. It thoroughly summarizes the manufacturing strategy and functional design, especially for hydrogel fibers with distinct optical and electron conductive performance, as well as responsiveness to triggers including thermal, magnetic field and ultrasonic wave, etc. Such unique attributes enable various biomedical applications, which are also examined in detail. Future challenges and potential directions, including biosafety, long-term reliability, sterilization, multi-modalities integration and intelligent therapeutic systems, are raised. This review will serve as a valuable resource for further advancement and implementation as next-generation biointerfacing technology.
Collapse
Affiliation(s)
- Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wang J, Jiang Y, Xiong T, Lu J, He X, Yu P, Mao L. Optically Modulated Nanofluidic Ionic Transistor for Neuromorphic Functions. Angew Chem Int Ed Engl 2024:e202418949. [PMID: 39588687 DOI: 10.1002/anie.202418949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024]
Abstract
Neuromorphic systems that can emulate the behavior of neurons have garnered increasing interest across interdisciplinary fields due to their potential applications in neuromorphic computing, artificial intelligence and brain-machine interfaces. However, the optical modulation of nanofluidic ion transport for neuromorphic functions has been scarcely reported. Herein, inspired by biological systems that rely on ions as signal carriers for information perception and processing, we present a nanofluidic transistor based on a metal-organic framework membrane (MOFM) with optically modulated ion transport properties, which can mimic the functions of biological synapses. Through the dynamic modulation of synaptic weight, we successfully replicate intricate learning-experience behaviors and Pavlovian associate learning processes by employing sequential optical stimuli. Additionally, we demonstrate the application of the International Morse Code with the nanofluidic device using patterned optical pulse signals, showing its encoding and decoding capabilities in information processing process. This study would largely advance the development of nanofluidic neuromorphic devices for biomimetic iontronics integrated with sensing, memory and computing functions.
Collapse
Affiliation(s)
- Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiulan He
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Doshi S, Ji A, Mahdi AI, Keene ST, Selvin SP, Lalanne P, Appel EA, Melosh NA, Brongersma ML. Electrochemically mutable soft metasurfaces. NATURE MATERIALS 2024:10.1038/s41563-024-02042-4. [PMID: 39537748 DOI: 10.1038/s41563-024-02042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Active optical metasurfaces, capable of dynamically manipulating light in ultrathin form factors, enable novel interfaces between humans and technology. In such interfaces, soft materials bring many advantages based on their flexibility, compliance and large stimulus-driven responses. Here, we create electrochemically mutable, soft metasurfaces that capitalize on the swelling of soft conducting polymers to alter the shape and associated resonant response of metasurface elements. Such geometric tuning overcomes the typical trade-off between achieving substantial tuning and low optical loss that is intrinsic to dynamic metasurfaces relying on index tuning of materials. Using the commercial polymer PEDOT:PSS, we demonstrate dynamic, high-resolution colour tuning and high-diffraction-efficiency (>19%) beam-steering devices that operate at CMOS-compatible voltages (~1.5 V). These results highlight how the deformability of soft materials can enable a class of high-performance metasurfaces that are suitable for body-worn technologies.
Collapse
Affiliation(s)
- Siddharth Doshi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Anqi Ji
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Ali I Mahdi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Scott T Keene
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Skyler P Selvin
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | | | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Zhang L, Xia J, Li B, Cao Z, Dong S. Multimodal integrated flexible neural probe for in situ monitoring of EEG and lactic acid. RSC Adv 2024; 14:35520-35528. [PMID: 39507693 PMCID: PMC11540061 DOI: 10.1039/d4ra06336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
In physiological activities, the brain's electroencephalogram (EEG) signal and chemical concentration change are crucial for diagnosing and treating neurological disorders. Despite the advantages of flexible neural probes, such as their flexibility and biocompatibility, it remains a challenge to achieve in situ monitoring of electrophysiological and chemical signals on a small scale simultaneously. This study developed a new method to construct an efficient dual-sided multimodal integrated flexible neural probe, which combines a density electrode array for EEG recordings and an electrochemical sensor for detecting lactic acid. The EEG electrode array includes a 6-channel recording electrode array with each electrode 30 × 50 μm in size, and the lactic acid sensor with overall contact is approximately 100 μm wide. The EEG electrodes have an average impedance of 2.57 kΩ at 1 kHz and remained stable after immersing in NS (normal saline) for 3 months. The lactic acid sensor showed a sensitivity of 52.8 nA mM-1. The in vivo experiments demonstrated that the probe can reliably monitor electrophysiological signals. The probe is able to be implanted into the desired site with the help of a guide port. This flexible neural probe can provide more comprehensive insights into brain activity in the field of neuroscience and clinical practices.
Collapse
Affiliation(s)
- Luxi Zhang
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Jie Xia
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Boyu Li
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhen Cao
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Shurong Dong
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
6
|
Hartner JP, Yi D, Zhu HL, Watson BO, Chen L. Three-dimensional-printed headcap with embedded microdrive system for customizable multi-region brain recordings with neural probes. Front Neurosci 2024; 18:1478421. [PMID: 39483323 PMCID: PMC11524913 DOI: 10.3389/fnins.2024.1478421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Electrophysiological recordings from single neurons are crucial for understanding the complex functioning of the brain and for developing eventual therapeutic interventions. For electrophysiology, the accuracy and fidelity of invasive implantations of small devices remains unmatched. This study introduces an innovative, cost-efficient, 3D-printed headcap with embedded microdrive (THEM) system designed to streamline the manual labor-intensive in-vivo electrode implantation process for efficient and precise multi-region brain neural probe implantations. A custom bregma-referenced headcap design and fabrication, embedded microdrive integration, and upper support structure for probe packaging are described. With the Sprague Dawley rat as test species and medial prefrontal cortex and CA1 of the dorsal hippocampus as targets, surgeries and electrophysiological recordings were conducted to test the capability of the THEM system as compared to conventional surgical methods. By shifting manual stereotaxic alignment work to pre-surgical preparation of a fully assembled headcap system, incorporating fully preassembled upper support framework for packaging management, and easy customization for specific experiment designs and probe types, our system significantly reduces the surgical time, simplifies multi-implant procedures, and enhances procedural accuracy and repeatability. The THEM system demonstrates a significant improvement over conventional surgical implantation methods and offers a promising tool for future neuroscience research.
Collapse
Affiliation(s)
- Jeremiah P. Hartner
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Harrison L. Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
7
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
8
|
Shen C, Li J, She W, Liu A, Meng Q. Temperature-responsive hydrogel-grafted vessel-on-a-chip: Exploring cold-induced endothelial injury. Biotechnol Bioeng 2024; 121:3239-3251. [PMID: 38946677 DOI: 10.1002/bit.28779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Cold-induced vasoconstriction is a significant contributor that leads to chilblains and hypothermia in humans. However, current animal models have limitations in replicating cold-induced acral injury due to their low sensitivity to cold. Moreover, existing in vitro vascular chips composed of endothelial cells and perfusion systems lack temperature responsiveness, failing to simulate the vasoconstriction observed under cold stress. This study presents a novel approach where a microfluidic bioreactor of vessel-on-a-chip was developed by grafting the inner microchannel surface of polydimethylsiloxane with a thermosensitive hydrogel skin composed of N-isopropyl acrylamide and gelatin methacrylamide. With a lower critical solution temperature set at 30°C, the gel layer exhibited swelling at low temperatures, reducing the flow rate inside the channel by 10% when the temperature dropped from 37°C to 4°C. This well mimicked the blood stasis observed in capillary vessels in vivo. The vessel-on-a-chip was further constructed by culturing endothelial cells on the surface of the thermosensitive hydrogel layer, and a perfused medium was introduced to the cells to provide a physiological shear stress. Notably, cold stimulation of the vessel-on-a-chip led to cell necrosis, mitochondrial membrane potential (ΔΨm) collapse, cytoskeleton disaggregation, and increased levels of reactive oxygen species. In contrast, the static culture of endothelial cells showed limited response to cold exposure. By faithfully replicating cold-induced endothelial injury, this groundbreaking thermosensitive vessel-on-a-chip technology offers promising advancements in the study of cold-induced cardiovascular diseases, including pathogenesis and therapeutic drug screening.
Collapse
Affiliation(s)
- Chong Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jiajie Li
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Wenqi She
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Aiping Liu
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qin Meng
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Du Y, Dylda E, Stibůrek M, Gomes AD, Turtaev S, Pakan JMP, Čižmár T. Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy. NEUROPHOTONICS 2024; 11:S11506. [PMID: 38352728 PMCID: PMC10863504 DOI: 10.1117/1.nph.11.s1.s11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Significance Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. Aim We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. Approach We used our previously developed M 3 CF multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our M 3 CF exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The M 3 CF has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of M 3 CF with hexagonally arranged corelets. Results We successfully utilized the M 3 CF to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the M 3 CF with larger numerical aperture (NA) fibers in fixed whole-brain tissue. Conclusions This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the M 3 CF increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.
Collapse
Affiliation(s)
- Yang Du
- University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Evelyn Dylda
- Otto-von-Guericke-University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | | | - André D Gomes
- Leibniz Institute of Photonic Technology, Jena, Germany
| | | | - Janelle M. P. Pakan
- Otto-von-Guericke-University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tomáš Čižmár
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Scientific Instruments of CAS, Brno, Czechia
- Friedrich Schiller University Jena, Institute of Applied Optics, Jena, Germany
| |
Collapse
|
10
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
11
|
Bi L, Garg R, Noriega N, Wang RJ, Kim H, Vorotilo K, Burrell JC, Shuck CE, Vitale F, Patel BA, Gogotsi Y. Soft, Multifunctional MXene-Coated Fiber Microelectrodes for Biointerfacing. ACS NANO 2024; 18:23217-23231. [PMID: 39141004 PMCID: PMC11363215 DOI: 10.1021/acsnano.4c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Flexible fiber-based microelectrodes allow safe and chronic investigation and modulation of electrically active cells and tissues. Compared to planar electrodes, they enhance targeting precision while minimizing side effects from the device-tissue mechanical mismatch. However, the current manufacturing methods face scalability, reproducibility, and handling challenges, hindering large-scale deployment. Furthermore, only a few designs can record electrical and biochemical signals necessary for understanding and interacting with complex biological systems. In this study, we present a method that utilizes the electrical conductivity and easy processability of MXenes, a diverse family of two-dimensional nanomaterials, to apply a thin layer of MXene coating continuously to commercial nylon filaments (30-300 μm in diameter) at a rapid speed (up to 15 mm/s), achieving a linear resistance below 10 Ω/cm. The MXene-coated filaments are then batch-processed into free-standing fiber microelectrodes with excellent flexibility, durability, and consistent performance even when knotted. We demonstrate the electrochemical properties of these fiber electrodes and their hydrogen peroxide (H2O2) sensing capability and showcase their applications in vivo (rodent) and ex vivo (bladder tissue). This scalable process fabricates high-performance microfiber electrodes that can be easily customized and deployed in diverse bioelectronic monitoring and stimulation studies, contributing to a deeper understanding of health and disease.
Collapse
Affiliation(s)
- Lingyi Bi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Raghav Garg
- Department
of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Natalia Noriega
- School
of Applied Sciences, University of Brighton, Brighton BN2 4AT, U.K.
| | - Ruocun John Wang
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hyunho Kim
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Kseniia Vorotilo
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Justin C. Burrell
- Department
of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Christopher E. Shuck
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Flavia Vitale
- Department
of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bhavik Anil Patel
- School
of Applied Sciences, University of Brighton, Brighton BN2 4AT, U.K.
| | - Yury Gogotsi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Zhang Y, Hu Y, Xie B, Yang G, Yin Z, Wu H. Hoffmeister Effect Optimized Hydrogel Electrodes with Enhanced Electrical and Mechanical Properties for Nerve Conduction Studies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0453. [PMID: 39145116 PMCID: PMC11322598 DOI: 10.34133/research.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Flexible epidermal electrodes hold substantial promise in realizing human electrophysiological information collections. Conventional electrodes exhibit certain limitations, including the requirement of skin pretreatment, reliance on external object-assisted fixation, and a propensity of dehydration, which severely hinder their applications in medical diagnosis. To tackle those issues, we developed a hydrogel electrode with both transcutaneous stimulation and neural signal acquisition functions. The electrode consists of a composite conductive layer (CCL) and adhesive conductive hydrogel (ACH). The CCL is designed as a laminated structure with high conductivity and charge storage capacity (CSC). Based on the optimization of Hoffmeister effect, the ACH demonstrates excellent electrical (resistivity of 3.56 Ω·m), mechanical (tensile limit of 1,650%), and adhesion properties (peeling energy of 0.28 J). The utilization of ACH as electrode/skin interface can reduce skin contact impedance and noise interference and enhance the CSC and charge injection capacity of electrodes. As a proof of concept, peripheral nerve conduction studies were performed on human volunteers to evaluate the as-fabricated hydrogel electrodes. Compared with the commercial electrodes, our hydrogel electrodes achieved better signal continuity and lower distortion, higher signal-to-noise ratio (~35 dB), and lower stimulation voltages (up to 27% lower), which can improve the safety and comfort of nerve conduction studies.
Collapse
Affiliation(s)
| | | | | | | | - Zhouping Yin
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Mininni CJ, Zanutto BS. Constructing neural networks with pre-specified dynamics. Sci Rep 2024; 14:18860. [PMID: 39143351 PMCID: PMC11324765 DOI: 10.1038/s41598-024-69747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
A main goal in neuroscience is to understand the computations carried out by neural populations that give animals their cognitive skills. Neural network models allow to formulate explicit hypotheses regarding the algorithms instantiated in the dynamics of a neural population, its firing statistics, and the underlying connectivity. Neural networks can be defined by a small set of parameters, carefully chosen to procure specific capabilities, or by a large set of free parameters, fitted with optimization algorithms that minimize a given loss function. In this work we alternatively propose a method to make a detailed adjustment of the network dynamics and firing statistic to better answer questions that link dynamics, structure, and function. Our algorithm-termed generalised Firing-to-Parameter (gFTP)-provides a way to construct binary recurrent neural networks whose dynamics strictly follows a user pre-specified transition graph that details the transitions between population firing states triggered by stimulus presentations. Our main contribution is a procedure that detects when a transition graph is not realisable in terms of a neural network, and makes the necessary modifications in order to obtain a new transition graph that is realisable and preserves all the information encoded in the transitions of the original graph. With a realisable transition graph, gFTP assigns values to the network firing states associated with each node in the graph, and finds the synaptic weight matrices by solving a set of linear separation problems. We test gFTP performance by constructing networks with random dynamics, continuous attractor-like dynamics that encode position in 2-dimensional space, and discrete attractor dynamics. We then show how gFTP can be employed as a tool to explore the link between structure, function, and the algorithms instantiated in the network dynamics.
Collapse
Affiliation(s)
- Camilo J Mininni
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - B Silvano Zanutto
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
15
|
Shao L, Wei H, Liu J, Ma W, Yu P, Wang M, Mao L. Graphdiyne as a Highly Efficient and Neuron-Targeted Photothermal Transducer for in Vivo Neuromodulation. ACS NANO 2024; 18:15607-15616. [PMID: 38838347 DOI: 10.1021/acsnano.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photothermal modulation of neural activity offers a promising approach for understanding brain circuits and developing therapies for neurological disorders. However, the low neuron selectivity and inefficient light-to-heat conversion of existing photothermal nanomaterials significantly limit their potential for neuromodulation. Here, we report that graphdiyne (GDY) can be developed into an efficient neuron-targeted photothermal transducer for in vivo modulation of neuronal activity through rational surface functionalization. We functionalize GDY with polyethylene glycol (PEG) through noncovalent hydrophobic interactions, followed by antibody conjugation to specifically target the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) on the surface of neural cells. The nanotransducer not only exhibits high photothermal conversion efficiency in the near-infrared region but also shows great TRPV1-targeting capability. This enables photothermal activation of TRPV1, leading to neurotransmitter release in cells and modulation of neural firing in living mice. With its precision and selectivity, the GDY-based transducer provides an innovative avenue for understanding brain function and developing therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Zhang FL, Yang XK, Qi YT, Tian SY, Huang WH. Nanoelectrochemistry reveals how presynaptic neurons regulate vesicle release to sustain synaptic plasticity under repetitive stimuli. Chem Sci 2024; 15:7651-7658. [PMID: 38784745 PMCID: PMC11110134 DOI: 10.1039/d4sc01664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Synaptic plasticity is the ability of synapses to modulate synaptic strength in response to dynamic changes within, as well as environmental changes. Although there is a considerable body of knowledge on protein expression and receptor migration in different categories of synaptic plasticity, the contribution and impact of presynaptic vesicle release and neurotransmitter levels towards plasticity remain largely unclear. Herein, nanoelectrochemistry using carbon fiber nanoelectrodes with excellent spatio-temporal resolution was applied for real-time monitoring of presynaptic vesicle release of dopamine inside single synapses of dopaminergic neurons, and exocytotic variations in quantity and kinetics under repetitive electrical stimuli. We found that the presynaptic terminal tends to maintain synaptic strength by rapidly recruiting vesicles, changing the dynamics of exocytosis, and maintaining sufficient neurotransmitter release in following stimuli. Except for small clear synaptic vesicles, dense core vesicles are involved in exocytosis to sustain the neurotransmitter level in later periods of repetitive stimuli. These data indicate that vesicles use a potential regulatory mechanism to establish short-term plasticity, and provide new directions for exploring the synaptic mechanisms in connection and plasticity.
Collapse
Affiliation(s)
- Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 P. R. China
| |
Collapse
|
17
|
Jia Q, Jing L, Zhu Y, Han M, Jiao P, Wang Y, Xu Z, Duan Y, Wang M, Cai X. Real-Time Precise Targeting of the Subthalamic Nucleus via Transfer Learning in a Rat Model of Parkinson's Disease Based on Microelectrode Arrays. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1787-1795. [PMID: 38656860 DOI: 10.1109/tnsre.2024.3393116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.
Collapse
|
18
|
Barros BJ, Cunha JPS. Neurophotonics: a comprehensive review, current challenges and future trends. Front Neurosci 2024; 18:1382341. [PMID: 38765670 PMCID: PMC11102054 DOI: 10.3389/fnins.2024.1382341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
Collapse
Affiliation(s)
- Beatriz Jacinto Barros
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - João P. S. Cunha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Yu J, Wan R, Tian F, Cao J, Wang W, Liu Q, Yang H, Liu J, Liu X, Lin T, Xu J, Lu B. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308778. [PMID: 38063822 DOI: 10.1002/smll.202308778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Indexed: 05/12/2024]
Abstract
Electrical bioadhesive interface (EBI), especially conducting polymer hydrogel (CPH)-based EBI, exhibits promising potential applications in various fields, including biomedical devices, neural interfaces, and wearable devices. However, current fabrication techniques of CPH-based EBI mostly focus on conventional methods such as direct casting, injection, and molding, which remains a lingering challenge for further pushing them toward customized practical bioelectronic applications and commercialization. Herein, 3D printable high-performance CPH-based EBI precursor inks are developed through composite engineering of PEDOT:PSS and adhesive ionic macromolecular dopants within tough hydrogel matrices (PVA). Such inks allow the facile fabrication of high-resolution and programmable patterned EBI through 3D printing. Upon successive freeze-thawing, the as-printed PEDOT:PSS-based EBI simultaneously exhibits high conductivity of 1.2 S m-1, low interfacial impedance of 20 Ω, high stretchability of 349%, superior toughness of 109 kJ m-3, and satisfactory adhesion to various materials. Enabled by these advantageous properties and excellent printability, the facile and continuous manufacturing of EBI-based skin electrodes is further demonstrated via 3D printing, and the fabricated electrodes display excellent ECG and EMG signal recording capability superior to commercial products. This work may provide a new avenue for rational design and fabrication of next-generation EBI for soft bioelectronics, further advancing seamless human-machine integration.
Collapse
Affiliation(s)
- Jiawen Yu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Rongtai Wan
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Fajuan Tian
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jie Cao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Wen Wang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Qi Liu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Hanjun Yang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jingcheng Liu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Ximei Liu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Tao Lin
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Jingkun Xu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Baoyang Lu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| |
Collapse
|
20
|
Li H, Zhang Y, Deng Z, Lu B, Ma L, Wang R, Wang X, Jiao Z, Wang Y, Zhou K, Wei Q. Constructing a Hydrophilic Microsensor for High-Antifouling Neurotransmitter Dopamine Sensing. ACS Sens 2024; 9:1785-1798. [PMID: 38384144 DOI: 10.1021/acssensors.3c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Real-time sensing of dopamine is essential for understanding its physiological function and clarifying the pathophysiological mechanism of diseases caused by impaired dopamine systems. However, severe fouling from nonspecific protein adsorption, for a long time, limited conventional neural recording electrodes concerning recording stability. This study reported a high-antifouling nanocrystalline boron-doped diamond microsensor grown on a carbon fiber substrate. The antifouling properties of this diamond sensor were strongly related to the grain size (i.e., nanocrystalline and microcrystalline) and surface terminations (i.e., oxygen and hydrogen terminals). Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond microsensor exhibited enhanced antifouling characteristics against protein adsorption, which was attributed to the formation of a strong hydration layer as a physical and energetic barrier that prevents protein adsorption on the surface. This finally allowed for in vivo monitoring of dopamine in rat brains upon potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors. Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond (O-NCBDD) microsensor exhibited ultrahydrophilic properties with a contact angle of 4.9°, which was prone to forming a strong hydration layer as a physical and energetic barrier to withstand the adsorption of proteins. The proposed O-NCBDD microsensor exhibited a high detection sensitivity of 5.14 μA μM-1 cm-2 and a low detection limit of 25.7 nM. This finally allowed for in vivo monitoring of dopamine with an average concentration of 1.3 μM in rat brains upon 2 μL of potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors.
Collapse
Affiliation(s)
- Haichao Li
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Yening Zhang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, P. R. China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province 410000, P. R. China
| | - Zejun Deng
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Ben Lu
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, P. R. China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province 410000, P. R. China
| | - Li Ma
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Run Wang
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiang Wang
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Zengkai Jiao
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Yijia Wang
- Institute for Advanced Study, Central South University, Changsha 410083, P. R. China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Qiuping Wei
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
21
|
Ramezani M, Kim JH, Liu X, Ren C, Alothman A, De-Eknamkul C, Wilson MN, Cubukcu E, Gilja V, Komiyama T, Kuzum D. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. NATURE NANOTECHNOLOGY 2024; 19:504-513. [PMID: 38212523 PMCID: PMC11742260 DOI: 10.1038/s41565-023-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological recordings from the brain surface with the optical imaging and stimulation of neural activity. A remaining challenge is to scale down the electrode dimensions to the single-cell size and increase the density to record neural activity with high spatial resolution across large areas to capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with ultrasmall openings and a large, transparent recording area without any gold extensions in the field of view with high-density microelectrode arrays up to 256 channels. We used platinum nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the microelectrode diameter to 20 µm. An interlayer-doped double-layer graphene was introduced to prevent open-circuit failures. We conducted multimodal experiments, combining the recordings of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse visual cortex. Our results revealed that visually evoked responses are spatially localized for high-frequency bands, particularly for the multiunit activity band. The multiunit activity power was found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality reduction techniques and neural networks to demonstrate that single-cell and average calcium activities can be decoded from surface potentials recorded by high-density transparent graphene arrays.
Collapse
Affiliation(s)
- Mehrdad Ramezani
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeong-Hoon Kim
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Xin Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chi Ren
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Abdullah Alothman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chawina De-Eknamkul
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Madison N Wilson
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ertugrul Cubukcu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Bakhshaee Babaroud N, Rice SJ, Camarena Perez M, Serdijn WA, Vollebregt S, Giagka V. Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing. NANOSCALE 2024; 16:3549-3559. [PMID: 38287770 DOI: 10.1039/d3nr05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.
Collapse
Affiliation(s)
- Nasim Bakhshaee Babaroud
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Samantha J Rice
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Maria Camarena Perez
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Wouter A Serdijn
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
- Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - Sten Vollebregt
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Vasiliki Giagka
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
- Technologies for Bioelectronics Group, Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Micro-integration IZM, Berlin, Germany.
| |
Collapse
|
23
|
Shidara H, Jitsuki S, Takemoto K. Chromophore-assisted light inactivation of target proteins for singularity biology. Biophys Physicobiol 2024; 21:e211009. [PMID: 39175862 PMCID: PMC11338683 DOI: 10.2142/biophysico.bppb-v21.s009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/13/2024] [Indexed: 08/24/2024] Open
Abstract
Singularity phenomena are rare events that occur only with a probability of one in tens of thousands and yet play an important role in the fate of the entire system. Recently, an ultra-wide-field microscopy imaging systems, AMATERAS, have been developed to reliably capture singularity phenomena. However, to determine whether a rare phenomenon captured by microscopy is a true singularity phenomenon-one with a significant impact on the entire system-, causal analysis is required. In this section, we introduce the CALI method, which uses light to inactivate molecules as one of the techniques enabling causal analysis. In addition, we discuss the technical innovations of the CALI method that are required to contribute to the future development of singularity biology.
Collapse
Affiliation(s)
- Hisashi Shidara
- Department of Biochemistry, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Susumu Jitsuki
- Department of Biochemistry, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Kiwamu Takemoto
- Department of Biochemistry, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
24
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
25
|
Stranahan AM, Tabet A, Anikeeva P. Region-specific targeting of microglia in vivo using direct delivery of tamoxifen metabolites via microfluidic polymer fibers. Brain Behav Immun 2024; 115:131-142. [PMID: 37820974 PMCID: PMC10842189 DOI: 10.1016/j.bbi.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
Region-specific genetic manipulation of glial cells remains challenging due to the lack of anatomically selective transgenic models. Although local transduction is achievable with viral vectors, uniform recombination can be challenging in larger brain regions. We investigated the efficacy of intraparenchymal delivery of the tamoxifen metabolite endoxifen using inducible cre reporter mice. After observing localized reporter induction following stereotaxic injections of endoxifen in CX3CR1creERT2 mice, we carried out chronic delivery via osmotic pumps attached to bilateral cannulas made of stainless steel or microfluidic polymer fibers. Analysis of reporter expression in sections or iDISCO-cleared brains from TMEM119creERT2 mice revealed widespread induction following chronic infusion. Neuronal damage and gliosis were more prevalent around steel cannulas than polymer fibers, and glial reactivity was further attenuated when devices were implanted two months before drug delivery. In summary, region-specific recombination is achievable in glia with minimal tissue damage after endoxifen delivery via microfluidic polymer implants.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA.
| | - Anthony Tabet
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA; Departments of Materials Science & Engineering and Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| |
Collapse
|
26
|
Park W, Kim EM, Jeon Y, Lee J, Yi J, Jeong J, Kim B, Jeong BG, Kim DR, Kong H, Lee CH. Transparent Intracellular Sensing Platform with Si Needles for Simultaneous Live Imaging. ACS NANO 2023; 17:25014-25026. [PMID: 38059775 DOI: 10.1021/acsnano.3c07527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junsang Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong Guk Jeong
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
28
|
Carmina D, Benfenati V, Simonelli C, Rotolo A, Cardano P, Grovale N, Mangoni di S Stefano L, de Santo T, Zamboni R, Palermo V, Muccini M, De Seta F. Innovative solutions for disease management. Bioelectron Med 2023; 9:28. [PMID: 38053220 DOI: 10.1186/s42234-023-00131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The increasing prevalence of chronic diseases is a driver for emerging big data technologies for healthcare including digital platforms for data collection, systems for active patient engagement and education, therapy specific predictive models, optimized patient pathway models. Powerful bioelectronic medicine tools for data collection, analysis and visualization allow for joint processing of large volumes of heterogeneous data, which in turn can produce new insights about patient outcomes and alternative interpretations of clinical patterns that can lead to implementation of optimized clinical decisions and clinical patient pathway by healthcare professionals.With this perspective, we identify innovative solutions for disease management and evaluate their impact on patients, payers and society, by analyzing their impact in terms of clinical outcomes (effectiveness, safety, and quality of life) and economic outcomes (cost-effectiveness, savings, and productivity).As a result, we propose a new approach based on the main pillars of innovation in the disease management area, i.e. progressive patient care models, patient-centric approaches, bioelectronics for precise medicine, and lean management that, combined with an increase in appropriate private-public-citizen-partnership, leads towards Patient-Centric Healthcare.
Collapse
Affiliation(s)
- Dafni Carmina
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e Fotoreattività, via Gobetti 101, Bologna, 40129, Italy.
| | - Claudia Simonelli
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | - Alessia Rotolo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, Bologna, 40129, Italy
| | - Paola Cardano
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | - Nicoletta Grovale
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | | | - Tiziana de Santo
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e Fotoreattività, via Gobetti 101, Bologna, 40129, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e Fotoreattività, via Gobetti 101, Bologna, 40129, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, Bologna, 40129, Italy
- Mister Smart Innovation S, via Gobetti 101, Bologna, 40129, Italy
| | - Francesco De Seta
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| |
Collapse
|
29
|
Sun H, Wang S, Yang F, Tan M, Bai L, Wang P, Feng Y, Liu W, Wang R, He X. Conductive and antibacterial dual-network hydrogel for soft bioelectronics. MATERIALS HORIZONS 2023; 10:5805-5821. [PMID: 37817573 DOI: 10.1039/d3mh00813d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Conductive hydrogels have shown significant potential for use in soft bioelectronics due to their unique similarities to biological tissue, including high water content, low modulus, and conductivity. However, their high water content makes them susceptible to absorbing microorganisms and promoting bacterial growth, which can trigger an immune response. Besides, the adhesion and biocompatibility of the hydrogel are not satisfactory, seriously limiting the conductive hydrogel's high-performance applications in human healthcare monitoring. Herein, the problem is addressed by introducing borax through a swelling and a semi-dehydration method into the interpenetrated network of a polyvinyl alcohol and poly(acrylic acid) hydrogel. The hydrogel exhibits both outstanding antibacterial (>99.99% toward E. coli and S. aureus) activity and high ionic conductivity, in addition to tissue-like softness, strong wet-tissue adhesion (600 J m-2 for skin), environmental stability, and excellent biocompatibility. Furthermore, the as-prepared hydrogel can serve as a biosensing conductor, showing high-quality recording and monitoring of real-time tiny yet complex muscle movements during speaking and realizing neuromodulation through low-current electronic stimulation (40 μA) of a rat's nerve. Simultaneously, the hydrogel also exhibits the capacity to accelerate wound healing. Therefore, the proposed antibacterial conductive hydrogel is a safer option for next-generation bioelectronic materials in human healthcare.
Collapse
Affiliation(s)
- Huiqi Sun
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Sai Wang
- School of Mechatronic Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fan Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Mingyi Tan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Ling Bai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Peipei Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Yingying Feng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Wenbo Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Rongguo Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
30
|
Ochoa JÁ, Gonzalez-Burgos I, Nicolás MJ, Valencia M. Open Hardware Implementation of Real-Time Phase and Amplitude Estimation for Neurophysiologic Signals. Bioengineering (Basel) 2023; 10:1350. [PMID: 38135941 PMCID: PMC10740741 DOI: 10.3390/bioengineering10121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Adaptive deep brain stimulation (aDBS) is a promising concept in the field of DBS that consists of delivering electrical stimulation in response to specific events. Dynamic adaptivity arises when stimulation targets dynamically changing states, which often calls for a reliable and fast causal estimation of the phase and amplitude of the signals. Here, we present an open-hardware implementation that exploits the concepts of resonators and Hilbert filters embedded in an open-hardware platform. To emulate real-world scenarios, we built a hardware setup that included a system to replay and process different types of physiological signals and test the accuracy of the instantaneous phase and amplitude estimates. The results show that the system can provide a precise and reliable estimation of the phase even in the challenging scenario of dealing with high-frequency oscillations (~250 Hz) in real-time. The framework might be adopted in neuromodulation studies to quickly test biomarkers in clinical and preclinical settings, supporting the advancement of aDBS.
Collapse
Affiliation(s)
- José Ángel Ochoa
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
| | - Irene Gonzalez-Burgos
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
| | - María Jesús Nicolás
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
| | - Miguel Valencia
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Campus Universitario, 31009 Pamplona, Spain
| |
Collapse
|
31
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English DF, Emori S, Davalos RV, Poelzing S, Jia X. Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation. Adv Healthc Mater 2023; 12:e2300964. [PMID: 37473719 PMCID: PMC10799194 DOI: 10.1002/adhm.202300964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Earl Gilbert
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - You Li
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
32
|
Rousseau E, Raman R, Tamir T, Bu A, Srinivasan S, Lynch N, Langer R, White FM, Cima MJ. Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss. Biomaterials 2023; 302:122317. [PMID: 37717406 PMCID: PMC11512195 DOI: 10.1016/j.biomaterials.2023.122317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Damage that affects large volumes of skeletal muscle tissue can severely impact health, mobility, and quality-of-life. Efforts to restore muscle function by implanting tissue engineered muscle grafts at the site of damage have demonstrated limited restoration of force production. Various forms of mechanical and biochemical stimulation have been shown to have a potentially beneficial impact on graft maturation, vascularization, and innervation. However, these approaches yield unpredictable and incomplete recovery of functional mobility. Here we show that targeted actuation of implanted grafts, via non-invasive transcutaneous light stimulation of optogenetic engineered muscle, restores motor function to levels similar to healthy mice 2 weeks post-injury. Furthermore, we conduct phosphoproteomic analysis of actuated engineered muscle in vivo and in vitro to show that repeated muscle contraction alters signaling pathways that play key roles in skeletal muscle contractility, adaptation to injury, neurite growth, neuromuscular synapse formation, angiogenesis, and cytoskeletal remodeling. Our study uncovers changes in phosphorylation of several proteins previously unreported in the context of muscle contraction, revealing promising mechanisms for leveraging actuated muscle grafts to restore mobility after volumetric muscle loss.
Collapse
Affiliation(s)
- Erin Rousseau
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Ritu Raman
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| | - Tigist Tamir
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Angel Bu
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Shriya Srinivasan
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Naomi Lynch
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Garwood IC, Major AJ, Antonini MJ, Correa J, Lee Y, Sahasrabudhe A, Mahnke MK, Miller EK, Brown EN, Anikeeva P. Multifunctional fibers enable modulation of cortical and deep brain activity during cognitive behavior in macaques. SCIENCE ADVANCES 2023; 9:eadh0974. [PMID: 37801492 PMCID: PMC10558126 DOI: 10.1126/sciadv.adh0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.
Collapse
Affiliation(s)
- Indie C. Garwood
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J. Major
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josefina Correa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Youngbin Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meredith K. Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
35
|
Xue Y, Chen X, Wang F, Lin J, Liu J. Mechanically-Compliant Bioelectronic Interfaces through Fatigue-Resistant Conducting Polymer Hydrogel Coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304095. [PMID: 37381603 DOI: 10.1002/adma.202304095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Because of their distinct electrochemical and mechanical properties, conducting polymer hydrogels have been widely exploited as soft, wet, and conducting coatings for conventional metallic electrodes, providing mechanically compliant interfaces and mitigating foreign body responses. However, the long-term viability of these hydrogel coatings is hindered by concerns regarding fatigue crack propagation and/or delamination caused by repetitive volumetric expansion/shrinkage during long-term electrical interfacing. This study reports a general yet reliable approach to achieving a fatigue-resistant conducting polymer hydrogel coating on conventional metallic bioelectrodes by engineering nanocrystalline domains at the interface between the hydrogel and metallic substrates. It demonstrates the efficacy of this robust, biocompatible, and fatigue-resistant conducting hydrogel coating in cardiac pacing, showcasing its ability to effectively reduce the pacing threshold voltage and enhance the long-term reliability of electric stimulation. This study findings highlight the potential of its approach as a promising design and fabrication strategy for the next generation of seamless bioelectronic interfaces.
Collapse
Affiliation(s)
- Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fucheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingsen Lin
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
36
|
Yang X, Qi Y, Wang C, Zwang TJ, Rommelfanger NJ, Hong G, Lieber CM. Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury. Nat Biomed Eng 2023; 7:1282-1292. [PMID: 37814007 DOI: 10.1038/s41551-023-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
In the adult brain, neural stem cells are largely restricted into spatially discrete neurogenic niches, and hence areas of neuron loss during neurodegenerative disease or following a stroke or traumatic brain injury do not typically repopulate spontaneously. Moreover, understanding neural activity accompanying the neural repair process is hindered by a lack of minimally invasive devices for the chronic measurement of the electrophysiological dynamics in damaged brain tissue. Here we show that 32 individually addressable platinum microelectrodes integrated into laminin-coated branched polymer scaffolds stereotaxically injected to span a hydrogel-filled cortical lesion and deeper regions in the brains of mice promote neural regeneration while allowing for the tracking of migrating host brain cells into the lesion. Chronic measurements of single-unit activity and neural-circuit analyses revealed the establishment of spiking activity in new neurons in the lesion and their functional connections with neurons deeper in the brain. Electronic implants mimicking the topographical and surface properties of brain vasculature may aid the stimulation and tracking of neural-circuit restoration following injury.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Psychiatry and Behavioral Sciences and Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Yue Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Beijing Graphene Institute, Beijing, China
| | - Chonghe Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theodore J Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Lieber Research Group, Lexington, MA, USA.
| |
Collapse
|
37
|
Lin Y, Shi J, Feng W, Yue J, Luo Y, Chen S, Yang B, Jiang Y, Hu H, Zhou C, Shi F, Prominski A, Talapin DV, Xiong W, Gao X, Tian B. Periplasmic biomineralization for semi-artificial photosynthesis. SCIENCE ADVANCES 2023; 9:eadg5858. [PMID: 37478187 PMCID: PMC10361601 DOI: 10.1126/sciadv.adg5858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques. The periplasmic semiconductors are metastable and display defect-dominant fluorescent properties. Unexpectedly, the defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ can still increase adenosine triphosphate levels and malate production when coupled with photosensitization. We expand the sustainability levels of the biohybrid system to include reducing heavy metals at the primary level, building living bioreactors at the secondary level, and creating semi-artificial photosynthesis at the tertiary level. The biomineralization-enabled periplasmic biohybrids have the potential to serve as defect-tolerant platforms for diverse sustainable applications.
Collapse
Affiliation(s)
- Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Wei Feng
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518000, China
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Bin Yang
- Bioscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yuanwen Jiang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Huicheng Hu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Chenkun Zhou
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Fengyuan Shi
- Electron Microscopy Core, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Dmitri V. Talapin
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Wei Xiong
- Bioscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Xiang Gao
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518000, China
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Zhou Y, Yang H, Wang X, Yang H, Sun K, Zhou Z, Sun L, Zhao J, Tao TH, Wei X. A mosquito mouthpart-like bionic neural probe. MICROSYSTEMS & NANOENGINEERING 2023; 9:88. [PMID: 37448967 PMCID: PMC10336119 DOI: 10.1038/s41378-023-00565-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
Advancements in microscale electrode technology have revolutionized the field of neuroscience and clinical applications by offering high temporal and spatial resolution of recording and stimulation. Flexible neural probes, with their mechanical compliance to brain tissue, have been shown to be superior to rigid devices in terms of stability and longevity in chronic recordings. Shuttle devices are commonly used to assist flexible probe implantation; however, the protective membrane of the brain still makes penetration difficult. Hidden damage to brain vessels during implantation is a significant risk. Inspired by the anatomy of the mosquito mouthparts, we present a biomimetic neuroprobe system that integrates high-sensitivity sensors with a high-fidelity multichannel flexible electrode array. This customizable system achieves distributed and minimally invasive implantation across brain regions. Most importantly, the system's nonvisual monitoring capability provides an early warning detection for intracranial soft tissues, such as vessels, reducing the potential for injury during implantation. The neural probe system demonstrates exceptional sensitivity and adaptability to environmental stimuli, as well as outstanding performance in postoperative and chronic recordings. These findings suggest that our biomimetic neural-probe device offers promising potential for future applications in neuroscience and brain-machine interfaces. A mosquito mouthpart-like bionic neural probe consisting of a highly sensitive tactile sensor module, a flexible microelectrode array, and implanted modules that mimic the structure of mosquito mouthparts. The system enables distributed implantation of electrode arrays across multiple brain regions while making the implantation minimally invasive and avoiding additional dural removal. The tactile sensor array can monitor the implantation process to achieve early warning of vascular damage. The excellent postoperative short-term recording performance and long-term neural activity tracking ability demonstrate that the system is a promising tool in the field of brain-computer interfaces.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Heng Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ke Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- Neuroxess Co., Ltd. (Jiangxi), 330029 Nanchang, Jiangxi China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, 519031 Zhuhai, Guangdong China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
39
|
Zhao Q, Zhu M, Tian G, Liang C, Liu Z, Huang J, Yu QY, Tang S, Chen J, Zhao X, Zeng Q, Guo C, Qi D. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Adv Healthc Mater 2023; 12:e2203344. [PMID: 36974567 DOI: 10.1002/adhm.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Flexible electrode array, a new-generation neural microelectrode, is a crucial tool for information exchange between living tissues and external electronics. Till date, advances in flexible neural microelectrodes are limited because of their high impedance and poor mechanical consistency at tissue interfaces. Herein, a highly sensitive and omnidirectionally stretchable polymeric electrode array (PEA) is introduced. Micropyramid-nanowire composite structures are constructed to increase the effective surface area of PEA, achieving an exponential reduction in impedance compared with gold (Au) and flat polypyrrole electrodes. Moreover, for the first time, a suspended umbrella structure to enable PEA with omnidirectional stretchability of up to ≈20% is designed. The PEA can withstand 1000 cycles of mechanical loads without decrease in performance. As a proof of concept, PEA is conformally attached to a rat heart and tibialis anterior muscle, and electrophysiological signals (electrocardiogram and electromyogram) of the rat are successfully recorded. This strategy provides a new perspective toward highly sensitive and omnidirectionally stretchable PEA that can facilitate the practical application of neural electrodes.
Collapse
Affiliation(s)
- Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Ming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qianheng Yuan Yu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xizheng Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Qi Zeng
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Chongshen Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
40
|
Bouchet D, Caravaca-Aguirre AM, Godefroy G, Moreau P, Wang I, Bossy E. Speckle-correlation imaging through a kaleidoscopic multimode fiber. Proc Natl Acad Sci U S A 2023; 120:e2221407120. [PMID: 37343065 PMCID: PMC10293815 DOI: 10.1073/pnas.2221407120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Speckle-correlation imaging techniques are widely used for noninvasive imaging through complex scattering media. While light propagation through multimode fibers and scattering media share many analogies, reconstructing images through multimode fibers from speckle correlations remains an unsolved challenge. Here, we exploit a kaleidoscopic memory effect emerging in square-core multimode fibers and demonstrate fluorescence imaging with no prior knowledge on the fiber. Experimentally, our approach simply requires to translate random speckle patterns at the input of a square-core fiber and to measure the resulting fluorescence intensity with a bucket detector. The image of the fluorescent object is then reconstructed from the autocorrelation of the measured signal by solving an inverse problem. This strategy does not require the knowledge of the fragile deterministic relation between input and output fields, which makes it promising for the development of flexible minimally invasive endoscopes.
Collapse
Affiliation(s)
- Dorian Bouchet
- Université Grenoble Alpes, CNRS, LIPhy, 38000Grenoble, France
| | | | - Guillaume Godefroy
- Université Grenoble Alpes, CNRS, LIPhy, 38000Grenoble, France
- Université Grenoble Alpes, CEA, Leti, 38000Grenoble, France
| | - Philippe Moreau
- Université Grenoble Alpes, CNRS, LIPhy, 38000Grenoble, France
| | - Irène Wang
- Université Grenoble Alpes, CNRS, LIPhy, 38000Grenoble, France
| | - Emmanuel Bossy
- Université Grenoble Alpes, CNRS, LIPhy, 38000Grenoble, France
| |
Collapse
|
41
|
Karatum O, Han M, Erdogan ET, Karamursel S, Nizamoglu S. Physical mechanisms of emerging neuromodulation modalities. J Neural Eng 2023; 20:031001. [PMID: 37224804 DOI: 10.1088/1741-2552/acd870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Mertcan Han
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sacit Karamursel
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
42
|
Wei H, Li L, Xue Y, Yu P, Mao L. Stability Enhancement of Galvanic Redox Potentiometry by Optimizing the Redox Couple in Counterpart Poles. Anal Chem 2023; 95:8232-8238. [PMID: 37201512 DOI: 10.1021/acs.analchem.3c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potentiometry based on the galvanic cell mechanism, i.e., galvanic redox potentiometry (GRP), has recently emerged as a new tool for in vivo neurochemical sensing with high neuronal compatibility and good sensing property. However, the stability of open circuit voltage (EOC) outputting remains to be further improved for in vivo sensing application. In this study, we find that the EOC stability could be enhanced by adjusting the sort and the concentration ratio of the redox couple in the counterpart pole (i.e., indicating electrode) of GRP. With dopamine (DA) as the sensing target, we construct a spontaneously powered single-electrode-based GRP sensor (GRP2.0) and investigate the correlation between the stability and the redox couple used in the counterpart pole. Theoretical consideration suggests that the EOC drift is minimum when the concentration ratio of the oxidized form (O1) to the reduced form (R1) of the redox species in the backfilled solution is 1:1. The experimental results demonstrate that, compared with other redox species (i.e., dissolved O2 at 3 M KCl, potassium ferricyanide (K3Fe(CN)6), and hexaammineruthenium(III) chloride (Ru(NH3)6Cl3)) used as the counterpart pole, potassium hexachloroiridate(IV) (K2IrCl6) exhibits better chemical stability and outputs more stable EOC. As a result, when IrCl62-/3- with the concentration ratio of 1:1 is used as the counterpart, GRP2.0 displays not only an excellent EOC stability (i.e., 3.8 mV drifting during 2200 s for in vivo recording) but also small electrode-to-electrode variation (i.e., the maximum EOC variation between four electrodes is 2.7 mV). Upon integration with the electrophysiology, GRP2.0 records a robust DA release, accompanied by a burst of neural firing, during the optical stimulation. This study paves a new avenue to stable neurochemical sensing in vivo.
Collapse
Affiliation(s)
- Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lijuan Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
43
|
Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes. J Colloid Interface Sci 2023; 638:339-348. [PMID: 36746052 DOI: 10.1016/j.jcis.2023.01.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Conducting polymers are emerging as promising neural interfaces towards diverse applications such as deep brain stimulation due to their superior biocompatibility, electrical, and mechanical properties. However, existing conducting polymer-based neural interfaces still suffer from several challenges and limitations such as complex preparation procedures, weak interfacial adhesion, poor long-term fidelity and stability, and expensive microfabrication, significantly hindering their broad practical applications and marketization. Herein, we develop an adhesive and long-term stable conducting polymer neural interface by a simple two-step electropolymerization methodology, namely, the pre-polymerization of polydopamine (PDA) as an adhesive thin layer followed by electropolymerization of hydroxymethylated 3,4-ethylenedioxythiophene (EDOT-MeOH) with polystyrene sulfonate (PSS) to form stable interpenetrating PEDOT-MeOH:PSS/PDA networks. As-prepared PEDOT-MeOH:PSS/PDA interface exhibits remarkably improved interfacial adhesion against metallic electrodes, showing 93% area retention against vigorous sonication for 20 min, which is one of the best tenacious conducting polymer interfaces so far. Enabled by the simple methodology, we can facilely fabricate the PEDOT-MeOH:PSS/PDA interface onto ultrasmall Pt-Ir wire microelectrodes (diameter: 10 μm). The modified microelectrodes display two orders of magnitude lower impedance than commercial products, and also superior long-term stability to previous reports with high charge injection capacity retention up to 99.5% upon 10,000,000 biphasic input pulse cycles. With these findings, such a simple methodology, together with the fabricated high-performance and stable neural interface, can potentially provide a powerful tool for both advanced neuroscience researches and cutting-edge clinical applications like brain-controlled intelligence.
Collapse
|
44
|
Bhatt S, Masterson E, Zhu T, Eizadi J, George J, Graupe N, Vareberg A, Phillips J, Bok I, Dwyer M, Ashtiani A, Hai A. Wireless in vivo Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133549. [PMID: 36970106 PMCID: PMC10035629 DOI: 10.1016/j.snb.2023.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors. Here we present a circuit for sensing ionic fluctuations in the brain by an ion-sensitive field effect transistor that detunes a single radiofrequency resonator in parallel. We establish sensitivity of the sensor by electromagnetic analysis and quantify response to ionic fluctuations in vitro. We validate this new architecture in vivo during hindpaw stimulation in rodents and verify correlation with local field potential recordings. This new approach can be implemented as an integrated circuit for wireless in situ recording of brain electrophysiology.
Collapse
Affiliation(s)
- Suyash Bhatt
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Emily Masterson
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Tianxiang Zhu
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Judy George
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Nesya Graupe
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Matthew Dwyer
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| |
Collapse
|
45
|
Reyes-Sanchez M, Amaducci R, Sanchez-Martin P, Elices I, Rodriguez FB, Varona P. Automatized offline and online exploration to achieve a target dynamics in biohybrid neural circuits built with living and model neurons. Neural Netw 2023; 164:464-475. [PMID: 37196436 DOI: 10.1016/j.neunet.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
Biohybrid circuits of interacting living and model neurons are an advantageous means to study neural dynamics and to assess the role of specific neuron and network properties in the nervous system. Hybrid networks are also a necessary step to build effective artificial intelligence and brain hybridization. In this work, we deal with the automatized online and offline adaptation, exploration and parameter mapping to achieve a target dynamics in hybrid circuits and, in particular, those that yield dynamical invariants between living and model neurons. We address dynamical invariants that form robust cycle-by-cycle relationships between the intervals that build neural sequences from such interaction. Our methodology first attains automated adaptation of model neurons to work in the same amplitude regime and time scale of living neurons. Then, we address the automatized exploration and mapping of the synapse parameter space that lead to a specific dynamical invariant target. Our approach uses multiple configurations and parallel computing from electrophysiological recordings of living neurons to build full mappings, and genetic algorithms to achieve an instance of the target dynamics for the hybrid circuit in a short time. We illustrate and validate such strategy in the context of the study of functional sequences in neural rhythms, which can be easily generalized for any variety of hybrid circuit configuration. This approach facilitates both the building of hybrid circuits and the accomplishment of their scientific goal.
Collapse
Affiliation(s)
- Manuel Reyes-Sanchez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rodrigo Amaducci
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Sanchez-Martin
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Irene Elices
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Francisco B Rodriguez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
46
|
Xing Y, Zhou M, Si Y, Yang CY, Feng LW, Wu Q, Wang F, Wang X, Huang W, Cheng Y, Zhang R, Duan X, Liu J, Song P, Sun H, Wang H, Zhang J, Jiang S, Zhu M, Wang G. Integrated opposite charge grafting induced ionic-junction fiber. Nat Commun 2023; 14:2355. [PMID: 37095082 PMCID: PMC10126126 DOI: 10.1038/s41467-023-37884-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
The emergence of ionic-junction devices has attracted growing interests due to the potential of serving as signal transmission and translation media between electronic devices and biological systems using ions. Among them, fiber-shaped iontronics possesses a great advantage in implantable applications owing to the unique one-dimensional geometry. However, fabricating stable ionic-junction on curved surfaces remains a challenge. Here, we developed a polyelectrolyte based ionic-junction fiber via an integrated opposite charge grafting method capable of large-scale continuous fabrication. The ionic-junction fibers can be integrated into functions such as ionic diodes and ionic bipolar junction transistors, where rectification and switching of input signals are implemented. Moreover, synaptic functionality has also been demonstrated by utilizing the fiber memory capacitance. The connection between the ionic-junction fiber and sciatic nerves of the mouse simulating end-to-side anastomosis is further performed to realize effective nerve signal conduction, verifying the capability for next-generation artificial neural pathways in implantable bioelectronics.
Collapse
Affiliation(s)
- Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Mingjie Zhou
- Department of Hand Surgery, Center for the Reconstruction of Limb Function, National Clinical Research Center for Aging and Medicine, Huashan Hospital; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital; NHC Key Laboratory of Hand Reconstruction, Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Institute of Hand Surgery, Fudan University, 200040, Shanghai, China
| | - Yueguang Si
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Liang-Wen Feng
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Qilin Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Fei Wang
- Department of Hand Surgery, Center for the Reconstruction of Limb Function, National Clinical Research Center for Aging and Medicine, Huashan Hospital; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital; NHC Key Laboratory of Hand Reconstruction, Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Institute of Hand Surgery, Fudan University, 200040, Shanghai, China
| | - Xiaomin Wang
- Department of Hand Surgery, Center for the Reconstruction of Limb Function, National Clinical Research Center for Aging and Medicine, Huashan Hospital; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital; NHC Key Laboratory of Hand Reconstruction, Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Institute of Hand Surgery, Fudan University, 200040, Shanghai, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Ruilin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, Jilin, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, Jilin, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environmental Effects and Eletro-optical Engineering, 210007, Nanjing, China
| | - Ping Song
- National Key Laboratory on Electromagnetic Environmental Effects and Eletro-optical Engineering, 210007, Nanjing, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Su Jiang
- Department of Hand Surgery, Center for the Reconstruction of Limb Function, National Clinical Research Center for Aging and Medicine, Huashan Hospital; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital; NHC Key Laboratory of Hand Reconstruction, Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Institute of Hand Surgery, Fudan University, 200040, Shanghai, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
| |
Collapse
|
47
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
48
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
49
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
50
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|